WO2014017021A1 - Cold storage heat exchanger - Google Patents

Cold storage heat exchanger Download PDF

Info

Publication number
WO2014017021A1
WO2014017021A1 PCT/JP2013/003988 JP2013003988W WO2014017021A1 WO 2014017021 A1 WO2014017021 A1 WO 2014017021A1 JP 2013003988 W JP2013003988 W JP 2013003988W WO 2014017021 A1 WO2014017021 A1 WO 2014017021A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage material
cold storage
material container
refrigerant
air
Prior art date
Application number
PCT/JP2013/003988
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 長谷波
聡也 長沢
鳥越 栄一
アウン 太田
淳 安部井
佑輔 鬼頭
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014017021A1 publication Critical patent/WO2014017021A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure relates to a cold storage heat exchanger used in a refrigeration cycle apparatus.
  • a refrigeration cycle apparatus is used as an air conditioner. Attempts have been made to provide limited cooling even when the refrigeration cycle apparatus is stopped. For example, in a vehicle air conditioner, a compressor of a refrigeration cycle apparatus is driven by a traveling engine. For this reason, if the engine stops while the vehicle is temporarily stopped, the refrigeration cycle apparatus stops. In order to provide limited cooling during such a temporary stop, a cold storage heat exchanger in which a cold storage material for storing cold heat is added to the evaporator of the refrigeration cycle apparatus is disclosed (for example, Patent Document 1). reference).
  • the refrigerant pipe to which the cool storage material container is joined is the cooling air through which air for cooling the cooling target space flows when the cool storage material is stored and allowed to cool on the side opposite to the cool storage material container. It is in contact with the passage. Between the refrigerant pipe and the cool storage material container, a plurality of convex portions and recesses form a cool storage material side air passage that is different from the cooling air passage. Condensed water generated at times is formed in an inclined space for discharging the condensed water to the outside.
  • the present disclosure provides a cold storage heat exchanger capable of suppressing heat exchange between the cold storage material and air during cold storage and cooling without disturbing the discharge of condensed water generated during cold storage of the cold storage material.
  • a plurality of refrigerant pipes each having a refrigerant passage inside and spaced from each other, a cold storage material container that is joined to the refrigerant pipe and that stores the cold storage material, And a blocking unit.
  • the cold storage material container has a plurality of convex portions or a plurality of concave portions on the outer surface of the cold storage material container to which the refrigerant pipe is joined.
  • the plurality of projections or the plurality of recesses define at least one cool storage material side air passage through which air flows.
  • the cool storage material side air passage has a space for draining the condensed water generated during the cold storage to the cool storage material along the cool storage material side air passage.
  • the blocking unit protrudes from the cold storage material container toward the refrigerant tube side and blocks the flow of air flowing through the cold storage material side air passage.
  • the cool storage material side air passage is configured to drain the condensed water generated when storing the cool storage material along the cool storage material side air passage, so that the condensed water generated when storing the cool storage material is discharged. Is unimpeded. Therefore, it is possible to suppress the heat exchange between the cold storage material and the air during cold storage and cooling, without hindering the discharge of the condensed water generated during cold storage of the cold storage material.
  • FIG. 5 is a VV cross-sectional view of FIG. 4. It is a partial side view which shows the uneven
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. 6.
  • the refrigeration cycle apparatus 1 constituting the air conditioner includes a compressor 10, a radiator 20, a decompressor 30, and an evaporator (evaporator) 40. These components are connected in an annular shape by piping and constitute a refrigerant circulation path.
  • the compressor 10 is driven by an internal combustion engine (or an electric motor or the like) that is a power source 2 for traveling the vehicle. When the power source 2 stops, the compressor 10 also stops.
  • the compressor 10 sucks the refrigerant from the evaporator 40, compresses it, and discharges it to the radiator 20.
  • the radiator 20 cools the high-temperature refrigerant.
  • the radiator 20 is also called a condenser.
  • the decompressor 30 decompresses the refrigerant cooled by the radiator 20.
  • the evaporator 40 evaporates the refrigerant decompressed by the decompressor 30 and cools the passenger compartment air.
  • the evaporator 40 has a first heat exchange section 48 and a second heat exchange section 49 arranged in two layers.
  • the 2nd heat exchange part 49 is arrange
  • the 1st heat exchange part 48 is arrange
  • the 1st heat exchange part 48 is an example of the downstream heat exchange part arrange
  • the evaporator 40 has a refrigerant passage member branched into a plurality.
  • the refrigerant passage member is provided by a metal passage member such as aluminum.
  • the refrigerant passage member is provided by first to fourth headers 41 to 44 positioned in a set, and a plurality of tubes 45 (refrigerant tubes) connecting the headers 41 to 44.
  • the first header 41 and the second header 42 form a pair, and are arranged in parallel at a predetermined distance from each other.
  • the third header 43 and the fourth header 44 also form a pair, and are arranged in parallel at a predetermined distance from each other.
  • a plurality of tubes 45 are arranged at equal intervals between the first header 41 and the second header 42. Each tube 45 communicates with the corresponding header 41, 42 at its end.
  • a first heat exchanging portion 48 (see FIG. 3) is formed by the first header 41, the second header 42, and a plurality of tubes 45 arranged therebetween.
  • a plurality of tubes 45 are arranged at equal intervals between the third header 43 and the fourth header 44. Each tube 45 communicates with the corresponding header 43, 44 at its end.
  • a second heat exchanging portion 49 (see FIG. 3) is formed by the third header 43, the fourth header 44, and a plurality of tubes 45 arranged therebetween.
  • a joint (not shown) as a refrigerant inlet is provided at the end of the first header 41.
  • the inside of the first header 41 is partitioned into a first partition and a second partition by a partition plate (not shown) provided substantially at the center in the length direction.
  • the plurality of tubes 45 are divided into a first group and a second group.
  • the refrigerant is supplied to the first section of the first header 41.
  • the refrigerant is distributed from the first section to the plurality of tubes 45 belonging to the first group.
  • the refrigerant flows into the second header 42 through the first group and is collected.
  • the refrigerant is distributed again from the second header 42 to the plurality of tubes 45 belonging to the second group.
  • the refrigerant flows into the second section of the first header 41 through the second group.
  • a joint (not shown) as a refrigerant outlet is provided.
  • the inside of the third header 43 is partitioned into a first partition and a second partition by a partition plate (not shown) provided substantially at the center in the length direction.
  • the plurality of tubes 45 are divided into a first group and a second group.
  • the first section of the third header 43 is adjacent to the second section of the first header 41.
  • the first section of the third header 43 and the second section of the first header 41 are in communication.
  • the refrigerant flows from the second section of the first header 41 into the first section of the third header 43.
  • the refrigerant is distributed from the first section to the plurality of tubes 45 belonging to the first group.
  • the refrigerant flows into the fourth header 44 through the first group and is collected.
  • the refrigerant is distributed again from the fourth header 44 to the plurality of tubes 45 belonging to the second group.
  • the refrigerant flows into the second section of the third header 43 through the second group.
  • coolant in a U shape is formed.
  • the refrigerant in the second section of the third header 43 flows out from the refrigerant outlet and flows toward the compressor 10.
  • the plurality of tubes 45 are arranged at substantially constant intervals.
  • a plurality of gaps are formed between the plurality of tubes 45.
  • a plurality of air-side fins 46 and a plurality of cool storage material containers 47 are arranged and brazed with a predetermined regularity in the plurality of gaps.
  • a part of the gap is a cooling air passage 460.
  • the remaining part of the gap is an accommodating part in which the cool storage material container 47 is arranged.
  • the longitudinal direction of the plurality of tubes 45 may coincide with the longitudinal direction of the cold storage material container 47.
  • the cool storage material containers 47 are arranged almost uniformly distributed throughout the evaporator 40.
  • the two tubes 45 located on both sides of the cold storage material container 47 define a cooling air passage 460 for exchanging heat with air on the opposite side to the cold storage material container 47.
  • the tube 45 is a multi-hole tube formed in a flat shape and having a plurality of refrigerant passages therein.
  • the tube 45 can be obtained by an extrusion manufacturing method.
  • the plurality of refrigerant passages extend along the longitudinal direction of the tube 45 and open at both ends of the tube 45.
  • the plurality of tubes 45 are arranged in a row. In each row, the plurality of tubes 45 are arranged such that their main surfaces (flat surfaces) face each other.
  • the evaporator 40 includes air-side fins 46 in the cooling air passage 460 for increasing the contact area with the air supplied to the passenger compartment.
  • the air-side fins 46 are disposed in an air passage that is defined between two adjacent tubes 45.
  • the air side fin 46 is thermally coupled to the two adjacent tubes 45.
  • the air-side fins 46 are joined to two adjacent tubes 45 by a brazing material.
  • the air-side fin 46 is formed by bending a thin metal plate such as aluminum into a wave shape, and includes an armor window-like louver 461 (see FIG. 5).
  • the evaporator 40 When the evaporator 40 evaporates the refrigerant in the evaporator 40 and exhibits an endothermic effect, the evaporator 40 solidifies the regenerator material to store the cold energy, and cools the stored heat when the regenerator material melts. It is an exchanger.
  • the evaporator 40 has a cool storage material container 47 that partitions a room for storing a plurality of cool storage materials.
  • the cold storage material container 47 is made of metal such as aluminum and is formed in a flat container shape.
  • the cool storage material container 47 divides a room for storing the cool storage material therein by joining a pair of plate members 470 having a substantially U-shaped cross section (bathtub shape).
  • the cool storage material container 47 has a wide main surface (flat surface) on both surfaces.
  • the two main walls that provide these two main surfaces are each arranged in parallel with the tube 45. These two main walls have an uneven shape.
  • the cold storage material container 47 is disposed between two adjacent tubes 45.
  • the cold storage material container 47 is thermally coupled to the two tubes 45 disposed on both sides thereof by the convex portions 47a.
  • the cool storage material container 47 is joined to the two adjacent tubes 45 by a joining material excellent in heat transfer.
  • a resin material such as a brazing material or an adhesive can be used.
  • the cold storage material container 47 of this example is brazed to the tube 45.
  • both the tube 45 constituting the first heat exchange part 48 and the tube 45 constituting the second heat exchange part 49 are joined to the outer surface of the cold storage material container 47.
  • a brazing material is disposed between the cold storage material container 47 and the tube 45 in order to connect them with a wide cross-sectional area.
  • This brazing material can also be provided by placing a brazing material foil between the cold storage material container 47 and the tube 45. As a result, the cool storage material container 47 performs good heat conduction with the tube 45.
  • the convex portion 47 a of the main wall of the cold storage material container 47 is brazed to the tube 45.
  • Si silicon
  • the ease of flowing into the brazing portion can be adjusted.
  • the greater the amount of Si in the brazing material the easier it will flow into the brazing part.
  • the recessed part 47b of the main wall of the cool storage material container 47 comprises the cool storage material side air passage 462 through which air distribute
  • the convex portion 47a is formed in an inverted V shape in which the central portion in the left-right direction (air flow direction) is disposed on the upper side in the vertical direction from both ends.
  • a plurality of inverted V-shaped protrusions 47 a are arranged side by side along the longitudinal direction of the cold storage material container 47, that is, along the vertical direction. As will be described later, this uneven shape improves the drainage of condensed water and the like.
  • an inner fin 60 is disposed on the inner side of the cool storage material container 47 by being thermally and mechanically coupled to the cool storage material container 47.
  • the inner fin 60 is joined to the inner wall of the main wall of the cool storage material container 47 by a joining material excellent in heat transfer. This joining is made by brazing. Since the inner fin 60 is coupled to the inner side of the cold storage material container 47, deformation of the cold storage material container 47 is prevented and pressure resistance is improved.
  • the inner fin 60 has a shape in which a thin metal plate such as aluminum is bent in a wave shape. And since the surface of the cool storage material container 47 is uneven, the inner fin 60 is joined to the concave portion 47b of the main wall of the cool storage material container 47, that is, a portion protruding inward (inner surface protrusion) by brazing, Increases mechanical strength and pressure resistance. Thereby, the convex part 47a and the inner fin 60 which protruded outside among the main walls of the cool storage material container 47 are not joined.
  • the cold storage material container 47 protrudes toward the tube 45 side and has a blocking portion 50 that blocks the flow of air flowing through the cold storage material side air passage 462.
  • blocking part 50 is comprised by making a part of main wall of the cool storage material container 47 protrude toward the tube 45 side.
  • the blocking unit 50 is a tube 45 that is superposed on each other when viewed from the air flow direction among the tubes 45 that constitute the first heat exchange unit 48 and the tubes 45 that constitute the second heat exchange unit 49. It is arranged between. Moreover, the interruption
  • the regenerator container 47 has a flat surface 47c on the outer surface of the main wall where the convex portion 47a is not formed, in other words, on the portion where the concave portion 47b is formed. have.
  • the distance in the tube stacking direction from the flat surface 47c of the cold storage material container 47 to the portion of the blocking unit 50 that is farthest from the flat surface 47c is referred to as a blocking unit length X.
  • the distance in the tube stacking direction from the flat surface 47c of the cool storage material container 47 to the tube 45 facing the flat surface 47c, that is, the length of the cool storage material side air passage 462 in the tube stacking direction is the cool storage material side air passage length. Y.
  • the cool storage material side air passage length Y is from the flat surface 47c of the cool storage material container 47 to the part (part joined to the tube 45) farthest from the flat surface 47c in the convex part 47a. Is equal to the distance in the tube stacking direction.
  • the blocking section length X is equal to or longer than the cold storage material side air passage length Y.
  • the blocking portion length X is longer than the cold storage material side air passage length Y.
  • the blocking portion length X is equal to the distance L in the tube stacking direction from the flat surface 47 c of the cool storage material container 47 to the air-side fin 46. The tip of the blocking part 50 is in contact with the air side fin 46.
  • the blocking part 50 extends in the vertical direction so as to block the flow of air flowing through the plurality of cool storage material side air passages 462 formed in the main wall of the cool storage material container 47. That is, one blocking portion 50 is formed on one main wall (one plate member 470) of the cold storage material container 47.
  • the blocking part 50 can block the flow of air flowing through the cool storage material side air passage 462. For this reason, the heat exchange with the air which distribute
  • the cooling performance can be improved by increasing the heat transfer coefficient of the air-side fins 46. Furthermore, since the interruption
  • blocking part 50 is comprised by making a part of main wall of the cool storage material container 47 protrude toward the tube 45 side, a cool storage material is accommodated also inside the interruption
  • blocking part 50 is formed so that it may extend in a perpendicular direction, the condensed water which generate
  • blocking part 50 can be enlarged by arrange
  • the internal volume of the cool storage material container 47 can be increased more, the quantity of the cool storage material accommodated in the cool storage material container 47 can be further increased.
  • the blocking unit 50 is disposed between the tube 45 configuring the first heat exchange unit 48 and the tube 45 configuring the second heat exchange unit 49, so that the blocking unit 50 is adjacent to the tube during manufacturing. By being caught by 45, it becomes possible to more reliably suppress the displacement of the tube 45 and the cold storage material container 47.
  • FIGS. 6 and 7. a second embodiment of the present disclosure will be described based on FIGS. 6 and 7.
  • the second embodiment is different from the first embodiment in the shape of the blocking part 50.
  • FIG. 6 corresponds to FIG. 4 of the first embodiment.
  • the broken-line arrow in FIG. 6 has shown the flow of air.
  • each cool storage material side air passage 462. 50 is provided. Specifically, in the part arrange
  • FIG. 7 the blocking portion length X is equal to the cool storage material side air passage length Y. For this reason, the front-end
  • FIG. 8 corresponds to FIG. 7 of the second embodiment.
  • the blocking section 50 of the present embodiment is configured by arranging a blocking member 51 provided as a separate member from the cold storage material container 47 in the cold storage material side air passage 462.
  • the blocking member 51 is joined to the surface of the main wall of the cold storage material container 47 and the outer surface of the tube 45. According to the present embodiment, the same effect as in the second embodiment can be obtained. That is, the blocking member 51 may be used as an example of the blocking unit 50.
  • FIG. 9 corresponds to FIG. 5 of the first embodiment.
  • At least one tube 45 among the plurality of tubes 45 constituting the evaporator 40 is joined to the cold storage material container 47 on both surfaces thereof. That is, at least one tube 45 among the plurality of tubes 45 constituting the evaporator 40 is in a state of being sandwiched between the two cold storage material containers 47 from both sides in the tube stacking direction.
  • the two cool storage material containers 47 arranged on both sides of the tube 45 in the tube stacking direction are in contact with the blocking portions 50 protruding toward the one tube 45.
  • the cool storage material container 47 is connected to the air side fin 46 via the tube 45 in the both sides of a tube lamination direction.
  • the cool storage material container 47 in the two cold storage material containers 47 arranged on both sides of the tube 45 in the tube stacking direction, one side in the tube stacking direction is connected to the air-side fin 46 via the tube 45.
  • the other side in the tube stacking direction is connected to another cold storage material container 47 through the tube 45.
  • the cold storage material container 47 and the air-side fin 46 is arranged in the gap between the adjacent tubes 45.
  • a plurality of air-side fins 46 and a plurality of cool storage material containers 47 are arranged in a plurality of gaps formed between a plurality of adjacent tubes 45 with a predetermined regularity (for example, at equal pitch intervals).
  • the cold storage material container 47 is reduced from the state, and the air side fin 46 is inserted instead.
  • the two cold storage material containers 47 disposed on both sides of the single tube 45 in the tube stacking direction are configured as a single unit. According to this, since the enclosure part for enclosing a cool storage material in the cool storage material container 47 can be made into one, a number of parts can be reduced. (Other embodiments)
  • the present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
  • the drainage of the treatment liquid deteriorates when performing the surface treatment during the manufacture of the evaporator 40, and an appropriate film is formed. There is a possibility that it cannot be formed.
  • the end of the blocking portion 50 is in contact with the air-side fin 46.
  • the end portion or the side surface of the blocking portion 50 may be in contact with the tube 45, and the blocking portion 50 may not be in contact with the air-side fin 46.
  • the blocking member 51 is disposed in the cool storage material side passage 462 between the tube 45 and the cool storage material container 47.
  • the blocking member 51 protrudes from the outer surface of the cool storage material container 47 toward the tube 45, and blocks the flow of air flowing through the cool storage material side air passage 462. May be.
  • the blocking member 51 may extend in the longitudinal direction (vertical direction) of the cold storage material container 47.
  • the blocking member 51 extends between the tube 45 of the first heat exchange unit 48 and the tube 45 of the second heat exchange unit 49, and the tube 45 of the first heat exchange unit 48 and the second heat exchange unit 48. You may contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This cold storage heat exchanger is provided with: a plurality of tubes (45) disposed providing gaps between each other; and a cold storage material vessel (47) for housing a cold storage material. A plurality of protrusions (47a) or a plurality of depressions (47b) are provided to the outer surface of the cold storage material vessel (47); by means of the plurality of protrusions (47a) or the plurality of depressions (47b), a cold-storage-material-side air pathway (462) through which air flows is compartmentalized between the plurality of tubes (45) and the cold storage material vessel (47); and the cold-storage-material-side air pathway (462) has a space that drains condensed water arising during cold storage at the cold storage material. A cutoff section (50) that protrudes towards the tube (45) side and that cuts of the flow of air flowing through the cold-storage-material-side air pathway (462) is provided to the cold storage material vessel (47). As a result, it is possible to suppress heat exchange between the cold storage material and the air during cold storage and during cold release without obstructing the drainage of condensed water.

Description

蓄冷熱交換器Cold storage heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2012年7月23日に出願された日本特許出願2012-162826を基にしている。 This application is based on Japanese Patent Application No. 2012-162826 filed on July 23, 2012, the disclosure of which is incorporated into this application by reference.
 本開示は、冷凍サイクル装置に用いられる蓄冷熱交換器に関するものである。 The present disclosure relates to a cold storage heat exchanger used in a refrigeration cycle apparatus.
 従来、空調装置には、冷凍サイクル装置が用いられている。この冷凍サイクル装置が停止している状態においても、限定された冷房を提供する試みがなされている。例えば、車両用空調装置では、走行用エンジンによって冷凍サイクル装置の圧縮機が駆動される。このため、車両が一時的に停車している間にエンジンが停止すると、冷凍サイクル装置が停止する。このような一時的な停車中に、限定された冷房を提供するために、冷凍サイクル装置の蒸発器に冷熱を蓄える蓄冷材を付加した蓄冷熱交換器が開示されている(例えば、特許文献1参照)。 Conventionally, a refrigeration cycle apparatus is used as an air conditioner. Attempts have been made to provide limited cooling even when the refrigeration cycle apparatus is stopped. For example, in a vehicle air conditioner, a compressor of a refrigeration cycle apparatus is driven by a traveling engine. For this reason, if the engine stops while the vehicle is temporarily stopped, the refrigeration cycle apparatus stops. In order to provide limited cooling during such a temporary stop, a cold storage heat exchanger in which a cold storage material for storing cold heat is added to the evaporator of the refrigeration cycle apparatus is disclosed (for example, Patent Document 1). reference).
 この蓄冷熱交換器では、蓄冷材容器が接合される冷媒管が、蓄冷材容器とは反対側において、蓄冷材の蓄冷時及び放冷時に、冷却対象空間を冷却する空気が流通する冷却用空気通路と接している。冷媒管と蓄冷材容器との間には、複数の凸部と凹部によって、冷却用空気通路とは異なる蓄冷材側空気通路が形成されており、この蓄冷材側空気通路は、蓄冷材の蓄冷時に発生する凝縮水を、外部に排出する傾斜形状の空間に形成されている。 In this cold storage heat exchanger, the refrigerant pipe to which the cool storage material container is joined is the cooling air through which air for cooling the cooling target space flows when the cool storage material is stored and allowed to cool on the side opposite to the cool storage material container. It is in contact with the passage. Between the refrigerant pipe and the cool storage material container, a plurality of convex portions and recesses form a cool storage material side air passage that is different from the cooling air passage. Condensed water generated at times is formed in an inclined space for discharging the condensed water to the outside.
特開2011-12947号公報JP 2011-12947 A
 しかしながら、上記特許文献1に記載の蓄冷熱交換器では、冷媒管と蓄冷材容器との間に蓄冷材側空気通路が形成されているので、蓄冷時および放冷時に、蓄冷材と蓄冷材側空気通路を流通する空気との間で熱交換が行われ、速やかな蓄冷の妨げ、および、早期に放冷が終了してしまう場合がある。 However, in the cold storage heat exchanger described in Patent Document 1, since the cold storage material side air passage is formed between the refrigerant pipe and the cold storage material container, the cold storage material and the cold storage material side during cold storage and cooling. Heat exchange is performed with the air flowing through the air passage, which may impede rapid cold storage and end cooling early.
 本開示は上記点に鑑みて、蓄冷材の蓄冷時に発生する凝縮水の排出を妨げず、蓄冷時および放冷時に蓄冷材と空気との熱交換を抑制できる蓄冷熱交換器を提供することを目的とする。 In view of the above points, the present disclosure provides a cold storage heat exchanger capable of suppressing heat exchange between the cold storage material and air during cold storage and cooling without disturbing the discharge of condensed water generated during cold storage of the cold storage material. Objective.
 本開示の一態様によれば、それぞれが冷媒通路を内部に有するとともに互いに間隔を設けて配置された複数の冷媒管と、冷媒管に接合されるとともに、蓄冷材を収容する蓄冷材容器と、遮断部とを備える。蓄冷材容器は、冷媒管が接合される蓄冷材容器の外側表面に、複数の凸部或いは複数の凹部を有している。複数の冷媒管と蓄冷材容器との間にて、複数の凸部或いは複数の凹部は、空気が流通する少なくとも1つの蓄冷材側空気通路を区画している。蓄冷材側空気通路は、蓄冷材への蓄冷時に発生する凝縮水を蓄冷材側空気通路に沿って排水させる空間を有している。遮断部は、蓄冷材容器から冷媒管側に向かって突出するとともに、蓄冷材側空気通路を流通する空気の流れを遮断する。 According to one aspect of the present disclosure, a plurality of refrigerant pipes each having a refrigerant passage inside and spaced from each other, a cold storage material container that is joined to the refrigerant pipe and that stores the cold storage material, And a blocking unit. The cold storage material container has a plurality of convex portions or a plurality of concave portions on the outer surface of the cold storage material container to which the refrigerant pipe is joined. Between the plurality of refrigerant tubes and the cool storage material container, the plurality of projections or the plurality of recesses define at least one cool storage material side air passage through which air flows. The cool storage material side air passage has a space for draining the condensed water generated during the cold storage to the cool storage material along the cool storage material side air passage. The blocking unit protrudes from the cold storage material container toward the refrigerant tube side and blocks the flow of air flowing through the cold storage material side air passage.
 これによれば、遮断部により、蓄冷材側空気通路を流通する空気の流れを遮断することができるので、蓄冷時および放冷時に、蓄冷材と蓄冷材側空気通路を流通する空気との熱交換を抑制できる。このとき、蓄冷材側空気通路は、蓄冷材への蓄冷時に発生する凝縮水を蓄冷材側空気通路に沿って排水させるように構成されているので、蓄冷材の蓄冷時に発生する凝縮水の排出は妨げられない。したがって、蓄冷材の蓄冷時に発生する凝縮水の排出を妨げず、蓄冷時および放冷時に蓄冷材と空気との熱交換を抑制することが可能となる。 According to this, since the flow of air flowing through the regenerator material side air passage can be interrupted by the shut-off unit, the heat of the regenerator material and the air flowing through the regenerator material side air passage at the time of cold storage and cooling. Exchange can be suppressed. At this time, the cool storage material side air passage is configured to drain the condensed water generated when storing the cool storage material along the cool storage material side air passage, so that the condensed water generated when storing the cool storage material is discharged. Is unimpeded. Therefore, it is possible to suppress the heat exchange between the cold storage material and the air during cold storage and cooling, without hindering the discharge of the condensed water generated during cold storage of the cold storage material.
本開示の第1実施形態における車両用空調装置のための冷凍サイクル装置の概略図である。It is the schematic of the refrigerating-cycle apparatus for the vehicle air conditioner in 1st Embodiment of this indication. 第1実施形態における蒸発器を示す概略平面図である。It is a schematic plan view which shows the evaporator in 1st Embodiment. 図2の矢印W方向から見た図である。It is the figure seen from the arrow W direction of FIG. 第1実施形態における蓄熱材容器表面の凹凸形状を示す一部側面図である。It is a partial side view which shows the uneven | corrugated shape of the heat storage material container surface in 1st Embodiment. 図4のV-V断面図である。FIG. 5 is a VV cross-sectional view of FIG. 4. 本開示の第2実施形態における蓄熱材容器表面の凹凸形状を示す一部側面図である。It is a partial side view which shows the uneven | corrugated shape of the heat storage material container surface in 2nd Embodiment of this indication. 図6のVII-VII断面図である。FIG. 7 is a sectional view taken along line VII-VII in FIG. 6. 本開示の第3実施形態における蒸発器をチューブ長手方向から見た一部断面図である。It is the partial sectional view which looked at the evaporator in a 3rd embodiment of this indication from the tube longitudinal direction. 本開示の第4実施形態における蒸発器をチューブ長手方向から見た一部断面図である。It is the partial cross section figure which looked at the evaporator in 4th Embodiment of this indication from the tube longitudinal direction. 本開示の第5実施形態における蒸発器を示す概略平面図である。It is a schematic plan view which shows the evaporator in 5th Embodiment of this indication. 本開示の第6実施形態における蒸発器をチューブ長手方向から見た一部断面図である。It is the partial cross section which looked at the evaporator in 6th Embodiment of this indication from the tube longitudinal direction. 本開示の一変形例における蒸発器をチューブ長手方向から見た一部断面図である。It is the partial sectional view which looked at the evaporator in one modification of this indication from the tube longitudinal direction. 本開示の一変形例における蓄熱材容器表面の凹凸形状を示す一部側面図である。It is a partial side view which shows the uneven | corrugated shape of the thermal storage material container surface in one modification of this indication. 本開示の一変形例における蒸発器をチューブ長手方向から見た一部断面図である。It is the partial sectional view which looked at the evaporator in one modification of this indication from the tube longitudinal direction.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
 本開示の第1実施形態について図1~図5に基づいて説明する。なお、図4中の破線矢印は、空気の流れを示している。本開示の第1実施形態となる車両用空調装置を構成する冷凍サイクル装置の構成を図1に示す。この空調装置を構成する冷凍サイクル装置1は、圧縮機10、放熱器20、減圧器30、および蒸発器(エバポレータ)40を有する。これら構成部品は、配管によって環状に接続され、冷媒循環路を構成する。
Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. 1 to 5. In addition, the broken-line arrow in FIG. 4 has shown the flow of air. FIG. 1 shows a configuration of a refrigeration cycle apparatus that constitutes the vehicle air conditioner according to the first embodiment of the present disclosure. The refrigeration cycle apparatus 1 constituting the air conditioner includes a compressor 10, a radiator 20, a decompressor 30, and an evaporator (evaporator) 40. These components are connected in an annular shape by piping and constitute a refrigerant circulation path.
 圧縮機10は、車両の走行用の動力源2である内燃機関(あるいは電動機等)によって駆動される。動力源2が停止すると、圧縮機10も停止する。圧縮機10は、蒸発器40から冷媒を吸引し、圧縮し、放熱器20へ吐出する。放熱器20は、高温冷媒を冷却する。放熱器20は、凝縮器とも呼ばれる。減圧器30は、放熱器20によって冷却された冷媒を減圧する。蒸発器40は、減圧器30によって減圧された冷媒を蒸発させ、車室内空気を冷却する。 The compressor 10 is driven by an internal combustion engine (or an electric motor or the like) that is a power source 2 for traveling the vehicle. When the power source 2 stops, the compressor 10 also stops. The compressor 10 sucks the refrigerant from the evaporator 40, compresses it, and discharges it to the radiator 20. The radiator 20 cools the high-temperature refrigerant. The radiator 20 is also called a condenser. The decompressor 30 decompresses the refrigerant cooled by the radiator 20. The evaporator 40 evaporates the refrigerant decompressed by the decompressor 30 and cools the passenger compartment air.
 図2および図3において、蒸発器40は、2層に配置された第1熱交換部48と第2熱交換部49とを有する。そして、第2熱交換部49が空気流れ上流側に配置され、第1熱交換部48が空気流れ下流側に配置されている。したがって、第2熱交換部49は上流側熱交換部の一例として用いられ、第1熱交換部48は上流側熱交換部よりも冷媒流れ下流側に配置された下流側熱交換部の一例として用いられても良い。 2 and 3, the evaporator 40 has a first heat exchange section 48 and a second heat exchange section 49 arranged in two layers. And the 2nd heat exchange part 49 is arrange | positioned at the air flow upstream, and the 1st heat exchange part 48 is arrange | positioned at the air flow downstream. Therefore, the 2nd heat exchange part 49 is used as an example of an upstream heat exchange part, and the 1st heat exchange part 48 is an example of the downstream heat exchange part arrange | positioned to a refrigerant | coolant flow downstream rather than an upstream heat exchange part. It may be used.
 具体的には、蒸発器40は、複数に分岐した冷媒通路部材を有する。この冷媒通路部材は、アルミニウム等の金属製の通路部材によって提供される。冷媒通路部材は、組をなして位置づけられた第1~第4ヘッダ41~44と、それらヘッダ41~44の間を連結する複数のチューブ45(冷媒管)によって提供されている。 Specifically, the evaporator 40 has a refrigerant passage member branched into a plurality. The refrigerant passage member is provided by a metal passage member such as aluminum. The refrigerant passage member is provided by first to fourth headers 41 to 44 positioned in a set, and a plurality of tubes 45 (refrigerant tubes) connecting the headers 41 to 44.
 第1ヘッダ41と第2ヘッダ42とは、組をなしており、互いに所定距離れて平行に配置されている。第3ヘッダ43と第4ヘッダ44も組をなしており、互いに所定距離れて平行に配置されている。第1ヘッダ41と第2ヘッダ42との間には、複数のチューブ45が等間隔に配列されている。各チューブ45は、その端部において対応するヘッダ41、42内に連通している。これら第1ヘッダ41と、第2ヘッダ42と、それらの間に配置された複数のチューブ45によって第1熱交換部48(図3参照)が形成されている。 The first header 41 and the second header 42 form a pair, and are arranged in parallel at a predetermined distance from each other. The third header 43 and the fourth header 44 also form a pair, and are arranged in parallel at a predetermined distance from each other. A plurality of tubes 45 are arranged at equal intervals between the first header 41 and the second header 42. Each tube 45 communicates with the corresponding header 41, 42 at its end. A first heat exchanging portion 48 (see FIG. 3) is formed by the first header 41, the second header 42, and a plurality of tubes 45 arranged therebetween.
 第3ヘッダ43と第4ヘッダ44との間には、複数のチューブ45が等間隔に配列されている。各チューブ45は、その端部において対応するヘッダ43、44内に連通している。これら第3ヘッダ43と、第4ヘッダ44と、それらの間に配置された複数のチューブ45によって第2熱交換部49(図3参照)が形成されている。 A plurality of tubes 45 are arranged at equal intervals between the third header 43 and the fourth header 44. Each tube 45 communicates with the corresponding header 43, 44 at its end. A second heat exchanging portion 49 (see FIG. 3) is formed by the third header 43, the fourth header 44, and a plurality of tubes 45 arranged therebetween.
 第1ヘッダ41の端部には、冷媒入口としての図示しないジョイントが設けられている。第1ヘッダ41内は、その長さ方向のほぼ中央に設けられた図示しない仕切板によって、第1区画と第2区画とに区画されている。これに対応して、複数のチューブ45は、第1群と第2群とに区分されている。 A joint (not shown) as a refrigerant inlet is provided at the end of the first header 41. The inside of the first header 41 is partitioned into a first partition and a second partition by a partition plate (not shown) provided substantially at the center in the length direction. Correspondingly, the plurality of tubes 45 are divided into a first group and a second group.
 冷媒は、第1ヘッダ41の第1区画に供給される。冷媒は、第1区画から、第1群に属する複数のチューブ45に分配される。冷媒は、第1群を通して第2ヘッダ42に流入し、集合される。冷媒は、第2ヘッダ42から、第2群に属する複数のチューブ45に再び分配される。冷媒は、第2群を通して第1ヘッダ41の第2区画に流入する。このように、第1熱交換部48においては、冷媒をU字状に流す流路が形成される。 The refrigerant is supplied to the first section of the first header 41. The refrigerant is distributed from the first section to the plurality of tubes 45 belonging to the first group. The refrigerant flows into the second header 42 through the first group and is collected. The refrigerant is distributed again from the second header 42 to the plurality of tubes 45 belonging to the second group. The refrigerant flows into the second section of the first header 41 through the second group. Thus, in the 1st heat exchange part 48, the flow path which flows a refrigerant | coolant in a U shape is formed.
 第3ヘッダ43の端部には、冷媒出口としての図示しないジョイントが設けられている。第3ヘッダ43内は、その長さ方向のほぼ中央に設けられた図示しない仕切板によって、第1区画と第2区画とに区画されている。これに対応して、複数のチューブ45は、第1群と第2群とに区分されている。第3ヘッダ43の第1区画は、第1ヘッダ41の第2区画に隣接している。第3ヘッダ43の第1区画と第1ヘッダ41の第2区画とは連通している。 At the end of the third header 43, a joint (not shown) as a refrigerant outlet is provided. The inside of the third header 43 is partitioned into a first partition and a second partition by a partition plate (not shown) provided substantially at the center in the length direction. Correspondingly, the plurality of tubes 45 are divided into a first group and a second group. The first section of the third header 43 is adjacent to the second section of the first header 41. The first section of the third header 43 and the second section of the first header 41 are in communication.
 冷媒は、第1ヘッダ41の第2区画から、第3ヘッダ43の第1区画に流入する。冷媒は、第1区画から、第1群に属する複数のチューブ45に分配される。冷媒は、第1群を通して第4ヘッダ44に流入し、集合される。冷媒は、第4ヘッダ44から、第2群に属する複数のチューブ45に再び分配される。冷媒は、第2群を通して第3ヘッダ43の第2区画に流入する。このように、第2熱交換部49においても、冷媒をU字状に流す流路が形成される。第3ヘッダ43の第2区画内の冷媒は、冷媒出口から流出し、圧縮機10へ向けて流れる。 The refrigerant flows from the second section of the first header 41 into the first section of the third header 43. The refrigerant is distributed from the first section to the plurality of tubes 45 belonging to the first group. The refrigerant flows into the fourth header 44 through the first group and is collected. The refrigerant is distributed again from the fourth header 44 to the plurality of tubes 45 belonging to the second group. The refrigerant flows into the second section of the third header 43 through the second group. Thus, also in the 2nd heat exchange part 49, the flow path which flows a refrigerant | coolant in a U shape is formed. The refrigerant in the second section of the third header 43 flows out from the refrigerant outlet and flows toward the compressor 10.
 図2において、複数のチューブ45は、略一定の間隔で配置されている。それら複数のチューブ45の間には、複数の隙間が形成されている。これら複数の隙間には、複数の空気側フィン46と複数の蓄冷材容器47とが、所定の規則性をもって配置されロウ付けされている。隙間のうちの一部は、冷却用空気通路460である。隙間のうちの残部は、蓄冷材容器47が配置されている収容部である。複数のチューブ45の長手方向と蓄冷材容器47の長手方向は一致してもよい。 In FIG. 2, the plurality of tubes 45 are arranged at substantially constant intervals. A plurality of gaps are formed between the plurality of tubes 45. A plurality of air-side fins 46 and a plurality of cool storage material containers 47 are arranged and brazed with a predetermined regularity in the plurality of gaps. A part of the gap is a cooling air passage 460. The remaining part of the gap is an accommodating part in which the cool storage material container 47 is arranged. The longitudinal direction of the plurality of tubes 45 may coincide with the longitudinal direction of the cold storage material container 47.
 複数のチューブ45の間に形成された合計間隔のうちの10%以上50%以下が収容部とされる。蓄冷材容器47は、蒸発器40の全体にほぼ均等に分散して配置されている。蓄冷材容器47の両側に位置する2つのチューブ45は、蓄冷材容器47とは反対側において空気と熱交換するための冷却用空気通路460を区画している。 10% or more and 50% or less of the total interval formed between the plurality of tubes 45 is set as the accommodating portion. The cool storage material containers 47 are arranged almost uniformly distributed throughout the evaporator 40. The two tubes 45 located on both sides of the cold storage material container 47 define a cooling air passage 460 for exchanging heat with air on the opposite side to the cold storage material container 47.
 チューブ45は、扁平状に形成され、内部に複数の冷媒通路を有する多穴管である。このチューブ45は、押出製法によって得ることができる。複数の冷媒通路は、チューブ45の長手方向に沿って延びており、チューブ45の両端に開口している。複数のチューブ45は、列をなして並べられている。各列において、複数のチューブ45は、その主面(扁平面)が対向するように配置されている。 The tube 45 is a multi-hole tube formed in a flat shape and having a plurality of refrigerant passages therein. The tube 45 can be obtained by an extrusion manufacturing method. The plurality of refrigerant passages extend along the longitudinal direction of the tube 45 and open at both ends of the tube 45. The plurality of tubes 45 are arranged in a row. In each row, the plurality of tubes 45 are arranged such that their main surfaces (flat surfaces) face each other.
 蒸発器40は、車室へ供給される空気と接触面積を増加させるための空気側フィン46を冷却用空気通路460に備えている。空気側フィン46は、隣接する2つのチューブ45の間に区画された空気通路に配置されている。空気側フィン46は、隣接する2つのチューブ45と熱的に結合している。 The evaporator 40 includes air-side fins 46 in the cooling air passage 460 for increasing the contact area with the air supplied to the passenger compartment. The air-side fins 46 are disposed in an air passage that is defined between two adjacent tubes 45. The air side fin 46 is thermally coupled to the two adjacent tubes 45.
 空気側フィン46は、ろう材によって、隣接する2つのチューブ45に接合されている。空気側フィン46は、薄いアルミニウム等の金属板を波状に曲げることにより形成されており、鎧窓状のルーバ461(図5参照)を備えている。 The air-side fins 46 are joined to two adjacent tubes 45 by a brazing material. The air-side fin 46 is formed by bending a thin metal plate such as aluminum into a wave shape, and includes an armor window-like louver 461 (see FIG. 5).
 蒸発器40は、蒸発器40にて冷媒を蒸発させて吸熱作用を発揮させる際に、蓄冷材を凝固させて冷熱を蓄え、蓄冷材が融解する際に蓄えられた冷熱を放冷する蓄冷熱交換器である。蒸発器40は、複数の蓄冷材を収容する部屋を区画する蓄冷材容器47を有している。 When the evaporator 40 evaporates the refrigerant in the evaporator 40 and exhibits an endothermic effect, the evaporator 40 solidifies the regenerator material to store the cold energy, and cools the stored heat when the regenerator material melts. It is an exchanger. The evaporator 40 has a cool storage material container 47 that partitions a room for storing a plurality of cool storage materials.
 図4および図5に示すように、蓄冷材容器47は、アルミニウム等の金属製であり、扁平な容器状に形成されている。蓄冷材容器47は、断面略Uの字状(バスタブ状)の一対のプレート部材470を接合することにより、内部に蓄冷材を収容するための部屋を区画している。蓄冷材容器47は、広い主面(扁平面)を両面に有している。これら2つの主面を提供する2つの主壁は、それぞれがチューブ45と平行に配置されている。これら2つの主壁は、凹凸形状を有している。 4 and 5, the cold storage material container 47 is made of metal such as aluminum and is formed in a flat container shape. The cool storage material container 47 divides a room for storing the cool storage material therein by joining a pair of plate members 470 having a substantially U-shaped cross section (bathtub shape). The cool storage material container 47 has a wide main surface (flat surface) on both surfaces. The two main walls that provide these two main surfaces are each arranged in parallel with the tube 45. These two main walls have an uneven shape.
 蓄冷材容器47は、隣接する2つのチューブ45の間に配置されている。蓄冷材容器47は、その両側に配置された2つのチューブ45に熱的に凸部47aで結合している。蓄冷材容器47は、熱伝達に優れた接合材によって、隣接する2つのチューブ45に接合されている。接合材としては、ろう材または接着材などの樹脂材料を用いることができる。本例の蓄冷材容器47は、チューブ45にロウ付けされている。 The cold storage material container 47 is disposed between two adjacent tubes 45. The cold storage material container 47 is thermally coupled to the two tubes 45 disposed on both sides thereof by the convex portions 47a. The cool storage material container 47 is joined to the two adjacent tubes 45 by a joining material excellent in heat transfer. As the bonding material, a resin material such as a brazing material or an adhesive can be used. The cold storage material container 47 of this example is brazed to the tube 45.
 より詳細には、蓄冷材容器47の外側表面には、第1熱交換部48を構成するチューブ45および第2熱交換部49を構成するチューブ45の双方が接合されている。 More specifically, both the tube 45 constituting the first heat exchange part 48 and the tube 45 constituting the second heat exchange part 49 are joined to the outer surface of the cold storage material container 47.
 蓄冷材容器47とチューブ45との間には、それらの間を広い断面積によって連結するためにろう材が配置されている。このろう材は、蓄冷材容器47とチューブ45との間にろう材の箔を配置することによっても提供することができる。この結果、蓄冷材容器47は、チューブ45との間で良好な熱伝導を行う。 A brazing material is disposed between the cold storage material container 47 and the tube 45 in order to connect them with a wide cross-sectional area. This brazing material can also be provided by placing a brazing material foil between the cold storage material container 47 and the tube 45. As a result, the cool storage material container 47 performs good heat conduction with the tube 45.
 蓄冷材容器47の主壁の凸部47aは、チューブ45にロウ付けされている。このロウ付けに用いるろう材のSi(シリコン)量を調節することで、ロウ付け部への流れ込みやすさを調整できる。ろう材のSi量が多いほど、ロウ付け部に流れ込みやすくなる。また、蓄冷材容器47の主壁の凹部47bは、空気が流通する蓄冷材側空気通路462を構成している。 The convex portion 47 a of the main wall of the cold storage material container 47 is brazed to the tube 45. By adjusting the amount of Si (silicon) in the brazing material used for brazing, the ease of flowing into the brazing portion can be adjusted. The greater the amount of Si in the brazing material, the easier it will flow into the brazing part. Moreover, the recessed part 47b of the main wall of the cool storage material container 47 comprises the cool storage material side air passage 462 through which air distribute | circulates.
 本実施形態では、凸部47aは、左右方向(空気流れ方向)の中心部が両端部よりも鉛直方向上方側に配置された逆V字状に形成されている。そして、逆V字状の凸部47aは、蓄冷材容器47の長手方向、すなわち鉛直方向に沿うように複数並んで配置されている。この凹凸形状によって、後述するように凝縮水などの排水性を良好にしている。 In the present embodiment, the convex portion 47a is formed in an inverted V shape in which the central portion in the left-right direction (air flow direction) is disposed on the upper side in the vertical direction from both ends. A plurality of inverted V-shaped protrusions 47 a are arranged side by side along the longitudinal direction of the cold storage material container 47, that is, along the vertical direction. As will be described later, this uneven shape improves the drainage of condensed water and the like.
 図5に示すように、蓄冷材容器47の内部側には、インナーフィン60が蓄冷材容器47に熱的及び機械的に結合されて配設されている。インナーフィン60は、熱伝達に優れた接合材によって、蓄冷材容器47の主壁の内壁に接合されている。この接合は、ロウ付けによって成される。蓄冷材容器47の内部側に、インナーフィン60が結合していることで、蓄冷材容器47の変形が防止され、耐圧性が向上する。 As shown in FIG. 5, an inner fin 60 is disposed on the inner side of the cool storage material container 47 by being thermally and mechanically coupled to the cool storage material container 47. The inner fin 60 is joined to the inner wall of the main wall of the cool storage material container 47 by a joining material excellent in heat transfer. This joining is made by brazing. Since the inner fin 60 is coupled to the inner side of the cold storage material container 47, deformation of the cold storage material container 47 is prevented and pressure resistance is improved.
 インナーフィン60は、薄いアルミニウム等の金属板が波状に曲げられた形状を有している。そして、蓄冷材容器47の表面が凹凸状であるため、インナーフィン60は、蓄冷材容器47の主壁の凹部47b、即ち、内側に突出した部分(内面突起)とロウ付けにより接合されて、機械的強度並びに耐圧性能を高めている。これによって、蓄冷材容器47の主壁のうち、外側に突出した凸部47aとインナーフィン60とは、接合されていない。 The inner fin 60 has a shape in which a thin metal plate such as aluminum is bent in a wave shape. And since the surface of the cool storage material container 47 is uneven, the inner fin 60 is joined to the concave portion 47b of the main wall of the cool storage material container 47, that is, a portion protruding inward (inner surface protrusion) by brazing, Increases mechanical strength and pressure resistance. Thereby, the convex part 47a and the inner fin 60 which protruded outside among the main walls of the cool storage material container 47 are not joined.
 蓄冷材容器47は、チューブ45側に向かって突出するとともに、蓄冷材側空気通路462を流通する空気の流れを遮断する遮断部50を有している。本実施形態では、遮断部50は、蓄冷材容器47の主壁の一部をチューブ45側に向かって突出させることにより構成されている。 The cold storage material container 47 protrudes toward the tube 45 side and has a blocking portion 50 that blocks the flow of air flowing through the cold storage material side air passage 462. In this embodiment, the interruption | blocking part 50 is comprised by making a part of main wall of the cool storage material container 47 protrude toward the tube 45 side.
 遮断部50は、第1熱交換部48を構成するチューブ45、および、第2熱交換部49を構成するチューブ45のうち、空気の流れ方向から見たときに、互いに重合配置されたチューブ45の間に配置されている。また、遮断部50は、凸部47aよりも外側(チューブ45側)へ突出している。 The blocking unit 50 is a tube 45 that is superposed on each other when viewed from the air flow direction among the tubes 45 that constitute the first heat exchange unit 48 and the tubes 45 that constitute the second heat exchange unit 49. It is arranged between. Moreover, the interruption | blocking part 50 protrudes to the outer side (tube 45 side) rather than the convex part 47a.
 ここで、図5に示すように、蓄冷材容器47は、その主壁の外表面における、凸部47aが形成されていない部位、言い換えれば、凹部47bが形成されている部位に、平坦面47cを有している。また、蓄冷材容器47の平坦面47cから、遮断部50における平坦面47cから最も離れている部位までの、チューブ積層方向の距離を遮断部長さXという。また、蓄冷材容器47の平坦面47cから当該平坦面47cに対向するチューブ45までのチューブ積層方向の距離、つまり蓄冷材側空気通路462のチューブ積層方向の長さを蓄冷材側空気通路長さYという。本実施形態では、蓄冷材側空気通路長さYは、蓄冷材容器47の平坦面47cから、凸部47aにおける当該平坦面47cから最も離れている部位(チューブ45と接合されている部位)までの、チューブ積層方向の距離と等しくなっている。 Here, as shown in FIG. 5, the regenerator container 47 has a flat surface 47c on the outer surface of the main wall where the convex portion 47a is not formed, in other words, on the portion where the concave portion 47b is formed. have. Further, the distance in the tube stacking direction from the flat surface 47c of the cold storage material container 47 to the portion of the blocking unit 50 that is farthest from the flat surface 47c is referred to as a blocking unit length X. The distance in the tube stacking direction from the flat surface 47c of the cool storage material container 47 to the tube 45 facing the flat surface 47c, that is, the length of the cool storage material side air passage 462 in the tube stacking direction is the cool storage material side air passage length. Y. In this embodiment, the cool storage material side air passage length Y is from the flat surface 47c of the cool storage material container 47 to the part (part joined to the tube 45) farthest from the flat surface 47c in the convex part 47a. Is equal to the distance in the tube stacking direction.
 遮断部長さXは、蓄冷材側空気通路長さY以上になっている。本実施形態では、遮断部長さXは、蓄冷材側空気通路長さYよりも長くなっている。具体的には、遮断部長さXは、蓄冷材容器47の平坦面47cから空気側フィン46までの、チューブ積層方向の距離Lと等しくなっている。遮断部50の先端部は、空気側フィン46と接触している。 The blocking section length X is equal to or longer than the cold storage material side air passage length Y. In the present embodiment, the blocking portion length X is longer than the cold storage material side air passage length Y. Specifically, the blocking portion length X is equal to the distance L in the tube stacking direction from the flat surface 47 c of the cool storage material container 47 to the air-side fin 46. The tip of the blocking part 50 is in contact with the air side fin 46.
 図4に示すように、遮断部50は、蓄冷材容器47の主壁に形成される複数の蓄冷材側空気通路462を流通する空気の流れを遮断するように、鉛直方向に延びている。つまり、蓄冷材容器47の1つの主壁(1つのプレート部材470)には、1つの遮断部50が形成されている。 As shown in FIG. 4, the blocking part 50 extends in the vertical direction so as to block the flow of air flowing through the plurality of cool storage material side air passages 462 formed in the main wall of the cool storage material container 47. That is, one blocking portion 50 is formed on one main wall (one plate member 470) of the cold storage material container 47.
 以上説明したように、本実施形態では、蓄冷材容器47に遮断部50を設けているので、この遮断部50により、蓄冷材側空気通路462を流通する空気の流れを遮断することができる。このため、蓄冷時および放冷時に、蓄冷材と蓄冷材側空気通路462を流通する空気との熱交換を抑制できる。したがって、蓄冷材の蓄冷時間を短縮することができるとともに、放冷時間を延長することができる。 As described above, in this embodiment, since the cool storage material container 47 is provided with the blocking part 50, the blocking part 50 can block the flow of air flowing through the cool storage material side air passage 462. For this reason, the heat exchange with the air which distribute | circulates the cool storage material and the cool storage material side air channel | path 462 can be suppressed at the time of cool storage and cooling. Therefore, the cool storage time of the cool storage material can be shortened, and the cooling time can be extended.
 また、本実施形態では、蓄冷材容器47の表面に複数の凸部47aおよび凹部47bを設けているので、蓄冷材容器47とチューブ45との接触は凸部47aの外面のみとなる。そして、その凸部47a相互間である凹部47bの表面、つまり蓄冷材側空気通路462から凝縮水や蒸発器40の表面処理工程における処理液を排出することができる。 Moreover, in this embodiment, since the some convex part 47a and the recessed part 47b are provided in the surface of the cool storage material container 47, the contact with the cool storage material container 47 and the tube 45 becomes only the outer surface of the convex part 47a. And the process liquid in the surface treatment process of the condensed water and the evaporator 40 can be discharged | emitted from the surface of the recessed part 47b between the convex parts 47a, ie, the cool storage material side air path 462. FIG.
 したがって、本実施形態によれば、蓄冷材の蓄冷時に発生する凝縮水の排出を妨げず、蓄冷時および放冷時に蓄冷材と空気との熱交換を抑制することが可能となる。 Therefore, according to the present embodiment, it is possible to suppress the heat exchange between the cold storage material and the air at the time of cold storage and cooling, without disturbing the discharge of the condensed water generated when the cold storage material is stored cold.
 このとき、遮断部50によって遮断された空気は、冷却用空気通路460に流れ込むので、空気側フィン46の熱伝達率の増加により冷房性能を向上させることができる。さらに、遮断部50はチューブ45側に向かって突出しているので、製造時に、チューブ45および蓄冷材容器47の位置ずれを抑制することが可能となる。 At this time, since the air blocked by the blocking unit 50 flows into the cooling air passage 460, the cooling performance can be improved by increasing the heat transfer coefficient of the air-side fins 46. Furthermore, since the interruption | blocking part 50 protrudes toward the tube 45 side, it becomes possible to suppress the position shift of the tube 45 and the cool storage material container 47 at the time of manufacture.
 また、本実施形態では、遮断部50を、蓄冷材容器47の主壁の一部をチューブ45側に向かって突出させることにより構成しているので、遮断部50の内側にも蓄冷材を収容することができる。このため、蓄冷材容器47に収容される蓄冷材の量を増大させることができるので、蓄冷材の放冷時間を延長することが可能となる。 Moreover, in this embodiment, since the interruption | blocking part 50 is comprised by making a part of main wall of the cool storage material container 47 protrude toward the tube 45 side, a cool storage material is accommodated also inside the interruption | blocking part 50. can do. For this reason, since the quantity of the cool storage material accommodated in the cool storage material container 47 can be increased, it becomes possible to extend the cool-down time of the cool storage material.
 また、本実施形態では、遮断部50を鉛直方向に延びるように形成しているので、蓄冷材の蓄冷時に発生する凝縮水は、遮断部50の表面を伝って鉛直方向下方側に流れ、外部に排出される。したがって、蓄冷材の蓄冷時に発生する凝縮水の排出性を向上させることが可能となる。 Moreover, in this embodiment, since the interruption | blocking part 50 is formed so that it may extend in a perpendicular direction, the condensed water which generate | occur | produces at the time of the cool storage of a cool storage material flows along the surface of the interruption | blocking part 50 to the downward direction of a perpendicular direction, and external To be discharged. Therefore, it becomes possible to improve the discharge | emission property of the condensed water generate | occur | produced at the time of cool storage of a cool storage material.
 ところで、第1熱交換部48を構成するチューブ45と、第2熱交換部49を構成するチューブ45との間の部位は、蒸発器40の空気通路の中でも比較的空間が大きい。このため、遮断部50を、第1熱交換部48を構成するチューブ45と、第2熱交換部49を構成するチューブ45との間に配置することで、遮断部50を大きくすることができる。これにより、蓄冷材容器47の内容積をより増大させることができるので、蓄冷材容器47に収容される蓄冷材の量をさらに増大させることが可能となる。 Incidentally, a portion between the tube 45 constituting the first heat exchange unit 48 and the tube 45 constituting the second heat exchange unit 49 has a relatively large space in the air passage of the evaporator 40. For this reason, the interruption | blocking part 50 can be enlarged by arrange | positioning the interruption | blocking part 50 between the tube 45 which comprises the 1st heat exchange part 48, and the tube 45 which comprises the 2nd heat exchange part 49. FIG. . Thereby, since the internal volume of the cool storage material container 47 can be increased more, the quantity of the cool storage material accommodated in the cool storage material container 47 can be further increased.
 また、遮断部50を、第1熱交換部48を構成するチューブ45と、第2熱交換部49を構成するチューブ45との間に配置することで、製造時に、遮断部50が隣接するチューブ45に引っかかることにより、チューブ45および蓄冷材容器47の位置ずれをより確実に抑制することが可能となる。
(第2実施形態)
 次に、本開示の第2実施形態について図6および図7に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、遮断部50の形状が異なるものである。なお、図6は、上記第1実施形態の図4に対応している。また、図6中の破線矢印は、空気の流れを示している。
In addition, the blocking unit 50 is disposed between the tube 45 configuring the first heat exchange unit 48 and the tube 45 configuring the second heat exchange unit 49, so that the blocking unit 50 is adjacent to the tube during manufacturing. By being caught by 45, it becomes possible to more reliably suppress the displacement of the tube 45 and the cold storage material container 47.
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described based on FIGS. 6 and 7. The second embodiment is different from the first embodiment in the shape of the blocking part 50. FIG. 6 corresponds to FIG. 4 of the first embodiment. Moreover, the broken-line arrow in FIG. 6 has shown the flow of air.
 図6に示すように、本実施形態では、蓄冷材容器47の主壁の凹凸形状により形成される複数の蓄冷材側空気通路462において、各蓄冷材側空気通路462に2つずつ、遮断部50が設けられている。具体的には、蓄冷材側空気通路462のうち第1熱交換部48内に配置される部位、および、蓄冷材側空気通路462のうち第2熱交換部49内に配置される部位に、1つずつ遮断部50が設けられている。 As shown in FIG. 6, in this embodiment, in the plurality of cool storage material side air passages 462 formed by the uneven shape of the main wall of the cool storage material container 47, two blocking members are provided for each cool storage material side air passage 462. 50 is provided. Specifically, in the part arrange | positioned in the 1st heat exchange part 48 among the cool storage material side air passages 462, and the part arrange | positioned in the 2nd heat exchange part 49 among the cool storage material side air passages 462, One blocking portion 50 is provided.
 図7に示すように、遮断部長さXは、蓄冷材側空気通路長さYと等しくなっている。このため、遮断部50の先端部は、チューブ45に接合されている。本実施形態によれば、上記第1実施形態と同様の効果を得ることができる。
(第3実施形態)
 次に、本開示の第3実施形態について図8に基づいて説明する。本第3実施形態は、上記第2実施形態と比較して、遮断部50の構成が異なるものである。なお、図8は、上記第2実施形態の図7に対応している。
As shown in FIG. 7, the blocking portion length X is equal to the cool storage material side air passage length Y. For this reason, the front-end | tip part of the interruption | blocking part 50 is joined to the tube 45. FIG. According to this embodiment, the same effect as the first embodiment can be obtained.
(Third embodiment)
Next, a third embodiment of the present disclosure will be described based on FIG. The third embodiment is different from the second embodiment in the configuration of the blocking unit 50. FIG. 8 corresponds to FIG. 7 of the second embodiment.
 図8に示すように、本実施形態の遮断部50は、蓄冷材容器47とは別部材として設けられた遮断用部材51を蓄冷材側空気通路462に配置することにより構成されている。遮断用部材51は、蓄冷材容器47の主壁の表面およびチューブ45の外表面に接合されている。本実施形態によれば、上記第2実施形態と同様の効果を得ることができる。すなわち、遮断用部材51は遮断部50の一例として用いられてもよい。
(第4実施形態)
 次に、本開示の第4実施形態について図9に基づいて説明する。本第4実施形態は、上記第1実施形態と比較して、蓄冷材容器47の配置が異なるものである。なお、図9は、上記第1実施形態の図5に対応している。
As shown in FIG. 8, the blocking section 50 of the present embodiment is configured by arranging a blocking member 51 provided as a separate member from the cold storage material container 47 in the cold storage material side air passage 462. The blocking member 51 is joined to the surface of the main wall of the cold storage material container 47 and the outer surface of the tube 45. According to the present embodiment, the same effect as in the second embodiment can be obtained. That is, the blocking member 51 may be used as an example of the blocking unit 50.
(Fourth embodiment)
Next, a fourth embodiment of the present disclosure will be described based on FIG. The fourth embodiment is different from the first embodiment in the arrangement of the cold storage material container 47. FIG. 9 corresponds to FIG. 5 of the first embodiment.
 図9に示すように、本実施形態では、蒸発器40を構成する複数のチューブ45のうち、少なくとも1つのチューブ45は、その両面において蓄冷材容器47と接合されている。つまり、蒸発器40を構成する複数のチューブ45のうち、少なくとも1つのチューブ45は、チューブ積層方向における両側から2つの蓄冷材容器47に挟まれた状態になっている。1つのチューブ45のチューブ積層方向両側に配置される2つの蓄冷材容器47は、当該1つのチューブ45側に突出する遮断部50同士が接触している。 As shown in FIG. 9, in this embodiment, at least one tube 45 among the plurality of tubes 45 constituting the evaporator 40 is joined to the cold storage material container 47 on both surfaces thereof. That is, at least one tube 45 among the plurality of tubes 45 constituting the evaporator 40 is in a state of being sandwiched between the two cold storage material containers 47 from both sides in the tube stacking direction. The two cool storage material containers 47 arranged on both sides of the tube 45 in the tube stacking direction are in contact with the blocking portions 50 protruding toward the one tube 45.
 ところで、上記第1実施形態では、蓄冷材容器47は、チューブ積層方向の両側において、チューブ45を介して空気側フィン46に接続されている。これに対し、本実施形態では、1つのチューブ45のチューブ積層方向両側に配置される2つの蓄冷材容器47においては、チューブ積層方向の一方側はチューブ45を介して空気側フィン46に接続されているが、チューブ積層方向の他方側はチューブ45を介して他の蓄冷材容器47に接続されている。 By the way, in the said 1st Embodiment, the cool storage material container 47 is connected to the air side fin 46 via the tube 45 in the both sides of a tube lamination direction. On the other hand, in the present embodiment, in the two cold storage material containers 47 arranged on both sides of the tube 45 in the tube stacking direction, one side in the tube stacking direction is connected to the air-side fin 46 via the tube 45. However, the other side in the tube stacking direction is connected to another cold storage material container 47 through the tube 45.
 したがって、本実施形態では、上記第1実施形態と比較して、蓄冷材が放冷する時の熱抵抗が大きくなるので、蓄冷材をゆっくりと放冷させることができる。このため、蓄冷材の放冷時間を長くすることができる。
(第5実施形態)
 次に、本開示の第5実施形態について図10に基づいて説明する。本第5実施形態は、上記第1実施形態と比較して、蓄冷材容器47の配置が異なるものである。
Therefore, in this embodiment, compared with the said 1st Embodiment, since the thermal resistance when a cool storage material cools naturally becomes large, a cool storage material can be cooled slowly. For this reason, the cool-down time of the cool storage material can be lengthened.
(Fifth embodiment)
Next, a fifth embodiment of the present disclosure will be described based on FIG. The fifth embodiment is different from the first embodiment in the arrangement of the cold storage material container 47.
 蒸発器40の製造時には、隣り合うチューブ45間の隙間に蓄冷材容器47および空気側フィン46のいずれを配置するかを、所望の冷却性能によって決定する。ここで、複数の隣り合うチューブ45間に形成される複数の隙間には、複数の空気側フィン46と複数の蓄冷材容器47とが、所定の規則性(例えば、等ピッチ間隔)をもって配置されているが、本実施形態では、図10に示すように、その状態から蓄冷材容器47を減らして、その代わりに空気側フィン46を挿入している。 During the manufacture of the evaporator 40, it is determined according to the desired cooling performance which of the cold storage material container 47 and the air-side fin 46 is arranged in the gap between the adjacent tubes 45. Here, a plurality of air-side fins 46 and a plurality of cool storage material containers 47 are arranged in a plurality of gaps formed between a plurality of adjacent tubes 45 with a predetermined regularity (for example, at equal pitch intervals). However, in this embodiment, as shown in FIG. 10, the cold storage material container 47 is reduced from the state, and the air side fin 46 is inserted instead.
 これによれば、蓄冷材からの放冷時間が多すぎる場合に、蓄冷材容器47を減らして、空気側フィン46を挿入することができるので、空気側フィン46を増加させた分、蒸発器40の冷却性能を向上できる。このとき、本実施形態では、空気側フィン46および蓄冷材容器47を所定の規則性をもって配置した後に、蓄冷材容器47を抜き出して、その代わりに空気側フィン46を挿入しているので、空気側フィン46および蓄冷材容器47をばらばらに積層した場合と比較して、蒸発器40の製造時において、要求される冷却性能の変更に容易に対応することができる。
(第6実施形態)
 次に、本開示の第6実施形態について図11に基づいて説明する。本第6実施形態は、上記第4実施形態と比較して、蓄冷材容器47の形状が異なるものである。なお、図11は、上記第1実施形態の図5に対応している。
According to this, when the cooling time from the cool storage material is too long, the cool storage material container 47 can be reduced and the air side fins 46 can be inserted. The cooling performance of 40 can be improved. At this time, in this embodiment, after the air-side fins 46 and the regenerator material container 47 are arranged with a predetermined regularity, the regenerator material container 47 is extracted and the air-side fins 46 are inserted instead. Compared to the case where the side fins 46 and the cold storage material containers 47 are stacked separately, it is possible to easily cope with a required change in the cooling performance when the evaporator 40 is manufactured.
(Sixth embodiment)
Next, a sixth embodiment of the present disclosure will be described based on FIG. The sixth embodiment is different from the fourth embodiment in the shape of the cold storage material container 47. FIG. 11 corresponds to FIG. 5 of the first embodiment.
 図11に示すように、1つのチューブ45のチューブ積層方向両側に配置される2つの蓄冷材容器47は、一体として構成されている。これによれば、蓄冷材容器47内に蓄冷材を封入するための封入部を1つにすることができるので、部品点数を削減することができる。
(他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
As shown in FIG. 11, the two cold storage material containers 47 disposed on both sides of the single tube 45 in the tube stacking direction are configured as a single unit. According to this, since the enclosure part for enclosing a cool storage material in the cool storage material container 47 can be made into one, a number of parts can be reduced.
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 (1)上記各実施形態では、蓄冷材容器47表面に、逆V字状の凸部47aを形成した例について説明したが、これに限らず、例えば、千鳥配列の凹凸形状を蓄冷材容器47表面に形成してもよいし、構成配列の凹凸形状を蓄冷材容器47表面に形成してもよい。 (1) In each of the above embodiments, the example in which the inverted V-shaped convex portion 47a is formed on the surface of the regenerator material container 47 has been described. However, the present invention is not limited to this example. You may form in the surface, and you may form the uneven | corrugated shape of a structure arrangement | sequence in the surface of the cool storage material container 47. FIG.
 (2)上記第4、第5実施形態においては、遮断部50を設けると、蒸発器40の製造時における表面処理を行う際に、処理液の排水性が悪化してしまい、適切な皮膜を形成できないおそれがある。 (2) In the fourth and fifth embodiments, when the blocking unit 50 is provided, the drainage of the treatment liquid deteriorates when performing the surface treatment during the manufacture of the evaporator 40, and an appropriate film is formed. There is a possibility that it cannot be formed.
 より詳細には、蒸発器40の表面処理時には、処理液を排水させるために送風機による送風を行う。このため、蒸発器40の表面に、送風空気が通過する通風路を設ける必要がある。しかしながら、蒸発器40に遮断部50を設けると、当該通風路が遮断されてしまうので、処理液の排水性が悪化する。 More specifically, during the surface treatment of the evaporator 40, air is blown by a blower to drain the treatment liquid. For this reason, it is necessary to provide a ventilation path through which the blown air passes on the surface of the evaporator 40. However, when the blocking unit 50 is provided in the evaporator 40, the ventilation path is blocked, so that the drainage of the processing liquid is deteriorated.
 これに対し、上記第4、第5実施形態に記載の蒸発器40おいて、図12に示すように、遮断部50を廃止することで、表面処理時の処理液の排水性を良好にすることが可能となる。 On the other hand, in the evaporator 40 described in the fourth and fifth embodiments, as shown in FIG. 12, by eliminating the blocking unit 50, the drainage of the treatment liquid during the surface treatment is improved. It becomes possible.
 上記第1、4、5実施形態では、遮断部50は、その端部が空気側フィン46に当接している。しかし、遮断部50の端部または側面がチューブ45と当接していればよく、遮断部50が空気側フィン46に当接してなくとも良い。 In the first, fourth, and fifth embodiments, the end of the blocking portion 50 is in contact with the air-side fin 46. However, the end portion or the side surface of the blocking portion 50 may be in contact with the tube 45, and the blocking portion 50 may not be in contact with the air-side fin 46.
 また、上記第3実施形態では、遮断用部材51はチューブ45と蓄冷材容器47との間の蓄冷材側通路462に配置されている。しかし、図13および図14に示すように、遮断用部材51は、蓄冷材容器47の外側表面からチューブ45側に向かって突出して、蓄冷材側空気通路462を流通する空気の流れを遮断してもよい。遮断用部材51は、図13に示すように、蓄冷材容器47の長手方向(鉛直方向)に延びてもよい。遮断用部材51は図14に示すように、第1熱交換部48のチューブ45と第2熱交換部49のチューブ45の間に延びて、第1熱交換部48のチューブ45と第2熱交換部49のチューブ45の両方と当接してもよい。 In the third embodiment, the blocking member 51 is disposed in the cool storage material side passage 462 between the tube 45 and the cool storage material container 47. However, as shown in FIGS. 13 and 14, the blocking member 51 protrudes from the outer surface of the cool storage material container 47 toward the tube 45, and blocks the flow of air flowing through the cool storage material side air passage 462. May be. As shown in FIG. 13, the blocking member 51 may extend in the longitudinal direction (vertical direction) of the cold storage material container 47. As shown in FIG. 14, the blocking member 51 extends between the tube 45 of the first heat exchange unit 48 and the tube 45 of the second heat exchange unit 49, and the tube 45 of the first heat exchange unit 48 and the second heat exchange unit 48. You may contact | abut both of the tubes 45 of the exchange part 49. FIG.

Claims (7)

  1.  それぞれが冷媒通路を内部に有するとともに、互いに間隔を設けて配置された複数の冷媒管(45)と、
     前記冷媒管(45)に接合されるとともに、蓄冷材を収容する蓄冷材容器(47)と、
     遮断部(50、51)と、を備え、
     前記蓄冷材容器(47)は、前記冷媒管(45)が接合される前記蓄冷材容器(47)の外側表面に、複数の凸部(47a)或いは複数の凹部(47b)を有しており、
     前記複数の冷媒管(45)と前記蓄冷材容器(47)との間にて、前記複数の凸部(47a)或いは前記複数の凹部(47b)は、空気が流通する少なくとも1つの蓄冷材側空気通路(462)を区画しており、
     前記蓄冷材側空気通路(462)は、前記蓄冷材への蓄冷時に発生する凝縮水を前記蓄冷材側空気通路(462)に沿って排水させる空間を有しており、
     前記遮断部(50、51)は、前記蓄冷材容器(47)から前記冷媒管(45)側に向かって突出するとともに、前記蓄冷材側空気通路(462)を流通する前記空気の流れを遮断する蓄冷熱交換器。
    A plurality of refrigerant pipes (45) each having a refrigerant passage therein and spaced apart from each other;
    A regenerator container (47) that is joined to the refrigerant pipe (45) and contains a regenerator material;
    A blocking part (50, 51),
    The cold storage material container (47) has a plurality of convex portions (47a) or a plurality of concave portions (47b) on the outer surface of the cold storage material container (47) to which the refrigerant pipe (45) is joined. ,
    Between the plurality of refrigerant pipes (45) and the cold storage material container (47), the plurality of convex portions (47a) or the plurality of concave portions (47b) are at least one cold storage material side through which air flows. The air passage (462),
    The cold storage material side air passage (462) has a space for draining the condensed water generated during cold storage to the cold storage material along the cold storage material side air passage (462),
    The blocking portions (50, 51) protrude from the cold storage material container (47) toward the refrigerant pipe (45) and block the flow of air flowing through the cold storage material side air passage (462). Regenerative heat exchanger.
  2.  さらに、積層配置された複数の前記冷媒管(45)の一群を有して、空気と前記冷媒とを熱交換させる上流側熱交換部(49)および、
     積層配置された複数の前記冷媒管(45)の他の一群を有して、前記空気の流れ方向における前記上流側熱交換部(49)の下流側に配置され、空気と前記冷媒とを熱交換させる下流側熱交換部(48)を備え、
     前記蓄冷材容器(47)の前記外側表面には、前記上流側熱交換部(49)の前記冷媒管(45)および前記下流側熱交換部(48)の前記冷媒管(45)の双方が接合されており、
     前記遮断部(50、51)は、前記上流側熱交換部(49)の前記冷媒管(45)と、前記下流側熱交換部(48)の前記冷媒管(45)との間に配置されている請求項1に記載の蓄冷熱交換器。
    And an upstream heat exchange section (49) having a group of a plurality of the refrigerant pipes (45) arranged in a stack and exchanging heat between air and the refrigerant, and
    It has another group of a plurality of the refrigerant tubes (45) arranged in a stack and is arranged downstream of the upstream heat exchange section (49) in the air flow direction to heat the air and the refrigerant. A downstream heat exchange section (48) to be exchanged,
    Both the refrigerant pipe (45) of the upstream heat exchange section (49) and the refrigerant pipe (45) of the downstream heat exchange section (48) are provided on the outer surface of the cold storage material container (47). Are joined,
    The blocking section (50, 51) is disposed between the refrigerant pipe (45) of the upstream heat exchange section (49) and the refrigerant pipe (45) of the downstream heat exchange section (48). The regenerative heat exchanger according to claim 1.
  3.  前記蓄冷材側空気通路(462)の数は複数であり、
     前記複数の蓄冷材側空気通路(462)は、蓄冷材容器(47)の長手方向に沿って並んで配置されており、
     前記遮断部(50、51)は、前記複数の蓄冷材側空気通路(462)を流通する前記空気の流れを遮断するように、前記蓄冷材容器(47)の前記長手方向に延びている請求項1または2に記載の蓄冷熱交換器。
    The number of the regenerator side air passages (462) is plural,
    The plurality of cool storage material side air passages (462) are arranged side by side along the longitudinal direction of the cool storage material container (47),
    The said interruption | blocking part (50, 51) is extended in the said longitudinal direction of the said cool storage material container (47) so that the flow of the said air which distribute | circulates these cool storage material side air passages (462) may be interrupted | blocked. Item 3. The cold storage heat exchanger according to Item 1 or 2.
  4.  前記遮断部(50)は、前記蓄冷材容器(47)の一部である請求項1ないし3のいずれか1つに記載の蓄冷熱交換器。 The cold storage heat exchanger according to any one of claims 1 to 3, wherein the blocking portion (50) is a part of the cold storage material container (47).
  5.  前記遮断部(51)は、前記蓄冷材容器(47)とは別部材として設けられて、前記蓄冷材側空気通路(462)に配置されている請求項1ないし3のいずれか1つに記載の蓄冷熱交換器。 The said interruption | blocking part (51) is provided as a member different from the said cool storage material container (47), and is arrange | positioned at the said cool storage material side air path (462). Cold storage heat exchanger.
  6.  前記蓄冷材容器(47)の外側表面における、前記複数の凸部(47a)以外の部位或いは前記複数の凹部(47b)の設けられた部位に位置する平坦面(47c)から、前記遮断部(50)における前記平坦面(47c)から最も離れている部位までの、前記冷媒管(45)の積層方向の距離(X)は、前記凹部(47b)の前記平坦面(47c)から、前記平坦面(47c)に対向する前記冷媒管(45)までの、前記冷媒管(45)の積層方向の距離(Y)以上である請求項1ないし5のいずれか1つに記載の蓄冷熱交換器。 From the flat surface (47c) located on the outer surface of the cold storage material container (47) other than the plurality of convex portions (47a) or the portion provided with the plurality of concave portions (47b), the blocking portion ( 50), the distance (X) in the stacking direction of the refrigerant pipe (45) from the flat surface (47c) to the farthest part is the flat surface (47c) of the recess (47b). The regenerative heat exchanger according to any one of claims 1 to 5, wherein a distance (Y) in the stacking direction of the refrigerant pipes (45) to the refrigerant pipe (45) facing the surface (47c) is equal to or greater than the distance (Y). .
  7.  前記遮断部(50)は前記冷媒管(45)に当接している請求項1ないし6に記載の蓄冷熱交換器。 The cold storage heat exchanger according to any one of claims 1 to 6, wherein the blocking portion (50) is in contact with the refrigerant pipe (45).
PCT/JP2013/003988 2012-07-23 2013-06-26 Cold storage heat exchanger WO2014017021A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012162826A JP5920087B2 (en) 2012-07-23 2012-07-23 Cold storage heat exchanger
JP2012-162826 2012-07-23

Publications (1)

Publication Number Publication Date
WO2014017021A1 true WO2014017021A1 (en) 2014-01-30

Family

ID=49996849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003988 WO2014017021A1 (en) 2012-07-23 2013-06-26 Cold storage heat exchanger

Country Status (2)

Country Link
JP (1) JP5920087B2 (en)
WO (1) WO2014017021A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108224851A (en) * 2016-12-14 2018-06-29 株式会社京滨冷暖科技 Evaporator with cool storage function

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217525B2 (en) 2014-05-23 2017-10-25 株式会社デンソー Heat exchanger
JP2017090015A (en) * 2015-11-16 2017-05-25 サンデン・オートモーティブクライメイトシステム株式会社 Cool storage heat exchanger
JP6888904B2 (en) * 2015-11-24 2021-06-18 ダイムラー・アクチェンゲゼルシャフトDaimler AG Refrigeration cycle system
JP6596327B2 (en) * 2015-12-24 2019-10-23 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cool storage function
JP2018009719A (en) * 2016-07-12 2018-01-18 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cold storage function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090689A (en) * 2001-09-13 2003-03-28 Denso Corp Cold storage and heat storage heat exchanger
JP2011006058A (en) * 2009-05-22 2011-01-13 Showa Denko Kk Evaporator with cold storage function
JP2011012947A (en) * 2009-06-05 2011-01-20 Denso Corp Heat regenerator
JP2012137199A (en) * 2010-12-24 2012-07-19 Showa Denko Kk Evaporator with cooling storage function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090689A (en) * 2001-09-13 2003-03-28 Denso Corp Cold storage and heat storage heat exchanger
JP2011006058A (en) * 2009-05-22 2011-01-13 Showa Denko Kk Evaporator with cold storage function
JP2011012947A (en) * 2009-06-05 2011-01-20 Denso Corp Heat regenerator
JP2012137199A (en) * 2010-12-24 2012-07-19 Showa Denko Kk Evaporator with cooling storage function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108224851A (en) * 2016-12-14 2018-06-29 株式会社京滨冷暖科技 Evaporator with cool storage function

Also Published As

Publication number Publication date
JP5920087B2 (en) 2016-05-18
JP2014020758A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5768480B2 (en) Cold storage heat exchanger
WO2015045344A1 (en) Cold-storage heat exchanger
WO2014017021A1 (en) Cold storage heat exchanger
JP5862507B2 (en) Cold storage heat exchanger
WO2014030306A1 (en) Cold storage heat exchanger
WO2016170751A1 (en) Cold storage heat exchanger
WO2014041771A1 (en) Heat exchanger
JP2016200313A (en) Heat exchanger
US11268769B2 (en) Heat exchanger
JP5552309B2 (en) Evaporator with cool storage function
JP5849883B2 (en) Cold storage heat exchanger
US10696128B2 (en) Cold storage heat exchanger
WO2014068842A1 (en) Refrigerant evaporation device
JP6128188B2 (en) Cold storage heat exchanger
JP6327386B2 (en) Cold storage heat exchanger
WO2017208760A1 (en) Regenerative heat exchanger
JP2018096568A (en) Heat exchanger
WO2017057174A1 (en) Cold storage heat exchanger
JP7151560B2 (en) cold storage heat exchanger
CN109631454B (en) Refrigerator with a refrigerator body
JP2014020663A (en) Cold storage heat exchanger
JP2018167749A (en) Cool storage type heat exchanger
JP2017132427A (en) Cool storage heat exchanger
JP2019120412A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823208

Country of ref document: EP

Kind code of ref document: A1