WO2014017171A1 - Solar light collecting system and solar thermal power generation system - Google Patents

Solar light collecting system and solar thermal power generation system Download PDF

Info

Publication number
WO2014017171A1
WO2014017171A1 PCT/JP2013/065350 JP2013065350W WO2014017171A1 WO 2014017171 A1 WO2014017171 A1 WO 2014017171A1 JP 2013065350 W JP2013065350 W JP 2013065350W WO 2014017171 A1 WO2014017171 A1 WO 2014017171A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensing
mirror
receiver
selective
solar
Prior art date
Application number
PCT/JP2013/065350
Other languages
French (fr)
Japanese (ja)
Inventor
俊泰 光成
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2014017171A1 publication Critical patent/WO2014017171A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/83Other shapes
    • F24S2023/834Other shapes trough-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/876Reflectors formed by assemblies of adjacent reflective elements having different orientation or different features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar condensing system and a solar thermal power generation system.
  • Patent Document 1 discloses a solar condensing system that condenses light on a linear receiver by reflecting sunlight with strip-shaped mirrors arranged in a plurality of rows.
  • Patent Document 2 discloses a solar condensing system that focuses sunlight on a receiver provided at the top of the tower by reflecting sunlight with a number of heliostats arranged around the tower. Has been.
  • the luminous flux of sunlight (sunlight energy) that can be received by the condenser mirror is proportional to the cosine component of the incident angle of sunlight, and is called the cosine effect.
  • the condensing rate is reduced due to the cosine effect.
  • an object of the present invention is to provide a solar condensing system and a solar thermal power generation system capable of improving the condensing rate per mirror.
  • the present invention provides a first condensing mirror that condenses sunlight on a first receiver and a second condensing light that condenses sunlight on a second receiver.
  • a solar condensing system comprising: a selective condensing mirror that condenses sunlight to one of the first receiver and the second receiver; and a control for controlling the selective condensing mirror And the control means switches the light collection target of the selective light collection mirror based on at least one of the irradiation angle and time of sunlight.
  • the solar condensing system which concerns on this invention, it is equipped with the selective condensing mirror which can selectively condense sunlight with respect to a 1st receiver or a 2nd receiver, and among sunlight irradiation angle and time
  • the selective condensing mirror which can selectively condense sunlight with respect to a 1st receiver or a 2nd receiver, and among sunlight irradiation angle and time
  • the solar condensing system according to the present invention may be a Fresnel type condensing system. According to this solar condensing system, it is possible to simplify the control of the selective condensing mirror by switching the condensing target as compared with the tower type condensing system that requires three-dimensional control.
  • the selective condensing mirror is a mirror having a curved surface
  • the collecting point of the selective condensing mirror is from the selective condensing mirror of the first receiver and the second receiver. It may be fitted to a remote receiver.
  • the condensing rate can be increased by adopting a curved mirror having a collecting point instead of a flat mirror.
  • selective condensing is performed on the farther receiver. It is possible to collect light effectively by adjusting the collecting points of the mirrors.
  • the selective condensing mirror includes a transparent substrate having a surface on which sunlight is incident and a back surface opposite to the surface, and a reflective layer formed on the back surface of the transparent substrate.
  • the section of the transparent substrate that is rotatable or swingable about a predetermined central axis and perpendicular to the central axis may have an arc shape that is recessed toward the reflective layer.
  • this solar condensing system it is a catadioptric condensing mirror that performs refraction of sunlight by a transparent substrate and reflection by a reflecting layer, thereby making it possible to compare the image plane with a conventional condensing mirror that is surface reflection. Since the influence of bending can be suppressed, the light collection rate with respect to the receiver can be significantly improved. As a result, the size of the condensing spot with respect to the receiver and the secondary mirror is reduced, so that the accuracy of tracking control with respect to the sun is eased, and leakage light that does not reach the receiver can be reduced.
  • the solar thermal power generation system includes any one of the solar condensing systems described above, and generates power using heat obtained by the first receiver and the second receiver. According to the solar thermal power generation system according to the present invention, it is possible to significantly improve the concentration ratio of sunlight by providing the above-described solar condensing system. As a result, sunlight can be efficiently absorbed and solar heat can be obtained, so that the efficiency of solar thermal power generation can be improved.
  • the light collection rate per mirror can be improved.
  • FIG. 1 It is a perspective view which shows the solar thermal power generation system which concerns on 1st Embodiment. It is a side view which shows the solar condensing system of the state which does not switch the condensing object of a selective condensing mirror. It is a side view which shows the solar condensing system of the state which switched the condensing object of the selective condensing mirror.
  • (A) is explanatory drawing of the state which does not switch the condensing object of a selective condensing mirror.
  • (B) is explanatory drawing of the state which switched the condensing object of the selective condensing mirror. It is a figure for demonstrating the setting of the condensing point of the selective condensing mirror which concerns on 2nd Embodiment.
  • the solar thermal power generation system As shown in FIGS. 1 and 2, the solar thermal power generation system according to the first embodiment is a system that generates power using solar heat obtained by condensing sunlight, and is a linear system that condenses sunlight.
  • a Fresnel solar condensing system 10 is provided. This solar condensing system 10 has four condensing devices 11 to 41.
  • the first light collecting device 11 will be described with reference to FIG.
  • the irradiation direction of sunlight is shown as an arrow T, and a part of the third light collecting device 31 and the fourth light collecting device 41 are not shown.
  • the first condensing device 11 includes a first receiver 12, a first condensing mirror 13, selective condensing mirrors 14 and 15, a secondary mirror 16, and a control device (control means) A.
  • the extending direction of the first receiver 12 extending linearly will be described as the X-axis direction, the vertical direction as the Z-axis direction, and the direction orthogonal to both the X-axis direction and the Z-axis direction as the Y-axis direction. .
  • the first receiver 12 is a tubular member through which a heat medium flows.
  • the heat medium may be gaseous or liquid.
  • the first receiver 12 extends linearly in the X-axis direction.
  • the first receiver 12 is fixed to the ground, and is supported at a high place by left and right support bases 17.
  • the first condensing mirror 13 is a condensing mirror dedicated to the first receiver 12 that condenses sunlight with respect to the first receiver 12.
  • the first condenser mirror 13 is arranged in a row in the X-axis direction along the first receiver 12, and a plurality of the rows are arranged in the Y-axis direction.
  • the 1st condensing mirror 13 is supported by the support leg 18, and is comprised so that a solar motion can be followed and rotated.
  • the selective condensing mirrors 14 and 15 are condensing mirrors that can switch the condensing target to a receiver other than the first receiver 12. That is, the selective condensing mirrors 14 and 15 can condense sunlight with respect to receivers other than the first receiver 12.
  • the selective condensing mirrors 14 and 15 are provided in a line at both ends of the first condensing device 11 in the Y-axis direction.
  • the selective focusing mirrors 14 and 15 are arranged so as to sandwich the first focusing mirror 13 composed of a plurality of rows in the Y-axis direction.
  • the configuration of the selective collector mirrors 14 and 15 is the same as that of the first collector mirror 13.
  • the first condenser mirror 13 and the selective condenser mirrors 14 and 15 are flat surface reflection mirrors.
  • the secondary mirror 16 is a bowl-shaped member that is provided so as to cover the first receiver 12 and extends downward along the first receiver 12 in the X-axis direction.
  • the inner surface of the secondary mirror 16 is mirror-finished.
  • the secondary mirror 16 condenses on the first receiver 12 by reflecting again the light deviated from the first receiver 12 among the reflected light of the first condenser mirror 13 and the selective condenser mirrors 14 and 15.
  • the solar heat obtained by the first receiver 12 by the condensing of the first condensing mirror 13 and the selective condensing mirrors 14, 15 generates power through a heat medium flowing inside the first receiver 12. Supplied to the facility.
  • the power generation facility for example, a steam turbine or the like can be used, and power generation is performed using solar heat supplied through a heat medium.
  • the control device A controls the orientation of the first condenser mirror 13 and the selective condenser mirrors 14 and 15 according to the movement of the sun.
  • the control device A is an electronic control unit including a CPU [Central Processing Unit], ROM [Read Only Memory], RAM [Random Access Memory], and the like.
  • the control device A may be composed of a plurality of computers.
  • Control device A is connected to a sunlight detector B for detecting the irradiation angle of sunlight T.
  • the sunlight detection part B detects the incident angle of the sunlight T with respect to the ground (or the installation surface of the solar condensing system 10) as the irradiation angle of sunlight T, for example.
  • a well-known apparatus can be employ
  • the solar thermal power generation system which concerns on 1st Embodiment does not necessarily need to be provided with the sunlight detection part B, and the control apparatus A controls the direction of the mirror which considered the irradiation angle of sunlight T based on time. You can also.
  • the control device A controls all the collecting mirrors of the solar collecting system 10.
  • each condensing device 11, 21, 31, and 41 has one receiver 12, 22, 32, and 42, respectively, and these receivers are arranged substantially parallel to each other.
  • Each receiver 12, 22, 32, 42 is connected by a pipe (not shown) and forms one heat medium flow path.
  • each receiver 12, 22, 32, 42 may form an independent heat medium flow path and may be connected to the power generation equipment.
  • Each condensing device 11, 21, 31, 41 has first to fourth condensing mirrors 13, 23, 33, 43 that condense only on a receiver in each condensing device, and an adjacent condensing device.
  • Selective collecting mirrors 14, 15, 24, 25, 34, and 45 that can also collect light at the receiver of the apparatus are provided.
  • These condenser mirrors are arranged so as to be substantially equidistant in the Y-axis direction.
  • the gap between the collector mirrors is appropriately set in consideration of the usage environment and purpose of the solar collector system 10. That is, if the gap between the collecting mirrors is large, the solar energy acquisition efficiency per mirror area can be increased. Conversely, if the gap between the collecting mirrors is reduced, the number of collecting mirrors can be increased to increase the light collection rate and reduce heat loss. In addition, land use efficiency increases.
  • the gap between the collecting mirrors is small, blocking may occur where the reflected light is blocked by the adjacent collecting mirror, so that a certain amount of gap is required.
  • the gap between the collecting mirrors is expressed by the number r of collecting mirrors (horizontal posture collecting mirrors) entering the gap, 1.0 ⁇ r ⁇ 2.0 from the viewpoint of cost. It is preferable that 1.25 ⁇ r ⁇ 1.75. From the viewpoint of performance priority (temperature environment priority), 0.2 ⁇ r ⁇ 0.7 is preferable, and 0.4 ⁇ r ⁇ 0.5 is more preferable.
  • the selective condensing mirrors 14, 15, 24, 25, 34, and 45 are disposed at positions adjacent to the condensing mirror of the adjacent condensing device among the condensing mirrors disposed at substantially equal intervals. Note that the number and position of the selective focusing mirrors are not limited to the configuration shown in FIG.
  • FIG. 3 is a side view showing the solar condensing system in a state in which the condensing target of the selective condensing mirror is switched.
  • the condensing target is switched to a receiver that can condense sunlight efficiently with respect to the selective condensing mirrors 14, 24, and 34.
  • FIG. 4A shows a state where the light collecting target of the selective light collecting mirror 14 is not switched
  • FIG. 4B shows a state where the light collecting target of the selective light collecting mirror 14 is switched.
  • 4A corresponds to the state shown in FIG. 2
  • FIG. 4B corresponds to the state shown in FIG.
  • the selective condensing mirror 14 is used to reflect the sunlight T to the first receiver 12. Needs to receive sunlight at a large incident angle ⁇ .
  • the incident angle ⁇ is an angle formed between the sunlight T incident on the selective collector mirror 14 and the central axis Cn of the selective collector mirror 14 in the YZ plane.
  • the central axis Cn is, for example, an axis that passes through the center of the reflective surface of the selective collector mirror 14 in the YZ plane and is perpendicular to the reflective surface.
  • the luminous flux of sunlight T (solar energy) that can be received by the selective condenser mirror 14 decreases as the incident angle ⁇ of the sunlight T increases, and the condensing rate decreases. Occurs.
  • the condensing target of the selective condensing mirror 14 is switched to the adjacent second receiver 22.
  • the incident angle ⁇ of the sunlight T with respect to the selective collector mirror 14 can be reduced, and the sunlight T can be received almost in front of the selective collector mirror 14. Can be avoided.
  • the control device A of the solar condensing system 10 changes the direction of the selective condensing mirror 14 based on the irradiation angle of the sunlight T detected by the sunlight detecting unit B, and switches the condensing target.
  • control device A selects and condenses the receiver having the smaller incident angle ⁇ of the sunlight T among the first receiver 12 and the second receiver 22 based on the irradiation angle of the sunlight T.
  • the light is collected by the mirror 14.
  • the control device A controls the selective focusing mirror 14 so that a receiver that can reflect in the front direction of the selective focusing mirror 14 becomes a focusing target.
  • control apparatus A does not necessarily need to switch the condensing object of the selective condensing mirror 14 based on the irradiation angle of sunlight T, for example, in the aspect which switches the condensing object of the selective condensing mirror 14 based on time.
  • the light collection target of the selective light collecting mirror 14 can be switched at an appropriate timing in consideration of the position of the sun for each hour.
  • the selection focusing mirror 14 has been described as an example of switching the focusing target, the same applies to the other selective focusing mirrors 15, 24, 25, 34, and 45.
  • the receivers that are the light collecting objects of the selective light collecting mirrors 15, 24, 25, 34, and 45 are switched based on the irradiation angle of the sunlight T.
  • the receivers that are the light collecting objects of the selective light collecting mirrors 15, 24, 25, 34, and 45 are switched based on the irradiation angle of the sunlight T.
  • this solar condensing system 10 by adopting the linear Fresnel method, the control of the selective condensing mirror by switching the condensing object is performed as compared with the tower type condensing system that requires three-dimensional control. Can be simplified. Moreover, in this solar condensing system 10, even if a plurality of concentrating devices are arranged adjacent to each other, the number of facilities that cause shadows such as a tower is less than that of a tower type condensing system, so that the condensing rate is improved. Is advantageous.
  • the condensing rate of sunlight T can be improved significantly by providing the solar condensing system 10 mentioned above.
  • the receiver 12 can efficiently absorb the sunlight T to obtain solar heat, so that the efficiency of solar thermal power generation can be improved.
  • the solar thermal power generation system according to the second embodiment is different from the solar thermal power generation system according to the first embodiment only in the shape of the selective condensing mirror.
  • the solar thermal power generation system (solar condensing system) according to the second embodiment includes a trough-shaped selective condensing mirror 54 having a curved surface.
  • the trough-shaped selective condensing mirror 54 is a surface-reflecting mirror that reflects sunlight so as to gather at a predetermined point.
  • FIG. 5 is a diagram for explaining the collecting points of the selective focusing mirror 54 according to the second embodiment.
  • the selective condensing mirror 54 is the second receiver 22 that is far from the selective condensing mirror 54 among the first receiver 12 and the second receiver 22 that can be selected as the condensing target. The points are matched.
  • R shown in FIG. 5 is a trajectory drawn by the collecting point of the selective focusing mirror 54.
  • the condensing rate is increased by employing a trough-shaped selective condensing mirror with a concentrating point instead of a plane mirror. be able to. Further, in this solar thermal power generation system, it is relatively easy to collect light to the receiver closer to the selective light collecting mirror 54 out of the first receiver 12 and the second receiver 22, so that the receiver located far away is used. By converging the collecting points of the selective condensing mirrors, it is possible to condense effectively. This contributes to the improvement of the light collection rate of the solar thermal power generation system.
  • the solar thermal power generation system according to the third embodiment is largely different from the solar thermal power generation system according to the second embodiment in that the selective condensing mirror is back-surface reflection.
  • FIG. 6 is a side view for explaining a selective focusing mirror 64 for back surface reflection according to the third embodiment.
  • FIG. 7 is an enlarged cross-sectional view of the selective focusing mirror 64 along the YZ plane.
  • FIG. 6 shows the rotation center axis P of the selective collector mirror 64 extending in the X-axis direction.
  • the selective condensing mirror 64 is configured to be rotatable about the rotation center axis P. Note that the selective condensing mirror 64 is not necessarily configured to be able to rotate 360 degrees, and may be configured to be swingable at less than 360 degrees.
  • the selective condensing mirror 64 includes a transparent substrate 65, an antireflection film 66, and a reflection layer 67.
  • the transparent substrate 65 is made of a highly transparent resin material such as acrylic resin.
  • the transparent substrate 65 is a plate-like member curved like a bowl, and its cross section (cross section perpendicular to the rotation center axis P) has an arc shape that is recessed toward the reflective layer 67 side.
  • the transparent substrate 65 has sufficient rigidity to maintain its shape.
  • the transparent substrate 65 has a surface 65a on the receiver 12 side (front side) and a back surface 65b on the opposite side of the surface 65a.
  • the cross-sectional shape (the shape on the cross section orthogonal to the rotation center axis P) along the YZ plane of the front surface 65a and the back surface 65b forms an arc shape.
  • the front surface 65a and the back surface 65b may have the same or different curvatures of the arc of the cross-sectional shape.
  • the cross-sectional shape along the YZ plane of the front surface 65a and the back surface 65b may be a parabolic shape instead of an arc shape.
  • one of the cross-sectional shapes of the front surface 65a and the back surface 65b may be an arc shape and the other may be a parabolic shape.
  • an antireflection film 66 for preventing the reflection of sunlight T is formed on the surface 65a of the transparent substrate 65.
  • the antireflection film 66 is a film made of, for example, magnesium fluoride MgF 2 .
  • the antireflection film 66 may be a multilayer film made of a plurality of materials. By forming such an antireflection film 66, the sunlight T can be prevented from being reflected by the surface 65a. Note that the antireflection film 66 is not necessarily provided.
  • a reflective layer 67 is formed on the back surface 65 b of the transparent substrate 65.
  • the reflective layer 67 is made of, for example, aluminum Al or silver Ag.
  • the reflective layer 67 may be formed on the entire surface of the back surface 65b or may be formed on a part thereof.
  • the transparent substrate 65 is manufactured by injection molding in which a heat-melted resin material is injected and injected into a mold and cooled in the mold. Injection molding is suitable for producing a large number of molded articles having complicated shapes.
  • the sunlight T passes through the antireflection film 66 and the transparent substrate 65 and enters the inside of the mirror. Thereafter, the sunlight T is reflected by the reflective layer 67 on the back surface 65b, passes through the transparent substrate 65, and exits from the antireflection film 66 on the front surface 65a to the outside. Also in the selective reflection mirror 64 for reflection on the back surface, it is preferable that the collection point is matched with the receiver located farther away.
  • the catadioptric selective condensing mirror 64 that performs refraction of sunlight by the transparent substrate 65 and reflection by the reflective layer is employed.
  • the influence of the curvature of field can be suppressed as compared with the conventional mirror that is surface reflection, so that the light collection rate with respect to the receiver can be greatly improved.
  • the size of the condensing spot with respect to the receiver and the secondary mirror is reduced, so that the accuracy of tracking control with respect to the sun is eased, and leakage light that does not reach the receiver can be reduced.
  • the catadioptric mirror refer to the Japanese patent application (Application No. 2011-220990) by the present inventor.
  • FIG. 8 is a side view showing a state before switching the light collecting target of the selective light collecting mirror of the solar thermal power generation system according to the fourth embodiment.
  • FIG. 9 is a side view showing a state after the light collecting target of the selective light collecting mirror is switched.
  • the solar thermal power generation system includes a tower-type solar condensing system 100.
  • the tower-type solar condensing system 100 includes a first concentrating device 110 and a second concentrating device 120 that are arranged next to each other.
  • the 1st condensing device 110 is provided with the 1st receiver 111 provided in the upper part of the tower standing on the ground, and the 1st condensing mirror which condenses sunlight T with respect to the 1st receiver 111 112 and a selective condensing mirror 113.
  • the second light collecting device 120 includes a second receiver 121 provided on the top of a tower erected on the ground, and a second light collecting the sunlight T on the second receiver 121.
  • the condenser mirror 122 and the selective condenser mirrors 123 and 124 are provided.
  • Each condensing mirror 112, 113, 122, 123, 124 is a so-called dish-shaped (dish-shaped) mirror, and the reflected light is condensed at one point toward the first receiver 111 or the second receiver 121. .
  • Each condensing mirror 112,113,122,123,124 is controlled by the control apparatus which is not illustrated, and changes direction according to the sun.
  • the selective condensing mirror 124 of the second light concentrating device 120 must receive sunlight T at a large incident angle ⁇ in order to reflect to the second receiver 121, and the cosine effect. As a result, the light collection rate is reduced.
  • the selective focusing mirror 124 switches the focusing target from the second receiver 121 to the first receiver 111.
  • the incident angle ⁇ of the sunlight T with respect to the selective collector mirror 124 can be reduced, and the sunlight T can be received almost in front of the selective collector mirror 124, so that the light collection rate is reduced due to the cosine effect. Can be avoided.
  • the receiver that is the condensing target of the selective condensing mirrors 113, 123, and 124 is switched based on the irradiation angle of the sunlight T.
  • the receiver that is the condensing target of the selective condensing mirrors 113, 123, and 124 is switched based on the irradiation angle of the sunlight T.
  • the present invention is not limited to the embodiment described above.
  • the number of light collecting devices may be three or less, or five or more, and the number of light collecting mirrors (light collecting mirrors dedicated to each light collecting device and selective light collecting mirrors) in each light collecting device.
  • the numbers and positions are not limited to those described above.
  • the tower method includes a beam down method. Further, the secondary mirror is not necessarily provided.
  • the configuration of the condenser mirror is not limited to the above.
  • a trough-shaped condensing mirror it is possible to adopt one that appropriately adjusts the collecting point by mechanically applying a force to curve the reflecting surface.
  • the collecting point can be adjusted according to the light collecting target.
  • the solar condensing system described above is not limited to use for solar thermal power generation.
  • Hot water supply using solar heat, steam supply, heating air conditioning, cooling air conditioning (high temperature heat source of absorption refrigeration machine) can be used in various fields. It is particularly suitable for applications such as factory air conditioning and steam supply in medium-scale plants.
  • it can also utilize as a concentrating solar cell system by arrange
  • the present invention can be used as a solar condensing system and a solar thermal power generation system capable of improving the condensing rate per mirror.

Abstract

Provided are a solar light collecting system whereby light collection rate per mirror can be improved, and a solar thermal power generation system. The present invention is a solar light collecting system (10) that is provided with: a first light collecting mirror (13), which collects solar light (T) to a first receiver (12); and a second light collecting mirror (23), which collects solar light to a second receiver (22). The solar light collecting system is also provided with: a selective light collecting mirror (14), which is capable of selectively collecting the solar light (T) to the first receiver (12) or the second receiver (22); and a control apparatus (A), which controls the direction of the selective light collecting mirror (14). On the basis of the irradiation angle and/or irradiation time of the solar light (T), the control apparatus (A) switches a subject, to which the light is to be collected by the selective light collecting mirror (14), to the first receiver (12) or the second receiver (22).

Description

太陽集光システム及び太陽熱発電システムSolar condensing system and solar power generation system
 本発明は、太陽集光システム及び太陽熱発電システムに関する。 The present invention relates to a solar condensing system and a solar thermal power generation system.
 近年、化石燃料の枯渇や二酸化炭素排出による諸問題に鑑み、再生可能な自然エネルギーである太陽光の利用が広く検討されている。太陽光エネルギーの利用には、太陽電池により太陽光を直接電気に変換する手法と太陽光を太陽熱として吸収して利用する手法とが知られている。太陽熱として利用する手法には、その熱を利用してタービンなどにより間接的に発電するものも含まれる。 In recent years, in view of problems caused by depletion of fossil fuels and carbon dioxide emissions, the use of sunlight, which is renewable natural energy, has been widely studied. For the use of solar energy, a method of directly converting sunlight into electricity by a solar cell and a method of absorbing and using sunlight as solar heat are known. The technique used as solar heat includes a method of generating power indirectly by using a turbine or the like using the heat.
 太陽熱の利用は、蓄熱による安定供給を行うことができ、この点が太陽電池に対する優位性として注目されている。特に、発電せずに熱そのものを利用する場合に効率が高く、太陽熱を利用する意義が大きい。このため、特に産業用の蒸気の供給などの中規模なプラントにおいて太陽熱を利用できる太陽集光システムが日本だけではなく欧州などの世界各国でも検討されている。 The use of solar heat enables stable supply by heat storage, and this point is attracting attention as an advantage over solar cells. In particular, when using heat itself without generating electricity, the efficiency is high, and the significance of using solar heat is great. For this reason, solar concentrating systems that can use solar heat in medium-sized plants such as industrial steam supply are being studied not only in Japan but also in countries around the world such as Europe.
 太陽集光システムとしては、フレネル方式(リニアフレネル方式)、タワー方式、トラフ方式、ディッシュ方式などが知られている。リニアフレネル方式について、例えば特許文献1には、複数列並べた短冊状のミラーにより太陽光を反射することで直線状のレシーバに集光する太陽集光システムが開示されている。また、タワー方式について、例えば特許文献2には、タワーの周囲に配置された多数のヘリオスタットにより太陽光を反射することで、タワー頂点に設けられたレシーバに集光する太陽集光システムが開示されている。 As a solar condensing system, a Fresnel method (linear Fresnel method), a tower method, a trough method, a dish method, and the like are known. Regarding the linear Fresnel method, for example, Patent Document 1 discloses a solar condensing system that condenses light on a linear receiver by reflecting sunlight with strip-shaped mirrors arranged in a plurality of rows. As for the tower method, for example, Patent Document 2 discloses a solar condensing system that focuses sunlight on a receiver provided at the top of the tower by reflecting sunlight with a number of heliostats arranged around the tower. Has been.
欧州特許出願公開2051022A2号公報European Patent Application Publication No. 2051022A2 特開2011-220286号公報JP 2011-220286 A
 ところで、集光ミラーが受けることのできる太陽光の光束(太陽光のエネルギー)は、太陽光の入射角度のコサイン成分に比例し、コサイン効果と呼ばれる。このため、朝方や夕方の場合など、集光ミラーが大きな入射角度で太陽光を受けざるを得ない場合、コサイン効果による集光率低下が生じるという問題があった。 Incidentally, the luminous flux of sunlight (sunlight energy) that can be received by the condenser mirror is proportional to the cosine component of the incident angle of sunlight, and is called the cosine effect. For this reason, in the case of the morning or evening, when the condensing mirror has to receive sunlight at a large incident angle, there is a problem in that the condensing rate is reduced due to the cosine effect.
 そこで、本発明は、ミラー1つ当たりの集光率の向上を図ることができる太陽集光システム及び太陽熱発電システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a solar condensing system and a solar thermal power generation system capable of improving the condensing rate per mirror.
 上記課題を解決するため、本発明は、第1のレシーバに対して太陽光を集光する第1の集光ミラーと、第2のレシーバに対して太陽光を集光する第2の集光ミラーと、を備えた太陽集光システムであって、第1のレシーバ及び第2のレシーバの何れか一方に対して太陽光を集光する選択集光ミラーと、選択集光ミラーを制御する制御手段と、を備え、制御手段は、太陽光の照射角度及び時間のうち少なくとも一方に基づいて、選択集光ミラーの集光対象を切り換えることを特徴とする。 In order to solve the above problems, the present invention provides a first condensing mirror that condenses sunlight on a first receiver and a second condensing light that condenses sunlight on a second receiver. A solar condensing system comprising: a selective condensing mirror that condenses sunlight to one of the first receiver and the second receiver; and a control for controlling the selective condensing mirror And the control means switches the light collection target of the selective light collection mirror based on at least one of the irradiation angle and time of sunlight.
 本発明に係る太陽集光システムによれば、第1のレシーバ又は第2のレシーバに対して太陽光を選択的に集光可能な選択集光ミラーを備え、太陽光の照射角度及び時間のうち少なくとも一方に基づいて選択集光ミラーの集光対象を切り換えることにより、できるだけミラー正面で太陽光を受けてコサイン効果による効率低下を避けることが可能となるので、システム全体においてミラー1つ当たりの集光率の向上を図ることができる。 According to the solar condensing system which concerns on this invention, it is equipped with the selective condensing mirror which can selectively condense sunlight with respect to a 1st receiver or a 2nd receiver, and among sunlight irradiation angle and time By switching the light collecting target of the selective light collecting mirror based on at least one, it is possible to receive sunlight as much as possible in front of the mirror and avoid a decrease in efficiency due to the cosine effect. The light rate can be improved.
 本発明に係る太陽集光システムは、フレネル方式の集光システムであってもよい。
 この太陽集光システムによれば、三次元的な制御を必要とするタワー方式の集光システムと比べて、集光対象の切り換えによる選択集光ミラーの制御を簡素化することができる。
The solar condensing system according to the present invention may be a Fresnel type condensing system.
According to this solar condensing system, it is possible to simplify the control of the selective condensing mirror by switching the condensing target as compared with the tower type condensing system that requires three-dimensional control.
 本発明に係る太陽集光システムにおいては、選択集光ミラーは、曲面を有するミラーであり、選択集光ミラーの集点は、第1のレシーバ及び第2のレシーバのうち当該選択集光ミラーから遠くに位置するレシーバに合わされていてもよい。
 この太陽集光システムによれば、平面ミラーではなく、集点のある曲面ミラーを採用することで、集光率を高めることができる。また、この太陽集光システムでは、第1のレシーバ及び第2のレシーバのうち選択集光ミラーに近い方のレシーバへの集光は比較的容易であることから、遠い方のレシーバに選択集光ミラーの集点を合わせることで、効果的に集光することができる。
In the solar condensing system according to the present invention, the selective condensing mirror is a mirror having a curved surface, and the collecting point of the selective condensing mirror is from the selective condensing mirror of the first receiver and the second receiver. It may be fitted to a remote receiver.
According to this solar condensing system, the condensing rate can be increased by adopting a curved mirror having a collecting point instead of a flat mirror. Moreover, in this solar condensing system, since it is comparatively easy to condense to the receiver closer to the selective condensing mirror among the first receiver and the second receiver, selective condensing is performed on the farther receiver. It is possible to collect light effectively by adjusting the collecting points of the mirrors.
 本発明に係る太陽集光システムにおいて、選択集光ミラーは、太陽光が入射する表面と表面の反対側の裏面とを有する透明基板と、透明基板の裏面に形成された反射層と、を備え、所定の中心軸を中心として回転可能又は揺動可能に構成され、透明基板のうち中心軸に垂直な断面は、反射層側に向かって凹む弧形状を成していてもよい。 In the solar condensing system according to the present invention, the selective condensing mirror includes a transparent substrate having a surface on which sunlight is incident and a back surface opposite to the surface, and a reflective layer formed on the back surface of the transparent substrate. The section of the transparent substrate that is rotatable or swingable about a predetermined central axis and perpendicular to the central axis may have an arc shape that is recessed toward the reflective layer.
 この太陽集光システムによれば、透明基板による太陽光の屈折及び反射層による反射を行う反射屈折系の集光ミラーとすることにより、表面反射である従来の集光ミラーと比べて、像面湾曲の影響を抑制することができるので、レシーバに対する集光率を大幅に向上させることができる。その結果、レシーバや二次ミラーに対する集光スポットの大きさが小さくなるので、太陽に対する追尾制御の精度が緩和されると共に、レシーバに到達しない漏れ光を減少させることができる。 According to this solar condensing system, it is a catadioptric condensing mirror that performs refraction of sunlight by a transparent substrate and reflection by a reflecting layer, thereby making it possible to compare the image plane with a conventional condensing mirror that is surface reflection. Since the influence of bending can be suppressed, the light collection rate with respect to the receiver can be significantly improved. As a result, the size of the condensing spot with respect to the receiver and the secondary mirror is reduced, so that the accuracy of tracking control with respect to the sun is eased, and leakage light that does not reach the receiver can be reduced.
 本発明に係る太陽熱発電システムは、上述した何れかの太陽集光システムを備え、第1のレシーバ及び第2のレシーバが得た熱を利用して発電を行うことを特徴とする。
 本発明に係る太陽熱発電システムによれば、上述した太陽集光システムを備えることにより太陽光の集光率を大幅に向上させることができる。その結果、効率的に太陽光を吸収して太陽熱を得ることができるので、太陽熱発電の効率を向上させることができる。
The solar thermal power generation system according to the present invention includes any one of the solar condensing systems described above, and generates power using heat obtained by the first receiver and the second receiver.
According to the solar thermal power generation system according to the present invention, it is possible to significantly improve the concentration ratio of sunlight by providing the above-described solar condensing system. As a result, sunlight can be efficiently absorbed and solar heat can be obtained, so that the efficiency of solar thermal power generation can be improved.
 本発明によれば、ミラー1つ当たりの集光率を向上させることができる。 According to the present invention, the light collection rate per mirror can be improved.
第1の実施形態に係る太陽熱発電システムを示す斜視図である。It is a perspective view which shows the solar thermal power generation system which concerns on 1st Embodiment. 選択集光ミラーの集光対象を切り換えない状態の太陽集光システムを示す側面図である。It is a side view which shows the solar condensing system of the state which does not switch the condensing object of a selective condensing mirror. 選択集光ミラーの集光対象の切り換えた状態の太陽集光システムを示す側面図である。It is a side view which shows the solar condensing system of the state which switched the condensing object of the selective condensing mirror. (a)は、選択集光ミラーの集光対象を切り換えない状態の説明図である。(b)は、選択集光ミラーの集光対象を切り換えた状態の説明図である。(A) is explanatory drawing of the state which does not switch the condensing object of a selective condensing mirror. (B) is explanatory drawing of the state which switched the condensing object of the selective condensing mirror. 第2の実施形態に係る選択集光ミラーの集点の設定を説明するための図である。It is a figure for demonstrating the setting of the condensing point of the selective condensing mirror which concerns on 2nd Embodiment. 第3の実施形態に係る選択集光ミラーによる集光状態を説明するための側面図である。It is a side view for demonstrating the condensing state by the selective condensing mirror which concerns on 3rd Embodiment. YZ平面に沿った選択集光ミラーの拡大断面図である。It is an expanded sectional view of the selective condensing mirror along the YZ plane. 第4の実施形態に係る太陽熱発電システムにおける選択集光ミラーの集光対象の切り換えない状態を示す側面図である。It is a side view which shows the state which does not switch the condensing object of the selective condensing mirror in the solar thermal power generation system which concerns on 4th Embodiment. 第4の実施形態に係る太陽熱発電システムにおける選択集光ミラーの集光対象の切り換えた状態を示す側面図である。It is a side view which shows the state which switched the condensing object of the selective condensing mirror in the solar thermal power generation system which concerns on 4th Embodiment.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[第1の実施形態]
 図1及び図2に示されるように、第1の実施形態に係る太陽熱発電システムは、太陽光の集光により得られる太陽熱を利用して発電を行うシステムであり、太陽光を集光するリニアフレネル方式の太陽集光システム10を備えている。この太陽集光システム10は、四つの集光装置11~41を有している。
[First Embodiment]
As shown in FIGS. 1 and 2, the solar thermal power generation system according to the first embodiment is a system that generates power using solar heat obtained by condensing sunlight, and is a linear system that condenses sunlight. A Fresnel solar condensing system 10 is provided. This solar condensing system 10 has four condensing devices 11 to 41.
 以下、図1を参照して第1の集光装置11について説明する。第2の集光装置21,第3の集光装置31,第4の集光装置41については、第1の集光装置11と同じ構成のため説明を省略する。また、各図において太陽光の照射方向を矢印Tとして示し、第3の集光装置31及び第4の集光装置41については一部図示を省略する。 Hereinafter, the first light collecting device 11 will be described with reference to FIG. About the 2nd condensing device 21, the 3rd condensing device 31, and the 4th condensing device 41, since it is the same structure as the 1st condensing device 11, description is abbreviate | omitted. Moreover, in each figure, the irradiation direction of sunlight is shown as an arrow T, and a part of the third light collecting device 31 and the fourth light collecting device 41 are not shown.
 第1の集光装置11は、第1のレシーバ12、第1の集光ミラー13、選択集光ミラー14,15、二次ミラー16、及び制御装置(制御手段)Aを備えている。以下、直線状に延在する第1のレシーバ12の延在方向をX軸方向、鉛直方向をZ軸方向、X軸方向及びZ軸方向の両方に直交する方向をY軸方向として説明を行う。 The first condensing device 11 includes a first receiver 12, a first condensing mirror 13, selective condensing mirrors 14 and 15, a secondary mirror 16, and a control device (control means) A. Hereinafter, the extending direction of the first receiver 12 extending linearly will be described as the X-axis direction, the vertical direction as the Z-axis direction, and the direction orthogonal to both the X-axis direction and the Z-axis direction as the Y-axis direction. .
 第1のレシーバ12は、内部を熱媒体が流れる管状の部材である。熱媒体はガス状であっても液体状であっても良い。第1のレシーバ12は、X軸方向で直線状に延在している。第1のレシーバ12は、地面に対して固定されており、左右の支持台17によって高所に支持されている。 The first receiver 12 is a tubular member through which a heat medium flows. The heat medium may be gaseous or liquid. The first receiver 12 extends linearly in the X-axis direction. The first receiver 12 is fixed to the ground, and is supported at a high place by left and right support bases 17.
 第1の集光ミラー13は、第1のレシーバ12に対して太陽光を集光する第1のレシーバ12専用の集光ミラーである。第1の集光ミラー13は、第1のレシーバ12に沿ってX軸方向に列をなしており、この列がY軸方向で複数配列されて構成されている。第1の集光ミラー13は、支持脚18によって支持され、太陽の動きに追従して回転可能に構成されている。 The first condensing mirror 13 is a condensing mirror dedicated to the first receiver 12 that condenses sunlight with respect to the first receiver 12. The first condenser mirror 13 is arranged in a row in the X-axis direction along the first receiver 12, and a plurality of the rows are arranged in the Y-axis direction. The 1st condensing mirror 13 is supported by the support leg 18, and is comprised so that a solar motion can be followed and rotated.
 選択集光ミラー14,15は、集光対象を第1のレシーバ12以外のレシーバに切換可能な集光ミラーである。すなわち、選択集光ミラー14,15は、第1のレシーバ12以外のレシーバに対して太陽光を集光させることができる。 The selective condensing mirrors 14 and 15 are condensing mirrors that can switch the condensing target to a receiver other than the first receiver 12. That is, the selective condensing mirrors 14 and 15 can condense sunlight with respect to receivers other than the first receiver 12.
 選択集光ミラー14,15は、Y軸方向における第1の集光装置11の両端にそれぞれ一列ずつ設けられている。選択集光ミラー14,15は、Y軸方向で複数列からなる第1の集光ミラー13を挟むように配置されている。選択集光ミラー14,15の構成自体は、第1の集光ミラー13と同様である。なお、第1の実施形態においては、第1の集光ミラー13及び選択集光ミラー14,15は平板状の表面反射ミラーである。 The selective condensing mirrors 14 and 15 are provided in a line at both ends of the first condensing device 11 in the Y-axis direction. The selective focusing mirrors 14 and 15 are arranged so as to sandwich the first focusing mirror 13 composed of a plurality of rows in the Y-axis direction. The configuration of the selective collector mirrors 14 and 15 is the same as that of the first collector mirror 13. In the first embodiment, the first condenser mirror 13 and the selective condenser mirrors 14 and 15 are flat surface reflection mirrors.
 二次ミラー16は、第1のレシーバ12の上から覆うように設けられ、第1のレシーバ12に沿ってX軸方向に延在する下向きに開口した樋形状の部材である。二次ミラー16の内面には鏡面加工が施してある。二次ミラー16は、第1の集光ミラー13及び選択集光ミラー14,15の反射光のうち、第1のレシーバ12から外れた光を再び反射することで第1のレシーバ12に集光させる。 The secondary mirror 16 is a bowl-shaped member that is provided so as to cover the first receiver 12 and extends downward along the first receiver 12 in the X-axis direction. The inner surface of the secondary mirror 16 is mirror-finished. The secondary mirror 16 condenses on the first receiver 12 by reflecting again the light deviated from the first receiver 12 among the reflected light of the first condenser mirror 13 and the selective condenser mirrors 14 and 15. Let
 この集光装置11では、第1の集光ミラー13及び選択集光ミラー14,15の集光により第1のレシーバ12が得た太陽熱が、第1のレシーバ12の内部を流れる熱媒体を通じて発電設備に供給される。発電設備としては、例えば、蒸気タービンなどを用いることができ、熱媒体を通じて供給された太陽熱を利用して発電を行う。 In this condensing device 11, the solar heat obtained by the first receiver 12 by the condensing of the first condensing mirror 13 and the selective condensing mirrors 14, 15 generates power through a heat medium flowing inside the first receiver 12. Supplied to the facility. As the power generation facility, for example, a steam turbine or the like can be used, and power generation is performed using solar heat supplied through a heat medium.
 制御装置Aは、太陽の動きに応じて第1の集光ミラー13及び選択集光ミラー14,15の向きを制御するものである。制御装置Aは、CPU[Central Processing Unit]、ROM[Read Only Memory]、RAM[Random Access Memory]などからなる電子制御ユニットである。制御装置Aは、複数台のコンピュータから構成されていてもよい。 The control device A controls the orientation of the first condenser mirror 13 and the selective condenser mirrors 14 and 15 according to the movement of the sun. The control device A is an electronic control unit including a CPU [Central Processing Unit], ROM [Read Only Memory], RAM [Random Access Memory], and the like. The control device A may be composed of a plurality of computers.
 制御装置Aは、太陽光Tの照射角度を検出するための太陽光検出部Bと接続されている。太陽光検出部Bは、例えば太陽光Tの照射角度として地面(或いは太陽集光システム10の設置面)に対する太陽光Tの入射角度を検出する。このような太陽光検出部Bには、周知の機器を採用することができる。なお、第1の実施形態に係る太陽熱発電システムは必ずしも太陽光検出部Bを備える必要はなく、制御装置Aは時間に基づいて太陽光Tの照射角度を考慮したミラーの向きの制御を行うこともできる。制御装置Aは、太陽集光システム10の全ての集光ミラーを制御する。 Control device A is connected to a sunlight detector B for detecting the irradiation angle of sunlight T. The sunlight detection part B detects the incident angle of the sunlight T with respect to the ground (or the installation surface of the solar condensing system 10) as the irradiation angle of sunlight T, for example. A well-known apparatus can be employ | adopted for such a sunlight detection part B. FIG. In addition, the solar thermal power generation system which concerns on 1st Embodiment does not necessarily need to be provided with the sunlight detection part B, and the control apparatus A controls the direction of the mirror which considered the irradiation angle of sunlight T based on time. You can also. The control device A controls all the collecting mirrors of the solar collecting system 10.
 図2に示されるように、太陽集光システム10では、第1の集光装置11,第2の集光装置21,第3の集光装置31,第4の集光装置41が隣り合って設置されている。各集光装置11,21,31,41は、それぞれ一つのレシーバ12,22,32、42を有しており、これらのレシーバは互いに略平行に配置されている。各レシーバ12,22,32、42は、図示しない配管によって接続されており、一つの熱媒体流路を形成する。なお、各レシーバ12,22,32、42は、それぞれが独立した熱媒体流路を形成して発電設備に接続されていてもよい。 As shown in FIG. 2, in the solar light collecting system 10, the first light collecting device 11, the second light collecting device 21, the third light collecting device 31, and the fourth light collecting device 41 are adjacent to each other. is set up. Each condensing device 11, 21, 31, and 41 has one receiver 12, 22, 32, and 42, respectively, and these receivers are arranged substantially parallel to each other. Each receiver 12, 22, 32, 42 is connected by a pipe (not shown) and forms one heat medium flow path. In addition, each receiver 12, 22, 32, 42 may form an independent heat medium flow path and may be connected to the power generation equipment.
 また、各集光装置11,21,31,41は、各集光装置におけるレシーバに対してのみ集光する第1~第4の集光ミラー13,23,33、43と、隣の集光装置のレシーバにも集光可能な選択集光ミラー14,15,24,25,34,45とを備えている。これらの集光ミラーは、Y軸方向でほぼ等間隔となるように配置されている。 Each condensing device 11, 21, 31, 41 has first to fourth condensing mirrors 13, 23, 33, 43 that condense only on a receiver in each condensing device, and an adjacent condensing device. Selective collecting mirrors 14, 15, 24, 25, 34, and 45 that can also collect light at the receiver of the apparatus are provided. These condenser mirrors are arranged so as to be substantially equidistant in the Y-axis direction.
 集光ミラー間の隙間は、太陽集光システム10の使用環境や目的を考慮して適切に設定される。すなわち、集光ミラー間の隙間を大きくとればミラー面積当たりの太陽エネルギー獲得効率を上げることができる。逆に、集光ミラー間の隙間を少なくすれば、集光ミラーを多く配置することで集光率を上げることができ、熱損失を減らすこともできる。また、土地利用効率も上がる。 The gap between the collector mirrors is appropriately set in consideration of the usage environment and purpose of the solar collector system 10. That is, if the gap between the collecting mirrors is large, the solar energy acquisition efficiency per mirror area can be increased. Conversely, if the gap between the collecting mirrors is reduced, the number of collecting mirrors can be increased to increase the light collection rate and reduce heat loss. In addition, land use efficiency increases.
 本実施形態に係る太陽集光システム10では、集光ミラー間の隙間が小さいと隣の集光ミラーによって反射光が遮られるブロッキングが生じる場合があるため、ある程度の隙間が必要となる。具体的には、集光ミラー間の隙間について当該隙間に入る集光ミラー(水平姿勢の集光ミラー)の個数rで表わすと、コストの観点から、1.0<r<2.0であることが好ましく、1.25<r<1.75であることがより好ましい。なお、性能優先(温度環境優先)の観点からは、0.2<r<0.7であることが好ましく、0.4<r<0.5であることがより好ましい。 In the solar light collecting system 10 according to the present embodiment, if the gap between the collecting mirrors is small, blocking may occur where the reflected light is blocked by the adjacent collecting mirror, so that a certain amount of gap is required. Specifically, when the gap between the collecting mirrors is expressed by the number r of collecting mirrors (horizontal posture collecting mirrors) entering the gap, 1.0 <r <2.0 from the viewpoint of cost. It is preferable that 1.25 <r <1.75. From the viewpoint of performance priority (temperature environment priority), 0.2 <r <0.7 is preferable, and 0.4 <r <0.5 is more preferable.
 選択集光ミラー14,15,24,25,34,45は、ほぼ等間隔で配置されている集光ミラーのうち、隣の集光装置の集光ミラーと隣接する位置に配置されている。なお、選択集光ミラーの数や位置は、図2に示す構成に限定されない。 The selective condensing mirrors 14, 15, 24, 25, 34, and 45 are disposed at positions adjacent to the condensing mirror of the adjacent condensing device among the condensing mirrors disposed at substantially equal intervals. Note that the number and position of the selective focusing mirrors are not limited to the configuration shown in FIG.
 図3は、選択集光ミラーの集光対象の切り換えた状態の太陽集光システムを示す側面図である。図3に示す太陽集光システム10では、選択集光ミラー14,24,34について、太陽光を効率良く集光できるレシーバへと集光対象を切り換えている。 FIG. 3 is a side view showing the solar condensing system in a state in which the condensing target of the selective condensing mirror is switched. In the solar condensing system 10 shown in FIG. 3, the condensing target is switched to a receiver that can condense sunlight efficiently with respect to the selective condensing mirrors 14, 24, and 34.
 ここで、第1の集光装置11の選択集光ミラー14を例として、集光対象の切り換えについて説明する。図4(a)は、選択集光ミラー14の集光対象の切り換えを行っていない状態を示し、図4(b)は、選択集光ミラー14の集光対象を切り換えた状態を示している。なお、図4(a)は、図2に示す状態に対応しており,図4(b)は図3に示す状態に対応している。 Here, switching of the light collection target will be described using the selective light collection mirror 14 of the first light collection device 11 as an example. 4A shows a state where the light collecting target of the selective light collecting mirror 14 is not switched, and FIG. 4B shows a state where the light collecting target of the selective light collecting mirror 14 is switched. . 4A corresponds to the state shown in FIG. 2, and FIG. 4B corresponds to the state shown in FIG.
 図4(a)に示されるように、真上以外の方向から太陽光Tが照射されている場合、第1のレシーバ12に対して太陽光Tを反射するためには、選択集光ミラー14は大きな入射角度θで太陽光を受ける必要がある。 As shown in FIG. 4A, when sunlight T is irradiated from a direction other than directly above, the selective condensing mirror 14 is used to reflect the sunlight T to the first receiver 12. Needs to receive sunlight at a large incident angle θ.
 ここで、入射角度θは、YZ平面において、選択集光ミラー14に入射する太陽光Tと選択集光ミラー14の中心軸線Cnとのなす角度である。中心軸線Cnは、例えば、YZ平面において選択集光ミラー14の反射面の中央を通り、且つ、反射面に垂直な軸線である。 Here, the incident angle θ is an angle formed between the sunlight T incident on the selective collector mirror 14 and the central axis Cn of the selective collector mirror 14 in the YZ plane. The central axis Cn is, for example, an axis that passes through the center of the reflective surface of the selective collector mirror 14 in the YZ plane and is perpendicular to the reflective surface.
 この場合、いわゆるコサイン効果の影響により、選択集光ミラー14が受けることのできる太陽光Tの光束(太陽光のエネルギー)は太陽光Tの入射角度θが大きくなるほど減少し、集光率の低下が生じる。 In this case, under the influence of the so-called cosine effect, the luminous flux of sunlight T (solar energy) that can be received by the selective condenser mirror 14 decreases as the incident angle θ of the sunlight T increases, and the condensing rate decreases. Occurs.
 そこで、図4(b)に示されるように、選択集光ミラー14の集光対象を隣の第2のレシーバ22に切り換える。これにより、選択集光ミラー14に対する太陽光Tの入射角度θを小さくすることができ、選択集光ミラー14のほぼ正面で太陽光Tを受けることができるので、コサイン効果による集光率の低下を避けることができる。 Therefore, as shown in FIG. 4B, the condensing target of the selective condensing mirror 14 is switched to the adjacent second receiver 22. As a result, the incident angle θ of the sunlight T with respect to the selective collector mirror 14 can be reduced, and the sunlight T can be received almost in front of the selective collector mirror 14. Can be avoided.
 次に、選択集光ミラー14における集光対象の切り換え制御について説明する。太陽集光システム10の制御装置Aは、太陽光検出部Bの検出した太陽光Tの照射角度に基づいて、選択集光ミラー14の向きを変更し、その集光対象を切り換える。 Next, the switching control of the light collecting target in the selective light collecting mirror 14 will be described. The control device A of the solar condensing system 10 changes the direction of the selective condensing mirror 14 based on the irradiation angle of the sunlight T detected by the sunlight detecting unit B, and switches the condensing target.
 具体的には、制御装置Aは、太陽光Tの照射角度に基づいて、第1のレシーバ12及び第2のレシーバ22のうち太陽光Tの入射角度θが小さくなる方のレシーバを選択集光ミラー14の集光対象とする。換言すれば、制御装置Aは、選択集光ミラー14の正面方向で反射できるレシーバが集光対象となるように選択集光ミラー14を制御する。 Specifically, the control device A selects and condenses the receiver having the smaller incident angle θ of the sunlight T among the first receiver 12 and the second receiver 22 based on the irradiation angle of the sunlight T. The light is collected by the mirror 14. In other words, the control device A controls the selective focusing mirror 14 so that a receiver that can reflect in the front direction of the selective focusing mirror 14 becomes a focusing target.
 なお、制御装置Aは、必ずしも太陽光Tの照射角度に基づいて選択集光ミラー14の集光対象を切り換える必要はなく、例えば時間に基づいて選択集光ミラー14の集光対象を切り換える態様であってもよい。この場合、時間ごとの太陽の位置等を考慮して、適切なタイミングで選択集光ミラー14の集光対象を切り換えることができる。なお、選択集光ミラー14を例として集光対象の切り換えを説明したが、他の選択集光ミラー15,24,25,34,45においても同様である。 In addition, the control apparatus A does not necessarily need to switch the condensing object of the selective condensing mirror 14 based on the irradiation angle of sunlight T, for example, in the aspect which switches the condensing object of the selective condensing mirror 14 based on time. There may be. In this case, the light collection target of the selective light collecting mirror 14 can be switched at an appropriate timing in consideration of the position of the sun for each hour. In addition, although the selection focusing mirror 14 has been described as an example of switching the focusing target, the same applies to the other selective focusing mirrors 15, 24, 25, 34, and 45.
 以上説明した第1の実施形態に係る太陽集光システム10によれば、太陽光Tの照射角度に基づいて選択集光ミラー15,24,25,34,45の集光対象となるレシーバを切り換えることにより、できるだけミラー正面で太陽光Tを受けてコサイン効果による効率低下を避けることが可能となるので、システム全体における集光率の向上を図ることができる。 According to the solar light collecting system 10 according to the first embodiment described above, the receivers that are the light collecting objects of the selective light collecting mirrors 15, 24, 25, 34, and 45 are switched based on the irradiation angle of the sunlight T. As a result, it is possible to receive sunlight T in front of the mirror as much as possible and avoid a decrease in efficiency due to the cosine effect, so that the light collection rate in the entire system can be improved.
 また、この太陽集光システム10では、リニアフレネル方式を採用することで、三次元的な制御を必要とするタワー方式の集光システムと比べて、集光対象の切り換えによる選択集光ミラーの制御を簡素化することができる。しかも、この太陽集光システム10では、集光装置を隣り合って複数して配置しても、タワー方式の集光システムと比べて、タワー等の影が生じる設備が少ないので集光率の向上に有利である。 Moreover, in this solar condensing system 10, by adopting the linear Fresnel method, the control of the selective condensing mirror by switching the condensing object is performed as compared with the tower type condensing system that requires three-dimensional control. Can be simplified. Moreover, in this solar condensing system 10, even if a plurality of concentrating devices are arranged adjacent to each other, the number of facilities that cause shadows such as a tower is less than that of a tower type condensing system, so that the condensing rate is improved. Is advantageous.
 第1の実施形態に係る太陽熱発電システムによれば、上述した太陽集光システム10を備えることにより太陽光Tの集光率を大幅に向上させることができる。その結果、効率的にレシーバ12に太陽光Tを吸収させて太陽熱を得ることができるので、太陽熱発電の効率を向上させることができる。 According to the solar thermal power generation system which concerns on 1st Embodiment, the condensing rate of sunlight T can be improved significantly by providing the solar condensing system 10 mentioned above. As a result, the receiver 12 can efficiently absorb the sunlight T to obtain solar heat, so that the efficiency of solar thermal power generation can be improved.
[第2の実施形態]
 第2の実施形態に係る太陽熱発電システムは、第1の実施形態に係る太陽熱発電システムと比べて、選択集光ミラーの形状のみが異なっている。
[Second Embodiment]
The solar thermal power generation system according to the second embodiment is different from the solar thermal power generation system according to the first embodiment only in the shape of the selective condensing mirror.
 具体的には、第2の実施形態に係る太陽熱発電システム(太陽集光システム)は、曲面を有するトラフ形状の選択集光ミラー54を備えている。トラフ形状の選択集光ミラー54は、所定の集点に集まるように太陽光を反射する表面反射のミラーである。 Specifically, the solar thermal power generation system (solar condensing system) according to the second embodiment includes a trough-shaped selective condensing mirror 54 having a curved surface. The trough-shaped selective condensing mirror 54 is a surface-reflecting mirror that reflects sunlight so as to gather at a predetermined point.
 ここで、図5は、第2の実施形態に係る選択集光ミラー54の集点について説明するための図である。図5に示されるように、選択集光ミラー54は、集光対象として選択できる第1のレシーバ12及び第2のレシーバ22のうち、選択集光ミラー54との距離が遠い第2のレシーバ22に集点が合わせてある。図5に示すRは、選択集光ミラー54の集点が描く軌道である。 Here, FIG. 5 is a diagram for explaining the collecting points of the selective focusing mirror 54 according to the second embodiment. As shown in FIG. 5, the selective condensing mirror 54 is the second receiver 22 that is far from the selective condensing mirror 54 among the first receiver 12 and the second receiver 22 that can be selected as the condensing target. The points are matched. R shown in FIG. 5 is a trajectory drawn by the collecting point of the selective focusing mirror 54.
 以上説明した第2の実施形態に係る太陽熱発電システム(太陽集光システム)によれば、平面ミラーではなく、集点のあるトラフ形状の選択集光ミラーを採用することで、集光率を高めることができる。また、この太陽熱発電システムでは、第1のレシーバ12及び第2のレシーバ22のうち選択集光ミラー54に近い方のレシーバへの集光は比較的容易であることから、遠くに位置するレシーバに選択集光ミラーの集点を合わせることで、効果的に集光することができる。このことは、太陽熱発電システムの集光率の向上に寄与する。 According to the solar thermal power generation system (solar condensing system) according to the second embodiment described above, the condensing rate is increased by employing a trough-shaped selective condensing mirror with a concentrating point instead of a plane mirror. be able to. Further, in this solar thermal power generation system, it is relatively easy to collect light to the receiver closer to the selective light collecting mirror 54 out of the first receiver 12 and the second receiver 22, so that the receiver located far away is used. By converging the collecting points of the selective condensing mirrors, it is possible to condense effectively. This contributes to the improvement of the light collection rate of the solar thermal power generation system.
[第3の実施形態]
 第3の実施形態に係る太陽熱発電システムは、第2の実施形態に係る太陽熱発電システムと比べて、選択集光ミラーが裏面反射である点が大きく異なる。
[Third Embodiment]
The solar thermal power generation system according to the third embodiment is largely different from the solar thermal power generation system according to the second embodiment in that the selective condensing mirror is back-surface reflection.
 図6は、第3の実施形態に係る裏面反射の選択集光ミラー64を説明するための側面図である。図7は、YZ平面に沿った選択集光ミラー64の拡大断面図である。図6に、X軸方向に延在する選択集光ミラー64の回転中心軸Pを示す。 FIG. 6 is a side view for explaining a selective focusing mirror 64 for back surface reflection according to the third embodiment. FIG. 7 is an enlarged cross-sectional view of the selective focusing mirror 64 along the YZ plane. FIG. 6 shows the rotation center axis P of the selective collector mirror 64 extending in the X-axis direction.
 図6及び図7に示されるように、選択集光ミラー64は、回転中心軸Pを中心として回転可能に構成されている。なお、選択集光ミラー64は、必ずしも360度回転可能な構成である必要はなく、360度未満で揺動可能な構成であってもよい。選択集光ミラー64は、透明基板65、反射防止膜66、及び反射層67を備えている。 As shown in FIGS. 6 and 7, the selective condensing mirror 64 is configured to be rotatable about the rotation center axis P. Note that the selective condensing mirror 64 is not necessarily configured to be able to rotate 360 degrees, and may be configured to be swingable at less than 360 degrees. The selective condensing mirror 64 includes a transparent substrate 65, an antireflection film 66, and a reflection layer 67.
 透明基板65は、アクリル樹脂などの透明性の高い樹脂材料から構成されている。透明基板65は、樋状に湾曲した板状の部材であり、その断面(回転中心軸Pに垂直な断面)は反射層67側に向かって凹む弧形状を成している。透明基板65は、その形状を維持するために十分な剛性を備えている。 The transparent substrate 65 is made of a highly transparent resin material such as acrylic resin. The transparent substrate 65 is a plate-like member curved like a bowl, and its cross section (cross section perpendicular to the rotation center axis P) has an arc shape that is recessed toward the reflective layer 67 side. The transparent substrate 65 has sufficient rigidity to maintain its shape.
 透明基板65は、レシーバ12側(表側)の表面65aと、表面65aの反対側の裏面65bと、を有している。樋状の透明基板65では、表面65a及び裏面65bのYZ平面に沿った断面形状(回転中心軸Pに直交する断面上の形状)が円弧形状を成している。 The transparent substrate 65 has a surface 65a on the receiver 12 side (front side) and a back surface 65b on the opposite side of the surface 65a. In the bowl-shaped transparent substrate 65, the cross-sectional shape (the shape on the cross section orthogonal to the rotation center axis P) along the YZ plane of the front surface 65a and the back surface 65b forms an arc shape.
 なお、表面65a及び裏面65bは、断面形状の円弧の曲率が同一であっても異なっていても良い。また、表面65a及び裏面65bのYZ平面に沿った断面形状は、円弧形状ではなく放物線形状などであっても良い。更に、表面65a及び裏面65bの断面形状のうち一方が円弧形状、他方が放物線形状であっても良い。 Note that the front surface 65a and the back surface 65b may have the same or different curvatures of the arc of the cross-sectional shape. Moreover, the cross-sectional shape along the YZ plane of the front surface 65a and the back surface 65b may be a parabolic shape instead of an arc shape. Further, one of the cross-sectional shapes of the front surface 65a and the back surface 65b may be an arc shape and the other may be a parabolic shape.
 透明基板65の表面65aには、太陽光Tの反射を防止するための反射防止膜66が形成されている。反射防止膜66は、例えばフッ化マグネシウムMgFからなる膜である。反射防止膜66は、複数の材料からなる多層の膜であっても良い。このような反射防止膜66を形成することで、太陽光Tが表面65aで反射することを避けることができる。なお、反射防止膜66を必ずしも備える必要はない。 On the surface 65a of the transparent substrate 65, an antireflection film 66 for preventing the reflection of sunlight T is formed. The antireflection film 66 is a film made of, for example, magnesium fluoride MgF 2 . The antireflection film 66 may be a multilayer film made of a plurality of materials. By forming such an antireflection film 66, the sunlight T can be prevented from being reflected by the surface 65a. Note that the antireflection film 66 is not necessarily provided.
 透明基板65の裏面65bには、反射層67が形成されている。反射層67は、例えばアルミニウムAlや銀Agなどから形成されている。反射層67は、裏面65bの全面に形成されていても良く、一部に形成されていても良い。 A reflective layer 67 is formed on the back surface 65 b of the transparent substrate 65. The reflective layer 67 is made of, for example, aluminum Al or silver Ag. The reflective layer 67 may be formed on the entire surface of the back surface 65b or may be formed on a part thereof.
 この透明基板65は、加熱溶融させた樹脂材料を金型内に射出注入し、金型内で冷却することで成形を行う射出成形により製造される。射出成形は、複雑な形状の成形品を大量に製造することに適している。 The transparent substrate 65 is manufactured by injection molding in which a heat-melted resin material is injected and injected into a mold and cooled in the mold. Injection molding is suitable for producing a large number of molded articles having complicated shapes.
 このように構成された裏面反射の選択集光ミラー64では、太陽光Tは反射防止膜66及び透明基板65を通過してミラー内部に入り込む。その後、太陽光Tは裏面65bの反射層67で反射され、透明基板65内を通過して表面65aの反射防止膜66から外側に出射する。この裏面反射の選択集光ミラー64においても、その集点は遠くに位置する方のレシーバに合わせてあることが好ましい。 In the selective condensing mirror 64 of the back surface reflection configured as described above, the sunlight T passes through the antireflection film 66 and the transparent substrate 65 and enters the inside of the mirror. Thereafter, the sunlight T is reflected by the reflective layer 67 on the back surface 65b, passes through the transparent substrate 65, and exits from the antireflection film 66 on the front surface 65a to the outside. Also in the selective reflection mirror 64 for reflection on the back surface, it is preferable that the collection point is matched with the receiver located farther away.
 以上説明した第3の実施形態に係る太陽熱発電システム(太陽集光システム)によれば、透明基板65による太陽光の屈折及び反射層による反射を行う反射屈折系の選択集光ミラー64を採用することにより、表面反射である従来のミラーと比べて、像面湾曲の影響を抑制することができるので、レシーバに対する集光率を大幅に向上させることができる。その結果、レシーバや二次ミラーに対する集光スポットの大きさが小さくなるので、太陽に対する追尾制御の精度が緩和されると共に、レシーバに到達しない漏れ光を減少させることができる。なお、反射屈折系のミラーの効果については、本発明者による日本国特許出願(出願番号2011―220990)を参照されたい。 According to the solar thermal power generation system (solar condensing system) according to the third embodiment described above, the catadioptric selective condensing mirror 64 that performs refraction of sunlight by the transparent substrate 65 and reflection by the reflective layer is employed. As a result, the influence of the curvature of field can be suppressed as compared with the conventional mirror that is surface reflection, so that the light collection rate with respect to the receiver can be greatly improved. As a result, the size of the condensing spot with respect to the receiver and the secondary mirror is reduced, so that the accuracy of tracking control with respect to the sun is eased, and leakage light that does not reach the receiver can be reduced. For the effect of the catadioptric mirror, refer to the Japanese patent application (Application No. 2011-220990) by the present inventor.
[第4の実施形態]
 図8は、第4の実施形態に係る太陽熱発電システムの選択集光ミラーの集光対象の切り換え前の状態を示す側面図である。図9は、選択集光ミラーの集光対象の切り換え後の状態を示す側面図である。
[Fourth Embodiment]
FIG. 8 is a side view showing a state before switching the light collecting target of the selective light collecting mirror of the solar thermal power generation system according to the fourth embodiment. FIG. 9 is a side view showing a state after the light collecting target of the selective light collecting mirror is switched.
 図8に示されるように、第4の実施形態に係る太陽熱発電システムは、タワー方式の太陽集光システム100を備えている。タワー方式の太陽集光システム100は、互いに隣り合って配置された第1の集光装置110及び第2の集光装置120を有している。 As shown in FIG. 8, the solar thermal power generation system according to the fourth embodiment includes a tower-type solar condensing system 100. The tower-type solar condensing system 100 includes a first concentrating device 110 and a second concentrating device 120 that are arranged next to each other.
 第1の集光装置110は、地上に立設されたタワーの上部に設けられた第1のレシーバ111と、第1のレシーバ111に対して太陽光Tを集光する第1の集光ミラー112及び選択集光ミラー113と、を備えている。同様に、第2の集光装置120は、地上に立設されたタワーの上部に設けられた第2のレシーバ121と、第2のレシーバ121に対して太陽光Tを集光する第2の集光ミラー122及び選択集光ミラー123,124と、を備えている。 The 1st condensing device 110 is provided with the 1st receiver 111 provided in the upper part of the tower standing on the ground, and the 1st condensing mirror which condenses sunlight T with respect to the 1st receiver 111 112 and a selective condensing mirror 113. Similarly, the second light collecting device 120 includes a second receiver 121 provided on the top of a tower erected on the ground, and a second light collecting the sunlight T on the second receiver 121. The condenser mirror 122 and the selective condenser mirrors 123 and 124 are provided.
 各集光ミラー112,113,122,123,124は、いわゆるディッシュ状(皿状)のミラーであり、その反射光は第1のレシーバ111又は第2のレシーバ121に向かって一点に集光する。各集光ミラー112,113,122,123,124は、図示しない制御装置によって制御されており、太陽に追従して向きを変更する。 Each condensing mirror 112, 113, 122, 123, 124 is a so-called dish-shaped (dish-shaped) mirror, and the reflected light is condensed at one point toward the first receiver 111 or the second receiver 121. . Each condensing mirror 112,113,122,123,124 is controlled by the control apparatus which is not illustrated, and changes direction according to the sun.
 図8に示す状態において、第2の集光装置120の選択集光ミラー124は、第2のレシーバ121へ反射するためには大きな入射角度θで太陽光Tを受けざるを得ず、コサイン効果により集光率の低下が生じる。 In the state shown in FIG. 8, the selective condensing mirror 124 of the second light concentrating device 120 must receive sunlight T at a large incident angle θ in order to reflect to the second receiver 121, and the cosine effect. As a result, the light collection rate is reduced.
 そこで、図9に示されるように、選択集光ミラー124は、その集光対象を第2のレシーバ121から第1のレシーバ111に切り換える。これにより、選択集光ミラー124に対する太陽光Tの入射角度θを小さくすることができ、選択集光ミラー124のほぼ正面で太陽光Tを受けることができるので、コサイン効果による集光率の低下を避けることができる。 Therefore, as shown in FIG. 9, the selective focusing mirror 124 switches the focusing target from the second receiver 121 to the first receiver 111. As a result, the incident angle θ of the sunlight T with respect to the selective collector mirror 124 can be reduced, and the sunlight T can be received almost in front of the selective collector mirror 124, so that the light collection rate is reduced due to the cosine effect. Can be avoided.
 以上説明した第4の実施形態に係る太陽熱発電システム(太陽集光システム)においても、太陽光Tの照射角度に基づいて選択集光ミラー113,123,124の集光対象となるレシーバを切り換えることにより、できるだけミラー正面で太陽光Tを受けてコサイン効果による効率低下を避けることが可能となるので、システム全体における集光率の向上を図ることができる。 Also in the solar thermal power generation system (solar condensing system) according to the fourth embodiment described above, the receiver that is the condensing target of the selective condensing mirrors 113, 123, and 124 is switched based on the irradiation angle of the sunlight T. As a result, it is possible to receive sunlight T as much as possible in front of the mirror and avoid a decrease in efficiency due to the cosine effect, so that the light collection rate in the entire system can be improved.
 本発明は、上述した実施形態に限定されるものではない。 The present invention is not limited to the embodiment described above.
 例えば、集光装置の数は、3つ以下であっても5つ以上であってもよく、各集光装置における集光ミラー(各集光装置専用の集光ミラー及び選択集光ミラー)の数や位置も上述したものに限定されない。また、タワー方式には、ビームダウン方式も含まれる。更に、二次ミラーは必ずしも備える必要はない。 For example, the number of light collecting devices may be three or less, or five or more, and the number of light collecting mirrors (light collecting mirrors dedicated to each light collecting device and selective light collecting mirrors) in each light collecting device. The numbers and positions are not limited to those described above. The tower method includes a beam down method. Further, the secondary mirror is not necessarily provided.
 また、集光ミラーの構成は、上述したものに限られない。例えば、トラフ形状の集光ミラーにおいて、機械的に力を加えて反射面を湾曲させることで、集点を適切に調整するものを採用することができる。この場合、選択集光ミラーにおいて集光対象を切り換えるに際し、集光対象に合わせて集点を調整することが可能となる。 Further, the configuration of the condenser mirror is not limited to the above. For example, in a trough-shaped condensing mirror, it is possible to adopt one that appropriately adjusts the collecting point by mechanically applying a force to curve the reflecting surface. In this case, when the light collecting target is switched in the selective light collecting mirror, the collecting point can be adjusted according to the light collecting target.
 また、上述した太陽集光システムは、太陽熱発電への利用に限られない。太陽熱を利用した給湯、蒸気供給、暖房空調、冷房空調(吸収式冷凍機の高温熱源)など、様々な分野に活用することができる。特に、中規模プラントにおける工場の空調や蒸気供給などの用途に適している。また、レシーバに太陽電池を配置することにより、集光型の太陽電池システムとして活用することもできる。 Moreover, the solar condensing system described above is not limited to use for solar thermal power generation. Hot water supply using solar heat, steam supply, heating air conditioning, cooling air conditioning (high temperature heat source of absorption refrigeration machine) can be used in various fields. It is particularly suitable for applications such as factory air conditioning and steam supply in medium-scale plants. Moreover, it can also utilize as a concentrating solar cell system by arrange | positioning a solar cell to a receiver.
 本発明は、ミラー1つ当たりの集光率の向上を図ることができる太陽集光システム及び太陽熱発電システムとして利用可能である。 The present invention can be used as a solar condensing system and a solar thermal power generation system capable of improving the condensing rate per mirror.
 10,100…太陽集光システム 11,110…第1の集光装置 21,120…第2の集光装置 31…第3の集光装置 41…第4の集光装置 12…第1のレシーバ 22…第2のレシーバ 32…第3のレシーバ 32…第4のレシーバ 13…第1の集光ミラー 23…第2の集光ミラー 33…第3の集光ミラー 43…第4の集光ミラー 16,26,36,46…二次ミラー 14,15,24,25,35,44,54,64,113,114,124…選択集光ミラー 65…透明基板 65a…表面 65b…裏面 66…反射防止膜 67…反射層 A…制御装置(制御手段) B…太陽光検出部 Cn…中心軸線 P…回転中心軸(中心軸) T…太陽光 θ…入射角度 DESCRIPTION OF SYMBOLS 10,100 ... Solar condensing system 11,110 ... 1st condensing device 21,120 ... 2nd condensing device 31 ... 3rd condensing device 41 ... 4th condensing device 12 ... 1st receiver 22 ... 2nd receiver 32 ... 3rd receiver 32 ... 4th receiver 13 ... 1st condensing mirror 23 ... 2nd condensing mirror 33 ... 3rd condensing mirror 43 ... 4th condensing mirror 16, 26, 36, 46 ... secondary mirror 14, 15, 24, 25, 35, 44, 54, 64, 113, 114, 124 ... selective condensing mirror 65 ... transparent substrate 65a ... front surface 65b ... back surface 66 ... reflection Prevention film 67 ... Reflective layer A ... Control device (control means) B ... Sunlight detection unit Cn ... Center axis P ... Center of rotation (center axis) T ... Sunlight θ ... Incident angle

Claims (5)

  1.  第1のレシーバに対して太陽光を集光する第1の集光ミラーと、第2のレシーバに対して太陽光を集光する第2の集光ミラーと、を備えた太陽集光システムであって、
     前記第1のレシーバ及び前記第2のレシーバの何れか一方に対して太陽光を集光する選択集光ミラーと、
     前記選択集光ミラーを制御する制御手段と、を備え、
     前記制御手段は、太陽光の照射角度及び時間のうち少なくとも一方に基づいて、前記選択集光ミラーの集光対象を切り換えることを特徴とする太陽集光システム。
    A solar condensing system comprising: a first condensing mirror that condenses sunlight with respect to a first receiver; and a second condensing mirror that condenses sunlight with respect to a second receiver. There,
    A selective condensing mirror for condensing sunlight with respect to any one of the first receiver and the second receiver;
    Control means for controlling the selective condensing mirror,
    The said control means switches the condensing object of the said selective condensing mirror based on at least one among the irradiation angle and time of sunlight, The solar condensing system characterized by the above-mentioned.
  2.  フレネル方式の集光システムである請求項1に記載の太陽集光システム。 The solar condensing system according to claim 1, which is a Fresnel type condensing system.
  3.  前記選択集光ミラーは、曲面を有するミラーであり、
     前記選択集光ミラーの集点は、前記第1のレシーバ及び前記第2のレシーバのうち当該選択集光ミラーから遠くに位置するレシーバに合わされている請求項1又は2に記載の太陽集光システム。
    The selective focusing mirror is a mirror having a curved surface,
    3. The solar light collecting system according to claim 1, wherein a collecting point of the selective collecting mirror is set to a receiver located far from the selective collecting mirror among the first receiver and the second receiver. .
  4.  前記選択集光ミラーは、
     太陽光が入射する表面と前記表面の反対側の裏面とを有する透明基板と、
     前記透明基板の前記裏面に形成された反射層と、を備え、
     所定の中心軸を中心として回転可能又は揺動可能に構成され、前記透明基板のうち前記中心軸に垂直な断面は、前記反射層側に向かって凹む弧形状を成している、請求項1~3のうち何れか一項に記載の太陽集光システム。
    The selective focusing mirror is
    A transparent substrate having a surface on which sunlight is incident and a back surface opposite to the surface;
    A reflective layer formed on the back surface of the transparent substrate,
    2. The transparent substrate is configured to be rotatable or swingable about a predetermined central axis, and a cross section perpendicular to the central axis of the transparent substrate has an arc shape that is recessed toward the reflective layer side. The solar condensing system according to any one of 1 to 3.
  5.  請求項1~4のうち何れか一項に記載の太陽集光システムを備え、前記第1のレシーバ及び前記第2のレシーバが得た熱を利用して発電を行うことを特徴とする太陽熱発電システム。 A solar thermal power generation comprising the solar condensing system according to any one of claims 1 to 4, wherein power generation is performed using heat obtained by the first receiver and the second receiver. system.
PCT/JP2013/065350 2012-07-23 2013-06-03 Solar light collecting system and solar thermal power generation system WO2014017171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012162614A JP5902058B2 (en) 2012-07-23 2012-07-23 Solar condensing system and solar power generation system
JP2012-162614 2012-07-23

Publications (1)

Publication Number Publication Date
WO2014017171A1 true WO2014017171A1 (en) 2014-01-30

Family

ID=49996989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065350 WO2014017171A1 (en) 2012-07-23 2013-06-03 Solar light collecting system and solar thermal power generation system

Country Status (2)

Country Link
JP (1) JP5902058B2 (en)
WO (1) WO2014017171A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835359A (en) * 1981-08-21 1983-03-02 グラヴルベル Composite mirror panel
JP2008503709A (en) * 2004-06-24 2008-02-07 ヘリオダイナミクス リミテッド Solar energy collection system
WO2010013632A1 (en) * 2008-07-31 2010-02-04 コスモ石油株式会社 Method for collecting sunlight in multi-tower beam down type light collecting system
JP2011220286A (en) * 2010-04-13 2011-11-04 Mitsubishi Heavy Ind Ltd Solar thermal power generation system
JP2012117771A (en) * 2010-12-02 2012-06-21 Hitachi Plant Technologies Ltd Solar thermal collector
JP2012117411A (en) * 2010-11-30 2012-06-21 Jfe Engineering Corp Solar thermal power generation device and operating method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8033110B2 (en) * 2008-03-16 2011-10-11 Brightsource Industries (Israel) Ltd. Solar power generation with multiple energy conversion modes
JP5669758B2 (en) * 2010-01-18 2015-02-18 日立造船株式会社 Solar concentrator and solar heat recovery equipment
AT510324B1 (en) * 2010-08-23 2012-08-15 Hartmut Dipl Ing Schneider SPIEGEL MODULE
EP2622283B1 (en) * 2010-10-01 2017-11-01 Tokyo Institute of Technology Cross linear type solar heat collecting apparatus
US20120192857A1 (en) * 2011-01-31 2012-08-02 Google Inc. Heliostat Assignment in a Multi-Tower Field

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835359A (en) * 1981-08-21 1983-03-02 グラヴルベル Composite mirror panel
JP2008503709A (en) * 2004-06-24 2008-02-07 ヘリオダイナミクス リミテッド Solar energy collection system
WO2010013632A1 (en) * 2008-07-31 2010-02-04 コスモ石油株式会社 Method for collecting sunlight in multi-tower beam down type light collecting system
JP2011220286A (en) * 2010-04-13 2011-11-04 Mitsubishi Heavy Ind Ltd Solar thermal power generation system
JP2012117411A (en) * 2010-11-30 2012-06-21 Jfe Engineering Corp Solar thermal power generation device and operating method thereof
JP2012117771A (en) * 2010-12-02 2012-06-21 Hitachi Plant Technologies Ltd Solar thermal collector

Also Published As

Publication number Publication date
JP2014020749A (en) 2014-02-03
JP5902058B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5797737B2 (en) Solar heat collection system
AU2010217786B2 (en) Segmented fresnel solar concentrator
US8642880B2 (en) Interchangeable and fully adjustable solar thermal-photovoltaic concentrator systems
WO2010013632A1 (en) Method for collecting sunlight in multi-tower beam down type light collecting system
US20070186921A1 (en) Cylindrical solar energy collector
US20110000543A1 (en) Solar energy collection and conversion system
JP2013545958A (en) Solar collector with a concentrator array consisting of several sections
US20070181173A1 (en) Solar electric power generator
US20160079461A1 (en) Solar generator with focusing optics including toroidal arc lenses
US20110265783A1 (en) solar energy collecting system
US20090194097A1 (en) Methods and Mechanisms to Increase Efficiencies of Energy or Particle Beam Collectors
Kalogirou Recent patents in solar energy collectors and applications
JP2010151980A (en) Sunlight collection system
JP2011035383A (en) Sunlight receiver for sunlight condenser using linear convergence
US20130306059A1 (en) Dish-Type Solar Thermal Power Generation System And Heat Collector Thereof
CN206626824U (en) solar concentrator
JP5902058B2 (en) Solar condensing system and solar power generation system
WO2013005479A1 (en) Solar light collection system and solar thermal electric power generation system
CN202419964U (en) Solar cluster light-gathering control system
CN202419962U (en) Solar bundling condensation control system
JP2013167376A (en) Solar concentration device and solar heat power generation system
CN202419965U (en) Solar clustered condensation control system
JP2010016109A (en) Concentrating photovoltaic power generation system
CN103162432A (en) Solar energy bundling condensation control system
JP2000056102A (en) Condensing lens and light converging method using the condensing lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822419

Country of ref document: EP

Kind code of ref document: A1