WO2014017449A1 - Surface-treated copper foil, method for manufacturing same, electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Surface-treated copper foil, method for manufacturing same, electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
WO2014017449A1
WO2014017449A1 PCT/JP2013/069832 JP2013069832W WO2014017449A1 WO 2014017449 A1 WO2014017449 A1 WO 2014017449A1 JP 2013069832 W JP2013069832 W JP 2013069832W WO 2014017449 A1 WO2014017449 A1 WO 2014017449A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
nitrogen
carbon
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2013/069832
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 鶴田
健作 篠崎
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2013541902A priority Critical patent/JP5554455B1/en
Priority to KR1020147028373A priority patent/KR101579489B1/en
Priority to CN201380015937.XA priority patent/CN104204299B/en
Publication of WO2014017449A1 publication Critical patent/WO2014017449A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Provided are a surface-treated copper foil that has an improved suitability for welding resistance so as to achieve an enhanced productivity, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery. The surface-treated copper foil is characterized in that: the sum (atomic %) of the carbon element content and nitrogen element content, said element contents being measured in the depth direction of the copper foil by X-ray photoelectron spectroscopy (XPS), attains the maximum value on the outermost surface; at the depth at which the sum (atomic %) of the carbon element content and nitrogen element content is halved compared to the maximum value thereof on the outermost surface, the decreasing rate of the sum (atomic %) of the carbon element content and nitrogen element content in the depth direction of the copper foil is 50%/nm or greater; and the surface resistivity that is defined in JIS-K7194:1994 is 2.5-40 mΩ.

Description

表面処理銅箔とその製造方法、リチウムイオン二次電池用電極及びリチウムイオン二次電池Surface-treated copper foil and method for producing the same, electrode for lithium ion secondary battery and lithium ion secondary battery
 本発明は表面処理銅箔、特に、銅箔相互、あるいは銅箔と他の金属材料とを抵抗溶接法により溶接する、抵抗溶接性に優れた表面処理銅箔、及びその製造方法、並びにそれを用いたリチウムイオン二次電池用電極及びリチウムイオン二次電池に関するものである。 The present invention is a surface-treated copper foil excellent in resistance weldability, particularly a copper foil mutually welded, or copper foil to each other, or a copper foil and another metal material welded by resistance welding, a method for producing the same, and The present invention relates to an electrode for a lithium ion secondary battery and a lithium ion secondary battery used.
 自動車等に用いられる電子部品の場合、近年の高密度化にともない、その電気接続部はより信頼性の高いものが要求され、特に、端子と銅箔等の異種金属同士の接合部については、より確実に接合されることが求められている。
 また近年、リチウムイオン二次電池等の非水溶媒二次電池の負極集電体として、銅箔同士、あるいは銅箔とタブ端子の接続には強い接合強度、もしくは信頼性の高い接合状態が求められている。
In the case of electronic parts used in automobiles and the like, with the recent increase in density, the electrical connection portion is required to be more reliable, and in particular, in connection portions between terminals and dissimilar metals such as copper foil, It is required to be more reliably joined.
Also, in recent years, as a negative electrode current collector of a non-aqueous solvent secondary battery such as a lithium ion secondary battery, a strong bonding strength or a highly reliable bonding state is required to connect copper foils or copper foil and tab terminals. It is done.
 このような要求を満たす溶接法の一つに抵抗溶接法がある。
 この抵抗溶接法は異種金属同士の接合ではその接合部にナゲットと呼ばれる溶融部分が形成され、接合部の剥離が発生しにくい安定した接合が可能で、特に自動車のボディのような大型の金属部品の接合では多く用いられている。
 リチウムイオン二次電池の分野においては、強度が大きく信頼性の高い接合状態が得られるだけでなく、超音波溶接とは異なり集電体用銅箔間および銅箔-端子用タブ板間において摩擦が発生しないため、電流・圧力・溶接時間を適切に調節してスパッタを発生させない条件を選択することにより、銅微粒子の発生と電池セルへの混入が予防でき、リチウムイオン二次電池の安全性確保にも寄与する。
One of the welding methods that satisfy such requirements is resistance welding.
In this resistance welding method, in the joining of dissimilar metals, a fused part called nugget is formed in the joining part, and stable joining where peeling of the joining part is hard to occur is possible, especially large metal parts such as automobile bodies. Are often used in the bonding of
In the field of lithium ion secondary batteries, not only a strong and reliable bonding state can be obtained, but unlike ultrasonic welding, friction between copper foils for current collectors and tab plates for copper foils-terminals is different. Therefore, by appropriately adjusting the current, pressure, and welding time and selecting the condition that does not generate spatter, generation of copper particulates and mixing in the battery cell can be prevented, and the safety of the lithium ion secondary battery It also contributes to securing.
 銅箔の超音波溶接性は、加熱乾燥などの前処理を行わない場合は、その表面に防錆処理を施さない方が優れる。しかし、防錆処理を施さなければ銅箔表面は大気中で容易に酸化するため、加熱乾燥などの前処理の有無に関係なく、実用に適さなくなる。この銅箔表面の酸化を防ぐため、酸性浴(pH1~2)でクロメート処理を行い、クロメート被膜と呼ばれる、クロム水和酸化物膜を形成する方法及びトリアゾール化合物、テトラゾール化合物を含む溶液中に浸漬し有機防錆皮膜を形成する方法が知られている。
 このように防錆被膜を施した銅箔は、大気中で変色し難いが、一方で防錆被膜の厚さが厚い場合、超音波振動を印加しても、表面がクリーニングされにくく、純銅が表面に露出しにくいため、原子拡散が起こり難く、接合力が弱められるためであると考えられる。
The ultrasonic weldability of the copper foil is better if the surface is not subjected to anti-corrosion treatment when pretreatment such as heat drying is not performed. However, since the surface of the copper foil is easily oxidized in the air if it is not subjected to antirust treatment, it is not suitable for practical use regardless of the presence or absence of pretreatment such as heat drying. In order to prevent oxidation of the copper foil surface, chromate treatment is carried out in an acidic bath (pH 1 to 2) to form a chromium hydrate oxide film called a chromate film, and immersion in a solution containing a triazole compound and tetrazole compound Methods are known for forming organic rustproof coatings.
The copper foil coated with the rustproof film in this way is difficult to discolor in the atmosphere, but on the other hand, if the thickness of the rustproof film is thick, the surface is difficult to be cleaned even when ultrasonic vibration is applied, and pure copper Since it is hard to be exposed to the surface, atomic diffusion is unlikely to occur and it is considered that the bonding strength is weakened.
 このような超音波溶接性の向上を課題とした銅箔については、本発明者等によるクロム水和酸化物を銅箔表面に薄く形成した銅箔(特許文献1参照)や、トリアゾール系化合物とシランカップリング剤を混合させた溶液によって防錆処理を行った銅箔(特許文献2参照)が提唱されている。 With regard to copper foils for which such improvement in ultrasonic weldability is a subject, copper foils having thin chromium hydrate oxides formed by the present inventors on copper foils (see Patent Document 1), triazole compounds and the like The copper foil (refer patent document 2) which performed the rustproofing process by the solution with which the silane coupling agent was mixed is proposed.
特開2009-68042号公報JP, 2009-68042, A 特開2011-23303号公報JP 2011-23303 A
 このように、リチウムイオン電池の集電体として用いられる銅箔の溶接性について、超音波溶接に対する特性を向上させるための検討は多く行われているが、良好な抵抗溶接性を発現する銅箔の検討やその手法については未だに知られていない。このため、自動車向けリチウムイオン電池の集電体への導入が増加すると予測される抵抗溶接性に優れた銅箔の開発を、本発明においては課題としている。 Thus, with regard to the weldability of copper foils used as current collectors for lithium ion batteries, many studies have been conducted to improve the characteristics for ultrasonic welding, but copper foils that exhibit good resistance weldability It is not yet known about the examination of and its method. For this reason, in the present invention, the development of a copper foil excellent in resistance weldability, which is expected to increase the introduction of a lithium ion battery for automobiles into a current collector, is a subject in the present invention.
 本発明者等は、この課題を解決するべく鋭意検討を重ねた結果、トリアゾール系化合物を中心とする有機成分による防錆処理と、表面抵抗値のコントロールに解決の糸口を見出した。そこで、防錆処理条件について検討した結果、トリアゾール系化合物と一定割合の無水カルボン酸を混合させた防錆液によって処理を行うことによって、防錆皮膜に含有される窒素・炭素の合計含有率が最表面で最も高く、深さ方向に対する窒素・炭素の合計含有率の変化が特徴的な防錆皮膜を形成し、さらにトリアゾール系化合物の濃度をコントロールしてJIS・K・7194:1994に基づいて測定した表面抵抗値を一定の範囲とすることによって、良好な抵抗溶接特性をもつ電解銅箔が得られることを見出した。 As a result of intensive studies to solve this problem, the present inventors have found a clue to the prevention of corrosion by the organic component centering on triazole compounds and the control of the surface resistance. Therefore, as a result of examining the antirust treatment conditions, the total content of nitrogen and carbon contained in the antirust film is obtained by treating with an antirust solution in which a triazole compound and a predetermined ratio of carboxylic anhydride are mixed. Based on JIS K · 7194: 1994, it forms the rustproof film which is the highest on the outermost surface and is characterized by changes in the total content of nitrogen and carbon in the depth direction, and controls the concentration of triazole compounds. By making the measured surface resistance value into a fixed range, it discovered that an electrolytic copper foil with a good resistance welding characteristic was obtained.
 本発明の表面処理銅箔は、銅箔の少なくとも片方の面において、XPS(X線光電子分光分析)により測定された銅箔の深さ方向の炭素と窒素の元素含有率(原子%)の合計が該銅箔の最表面で最も大きく、かつ、その炭素と窒素の元素含有率(原子%)の合計が最表面に対して半値となる深さにおいて、該銅箔の深さ方向に対する炭素と窒素の元素含有率(原子%)の合計の減少度が50%/nm以上であり、かつ、JIS-K7194:1994において規定される表面抵抗が2.5~40mΩである表面処理皮膜が形成されていることを特徴とする。 The surface-treated copper foil of the present invention is the sum of the elemental content (atomic%) of carbon and nitrogen in the depth direction of the copper foil measured by XPS (X-ray photoelectron spectroscopy) on at least one surface of the copper foil. Is the largest at the outermost surface of the copper foil, and at a depth at which the sum of the elemental contents (atomic%) of carbon and nitrogen is half the value relative to the outermost surface, carbon in the depth direction of the copper foil A surface-treated film is formed which has a total reduction of the element content (atomic%) of nitrogen of 50% / nm or more and a surface resistance of 2.5 to 40 mΩ as defined in JIS-K7194: 1994. It is characterized by
 また、本発明の表面処理銅箔の製造方法は、トリアゾール系化合物を50~700ppm含有し、カルボン酸無水物をトリアゾール系化合物の合計濃度に対して濃度比が0.05以上の範囲となるように調製した防錆処理液を銅箔に塗布することによって、銅箔の少なくとも片方の面において、XPS(X線光電子分光分析)により測定された銅箔の深さ方向の炭素と窒素の元素含有率(原子%)の合計が該銅箔の最表面で最も大きく、かつ、その炭素と窒素の元素含有率(原子%)の合計が最表面に対して半値となる深さにおいて、該銅箔の深さ方向に対する炭素と窒素の元素含有率(原子%)の合計の減少度が50%/nm以上であり、かつ、JIS-K7194:1994において規定される表面抵抗が2.5~40mΩである表面処理皮膜を形成することを特徴とする。 Further, the method for producing a surface-treated copper foil according to the present invention contains 50 to 700 ppm of a triazole compound such that the concentration ratio of the carboxylic anhydride to the total concentration of the triazole compound is 0.05 or more. By applying the anticorrosion treatment solution prepared in the above to copper foil, at least one surface of the copper foil, containing carbon and nitrogen elements in the depth direction of copper foil measured by XPS (X-ray photoelectron spectroscopy) The copper foil at such a depth that the sum of the percentage (atomic%) is the largest on the outermost surface of the copper foil, and the sum of the elemental contents (atomic%) of carbon and nitrogen is half of the outermost surface. The total reduction of the elemental content (atomic%) of carbon and nitrogen in the direction of depth is 50% / nm or more, and the surface resistance specified in JIS-K7194: 1994 is 2.5 to 40 mΩ Surface treatment And forming a film.
 本発明により、抵抗溶接による銅箔同士、あるいは銅箔と他金属との溶接性に優れた表面処理銅箔を提供することができる。
 また、本発明の抵抗溶接性に優れた銅箔の表面処理方法は、抵抗溶接による銅箔同士、あるいは銅箔と他の金属との溶接性に優れた表面処理銅箔を容易に製造することができる。
ADVANTAGE OF THE INVENTION By this invention, the surface-treated copper foil excellent in the weldability of copper foils by resistance welding, or copper foil and other metals can be provided.
Moreover, the surface treatment method of the copper foil excellent in resistance weldability of the present invention easily produces a surface-treated copper foil excellent in weldability between copper foils by resistance welding or between copper foil and another metal. Can.
図1は実施例に係るXPS(X線光電子分光分析)により測定された銅箔の深さ方向の炭素と窒素の元素含有率(原子%)の合計を示すグラフである。FIG. 1 is a graph showing the sum of the elemental content (atomic%) of carbon and nitrogen in the depth direction of a copper foil measured by XPS (X-ray photoelectron spectroscopy) according to an example. 図2は抵抗溶接を模式的に示す説明図である。FIG. 2 is an explanatory view schematically showing resistance welding.
 本発明の表面処理銅箔は、銅箔(本発明において、電解銅箔、圧延銅箔を個別に表現する必要がないときは、これらを総称して銅箔と表現する)の少なくとも片面において、XPS(X線光電子分光分析)により銅箔の深さ方向の炭素と窒素の元素含有率(原子%)が最表面で最も大きく、炭素と窒素の元素含有率(原子%)の合計が最表面に対して半値となる深さにおいて、銅箔の深さ方向に対する炭素と窒素の元素含有率(原子%)の合計の減少度が50%/nm以上であり、銅箔表面における抵抗値が2.5~40mΩであるトリアゾール系化合物またはその錯体化合物またはこれら両化合物の混合物からなる有機防錆皮膜(本明細書ではトリアゾール系化合物またはその錯体化合物またはこれら両者の混合物からなる有機防錆皮膜を「トリアゾール系化合物、または/および、その錯体化合物からなる有機防錆化合物」と記載する)が形成されている。
 銅箔表面における抵抗値の測定はJIS-K7194:1994に基づき測定する。
In the surface-treated copper foil of the present invention, at least one surface of the copper foil (in the present invention, when the electrolytic copper foil and the rolled copper foil need not be individually expressed, they are collectively referred to as copper foil) The elemental content (atomic%) of carbon and nitrogen in the depth direction of the copper foil is the largest at the outermost surface by XPS (X-ray photoelectron spectroscopy), and the total elemental content (atomic%) of carbon and nitrogen is the outermost surface The reduction rate of the total of the elemental content (atomic%) of carbon and nitrogen in the depth direction of the copper foil is 50% / nm or more, and the resistance value on the copper foil surface is 2 An organic anticorrosion coating comprising a triazole compound or a complex compound thereof having a mixture of 5 to 40 mΩ or a mixture of these two compounds (herein, an organic anticorrosion coating comprising a triazole compound or a complex compound thereof or a mixture of both of them; Triazole compound, and / or to as organic anti-rust compounds "consisting of the complex compounds) are formed.
The resistance value on the copper foil surface is measured in accordance with JIS-K7194: 1994.
 本実施形態ではX線光電子分光分析装置(XPS装置)とアルゴンスパッタとを組み合わせて、深さ方向の元素分析を行い、銅箔表面に形成される防錆皮膜の炭素および窒素の検出及び定量を行う。 In this embodiment, X-ray photoelectron spectroscopy (XPS) and argon sputtering are combined to perform elemental analysis in the depth direction, thereby detecting and quantifying carbon and nitrogen of a rust preventive film formed on the surface of a copper foil. Do.
 防錆皮膜は銅とトリアゾール化合物との錯体、および、純粋なトリアゾール化合物との混合体であり、銅箔本体に対しその体積抵抗率は10倍~10倍ほどのオーダーとなる。また、一般的に金属表面における絶縁性皮膜が付着している場合、その抵抗値は絶縁性皮膜の厚さが大きくなるほど高くなる。このため、防錆皮膜の厚さの指標として、JIS-K7194:1994に基づく銅箔1枚の表面抵抗の測定値を採用する。 The anticorrosive film is a complex of copper and a triazole compound and a mixture of a pure triazole compound, and the volume resistivity of the copper foil body is on the order of 10 5 to 10 6 times. In general, when the insulating film on the metal surface is attached, the resistance value becomes higher as the thickness of the insulating film becomes larger. For this reason, a measured value of surface resistance of one copper foil based on JIS-K7194: 1994 is adopted as an index of the thickness of the antirust film.
 防錆皮膜の炭素及び窒素の含有状態を確認する手法としては、XPS(X線光電子分光分析)により銅箔の深さ方向の炭素と窒素の元素含有率(原子%)を測定し、炭素と窒素の元素含有率の合計が最表面の半値となる深さ位置における炭素と窒素の元素含有率の合計の減少度[%/nm]を用いる。
 防錆処理に用いたトリアゾール系化合物の処理濃度・処理温度により、防錆皮膜の厚さと、トリアゾール系化合物の付着量、すなわちトリアゾール系化合物由来の炭素と窒素の総量が決定される。また、炭素と窒素の含有率の合計は、皮膜の最表面付近で最大値をとり、深さ方向に進むにしたがって漸近線を描くように減少し、最終的に0%となる。
 つまり、炭素と窒素の元素含有率の合計が最表面の半値となる深さ位置での元素含有率の減少度[%/nm]が大きければ、トリアゾール系化合物由来の炭素と窒素の大部分が防錆皮膜の最表面に存在し、防錆皮膜の最表面に防錆成分が密に存在していると考えることができる。一方、この値が小さければ、トリアゾール系化合物由来の炭素と窒素の存在率は、最表面と皮膜の中央部との間で差が小さいだけでなく、最表面付近の炭素と窒素の存在率が低くなり、防錆成分は密な存在状態とはなっていないと考えることができる。
 以上の点から、炭素と窒素の元素含有率の合計が最表面の半値となる深さ位置での、炭素と窒素の元素含有率の合計の減少度[%/nm]は、防錆皮膜の最表面付近のトリアゾール系化合物由来の炭素と窒素が多量に、かつ密に存在しているか否かの尺度となる。
 この数値が50%/nmよりも小さい場合、防錆皮膜表面付近のトリアゾール系化合物由来の炭素と窒素が不足して、溶接前処理の加熱工程において熱された大気や水分と銅箔との接触を抑制しきれずに酸化膜厚が増大しやすくなり、満足する溶接性が得られないおそれがある。
As a method to confirm the carbon and nitrogen content of the antirust film, measure the elemental content (atomic%) of carbon and nitrogen in the depth direction of the copper foil by XPS (X-ray photoelectron spectroscopy), The reduction rate [% / nm] of the sum of the elemental content of carbon and nitrogen at the depth position where the sum of the elemental content of nitrogen is half of the outermost surface is used.
The thickness of the anticorrosive film and the adhesion amount of the triazole compound, that is, the total amount of carbon and nitrogen derived from the triazole compound are determined by the treatment concentration and treatment temperature of the triazole compound used for the antirust treatment. In addition, the sum of carbon and nitrogen contents takes a maximum value near the outermost surface of the film, and decreases to draw an asymptotic line as it proceeds in the depth direction, and finally becomes 0%.
That is, if the reduction in the element content [% / nm] at the depth position where the sum of the element contents of carbon and nitrogen is half of the outermost surface is large, most of the carbon and nitrogen derived from the triazole compound It can be considered that it exists on the outermost surface of the antirust film, and the anticorrosive component is densely present on the outermost surface of the antirust film. On the other hand, if this value is small, not only the difference between the outermost surface and the central part of the film is small, but the abundance of carbon and nitrogen near the outermost surface is also small. It can be considered that the anticorrosion component is not present in a dense state.
From the above points, the reduction rate [% / nm] of the total of the elemental contents of carbon and nitrogen at the depth position where the sum of the elemental contents of carbon and nitrogen is the half value of the outermost surface It becomes a measure of whether carbon and nitrogen derived from the triazole compound near the outermost surface are abundantly and densely present.
If this value is less than 50% / nm, carbon and nitrogen derived from the triazole compound near the surface of the rustproof coating are insufficient, and the air and moisture heated in the heating step of the welding pretreatment are in contact with the copper foil As a result, the oxide film thickness tends to increase without satisfying the above, and there is a possibility that a satisfactory weldability can not be obtained.
 本実施形態の銅箔表面における抵抗値は0.25~40mΩである。0.25mΩより小さい場合には、室温において大気あるいは水分から銅箔表面を保護する性能に乏しく、保管・輸送時に表面の酸化あるいは変色が発生しやすい。また、非水溶媒二次電池の負極集電体の製造における乾燥工程のような100~160℃の高温な環境においては、防錆皮膜の強度が酸化を防ぐには不十分となり酸化膜厚が過度に増加することから、溶接性が極端に低下するためである。また、銅箔表面における抵抗値が40mΩより大きい場合には、防錆皮膜の厚さそのものが過剰であるため、溶接時の熱エネルギーが防錆皮膜の除去のために過大に消費され、十分な強度の溶接状態が得られないおそれがあるためである。
 銅箔表面における抵抗値は、0.25~20mΩの範囲の方が、20~40mΩの範囲に比べて、溶接時に防錆皮膜が除去されやすく、より好適である。
The resistance value on the copper foil surface of this embodiment is 0.25 to 40 mΩ. If it is smaller than 0.25 mΩ, the ability to protect the copper foil surface from air or moisture at room temperature is poor, and surface oxidation or discoloration tends to occur during storage and transportation. In addition, in a high temperature environment of 100 to 160 ° C such as the drying step in the production of the negative electrode current collector of the non-aqueous solvent secondary battery, the strength of the antirust film is insufficient to prevent oxidation, and the oxide film thickness becomes too thick. This is because the weldability is extremely reduced due to an excessive increase. In addition, when the resistance value on the copper foil surface is larger than 40 mΩ, the thickness of the anticorrosion film itself is excessive, so the thermal energy at the time of welding is consumed excessively for the removal of the anticorrosion film, which is sufficient. It is because there is a possibility that a strong welding state can not be obtained.
The resistance value on the copper foil surface is more preferable in the range of 0.25 to 20 mΩ than in the range of 20 to 40 mΩ because the anticorrosive film is easily removed during welding.
 本実施形態の表面処理銅箔の製造方法においては、例えば、トリアゾール系化合物を50~700ppm含有し、カルボン酸無水物をトリアゾール系化合物の合計濃度に対して濃度比が0.05以上の範囲となるように調製した防錆処理液を銅箔に塗布することによって、銅箔の少なくとも片方の面において防錆皮膜を形成する。 In the method for producing a surface-treated copper foil of the present embodiment, for example, the compound contains 50 to 700 ppm of a triazole compound, and the concentration ratio of the carboxylic anhydride to the total concentration of the triazole compound is 0.05 or more. The anticorrosive treatment solution prepared as described above is applied to the copper foil to form an anticorrosive coating on at least one surface of the copper foil.
 トリアゾール系化合物としては、ベンゾトリアゾール、トリルトリアゾール、カルボキシベンゾトリアゾール、クロロベンゾトリアゾール、エチルベンゾトリアゾール、ナフトトリアゾール等、およびこれらの錯体化合物が挙げられる。また、カルボン酸無水物としては、無水酢酸、無水コハク酸、無水マレイン酸、無水プロピオン酸、無水フタル酸等が挙げられる。
 防錆処理液におけるトリアゾール化合物の濃度は50~700ppmとすることが望ましい。50ppmを下回ると表面の抵抗値は2.5mΩを下回り、保管、輸送及び乾燥工程時の加熱において表面の酸化あるいは変色が発生しやすい。一方で700ppmを超えると、表面の抵抗値が40mΩを上回り、防錆皮膜の厚さそのものが過剰なものとなり、溶接時の熱エネルギーが防錆皮膜の除去のために過大に消費され、十分な強度の溶接状態が得られないおそれがある。
 また、無水カルボン酸類のトリアゾール系化合物に対する濃度比は0.05以上とすることが望ましい。無水カルボン酸類のトリアゾール系化合物に対する濃度比が0.05より低い場合、最表面に対して炭素と窒素の元素含有率の合計が半値となる深さ位置における、炭素と窒素の元素含有率の合計の減少度が50%/nmを下回る。その結果、防錆皮膜の最表面付近と内部との炭素と窒素の含有率の差が小さくなり、防錆成分が防錆皮膜の最表面付近で不足し、溶接前処理の加熱工程で酸化膜厚が増大しやすくなり、満足する溶接性が得られないおそれがある。
 また、トリアゾール成分の安定性を確保するため、溶液の温度を35~55℃、pHを6.5~8.0とすることが好ましい。また、浸漬時間は通常0.5~30秒程度であればよい。
 ただし、本実施形態の表面処理銅箔の製造方法の条件は、上記に限定されるものではない。
Examples of the triazole compounds include benzotriazole, tolyltriazole, carboxybenzotriazole, chlorobenzotriazole, ethylbenzotriazole, naphthotriazole and the like, and complex compounds thereof. Further, examples of the carboxylic acid anhydride include acetic anhydride, succinic anhydride, maleic anhydride, propionic anhydride, and phthalic anhydride.
The concentration of the triazole compound in the antirust treatment solution is desirably 50 to 700 ppm. If it is less than 50 ppm, the surface resistance value is less than 2.5 mΩ, and oxidation or discoloration of the surface is likely to occur during heating during storage, transport and drying steps. On the other hand, if it exceeds 700 ppm, the surface resistance value exceeds 40 mΩ, the thickness of the anticorrosion coating itself becomes excessive, and the thermal energy at the time of welding is excessively consumed for removing the anticorrosion coating, and sufficient There is a possibility that a strong welding condition can not be obtained.
Further, the concentration ratio of carboxylic anhydrides to triazole compounds is desirably 0.05 or more. When the concentration ratio of carboxylic anhydrides to triazole compounds is lower than 0.05, the sum of the elemental contents of carbon and nitrogen at a depth position at which the sum of the elemental contents of carbon and nitrogen is a half value with respect to the outermost surface Less than 50% / nm. As a result, the difference between the contents of carbon and nitrogen between the outermost surface of the anticorrosive film and the inside becomes smaller, and the anticorrosive component is insufficient near the outermost surface of the anticorrosive film, and the oxide film is generated in the heating process of the welding pretreatment. The thickness tends to increase, and satisfactory weldability may not be obtained.
Further, in order to secure the stability of the triazole component, it is preferable to set the temperature of the solution to 35 to 55 ° C. and the pH to 6.5 to 8.0. In addition, the immersion time may be usually about 0.5 to 30 seconds.
However, the conditions of the manufacturing method of the surface-treated copper foil of this embodiment are not limited above.
 電解銅箔の製造方法においては、例えば、製箔後ただちに有機防錆剤溶液に浸漬して防錆皮膜を形成する。
 製箔後ただちに防錆処理できない場合は、前処理として、HSO=5~200g/l、温度=10℃~80℃の希硫酸に浸漬する酸洗い方法が効果的である。また、脱脂の場合は、NaOH=5~200g/l、温度=10℃~80℃の水溶液中で、電流密度=1~10A/dm、0.1分~5分で陰極又は/及び陽極電解脱脂を行うのが効果的である。
In the method of producing an electrolytic copper foil, for example, immediately after making the foil, it is dipped in an organic rust inhibitor solution to form a rust coating.
If corrosion prevention can not be carried out immediately after foil production, it is effective to use an acid pickling method in which it is immersed in dilute sulfuric acid with H 2 SO 4 = 5 to 200 g / l and temperature = 10 ° C. to 80 ° C. as pretreatment. In the case of degreasing, the current density is 1 to 10 A / dm 2 in an aqueous solution of NaOH = 5 to 200 g / l and the temperature is 10 ° C. to 80 ° C., and the cathode or / and anode is 0.1 to 5 minutes. It is effective to carry out electrolytic degreasing.
 銅箔の10点平均表面粗さRzは2.5μm以下であるほうが、溶接時の熱エネルギーが箔間に伝わりやすく、より好適である。 It is more preferable that the heat energy at the time of welding be easily transmitted between the foils if the 10-point average surface roughness Rz of the copper foil is 2.5 μm or less.
〔銅箔の製箔(実施例1~9及び比較例1~10で共通)〕
 次に示す組成の電解液を調整し、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて、電流密度=50~100A/dmで厚さ10μmの電解銅箔を製造した。
銅:    70~130g/l
硫酸:   80~140g/l
添加剤:  3-メルカプト1-プロパンスルホン酸ナトリウム=1~10ppm
      ヒドロキシエチルセルロース=1~100ppm
      低分子量膠(分子量3,000)=1~50ppm
      塩化物イオン濃度=10~50ppm
温度:   50~60℃
[Fabrication of copper foil (common to Examples 1 to 9 and Comparative Examples 1 to 10)]
An electrolytic solution of the composition shown below was prepared, and a noble metal oxide-coated titanium electrode was used for the anode, and a titanium rotating drum for the cathode, and an electrolytic copper foil of 10 μm thickness at a current density of 50 to 100 A / dm 2. Manufactured.
Copper: 70 to 130 g / l
Sulfuric acid: 80 to 140 g / l
Additive: Sodium 3-mercapto 1-propanesulfonate = 1 to 10 ppm
Hydroxyethyl cellulose = 1 to 100 ppm
Low molecular weight glue (molecular weight 3,000) = 1 to 50 ppm
Chloride ion concentration = 10 to 50 ppm
Temperature: 50 to 60 ° C
〔防錆皮膜形成〕
〔実施例1~9〕
 電解製箔された銅箔をただちに、トリアゾール系化合物をベンゾトリアゾール(1,2,3-ベンゾトリアゾール:以下BTA)、トリルトリアゾール(5-メチル-1H-ベンゾトリアゾール:以下TTA)、エチルベンゾトリアゾール(5-エチル-1H-ベンゾトリアゾール:以下EBTA)から1~3種類選択して合計濃度が50~700ppmとなり、かつ、無水カルボン酸類を無水コハク酸、無水マレイン酸、無水プロピオン酸から1種類選択してトリアゾール系化合物の合計濃度に対する濃度比が0.05以上の範囲となるように調製した防錆処理液に浸漬し、銅箔表面に防錆皮膜を施した。なお、液温は35~55℃、pHは6.5~8.0とした。
[Antirust film formation]
[Examples 1 to 9]
Immediately after the electrolytically produced foil, the triazole compound is benzotriazole (1,2,3-benzotriazole: BTA), tolyltriazole (5-methyl-1H-benzotriazole: TTA), ethylbenzotriazole 5-ethyl-1H-benzotriazole: 1 to 3 selected from the following EBTA to give a total concentration of 50 to 700 ppm, and carboxylic acid anhydrides selected from succinic anhydride, maleic anhydride and propionic anhydride The steel sheet was immersed in a rustproofing solution prepared so that the concentration ratio to the total concentration of the triazole compound was in the range of 0.05 or more to apply a rustproof film to the surface of the copper foil. The liquid temperature was 35 to 55 ° C., and the pH was 6.5 to 8.0.
〔比較例1~4〕
 電解製箔された銅箔をただちに、トリアゾール系化合物をBTA、TTA、EBTAから1~3種類選択して合計濃度が50ppmを下回り、かつ、無水カルボン酸類を無水コハク酸、無水マレイン酸、無水プロピオン酸から1種類選択して任意の濃度となるように調製した防錆処理液に浸漬し、銅箔表面に防錆皮膜を施した。なお、液温は35~55℃、pHは6.5~8.0とした。
〔比較例5~6〕
 電解製箔された銅箔をただちに、トリアゾール系化合物をBTA、TTA、EBTAから1~3種類選択して合計濃度が50~700ppmとなり、かつ、無水カルボン酸類を無水コハク酸、無水マレイン酸、無水プロピオン酸から1種類選択してトリアゾール系化合物の合計濃度に対する濃度比が0.05未満の範囲となるように調製した防錆処理液に浸漬し、銅箔表面に防錆皮膜を施した。なお、液温は35~55℃、pHは6.5~8.0とした。
〔比較例7~9〕
 電解製箔された銅箔をただちに、トリアゾール系化合物をBTA、TTA、EBTAから1~3種類選択して合計濃度が700ppmを上回り、かつ、無水カルボン酸類を無水コハク酸、無水マレイン酸、無水プロピオン酸から1種類選択して任意の濃度となるように調製した防錆処理液に浸漬し、銅箔表面に防錆皮膜を施した。なお、液温は35~55℃、pHは6.5~8.0とした。
〔比較例10〕
 電解製箔された銅箔に対し、防錆処理剤の塗布を行わず、そのままの状態とした。
[Comparative Examples 1 to 4]
The electrolytic copper foil was immediately selected, and one to three triazole compounds were selected from BTA, TTA, EBTA, and the total concentration was less than 50 ppm, and carboxylic anhydrides were succinic anhydride, maleic anhydride, propion anhydride It was immersed in the antirust processing solution prepared so that it might become an arbitrary density | concentration from 1 type of acid, and the antirust film was given to the copper foil surface. The liquid temperature was 35 to 55 ° C., and the pH was 6.5 to 8.0.
[Comparative Examples 5 to 6]
The electrolytic copper foil is immediately selected, and one to three triazole compounds are selected from BTA, TTA, and EBTA, and the total concentration is 50 to 700 ppm, and carboxylic anhydrides are succinic anhydride, maleic anhydride, anhydride One kind of propionic acid was selected, and it was immersed in an antirust treatment solution prepared so that the concentration ratio to the total concentration of the triazole compound was in the range of less than 0.05, to give an antirust film on the copper foil surface. The liquid temperature was 35 to 55 ° C., and the pH was 6.5 to 8.0.
[Comparative Examples 7 to 9]
The electrolytic copper foil was immediately selected, and one to three triazole compounds were selected from BTA, TTA, and EBTA, and the total concentration exceeded 700 ppm, and carboxylic anhydrides were succinic anhydride, maleic anhydride, propion anhydride It was immersed in the antirust processing solution prepared so that it might become an arbitrary density | concentration from 1 type of acid, and the antirust film was given to the copper foil surface. The liquid temperature was 35 to 55 ° C., and the pH was 6.5 to 8.0.
Comparative Example 10
With respect to the electrolytically produced copper foil, the anticorrosion agent was not applied, and it was left as it is.
〔窒素及び炭素の深さ方向での定量〕
 窒素及び炭素の深さ方向の元素含有率(原子%)を、アルバック・ファイ株式会社製XPS測定装置5600MCを使用し下記条件で測定した。
   到達真空度1×10-10Torr(Arガス導入時1×10-8Torr)、
   X線:X線種単色化Al-kα線、出力300W、検出面積800μmφ、
   イオン線:イオン種Ar+、加速電圧3kV、掃引面積3×3mm
   試料入射角45°(試料と検出器とのなす角)、
   スパッタリングレート2.3nm/分(SiO換算)
 元素含有率(原子%)を縦軸、深さ方向を横軸として、窒素と炭素の含有率を合算した曲線を作成し、最表面の含有率に対して半値となる深さ位置において接線を作成し、この接線の傾きから濃度減少度[%/nm]を算出した。
[Determination of nitrogen and carbon in the depth direction]
The element content (atomic%) in the depth direction of nitrogen and carbon was measured under the following conditions using an XPS measurement apparatus 5600 MC manufactured by ULVAC-PHI, Inc.
Ultimate vacuum degree 1 × 10 -10 Torr (1 × 10 -8 Torr when Ar gas introduced),
X-ray: X-ray type monochromatized Al-k α ray, output 300 W, detection area 800 μmφ,
Ion beam: ion species Ar +, acceleration voltage 3 kV, sweep area 3 × 3 mm 2 ,
Sample incident angle 45 ° (angle between sample and detector),
Sputtering rate 2.3 nm / min (SiO 2 equivalent)
A curve is created by adding the contents of nitrogen and carbon, with the element content (atomic%) on the vertical axis and the depth direction on the horizontal axis, and a tangent at the depth position that is half the content of the outermost surface The concentration reduction degree [% / nm] was calculated from the slope of this tangent line.
 図1は実施例に係るXPS(X線光電子分光分析)により測定された銅箔の深さ方向の炭素と窒素の元素含有率(原子%)の合計を示すグラフである。
 図1中の実線aは、実施例1~12の深さ方向の炭素と窒素の合計の元素含有率(原子%)の一例を示す。
 図1中の破線bは、比較例1~9の深さ方向の炭素と窒素の合計の元素含有率(原子%)の一例を示す。
 実線aと破線bの両者において、銅箔の深さ方向に対する炭素と窒素の元素含有率の合計が最表面で最も大きい。ここで、炭素と窒素の元素含有率の合計が最表面に対して半値となる深さにおける、銅箔の深さ方向に対する炭素と窒素の元素含有率の合計の減少度は、実線aにおいては、半値となる深さにおける実線aで示されるグラフの接線Saの傾きで示され、破線bにおいては、半値となる深さにおける破線bで示されるグラフの接線Sbの傾きで示される。
 実施例に係る実線aとx軸で挟まれた領域の面積は、実施例の防錆皮膜中の炭素と窒素の元素含有量に相当する。同様に、比較例に係る破線bとx軸で挟まれた領域の面積は、比較例の防錆皮膜中の炭素と窒素の元素含有量に相当する。同じ防錆皮膜厚さの場合、実施例と比較例で同等の炭素と窒素の元素含有量となり、実線aとx軸で挟まれた領域の面積と、破線bとx軸で挟まれた領域の面積は同等になる。
FIG. 1 is a graph showing the sum of the elemental content (atomic%) of carbon and nitrogen in the depth direction of a copper foil measured by XPS (X-ray photoelectron spectroscopy) according to an example.
The solid line a in FIG. 1 shows an example of the total element content (atomic%) of carbon and nitrogen in the depth direction in Examples 1 to 12.
The broken line b in FIG. 1 shows an example of the total element content (atomic%) of carbon and nitrogen in the depth direction in Comparative Examples 1-9.
In both the solid line a and the broken line b, the sum of the elemental content of carbon and nitrogen in the depth direction of the copper foil is the largest at the outermost surface. Here, the reduction rate of the total of the carbon and nitrogen elemental contents in the depth direction of the copper foil at the depth at which the sum of the carbon and nitrogen elemental contents is half with respect to the outermost surface is the solid line a. The slope of the tangent line Sa of the graph indicated by the solid line a at the half value depth is indicated by a broken line b, and the inclination of the tangent line Sb of the graph indicated by the broken line b at the half value value is indicated.
The area of the region sandwiched by the solid line a and the x axis according to the example corresponds to the elemental content of carbon and nitrogen in the rustproof coating of the example. Similarly, the area of the region sandwiched by the broken line b and the x axis according to the comparative example corresponds to the elemental content of carbon and nitrogen in the rustproof coating of the comparative example. In the case of the same rust prevention film thickness, the element content of carbon and nitrogen is equivalent in the example and the comparative example, and the area between the solid line a and the x axis and the area between the dashed line b and x axis The area of is equal.
〔表面抵抗の測定〕
 銅箔の表面抵抗については、JIS-K7194:1994に基づく4端子法により、日置電機製抵抗計RM3544を使用して測定を行った。
[Measurement of surface resistance]
The surface resistance of the copper foil was measured by a four-terminal method based on JIS-K7194: 1994, using a resistance meter RM3544 manufactured by Nitoki Denki.
〔抵抗溶接試験〕
 前処理として、真空乾燥機中(ヤマト科学製ADP200)で銅箔を140℃の温度で1時間、100Paの圧力で減圧乾燥した。
 図2は抵抗溶接を模式的に示す説明図である。下部電極(銅製ステージ状電極)1上に200μmの厚さのタブ銅板2が配置され、その上に試料銅箔3が20枚積層して配置される。試料銅箔3の溶接箇所に上部電極(銅アルミナ合金製棒状電極、φ3.2mm)4が押圧され、上部電極4と下部電極1間で電流Iが流され、抵抗溶接がなされる。
 溶接機として日本アビオニクス製NRW-200Aを用い、ピーク値2400A、通電時間4.9msのパルス電流、および33Nの圧力を印加して、図2に示すように10μm厚の銅箔20枚を200μm厚のタブ銅板に溶接した。
 上記条件で溶接した後、上側電極に接触していた最表層の銅箔の溶接部分を20倍の倍率で光学顕微鏡にて観察してクラックが発生していないことを確認し、溶接した銅箔を最表層の銅箔から順に1枚ずつ剥離した。15枚以上の銅箔が溶接部分で破れた場合を◎、10~14枚の銅箔が溶接部分で破れた場合を○、溶接部分で破れた銅箔が9枚以下、もしくは、まったく接合していない場合を×とした。













[Resistance welding test]
As pretreatment, the copper foil was dried under reduced pressure at a temperature of 140 ° C. for 1 hour at a pressure of 100 Pa in a vacuum dryer (ADP 200 manufactured by Yamato Scientific Co., Ltd.).
FIG. 2 is an explanatory view schematically showing resistance welding. A tab copper plate 2 having a thickness of 200 μm is disposed on the lower electrode (copper stage-like electrode) 1, and 20 sample copper foils 3 are disposed in a stacked manner on the tab copper plate 2. The upper electrode (copper alumina alloy rod-shaped electrode, φ 3.2 mm) 4 is pressed to the welded portion of the sample copper foil 3, current I flows between the upper electrode 4 and the lower electrode 1, and resistance welding is performed.
As a welder, using NRW-200A made by Nippon Avionics, applying a pulse current of peak value 2400A, energizing time 4.9ms, and pressure of 33N, as shown in FIG. 2, 20 copper foils of 10 μm thickness 200 μm thick Welded to the tab copper plate.
After welding under the above conditions, the welded portion of the outermost copper foil in contact with the upper electrode is observed with an optical microscope at a magnification of 20 times to confirm that no cracks have occurred, and the welded copper foil Were peeled off one by one in order from the outermost copper foil. When 15 or more copper foils were torn at welds ○, when 10 to 14 copper foils were torn at welds, ○, no more than 9 copper foils torn at welds, or If not, it was x.













Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~12は表面抵抗、銅に対する窒素と炭素の含有比率はいずれも適切であり、溶接状態は良好であった。 In Examples 1 to 12, the surface resistance and the content ratio of nitrogen to carbon to copper were all appropriate, and the welding condition was good.
 比較例1~4は、表面抵抗が過小となっている。このため、防錆皮膜の厚さが過小であり、溶接前処理の乾燥加熱工程において銅箔表面が過剰に酸化され、酸化膜の除去のために過剰に溶接エネルギーが消費されるため、満足できる溶接状態が得られなかった。 In Comparative Examples 1 to 4, the surface resistance is too small. For this reason, the thickness of the antirust film is too small, and the copper foil surface is excessively oxidized in the drying heating step of the pretreatment for welding, and the welding energy is consumed excessively for removing the oxide film, which is satisfactory. The welding condition could not be obtained.
 比較例5~6は、炭素と窒素の元素含有率の合計が最表面に対して半値となる深さ位置において、深さ方向に対する最表面付近の炭素と窒素の元素含有率の合計の減少度が50%/nmを下回っており、最表面付近の防錆成分が不足している。このため、防錆皮膜の厚さは十分な範囲であるものの、加熱時に防錆皮膜が最表面から破壊されやすく、耐酸化性に乏しい。このため、溶接前処理の乾燥加熱工程において銅箔表面が過剰に酸化され、酸化膜の除去のために過剰に溶接エネルギーが消費され、満足できる溶接状態が得られなかった。 In Comparative Examples 5 to 6, at the depth position where the sum of the elemental contents of carbon and nitrogen is a half value with respect to the outermost face, the reduction degree of the total of the elemental contents of carbon and nitrogen near the outermost face in the depth direction Is less than 50% / nm, and there is a lack of antirust components near the outermost surface. For this reason, although the thickness of the anticorrosive film is in a sufficient range, the anticorrosive film is easily destroyed from the outermost surface during heating, and the oxidation resistance is poor. For this reason, the copper foil surface was excessively oxidized in the drying and heating step of the pretreatment for welding, and excessive welding energy was consumed for removing the oxide film, and a satisfactory welding state was not obtained.
 比較例7~9は、表面抵抗が過大となっている。このため、防錆皮膜の厚さが過大となるために、溶接時の電流による表面のクリーニングが不足するため、満足できる溶接状態は得られなかった。 In Comparative Examples 7 to 9, the surface resistance is excessive. For this reason, since the thickness of the anticorrosion coating becomes excessive, cleaning of the surface by the current at the time of welding is insufficient, and a satisfactory welding state can not be obtained.
 比較例10は、銅箔表面に防錆皮膜が形成されておらず、加熱によって酸化膜が発生しやすい。このため、溶接前処理の乾燥加熱工程において銅箔表面が過剰に酸化され、酸化膜の除去のために過剰に溶接エネルギーが消費され、満足できる溶接状態が得られなかった。 In Comparative Example 10, the rust preventive film is not formed on the copper foil surface, and an oxide film is easily generated by heating. For this reason, the copper foil surface was excessively oxidized in the drying and heating step of the pretreatment for welding, and excessive welding energy was consumed for removing the oxide film, and a satisfactory welding state was not obtained.
 実施例1~12は抵抗溶接性に優れているために電子部品等の組立が容易となり、また、この銅箔をLi電池等の非水溶液二次電池用の集電体として使用しても優れた効果をもたらした。 Examples 1 to 12 are excellent in resistance weldability to facilitate assembly of electronic parts and the like, and are excellent even if this copper foil is used as a current collector for non-aqueous secondary batteries such as Li batteries. Brought an effect.
 上述したように本発明は、抵抗溶接による銅箔同士、あるいは銅箔と他の金属との溶接性に優れた表面処理銅箔を提供することができる。
 また、本発明の抵抗溶接に優れた銅箔の表面処理方法は、抵抗溶接による銅箔同士、あるいは銅箔と他の金属との溶接性に優れた表面処理銅箔を容易に製造することができる。
 本発明の表面処理銅箔を負極集電体として用いて、リチウムイオン二次電池用電極に好ましく適用できる。
 さらに、リチウムイオン二次電池用電極を負極として用いて、リチウムイオン二次電池に好ましく適用できる。
As described above, the present invention can provide a surface-treated copper foil excellent in weldability between copper foils by resistance welding or between the copper foil and another metal.
Moreover, the surface treatment method of copper foil excellent in resistance welding according to the present invention can easily produce a surface-treated copper foil excellent in weldability between copper foils by resistance welding or between copper foil and another metal. it can.
The surface-treated copper foil of the present invention can be preferably applied to an electrode for a lithium ion secondary battery using the negative electrode current collector.
Furthermore, it can be preferably applied to a lithium ion secondary battery using the lithium ion secondary battery electrode as a negative electrode.

Claims (6)

  1.  銅箔の少なくとも片方の面において、XPS(X線光電子分光分析)により測定された銅箔の深さ方向の炭素と窒素の元素含有率(原子%)の合計が該銅箔の最表面で最も大きく、かつ、その炭素と窒素の元素含有率(原子%)の合計が最表面に対して半値となる深さにおいて、該銅箔の深さ方向に対する炭素と窒素の元素含有率(原子%)の合計の減少度が50%/nm以上であり、かつ、JIS-K7194:1994において規定される表面抵抗が2.5~40mΩである表面処理皮膜が形成されていることを特徴とする、表面処理銅箔。 In at least one surface of the copper foil, the sum of the elemental content (atomic%) of carbon and nitrogen in the depth direction of the copper foil measured by XPS (X-ray photoelectron spectroscopy) is the most on the outermost surface of the copper foil. Elemental content (atomic%) of carbon and nitrogen with respect to the depth direction of the copper foil at a depth where the sum of the elemental content (atomic%) of carbon and nitrogen is a half value relative to the outermost surface A surface-treated film having a total reduction degree of at least 50% / nm and a surface resistance of 2.5 to 40 mΩ as defined in JIS-K 7194: 1994, Treated copper foil.
  2.  銅箔の少なくとも片方の面において、XPS(X線光電子分光分析)により測定された銅箔の深さ方向の炭素と窒素の元素含有率(原子%)の合計が該銅箔の最表面で最も大きく、かつ、その炭素と窒素の元素含有率(原子%)の合計が最表面に対して半値となる深さにおいて、該銅箔の深さ方向に対する炭素と窒素の元素含有率(原子%)の合計の減少度が50%/nm以上であり、かつ、JIS-K7194:1994において規定される表面抵抗が2.5~20mΩである表面処理皮膜が形成されていることを特徴とする、表面処理銅箔。 In at least one surface of the copper foil, the sum of the elemental content (atomic%) of carbon and nitrogen in the depth direction of the copper foil measured by XPS (X-ray photoelectron spectroscopy) is the most on the outermost surface of the copper foil. Elemental content (atomic%) of carbon and nitrogen with respect to the depth direction of the copper foil at a depth where the sum of the elemental content (atomic%) of carbon and nitrogen is a half value relative to the outermost surface A surface-treated film having a total reduction degree of at least 50% / nm and a surface resistance defined in JIS-K 7194: 1994 of 2.5 to 20 mΩ is formed. Treated copper foil.
  3.  リチウムイオン二次電池の負極集電体として用いられることを特徴とする請求項1又は請求項2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1 or 2, which is used as a negative electrode current collector of a lithium ion secondary battery.
  4.  トリアゾール系化合物を50~700ppm含有し、カルボン酸無水物をトリアゾール系化合物の合計濃度に対して濃度比が0.05以上の範囲となるように調製した防錆処理液を銅箔に塗布する工程を含むことを特徴とする、請求項1~3の表面処理銅箔を製造する、表面処理銅箔の製造方法。 A step of applying an antirust treatment solution containing 50 to 700 ppm of a triazole compound and prepared so that the concentration ratio of the carboxylic acid anhydride to the total concentration of the triazole compound is 0.05 or more on a copper foil A method for producing a surface-treated copper foil, comprising the step of producing a surface-treated copper foil according to any one of claims 1 to 3.
  5.  請求項1~3に記載の前記表面処理銅箔を負極集電体として用いた、リチウムイオン二次電池用電極。 An electrode for a lithium ion secondary battery, wherein the surface-treated copper foil according to any one of claims 1 to 3 is used as a negative electrode current collector.
  6.  請求項4に記載のリチウムイオン二次電池用電極を負極として用いた、リチウムイオン二次電池。 A lithium ion secondary battery using the lithium ion secondary battery electrode according to claim 4 as a negative electrode.
PCT/JP2013/069832 2012-07-23 2013-07-22 Surface-treated copper foil, method for manufacturing same, electrode for lithium ion secondary battery, and lithium ion secondary battery WO2014017449A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013541902A JP5554455B1 (en) 2012-07-23 2013-07-22 Surface-treated copper foil and method for producing the same, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR1020147028373A KR101579489B1 (en) 2012-07-23 2013-07-22 Surface-treated copper foil, method for manufacturing same, electrode for lithium ion secondary battery, and lithium ion secondary battery
CN201380015937.XA CN104204299B (en) 2012-07-23 2013-07-22 Surface treatment copper foil and manufacture method, electrode for lithium ion secondary battery and lithium-ion secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012163061 2012-07-23
JP2012-163061 2012-07-23

Publications (1)

Publication Number Publication Date
WO2014017449A1 true WO2014017449A1 (en) 2014-01-30

Family

ID=49997260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069832 WO2014017449A1 (en) 2012-07-23 2013-07-22 Surface-treated copper foil, method for manufacturing same, electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (5)

Country Link
JP (1) JP5554455B1 (en)
KR (1) KR101579489B1 (en)
CN (1) CN104204299B (en)
TW (1) TWI508359B (en)
WO (1) WO2014017449A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270785A (en) * 1986-05-19 1987-11-25 Chiyoda Kagaku Kenkyusho:Kk Heat resistant anticorrosive for copper and copper alloy
JPH07258870A (en) * 1994-03-24 1995-10-09 Mitsui Mining & Smelting Co Ltd Organic rust preventive treated copper foil and its production
JP2011023303A (en) * 2009-07-17 2011-02-03 Jx Nippon Mining & Metals Corp Copper foil for lithium ion battery current collector
JP2011149098A (en) * 2009-12-25 2011-08-04 Furukawa Electric Co Ltd:The Surface-treated copper foil and method for producing surface-treated copper foil
JP2013079419A (en) * 2011-10-03 2013-05-02 Jx Nippon Mining & Metals Corp Copper foil, negative electrode collector and negative electrode material for lithium ion secondary battery using the same, and lithium ion secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571772A (en) * 2005-10-20 2021-10-29 三菱化学株式会社 Lithium secondary battery and nonaqueous electrolyte used therein
JP5306620B2 (en) 2007-09-11 2013-10-02 古河電気工業株式会社 Copper foil for ultrasonic welding and surface treatment method thereof
JP5448616B2 (en) * 2009-07-14 2014-03-19 古河電気工業株式会社 Copper foil with resistance layer, method for producing the copper foil, and laminated substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270785A (en) * 1986-05-19 1987-11-25 Chiyoda Kagaku Kenkyusho:Kk Heat resistant anticorrosive for copper and copper alloy
JPH07258870A (en) * 1994-03-24 1995-10-09 Mitsui Mining & Smelting Co Ltd Organic rust preventive treated copper foil and its production
JP2011023303A (en) * 2009-07-17 2011-02-03 Jx Nippon Mining & Metals Corp Copper foil for lithium ion battery current collector
JP2011149098A (en) * 2009-12-25 2011-08-04 Furukawa Electric Co Ltd:The Surface-treated copper foil and method for producing surface-treated copper foil
JP2013079419A (en) * 2011-10-03 2013-05-02 Jx Nippon Mining & Metals Corp Copper foil, negative electrode collector and negative electrode material for lithium ion secondary battery using the same, and lithium ion secondary battery

Also Published As

Publication number Publication date
JPWO2014017449A1 (en) 2016-07-11
KR101579489B1 (en) 2015-12-22
KR20150035502A (en) 2015-04-06
CN104204299B (en) 2016-02-24
JP5554455B1 (en) 2014-07-23
TW201405925A (en) 2014-02-01
TWI508359B (en) 2015-11-11
CN104204299A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5714575B2 (en) Surface treated copper foil
JP5675325B2 (en) Surface-treated copper foil and method for producing surface-treated copper foil
TWI593826B (en) Copper foil for lithium ion secondary battery negative electrode current collector
JP2010242195A (en) Surface treated metallic material excellent in anti-corrosion property against dissimilar metal contact corrosion and dissimilar material joint body including the same
JP5081481B2 (en) Copper foil with excellent wettability and method for producing the same
KR101828880B1 (en) Surface-treated electrolytic copper foil for lithium-ion secondary cell, electrode for lithium-ion secondary cell in which same is used, and lithium-ion secondary cell
JP5306620B2 (en) Copper foil for ultrasonic welding and surface treatment method thereof
JP5773093B2 (en) Steel plate for containers
WO2014017449A1 (en) Surface-treated copper foil, method for manufacturing same, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6098709B2 (en) Steel plate for containers
JP2018135570A (en) Sn BASED ALLOY PLATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
JP5669352B2 (en) Dissimilar material joint with excellent corrosion resistance against contact corrosion of dissimilar metals
JPWO2014156362A1 (en) Surface treatment electrolytic copper foil
JPWO2014156361A1 (en) Surface treatment electrolytic copper foil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380015937.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013541902

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147028373

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823557

Country of ref document: EP

Kind code of ref document: A1