WO2014016944A1 - 基地局装置、移動局装置、通信システム及び通信方法 - Google Patents

基地局装置、移動局装置、通信システム及び通信方法 Download PDF

Info

Publication number
WO2014016944A1
WO2014016944A1 PCT/JP2012/069019 JP2012069019W WO2014016944A1 WO 2014016944 A1 WO2014016944 A1 WO 2014016944A1 JP 2012069019 W JP2012069019 W JP 2012069019W WO 2014016944 A1 WO2014016944 A1 WO 2014016944A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
group
unit
base station
value
Prior art date
Application number
PCT/JP2012/069019
Other languages
English (en)
French (fr)
Inventor
田中 良紀
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to KR1020157001503A priority Critical patent/KR20150023047A/ko
Priority to PCT/JP2012/069019 priority patent/WO2014016944A1/ja
Priority to CN201280074874.0A priority patent/CN104488335B/zh
Priority to EP12881888.7A priority patent/EP2879447A4/en
Priority to JP2014526675A priority patent/JP6040989B2/ja
Publication of WO2014016944A1 publication Critical patent/WO2014016944A1/ja
Priority to US14/603,891 priority patent/US20150131636A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the embodiments discussed in this specification relate to a base station device, a mobile station device, a communication system, and a communication method.
  • next-generation communication technology As next-generation communication technologies, standardization such as LTE (Long Term Evolution) and LTE-Advanced has been completed or studied.
  • an OFDM (Orthogonal Frequency Division Multiplexing) method is employed as a modulation method for downlink communication from a base station device to a mobile station device.
  • the OFDM method is a communication method in which, for example, a frequency band is divided into a number of frequency bands or subcarriers, and information data is mapped to each orthogonal frequency band.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • the SC-FDMA scheme is a communication scheme in which, for example, a frequency band is divided and transmitted using different frequency bands among a plurality of mobile station apparatuses. Since the SC-FDMA scheme is a single carrier transmission as compared with the OFDM scheme, the PAPR (Peak to Average Power Ratio) can be lowered. Therefore, the SC-FDMA scheme can reduce the power consumption of the amplifier and the power consumption of the entire mobile station apparatus as compared with the CDMA scheme.
  • waveform equalization processing is performed in the base station apparatus on the receiving side, so that propagation distortion in the radio channel can be suppressed.
  • the mobile station apparatus can perform waveform equalization processing in the frequency domain in the base station apparatus by periodically inserting a CP (Cyclic Prefix) into the transmission signal.
  • the amount of calculation processing in the frequency domain in the base station apparatus can be made smaller than that in the time domain by inserting the CP.
  • the timing difference between the received signals is greater than the CP length, for example, the orthogonality between the received signals cannot be maintained, interference occurs between the signals, and the timing difference between the received signals is within the CP length. In comparison, the reception quality is lowered. Therefore, in the transmission station apparatus, transmission timing control is performed on each mobile station apparatus in order to prevent timing deviation of the received signal.
  • FIG. 23 is a flowchart showing an operation example of transmission timing control.
  • the mobile station apparatus UE User Equipment
  • the base station apparatus eNB measures the frame timing difference between the transmission frame and the reception frame due to the data signal or the like (S111), uses the measurement value as the transmission timing correction amount N TA, and feeds back this transmission timing correction amount N TA as a control signal. (S112).
  • FIG. 24 is a diagram illustrating an example of a difference between the frame timing (downlink transmission timing) of the base station apparatus eNB and the frame timing (uplink transmission timing) of the mobile station apparatus UE.
  • the mobile station apparatus UE that has received the control signal from the base station apparatus eNB adds the fixed value N TAoffset to the transmission timing correction amount N TA and further multiplies the fixed value Ts by the mobile station apparatus UE itself. Transmit earlier than the grasped frame timing. Thereby, the base station eNB can receive the data signal etc. which were transmitted from the mobile station apparatus UE at the timing synchronized with the frame timing.
  • An object of the apparatus or method disclosed in the present specification is to mitigate an increase in overhead of a control signal for transmission timing control that occurs with an increase in the number of mobile station apparatuses.
  • a base station device groups the mobile station devices, and the uplink transmission timing based on the reception timing of the observation signal transmitted from the first mobile station device among the groups generated by the group generation unit.
  • a correction amount calculation unit that calculates the timing correction amount of the second and a timing correction amount calculated based on the reception timing of the observation signal transmitted from the first mobile station device is different from the first mobile station device in the group.
  • the mobile station apparatus includes a correction amount transmitting unit that transmits the uplink transmission timing as a correction amount.
  • a mobile station apparatus receives a correction amount receiving unit that receives a timing correction amount calculated based on a reception timing at which the base station device receives an observation signal transmitted from a second mobile station device that is different from the mobile station device.
  • a transmission timing control unit that controls uplink transmission timing based on the timing correction amount.
  • a communication system including a mobile station apparatus and a base station apparatus.
  • the communication system is based on a reception timing at which the base station apparatus receives an observation signal transmitted from the first mobile station apparatus among the groups generated by the group generation section and the group generation section.
  • a correction amount calculation unit for calculating a timing correction amount of uplink transmission timing, and a timing correction amount calculated based on the reception timing of the observation signal transmitted from the first mobile station apparatus, are used as the first mobile station in the group.
  • a correction amount transmitting unit is provided that transmits as an uplink transmission timing correction amount in a second mobile station apparatus different from the apparatus.
  • a communication method includes grouping mobile station apparatuses, and uplink transmission timing based on reception timing at which the base station apparatus receives an observation signal transmitted from the first mobile station apparatus in the group of mobile station apparatuses. And calculating a timing correction amount calculated based on the reception timing of the observation signal transmitted from the first mobile station device, a second mobile station device different from the first mobile station device in the group Transmission as a correction amount of the uplink transmission timing in.
  • an increase in overhead of a control signal for transmission timing control that occurs with an increase in the number of mobile station apparatuses is mitigated.
  • FIG. 1 is an explanatory diagram of a configuration example of a communication system. It is a functional block diagram of the 1st example of a base station apparatus and a mobile station apparatus. It is a functional block diagram of the 2nd example of a base station apparatus and a mobile station apparatus. It is a function block diagram of the 3rd example of a base station apparatus. It is a function block diagram of the 3rd example of a mobile station apparatus. It is a graph showing the example of distribution of TA value. It is a sequence diagram which shows the example of whole operation
  • FIG. 1 is an explanatory diagram of a configuration example of a communication system.
  • the communication system 1 includes a base station device 2 and mobile station devices 3a to 3f.
  • the base station apparatus and mobile station apparatus may be referred to as “base station” and “mobile station”, respectively.
  • the mobile stations 3a to 3f may be collectively referred to as “mobile station 3”.
  • the base station 2 is a wireless communication device that wirelessly connects to the mobile station 3 to perform wireless communication.
  • the base station 2 can provide various services such as voice communication and video distribution to the mobile station 3 within one or a plurality of cell ranges. Furthermore, the base station 2 can control the transmission timing of the mobile station 3.
  • the mobile station 3 is a wireless communication device that wirelessly connects to the base station 2 to perform wireless communication.
  • the mobile station 3 may be, for example, a mobile phone or an information portable terminal device.
  • the mobile station 3 can receive a data signal or the like from the base station 2 and transmit the data signal or the like to the base station 2.
  • the communication link from the base station 2 to the mobile station 3 is expressed as a downlink communication link (DL: Down Link), and the communication link from the mobile station 3 to the base station 2 is expressed as an uplink communication link (UL: Up Link).
  • DL Down Link
  • UL Up Link
  • the base station 2 groups the mobile stations 3a to 3f. For example, as shown in FIG. 1, the base station 2 forms a group 4a including mobile stations 3a to 3c and a group 4b including mobile stations 3d and 3e.
  • the mobile station 3f is a mobile station that does not belong to any group. In the following description and accompanying drawings, a mobile station that does not belong to any group may be referred to as a “non-member mobile station”.
  • the base station 2 determines a common transmission timing correction amount for each group, and transmits it to the mobile stations 3 belonging to the group.
  • the mobile station 3 belonging to the group controls the transmission timing of the radio signal transmitted to the base station 2 according to the transmission timing correction amount determined for this group.
  • FIG. 2 is a functional configuration diagram of a first example of the base station 2 and the mobile station 3.
  • the base station 2 includes a group generation unit 10, a reception unit 11, a correction amount calculation unit 12, and a transmission unit 13.
  • the mobile station 3 a includes an observation signal transmission unit 20, a reception unit 21, and a transmission timing control unit 22.
  • the configuration of the mobile stations 3b and 3c may be the same as that of the mobile station 3a.
  • the group generation unit 10 groups a plurality of mobile stations 3a to 3c that can be controlled with the same transmission timing correction amount.
  • the receiving unit 11 receives an observation signal transmitted from any mobile station 3a in the same group.
  • the correction amount calculation unit 12 calculates a transmission timing correction amount based on the reception timing of the observation signal.
  • the transmission unit 13 transmits the transmission timing correction amount calculated based on the observation signal transmitted from the mobile station 3a to the grouped mobile station apparatuses 3a to 3c.
  • the observation signal transmitter 20 of the mobile station 3 a transmits an observation signal to the base station 2.
  • the receiving unit 21 of the mobile station 3b receives the transmission timing correction amount calculated based on the observation signal transmitted from the mobile station 3a from the base station 2.
  • the transmission timing control unit 22 controls the transmission timing of the radio signal transmitted to the base station 2 according to the received transmission timing correction amount.
  • the mobile stations 3a and 3c operate in the same manner as the mobile station 3b.
  • the base station 2 determines a transmission timing correction amount commonly used in the group based on the transmission timing of the observation signal transmitted from any one of the plurality of grouped mobile stations 3a. For this reason, the overhead of the control signal in the uplink communication link is reduced as compared with the case where each group of mobile stations 3 transmits an observation signal.
  • the mobile stations 3b and 3c that do not transmit the observation signal can receive the transmission timing correction amount without transmitting the observation signal used for the calculation of the transmission timing correction amount, and can maintain the synchronization of the uplink communication link. it can.
  • the power consumption of the mobile station 3 is also reduced.
  • the number of mobile stations 3 that transmit observation signals is not necessarily one, but may be smaller than the total number of mobile stations 3 belonging to the group.
  • M2M Machine-to-Machine
  • M2M communication since the moving speed of the mobile station 3 is low, the formed group is easily maintained. For this reason, by using the same observation signal in the group in common, the overhead of the control signal for transmission timing control of the uplink communication link can be efficiently reduced.
  • FIG. 3 is a functional configuration diagram of a second example of the base station 2 and the mobile station 3. Constituent elements similar to those shown in FIG. 2 are given the same reference numerals as those used in FIG. 2, and descriptions of the same functions are omitted.
  • the base station 2 includes a designation unit 14 and an instruction signal generation unit 15.
  • the designation unit 14 designates one of the mobile stations 3 belonging to the group for each group generated by the group generation unit 10.
  • the instruction signal generation unit 15 generates an instruction signal that causes the mobile station 3 designated by the designation unit 14 to transmit an observation signal.
  • the transmission unit 13 transmits an instruction signal.
  • the instruction signal may be, for example, an identifier of the mobile station 3a that notifies the mobile station 3 of the mobile station 3a designated by the designation unit 14.
  • the instruction signal of another example may be a command signal that is individually transmitted to the mobile station 3a specified by the specifying unit 14 and causes the mobile station 3a to transmit an observation signal.
  • the receiving unit 21 of the mobile station 3a receives the instruction signal.
  • the observation signal transmission unit 20 of the mobile station 3a transmits an observation signal according to the instruction signal.
  • the base station 2 since the base station 2 explicitly designates the mobile station 3a that transmits the observation signal, the other mobile stations 3b and 3c transmit the observation signal for calculating the transmission timing correction amount. Can be stopped. For this reason, the overhead of the control signal in the UL is reduced as compared with the case where each group of mobile stations 3 transmits the observation signal. Further, the power consumption of the mobile stations 3b and 3c that do not transmit the observation signal is also reduced.
  • FIG. 4 is a functional configuration diagram of the third example of the base station 2.
  • the base station 2 includes a radio resource control unit 101, a MAC (Media Access Control) control unit 102, a packet generation unit 103, a MAC scheduling unit 104, an encoding unit 105, a modulation unit 106, and a multiplexing unit 107.
  • MAC Media Access Control
  • the base station 2 includes an IFFT (Inverse Fast Fourier Transform) unit 108, a radio processing unit 109, a transmission antenna 110, a reception antenna 111, a radio processing unit 112, an FFT unit 113, a demodulation unit 114, a decoding unit 115, an RLC (Radio Link Control). ) Portion 116.
  • the base station 2 includes a TA (Timing Advance) value calculation unit 117, a group generation unit 118, a specification unit 119, and an instruction signal generation unit 120.
  • TA Transmission Advance
  • the group generation unit 118 is an example of the group generation unit 10 shown in FIGS.
  • the TA value calculation unit 117 is an example of the correction amount calculation unit 12.
  • the radio resource control unit 101, the MAC control unit 102, the multiplexing unit 107, the IFFT unit 108, the radio processing unit 109, and the transmission antenna 110 are examples of the transmission unit 13.
  • the reception antenna 111, the wireless processing unit 112, and the FFT unit 1113 are an example of the reception unit 11.
  • the designation unit 119 and the instruction signal generation unit 120 are an example of the designation unit 14 and the instruction signal generation unit 15.
  • the radio resource control unit 101 allocates radio resources (for example, frequency and time) for downlink communication and uplink communication of the mobile station 3.
  • the radio resource control unit 101 also assigns various RNTIs (Radio Network Temporary ID).
  • RNTIs Radio Network Temporary ID
  • the radio resource control unit 101 allocates G-RNTI (Group-RNTI) to the group generated by the group generation unit 118 based on the information regarding the group output from the group generation unit 118.
  • G-RNTI is, for example, an RNTI for transmission timing control assigned to a plurality of mobile stations 3 belonging to the same group, and is an example of a group identifier that identifies a group generated by the group generation unit 118. Details of G-RNTI will be described later.
  • the radio resource control unit 101 outputs resource allocation information related to the allocated radio resource to the MAC control unit 102. Also, the radio resource control unit 101 outputs the generated G-RNTI to the packet generation unit 103 as RRC (Radio Resource Control) control information, for example. In this case, the G-RNTI is transmitted to the mobile station 3 using a PDSCH (Physical Downlink Shared Channel) channel. Further, the radio resource control unit 101 can generate broadcast information and paging information and output them to the packet generation unit 103. The broadcast information and paging information will be described in the fifth and sixth embodiments.
  • the MAC control unit 102 generates individual control information based on the resource allocation information output from the radio resource control unit 101, and outputs it to the multiplexing unit 107.
  • the individual control information is transmitted to the mobile station 3 as a control signal using a control channel such as a PDCCH (Physical-Downlink-Control-Channel) channel.
  • a control channel such as a PDCCH (Physical-Downlink-Control-Channel) channel.
  • the MAC control unit 102 receives the random access preamble transmitted from the mobile station 3 in the random access procedure from the FFT unit 113.
  • the MAC control unit 102 outputs a transmission message to the mobile station 3 determined in the random access procedure to the multiplexing unit 107.
  • the MAC control unit 102 may receive the G-RNTI output from the radio resource control unit 101, and in such a case, the G-RNTI can be output to the multiplexing unit 107 as individual control information. Further, the MAC control unit 102 can also receive information about the group generated by the group generation unit 118 via the radio resource control unit 101. When such information is received, the MAC control unit 102 generates a group TA value and generates a TA command. Can be generated.
  • the group TA value is, for example, a TA value given to a plurality of mobile stations 3 belonging to the same group. Details thereof will be described later.
  • the MAC control unit 102 can also receive the instruction signal generated by the instruction signal generation unit 120 via the radio resource control unit 101.
  • the instruction signal is, for example, a signal that designates a representative mobile station that represents a group among the mobile stations 3 belonging to each group.
  • the radio resource control unit 101 outputs an instruction signal to the packet generation unit 103.
  • the packet generator 103 receives user data, various control information, a group TA value, an instruction signal, and the like, and generates a transmission packet.
  • the transmission packet includes user data and is transmitted using, for example, a PDSCH channel.
  • the packet generation unit 103 outputs the generated packet to the MAC scheduling unit 104.
  • the MAC scheduling unit 104 schedules user data and the like based on the resource allocation information output from the MAC control unit 102. For example, the MAC scheduling unit 104 performs scheduling by allocating user data or the like on radio resources of shared channels such as PDSCH and PUSCH. The MAC scheduling unit 104 outputs the scheduled transmission packet to the encoding unit 105.
  • the encoding unit 105 performs error correction encoding on user data and control information in the packet.
  • the coding method and coding rate of error correction coding are included in the resource allocation information generated by the radio resource control unit 101.
  • the coding unit 105 receives such information from the radio resource control unit 101 and receives an error. Correction encoding can be performed.
  • Encoding section 105 outputs the packet subjected to error correction encoding to modulation section 106.
  • the modulation unit 106 performs modulation processing such as QPSK (Quadrature Phase Shift Keying) and 16 QAM (Quadrature Amplitude Modulation) on the user data and control information in the error-corrected encoded packet.
  • modulation processing such as QPSK (Quadrature Phase Shift Keying) and 16 QAM (Quadrature Amplitude Modulation) on the user data and control information in the error-corrected encoded packet.
  • the modulation scheme is also included in the resource allocation information, and the modulation unit 106 can receive the resource allocation information from the radio resource control unit 101 and perform modulation processing.
  • Modulation section 106 outputs the modulated packet to multiplexing section 107.
  • the multiplexing unit 107 multiplexes the output from the modulation unit 106, the pilot signal, the individual control information, and the transmission message for the random access procedure, and outputs the multiplexed information to the IFFT unit 108.
  • the pilot signal for example, a known preamble pattern between the base station 2 and the mobile station 3 is used.
  • IFFT section 108 performs inverse fast Fourier transform processing on the multiplexed signal, converts the frequency domain multiplexed signal into a time domain multiplexed signal, and outputs the time domain multiplexed signal to radio processing section 109.
  • Radio processing section 109 converts the baseband multiplexed signal into a radio signal in the radio band and outputs it.
  • the transmission antenna 110 transmits the radio signal output from the radio processing unit 109 to the mobile station 3. Thereby, user data, individual control information, etc. are transmitted to the mobile station 3 as a data signal and a control signal, respectively.
  • the receiving antenna 111 receives a radio signal transmitted from the mobile station 3.
  • the radio processing unit 112 converts a radio signal in the radio band received by the reception antenna 111 into a reception signal in the baseband.
  • the FFT unit 113 converts the reception signal in the time domain into a reception signal in the frequency domain by performing a fast Fourier transform on the reception signal output from the wireless processing unit 112.
  • the FFT unit 113 outputs the received signal after the fast Fourier transform to the demodulation unit 114 and the TA value calculation unit 117.
  • the demodulation unit 114 performs demodulation processing on the received signal.
  • the demodulation method corresponds to the modulation method for the radio signal transmitted by the mobile station 3 and follows, for example, resource allocation information by the radio resource control unit 101.
  • the demodulation unit 114 can receive resource allocation information from the radio resource control unit 101 and perform demodulation according to the resource allocation information.
  • the decoding unit 115 performs error correction decoding on the demodulated received signal.
  • the decoding scheme and coding rate of error correction decoding are also performed according to the resource allocation information received from the radio resource control unit 101, for example.
  • the RLC unit 116 extracts user data and the like from the received signal after decoding. The extracted user data is output to other processing units such as transmission to the host control device.
  • the TA value calculation unit 117 extracts the observation signal transmitted from the mobile station 3 from the reception signal output from the FFT unit 113, and calculates the TA (Timing Advance) value of the mobile station 3 based on the reception timing of the observation signal. calculate.
  • the observation signal may be, for example, a pilot signal, a data signal, a contention-free random access preamble, a scheduling request signal, or the like.
  • the pilot signal may be an SRS signal.
  • the scheduling request signal is a signal transmitted from the mobile station 3 to request the base station 2 to perform scheduling when uplink transmission data is generated.
  • the TA value is a value representing the difference between the frame timing of the transmission frame at the base station 2 and the frame timing of the received radio frame, for example.
  • the TA value calculation unit 117 measures the TA value of the mobile station 3 by calculating the difference between the uplink radio frame timing received from the mobile station 3 and the transmission frame timing of the base station 2. If there are a plurality of mobile stations 3, the TA value calculation unit 117 measures a plurality of TA values. For example, the TA value calculation unit 117 outputs the calculated TA value to the group generation unit 118 as the timing correction amount N TA .
  • the group generation unit 118 receives a plurality of TA values, groups mobile stations 3 having TA values within a certain range, and generates a group.
  • FIG. 6 is a graph showing an example of TA value distribution, where the vertical axis represents the number of mobile stations and the horizontal axis represents the TA value. As shown in FIG. 6, there are places where the number of mobile stations 3 is larger than others when the TA value is a certain value. For example, when there are a plurality of mobile stations 3 in a train, the frame timing of each mobile station 3 has a distribution as shown in FIG. 6, for example, because the error amount is within a certain range.
  • the group generation unit 118 groups, for example, the mobile stations 3 having a TA value within a certain range as one group. Alternatively, the group generation unit 118 groups, for example, a plurality of mobile stations 3 that can be controlled with the same transmission timing control amount. In the example of FIG. 6, the group generation unit 118 generates “group 1” and “group 2”.
  • the group generation unit 118 When the group generation unit 118 generates a group, for example, the group generation unit 118 holds the group identification information and the identification information of the mobile station 3 belonging to the group as information about the group in the internal memory, or performs MAC control via the radio resource control unit 101. Can be output to the unit 102. Further, the group generation unit 118 outputs information about the group to the designation unit 119. For example, the identification information of the mobile station 3 is included in the received signal received from the mobile station 3 or based on the identification information such as RNTI assigned by the radio resource control unit 101. There are cases.
  • the designation unit 119 designates a representative mobile station representing the group among the mobile stations 3 belonging to each group based on the information regarding the group received from the group generation unit 118. For example, the specifying unit 119 may sequentially change the mobile stations selected as the representative mobile station from the plurality of mobile stations 3 belonging to the group in time. As will be described later, since the representative mobile station transmits an observation signal, the power consumption is larger than that of other mobile stations. By changing the representative mobile station in this way, the power consumption is increased between the plurality of mobile stations 3. Can be dispersed.
  • the designation unit 119 may designate the mobile station 3 that has transmitted the scheduling request signal for the uplink communication link as a representative mobile station for a certain period after the transmission of the scheduling request signal. Since the base station 2 can obtain the TA value by the scheduling request signal, the mobile station 3 that has transmitted the scheduling request signal needs to transmit another observation signal from another mobile station by becoming the representative mobile station. Disappear. In the following description, it is assumed that the mobile station 3a is designated as the representative mobile station.
  • the instruction signal generation unit 120 generates a mobile station identifier of the mobile station 3a as an instruction signal that causes the mobile station 3a designated by the designation unit 119 to transmit an observation signal.
  • the representative mobile station 3a designated by the instruction signal receives the instruction signal, the representative mobile station 3a repeatedly transmits the observation signal to the base station 2, thereby enabling the base station 2 to continuously calculate the TA value. .
  • the mobile station 3 includes an antenna 201, a radio processing unit 202, an FFT unit 203, a demodulation unit 204, a decoding unit 205, a control channel demodulation unit 206, and a control information processing unit 207.
  • the mobile station 3 includes a data processing unit 208, a multiplexing unit 209, a symbol mapping unit 210, a multiplexing unit 211, an FFT unit 212, a frequency mapping unit 213, an IFFT unit 214, a transmission timing control unit 215, and a radio processing unit 216.
  • the mobile station 3 includes a pilot generation unit 217 and a preamble generation unit 218.
  • the antenna 201, the radio processing unit 202, the FFT unit 203, the demodulation unit 204, the decoding unit 205, and the control information processing unit 207 are examples of the receiving unit 21 in FIGS.
  • the transmission timing control unit 215 is an example of the transmission timing control unit 22.
  • the pilot generation unit 217, preamble generation unit 218, multiplexing unit 211, FFT unit 212, frequency mapping unit 213, IFFT unit 214, transmission timing control unit 215, radio processing unit 216, and antenna 201 are examples of the observation signal transmission unit 20. is there.
  • the antenna 201 receives the radio signal transmitted from the base station 2 and outputs it to the radio processing unit 202.
  • the antenna 201 can also transmit a radio signal output from the radio processing unit 216 to the base station 2.
  • the wireless processing unit 202 converts a wireless signal received by the antenna 201 into a received signal in the baseband and outputs it.
  • the FFT unit 203 converts the received signal in the time domain into a received signal in the frequency domain by performing a fast Fourier transform on the received signal output from the wireless processing unit 202.
  • the demodulation unit 204 performs demodulation processing on the reception signal output from the FFT unit 203.
  • the demodulation processing method is included in, for example, resource allocation information received using PDCCH or the like. For this reason, the demodulation unit 204 performs demodulation processing according to the resource allocation information output from the control channel demodulation unit 206.
  • the decoding unit 205 performs error correction decoding on the demodulated received signal.
  • the decoding scheme and coding rate when performing error correction decoding follow the resource allocation information output from the control channel demodulation unit 206.
  • the decoding unit 205 can decode user data before error correction coding, various control information such as RRC control information, and the like by error correction decoding.
  • the control channel demodulator 206 demodulates the control signal transmitted using a control channel such as PDCCH.
  • the demodulated control information includes, for example, resource allocation information and the like, and the control channel demodulation unit 206 outputs the resource allocation information to the demodulation unit 204 and the decoding unit 205. Further, the control channel demodulation unit 206 determines whether the G-RNTI output from the control information processing unit 207 matches the G-RNTI transmitted on the control channel, and if it matches, it accompanies the G-RNTI. Resource allocation information can be extracted from the control information.
  • the extracted resource allocation information is output to the demodulation unit 204 and the decoding unit 205, so that the mobile station 3 demodulates and decodes the group TA value addressed to itself and the mobile station identifier of the representative mobile station 3a received as the instruction signal. Can be decrypted. Details will be described later.
  • the control information processing unit 207 extracts various control information from the output of the decoding unit 205. For example, the control information processing unit 207 extracts the G-RNTI from the demodulated and decoded RRC control information, and outputs the extracted G-RNTI to the control channel demodulation unit 206. For example, the control information processing unit 207 can extract the group TA value from the output of the decoding unit 205 and output the group TA value to the transmission timing control unit 215. For example, the control information processing unit 207 can extract the mobile station identifier of the representative mobile station 3 a received as the instruction signal from the output of the decoding unit 205 and output the mobile station identifier to the pilot generation unit 217.
  • control information processing unit 207 outputs a transmission message to the base station 2 determined in the random access procedure to the multiplexing unit 209.
  • the preamble generation unit 218 generates a contention-based random preamble and a contention-free random access preamble and inputs them to the multiplexing unit 211.
  • the pilot generation unit 217 may repeatedly generate a pilot signal as an observation signal and input it to the multiplexing unit 211. .
  • the pilot generation unit 217 generates a pilot signal at any time before the expiration of the TA timer of the base station 2 that detects uplink synchronization loss.
  • the pilot generation unit 217 may generate the pilot signal at a cycle shorter than a period from when the TA timer is reset until it expires.
  • observation signal transmitted by the representative mobile station 3a repeatedly or periodically may be a signal other than the pilot signal.
  • the representative mobile station 3a may generate dummy user data repetitively or periodically and use a scheduling request signal for transmitting this data as an observation signal.
  • the data processing unit 208 performs various types of processing such as compression encoding on user data.
  • the processed data is output to the multiplexing unit 209.
  • the multiplexing unit 209 multiplexes the user data output from the data processing unit 208, various control information, and a transmission message for a random access procedure.
  • the control information may be, for example, RRC control information or MAC-CE (Medium Access Control Control Element) control information.
  • the multiplexing unit 209 outputs the multiplexed signal to the symbol mapping unit 210.
  • the symbol mapping unit 210 performs modulation processing such as QPSK or 16QAM on the multiplexed signal. Since the modulation scheme is specified in the base station 2 as resource allocation information, for example, the symbol mapping unit 210 can receive the resource allocation information from the control channel demodulation unit 206 and perform modulation processing.
  • the multiplexing unit 211 multiplexes the output signal, pilot signal, and random access preamble from the symbol mapping unit 210 and outputs the multiplexed signal.
  • the pilot signal includes, for example, a preamble pattern known by the mobile station 3 and the base station 2.
  • the FFT unit 212 performs fast Fourier transform on the multiplexed signal output from the multiplexing unit 211 to convert the time domain multiplexed signal into a frequency domain multiplexed signal.
  • the frequency mapping unit 213 performs processing for mapping the frequency domain multiplexed signal output from the FFT unit 212 to a predetermined frequency band. For example, the frequency mapping unit 213 performs processing such as mapping the multiplexed signal to the frequency band assigned to the mobile station 3 and mapping “0” to other frequency bands. Such processing is sometimes called subcarrier mapping, for example.
  • the frequency wave allocated to the mobile station 3 is included in the resource allocation information, and the frequency mapping unit 213 can receive the resource allocation information from the control channel demodulation unit 206.
  • the frequency mapping unit 213 outputs a signal including the mapped multiplexed signal to the IFFT unit 214.
  • the IFFT unit 214 converts the output signal in the frequency domain into an output signal in the time domain by performing an inverse fast Fourier transform process on the output signal from the frequency mapping unit 213.
  • the transmission timing control unit 215 controls the transmission timing of the radio signal transmitted from the mobile station 3 by controlling the timing of outputting the output signal from the IFFT unit 214 to the radio processing unit 216.
  • the transmission timing control unit 215 receives the group TA value output from the control information processing unit 207, and determines the transmission timing by calculating, for example, the following equation.
  • the number (1) corresponds to, for example, the transmission timing shown in FIG.
  • the transmission timing control unit 215 outputs the output signal from the IFFT unit 214 to the wireless processing unit 216 earlier than the transmission timing of the local station by the calculated timing calculated by the number (1). Since the transmission timing of the own station is included in the resource allocation information demodulated by the control channel demodulation unit 206, for example, the transmission timing control unit 215 can use this information as the transmission timing of the own station.
  • the group TA value corresponds to “N TA ” of the number (1)
  • “N TAoffset ” and “Ts” are held in the internal memory of the transmission timing control unit 215, and the transmission timing control unit 215 Processing can be performed by appropriately reading out the fixed value.
  • the radio processing unit 216 converts the output signal output from the transmission timing control unit 215 into a radio signal in the radio band.
  • the radio signal output from the radio processing unit 216 is transmitted to the base station 2 via the antenna 201 as a single carrier signal, for example.
  • FIG. 7 is a sequence diagram illustrating an example of the overall operation of the communication system 1.
  • the mobile station 3 and the base station 2 each execute a random access procedure.
  • the base station 2 measures the TA value of the mobile station 3 based on the message received in the random access procedure or the data or pilot signal received from the mobile station 3 thereafter.
  • the TA value calculation unit 117 measures the TA value.
  • the base station 2 sets the measured TA value as the timing correction amount N TA .
  • the base station 2 In operation AC, the base station 2 generates a group from the measured TA value. For example, the group generation unit 118 groups mobile stations 3 having TA values within a certain range. Further, the base station 2 updates the already formed group as necessary. In this example, it is assumed that the group 4a is formed by the mobile stations 3a to 3c, and the mobile station 3f is a non-member mobile station.
  • the base station 2 assigns G-RNTI to the generated group as a group identifier, and transmits the assigned G-RNTI to the mobile station 3. For example, in the example of FIG. 6, the base station 2 assigns a G-RNTI such as “G-RNTI-1” to the group of the identification information “group 1”. The base station 2 transmits the allocated G-RNTI to the mobile station 3 as RRC control information using, for example, a radio resource of the PDSCH channel.
  • the base station 2 selects a representative mobile station for each group. Further, the base station 2 updates the representative mobile station for the group in which the representative mobile station has been selected before, as necessary. For example, the designation unit 119 selects or updates the representative mobile station. In this example, it is assumed that the mobile station 3a is selected as the representative mobile station.
  • the base station 2 transmits an instruction signal to the representative mobile station 3a.
  • the instruction signal generation unit 120 generates an instruction signal, and the instruction signal is stored in a packet generated by the packet generation unit 103 and transmitted.
  • the representative mobile station 3a transmits an observation signal.
  • the pilot generation unit 217 generates a pilot signal as an observation signal, and the pilot signal is multiplexed into an uplink signal by the multiplexing unit 211 and transmitted to the base station 2.
  • the base station 2 measures the TA value of the representative mobile station 3a based on the observation signal.
  • the TA value calculation unit 117 measures the TA value.
  • the base station 2 sets the measured TA value as the timing correction amount N TA .
  • the base station 2 transmits the TA value measured as the group TA value by multicast to the mobile stations 3a to 3c to which G-RNTI is assigned.
  • the mobile station 3 calculates the number (1) to determine the transmission timing, and transmits data and the like at this transmission timing.
  • the base station 2 can match the reception timing of the data from the mobile station 3 to the frame timing, for example, so that the difference in the reception timing of the data from each mobile station 3 is within the CP length. Become. Therefore, the base station 2 can prevent reception timing shifts and maintain reception quality.
  • the transmission timing control of the non-member mobile station 3f is corrected by generating an individual TA value for the non-member mobile station 3f and transmitting it to the mobile station 3f.
  • the base station 2 When the synchronization error of the mobile station 3c belonging to the group 4a becomes larger than a certain threshold value, the base station 2 generates an individual TA value for the mobile station 3c and transmits it to the mobile station 3c.
  • the transmission timing control of the mobile station 3c is corrected.
  • transmission timing is performed based on the group TA value. Thereafter, the reception frame timing of the signal from the mobile station 3c whose transmission timing is corrected based on the group TA value is shifted. It may be larger than the threshold value.
  • the base station 2 individually corrects the transmission timing for the mobile station 3c. Note that if the synchronization error continues further, the base station 2 incorporates the mobile station 3c into another group or performs transmission timing control individually as a non-member mobile station. Details will be described later.
  • FIG. 8 is an explanatory diagram of an operation example of the base station 2.
  • the base station 2 repeats the following loops of operations BA to BI.
  • operation BA the base station 2 calculates the TA value based on the observation signal transmitted from the representative mobile station 3a.
  • the TA value calculation unit 117 calculates the TA value.
  • the base station 2 calculates the TA value based on the observation signal transmitted from the mobile station 3 other than the representative mobile station 3a that transmitted the observation signal between the operation BA of the previous loop and the operation BA of the current loop. calculate.
  • the base station 2 In operation BB, the base station 2 generates a group. For example, based on the TA value of each mobile station 3 from the TA value calculation unit 117, the group generation unit 118 groups mobile stations 3a to 3c whose TA values are in a certain range to form a group 4a.
  • the base station 2 newly assigns group identifiers to the group members 3a to 3c.
  • G-RNTI is assigned as a group identifier.
  • the radio resource control unit 101 newly assigns the same G-RNTI to the mobile stations 3a to 3c belonging to the same group 4a based on the information regarding the group output from the group generation unit 118.
  • the base station 2 transmits the newly allocated G-RNTI to the mobile stations 3a to 3c.
  • the radio resource control unit 101 outputs the allocated G-RNTI to the packet generation unit 103 as RRC control information.
  • the newly allocated G-RNTI is transmitted to each of the mobile stations 3a to 3c belonging to the same group 4a. If the other group 4b is generated, the base station 2 can further assign another G-RNTI corresponding to the other group 4b and transmit it.
  • FIG. 9 is a diagram showing an example of radio resource allocation for G-RNTI.
  • the vertical axis represents the frequency domain, and the horizontal axis represents the time domain.
  • Control information and the like are transmitted as control signals using PDCCH radio resources, and data and the like are transmitted as data signals using PDSCH radio resources.
  • the radio resource control unit 101 allocates the G-RNTI on the PDSCH radio resource, so that the G-RNTI is transmitted through the PDSCH channel.
  • the base station 2 designates the representative mobile station 3a.
  • the designation unit 119 designates the representative mobile station 3a.
  • the base station 2 calculates the group TA value based on the observation signal received from the representative mobile station 3a.
  • the TA value calculation unit 117 calculates the TA value.
  • the base station 2 transmits the group TA value to the mobile stations 3a to 3c by multicast.
  • the MAC control unit 102 receives the TA value of the representative mobile station 3 a calculated by the TA value calculation unit 117 as a group TA value via the group generation unit 118 and the radio resource control unit 101.
  • the MAC control unit 102 calculates group TA values for the number of sanctioned groups. For example, when notified from the MAC control unit 102 that the group TA value has been calculated, the radio resource control unit 101 assigns radio resources to the group TA value.
  • (B) of FIG. 9 is a diagram illustrating an example of radio resource allocation of the group TA value.
  • the radio resource control unit 101 identifies the group 4a that is the transmission destination of the group TA value, and extracts the G-RNTI for this group from the assigned G-RNTI. Also, the radio resource control unit 101 generates control information accompanying the G-RNTI, and includes the resource allocation information of the group TA value in this control information.
  • the G-RNTI and the control information associated with the G-RNTI are examples of control signals associated with the transmission of the group TA value.
  • the radio resource control unit 101 sets a group-specific search space on the PDCCH radio resource, and allocates radio resources in this search space to G-RNTI and control information associated with the G-RNTI.
  • the radio resource control unit 101 allocates the group TA value on the PDSCH radio resource.
  • Radio resource control section 101 outputs the extracted G-RNTI and control information associated with G-RNTI to multiplexing section 107. Thereby, for example, the group TA value is transmitted to the mobile station 3 by the radio resource as shown in (B) of FIG. 9.
  • the G-RNTI and control information allocated to the PDCCH are addressed to a plurality of mobile stations 3a to 3c in the same group 4a, and one radio It can be shared by resources (or radio resource blocks).
  • G-RNTI and control information can be shared by one radio resource block.
  • the PDSCH radio resource to which the group TA value is assigned is also a radio resource that is shared and used by the plurality of mobile stations 3a to 3c. Therefore, the radio resource control unit 101 can allocate a common radio resource in units of groups, instead of allocating different radio resources for the plurality of mobile stations 3a to 3c to the group TA value. Thereby, the base station 2 can transmit the group TA value to each mobile station 3 in the group by multicast.
  • the base station 2 transmits an individual TA value to the non-member mobile station 3f. Further, when the synchronization deviation of the mobile station 3c of the group 4a becomes larger than a certain threshold value, the base station 2 transmits the individual TA value also to the mobile station 3c.
  • the base station 2 transmits the individual TA value using C-RNTI (Cell-Radio Network Temporary ID).
  • the individual TA value is, for example, a TA value calculated by the TA value calculation unit 117 for each mobile station 3 individually.
  • the MAC control unit 102 performs individual correction of the mobile station 3c, for example, when the difference between the TA value of the mobile station 3c and the group TA value is larger than the individual correction threshold. To decide.
  • the MAN control unit 102 outputs the TA value of the non-member mobile station 3f and the TA value of the mobile station 3c to the packet generation unit 103 as individual TA values, and the radio resource control unit 101 transmits the individual TA values. Assign radio resources to do so.
  • the radio resource control unit 101 assigns radio resources to the individual TA value so that the individual TA value is transmitted through the PDSCH channel, and outputs the individual TA value to the packet generation unit 103.
  • the individual TA value in this case is also transmitted using PDSCH, for example, but the resource allocation information on the radio resource of the individual TA value is included in the control information accompanying the C-RNTI.
  • the radio resource control unit 101 generates this control information and C-RNTI, and outputs the control information and C-RNTI to the multiplexing unit 107 so as to be transmitted using PDCCH. Thereafter, the operation returns to operation BA, and the base station 2 repeats the above processing.
  • the base station 2 performs individual correction on the mobile station 3c belonging to the group 4a, and then deletes the mobile station 3c in which the synchronization error continues from the assigned group 4a and incorporates it into another group. Alternatively, individual control by C-RNTI is performed.
  • the base station 2 groups the mobile station 3c in the operation BB. Remove from member. For example, if the difference between the TA value of the mobile station 3c and the group TA value is larger than the individual correction threshold, the group generation unit 118 deletes the mobile station 3c from the group member. Further, the group generation unit 118 determines whether or not the TA value of the mobile station 3c is included within a certain range with respect to the group TA value of the other group 4b. Incorporate into 4b.
  • the group generation unit 118 makes the mobile station 3c a non-member mobile station. As described above, when a group is updated in operation BB, the group generation unit 118 outputs information regarding the updated group and information regarding non-member mobile stations to the MAC control unit 102.
  • the MAC control unit 102 assigns a G-RNTI based on the updated group. As a result, the changed G-RNTI is assigned to the updated group member.
  • the MAC control unit 102 outputs the calculated TA value to the multiplexing unit 107 in order to perform individual transmission timing control on the non-member mobile station 3f, for example.
  • the radio resource control unit 101 generates control information associated with C-RNTI, and includes the resource allocation information of the individual TA value allocated on the PDCCH radio resource in this control information. Thereby, the radio
  • FIG. 10 is a flowchart showing an operation example of the mobile station 3. The processing shown in FIG. 10 is performed when a radio signal is transmitted to / from the base station 2, for example, after the mobile station 3 transmits a data signal or a pilot signal to the base station 2. Shall be.
  • the mobile station 3 determines whether there is a G-RNTI assignment.
  • the control information processing unit 207 can determine whether the G-RNTI has been extracted from the output of the decoding unit 205. In this case, G-RNTI is received using, for example, PDSCH. If there is a G-RNTI assignment (operation CA: Y), the operation proceeds to operation CB. If there is no G-RNTI assignment (operation CA: N), the operation proceeds to operation CD.
  • the mobile station 3 receives the group TA value addressed by G-RNTI.
  • the control channel demodulation unit 206 receives G-RNTI received through a control channel such as PDCCH, and determines whether or not it matches the G-RNTI received from the control information processing unit 207. For example, when the control channel demodulation unit 206 determines that they match, the control channel demodulation unit 206 extracts the resource allocation information of the group TA value from the control information attached to the received G-RNTI, and the resource allocation information is demodulated by the demodulation unit 204 and output to the decoding unit 205. As a result, the mobile station 3 can demodulate and decode the group TA value addressed by G-RNTI and transmitted by PDSCH.
  • the mobile station 3 performs transmission timing control with the received group TA value.
  • the control information processing unit 207 outputs the demodulated and decoded group TA value to the transmission timing control unit 215, and the transmission timing control unit 215 calculates the number (1) according to the group TA value.
  • the transmission timing control unit 215 outputs the data after the FFT processing to the wireless processing unit 216 earlier than the transmission frame timing of the local station by the calculated value of the number (1).
  • the mobile station 3 receives the individual TA value addressed by the C-RNTI.
  • the control channel demodulation unit 206 extracts the resource allocation information of the individual TA value from the control information accompanying the C-RNTI. Then, control channel demodulation section 206 outputs the extracted resource allocation information to demodulation section 204 and decoding section 205. Thereby, the individual TA value addressed to the mobile station 3 is demodulated and decoded.
  • reception timing control is performed using the received individual TA value.
  • the control information processing unit 207 outputs the demodulated and decoded individual TA value to the transmission timing control unit 215, and the transmission timing control unit 215 calculates the number (1) again using the individual TA value as the timing correction amount N TA. And adjust the transmission timing.
  • the transmission timing of the mobile station 3c or the non-member mobile station 3f having a large synchronization deviation is controlled, and the reception timing at the base station 2 can be synchronized with the frame timing. Thereafter, the processing again moves to operation CA, and the mobile station 3 can repeat the above-described operation.
  • the updated G-RNTI is received from the base station 2 or individual control by the C-RNTI is performed.
  • the mobile station 3 performs the operation CA again.
  • the operation proceeds to the operation CA again, the determination of the operation CA becomes “N”, and the operation proceeds to the operation CD.
  • the mobile station 3 receives the individual TA value addressed by the C-RNTI.
  • the control information accompanying the C-RNTI is resource allocation information on the PDCCH.
  • the control channel demodulation unit 206 of the mobile station 3 demodulates the dedicated TA value from the PDCCH according to this resource allocation information, and outputs it to the transmission timing control unit 215 via the control information processing unit 207. Thereby, the individual transmission timing control by the individual TA value is performed in the mobile station 3.
  • the observation signal transmitted by the representative mobile station 3 is shared for transmission timing control for a plurality of mobile stations 3 belonging to the same group. For this reason, the overhead of the control signal in the uplink communication link is reduced as compared with the case where each group of mobile stations 3 transmits an observation signal. Further, power consumption of mobile stations 3 other than the representative mobile station 3 is reduced.
  • transmission timing control can be collectively performed for a plurality of mobile stations 3 belonging to the same group.
  • FIG. 11 is a diagram illustrating an example of a state in which transmission timing control is performed collectively.
  • the base station 2 groups such a plurality of mobile stations 3 and performs transmission timing control collectively with the same TA value (or group TA value).
  • a TA command is transmitted using the PDCCH allocated individually for each mobile station 3, as indicated by a dotted line in FIG. Is done.
  • a plurality of radio resources (or radio resource blocks) in the PDCCH are used.
  • the transmission unit of the group TA value is a group unit, and one radio resource is used for each group in the PDCCH. It is done. For this reason, compared with the case where transmission timing control is performed individually, the overhead by transmission of the control signal of a downlink communication link can be reduced.
  • the group TA value and the individual TA value transmitted from the base station 2 to the mobile station 3 may be the TA value itself or a difference from the previously transmitted TA value. By transmitting the difference value, the overhead of the control signal can be reduced as compared with the case where the TA value itself is transmitted.
  • the MAC control unit 102 holds the previously calculated group TA value, and the difference value between the TA value of the representative mobile station 3a received from the TA value calculation unit 117 and the held group TA value. Is further calculated. Then, the MAC control unit 102 outputs this difference value to the packet generation unit 103 as a group TA value.
  • the value of the group TA value itself calculated before can be stored in an internal memory or the like.
  • the MAC control unit 102 may similarly calculate a difference value for the individual TA value and output it to the packet generation unit 103.
  • control information processing unit 207 holds the previously calculated TA value itself, and can add or subtract the received difference value to obtain the current TA value. Can be output to the transmission timing control unit 215. Also in the following embodiments, the base station 2 may transmit the difference value to the mobile station 3 instead of the TA value itself.
  • the mobile stations 3 are grouped based on the TA value.
  • the TA value is a value at each time. For example, if the mobile stations 3 are arranged in the bus and the train that are equidistant from the base station 2 and have the same moving speed, the TAs of these mobile stations 3 The values are equal. In such a case, the same group is assigned to the plurality of mobile stations 3 in the bus and the plurality of mobile stations 3 in the train.
  • the transmission timing control finer than that of the second embodiment is performed by grouping a plurality of mobile stations 3 whose time fluctuation amount ⁇ TA in a certain period is within a certain range with respect to the TA value. Therefore, it is possible to prevent a shift in reception timing at the base station 2.
  • FIG. 12 is a graph showing an example of the distribution of TA value time variation ⁇ TA, where the vertical axis represents the number of mobile stations and the horizontal axis represents time variation ⁇ TA.
  • the amount of change in travel speed between buses and trains varies greatly with time, and the amount of reception timing error at the base station 2 of each mobile station 3 within the bus and train also varies with time. Therefore, for example, as shown in FIG. 12, the time variation ⁇ TA of the plurality of mobile stations 3 in the bus is within a certain range, and the time variation ⁇ TA of the plurality of mobile stations 3 in the train is distributed in another range. Will do.
  • the time fluctuation amount ⁇ TA can be said to be a change amount of the reception timing error in the base station 2, for example.
  • a plurality of mobile stations 3 in the bus are grouped as “Group 1”, and a plurality of mobile stations 3 in the train are grouped as “Group 2”. Then, transmission timing control is performed collectively for each of the two groups. This makes it possible to divide, for example, mobile stations 3 that are close in TA value at a certain time but are moving at different moving speeds into separate groups, and are the same as mobile stations 3 in which the deviation of the TA value increases over time. The problem that the timing correction amount is given can be avoided.
  • the TA value calculation unit 117 shown in FIG. 4 calculates the TA value time variation ⁇ TA by calculating the TA value for a certain time, and the group generation unit 118 uses the time variation ⁇ TA to group the groups. Can be generated. Further, in operation AC of FIG. 7, the base station 2 generates and updates a group based on the TA value time variation ⁇ TA.
  • the TA value calculation unit 117 calculates the TA value at a plurality of times separated by a certain period. For example, since the mobile station 3 transmits a reference signal for each radio frame, the TA value calculation unit 117 measures TA values at a plurality of times separated by one radio frame period.
  • the TA value calculation unit 117 calculates the time variation ⁇ TA of the TA value by calculating the difference between the two TA values. For example, the TA value calculator 117 obtains the time variation ⁇ TA by calculating the difference between the measured TA value and the TA value after one radio frame has elapsed. For example, the TA value calculation unit 117 may use a TA value after a lapse of a plurality of frame times, for example, instead of a TA value after a radio frame has elapsed.
  • the TA value calculation unit 117 may measure one or a plurality of symbol timings, one or a plurality of slot timings, or may use a TA value after a certain time has elapsed after measuring a certain time from the first measured TA value.
  • the group generation unit 118 generates a group from the TA value time variation ⁇ TA.
  • the TA value calculation unit 117 outputs the calculated time variation amount ⁇ TA to the group generation unit 118, and the group generation unit 118 groups a plurality of mobile stations 3 having the time variation amount ⁇ TA within a certain range to form a group. To do.
  • the observation signal transmitted by the representative mobile station 3 is shared for transmission timing control for a plurality of mobile stations 3 belonging to the same group. For this reason, the overhead of the control signal in the uplink communication link is reduced as compared with the case where each group of mobile stations 3 transmits an observation signal. Further, power consumption of mobile stations 3 other than the representative mobile station 3 is reduced.
  • transmission timing control can be performed collectively for a plurality of mobile stations 3 belonging to the same group.
  • the group TA value can be transmitted by one radio resource block for each group in the PDCCH. Therefore, it is possible to reduce the consumption of radio resources in the PDCCH as compared with the case where the TA value is individually transmitted for each mobile station 3.
  • the group TA value is transmitted by multicast using G-RNTI or the like.
  • the group TA value is transmitted as broadcast information.
  • FIG. 13 is a diagram illustrating a part of a configuration example of the notification information.
  • the broadcast information includes pairs for the number of groups generated by the base station 2 with the group ID and the group TA value as one pair.
  • the group ID is an example of a group identifier.
  • the broadcast information is transmitted from the base station 2 with a period of 80 ms or more in SIB (System Information Block) units, for example.
  • (A) of FIG. 14 is a figure which shows the example of allocation of the radio
  • SIB is allocated on the PDSCH radio resource
  • SI-RNTI System Information RNTI
  • SI-RNTI System Information RNTI
  • the mobile station 3 obtains the SI-RNTI that matches the SI-RNTI assigned in advance from the PDCCH radio resource, the mobile station 3 extracts the SIB resource assignment information included in the control information associated with the SI-RNTI.
  • the mobile station 3 can receive the broadcast information included in the SIB based on the extracted resource allocation information, and can acquire the group TA value from the broadcast information.
  • the SI-RNTI assigned to the mobile station 3 is, for example, received from the base station 2 in advance, and is held in the internal memory of the control channel demodulation unit 206 or the like.
  • SI-RNTI is an identifier for receiving, for example, broadcast information transmitted by SIB at mobile station 3.
  • the operations AA to AC are the same as the operations AA to AC in the third embodiment.
  • the base station 2 assigns a group ID to the group and transmits the group ID to each mobile station 3 belonging to the group.
  • the group ID is transmitted as MAC-CE (Media Access Control-Control Element) control information.
  • the group ID is transmitted using a PDSCH radio resource, for example, as shown in FIG.
  • Operations AE to AH are the same as operations AE to AH in the third embodiment.
  • the base station 2 transmits the group TA value as broadcast information. For example, as illustrated in FIG. 14A, the base station 2 allocates SI-RNTI on the PDCCH radio resource, and transmits a group ID and a Kutasta TA value on the radio resource on the PDSCH. .
  • the mobile stations 3a to 3c receiving the broadcast information can receive the group TA value of the group 4a and perform transmission timing control according to the group TA value.
  • the operation of operation AJ is the same as the operation of operation AJ in the third embodiment.
  • the base station 2 assigns a new group ID to the group members 3a to 3c.
  • the MAC control unit 102 receives information related to the group from the group generation unit 118, and assigns group IDs to the mobile stations 3a to 3c belonging to the same group 4a.
  • the base station 2 transmits the assigned group ID to the mobile stations 3a to 3c belonging to the group 4.
  • the MAC control unit 102 outputs the group ID to the packet generation unit 103 as MAC-CE control information.
  • the radio resource control unit 101 assigns a group ID on the PDSCH radio resource.
  • the operations BE and BF are the same as the operations BE and BF in the third embodiment.
  • the base station 2 transmits the group ID and the group TA value as broadcast information.
  • the MAC control unit 102 outputs the group TA value and the group ID generated in S62 to the packet generation unit 103 as broadcast information.
  • the MAC control unit 102 outputs group IDs and group TA values for the number of generated groups.
  • the radio resource control unit 101 allocates radio resources to the group TA value.
  • the radio resource control unit 101 generates control information associated with SI-RNTI, and includes resource allocation information of broadcast information in this control information. As shown in FIG. 14A, the radio resource control unit 101 assigns SI-RNTI and control information accompanying the SI-RNTI onto the PDCCH radio resource. Moreover, the radio
  • the operations BH and BI are the same as the operations BH and BI in the third embodiment.
  • FIG. 15 is an explanatory diagram of an operation example of the mobile station 3.
  • the mobile station 3 determines whether there is a group ID assignment. Whether or not a group ID is assigned can be determined, for example, based on whether or not the control information processing unit 207 has received (or entered) a group ID transmitted as MAC-CE control information. If there is a group ID assignment (operation DA: Y), the operation proceeds to operation DB. If the group ID is not assigned (operation DA: N), the operation proceeds to operation DD.
  • the mobile station 3 receives the group TA value notified by the broadcast information.
  • the control channel demodulation unit 206 receives the control information transmitted by the PDCCH, extracts the SI-RNTI, and when it matches the SI-RNTI assigned to the own station in advance, the control channel demodulator 206 Extract information.
  • Control channel demodulation section 206 reads the broadcast information resource allocation information included in the control information associated with SI-RNTI, and outputs this resource allocation information to demodulation section 204 and decoding section 205.
  • the mobile station 3 can extract broadcast information allocated on the PDSCH radio resource. Then, for example, the control information processing unit 207 reads the group ID and the group TA value from the broadcast information, finds the group ID that matches the group ID assigned to the mobile station 3 from the broadcast information, and the group corresponding to this group ID Extract TA values. The extracted group TA value is output to the transmission timing control unit 215, for example, and transmission timing control is performed.
  • the operations of operations DC to DE are the same as the operations of operations CC to CE in FIG.
  • the observation signal transmitted by the representative mobile station 3 is shared for transmission timing control for a plurality of mobile stations 3 belonging to the same group. For this reason, the overhead of the control signal in the uplink communication link is reduced as compared with the case where each group of mobile stations 3 transmits an observation signal. Further, power consumption of mobile stations 3 other than the representative mobile station 3 is reduced.
  • transmission timing control can be performed collectively for a plurality of mobile stations 3 belonging to the same group.
  • the group TA value can be transmitted by one radio resource block for each group in the PDCCH. Therefore, it is possible to reduce the consumption of radio resources in the PDCCH as compared with the case where the TA value is individually transmitted for each mobile station 3.
  • the group TA value is transmitted as a paging channel.
  • the paging channel is a channel that is transmitted when an event for the mobile station 3 occurs, for example, when a call reception addressed to the mobile station 3 occurs. Further, the paging channel is also a channel broadcasted from the base station 2, for example.
  • the group TA value is transmitted using a part of the broadcast information transmitted through the paging channel. Since the broadcast information is transmitted on the paging channel more frequently than on the SIB, the sixth embodiment can increase the number of times transmission timing control is performed as compared with the fifth embodiment.
  • FIG. 16A and (B) of FIG. 16 are diagrams each showing assignment of radio resources to broadcast information by a group ID and a paging channel. As shown in FIG. 16A, the assigned group ID is transmitted as the MAC-CE control information using the PDSCH radio resource.
  • P-RNTI Paging (-RNTI) and control information associated with P-RNTI are allocated on the PDCCH radio resource, and broadcast by the paging channel on the PDSCH radio resource. Information is assigned to each.
  • the P-RNTI is an identifier of broadcast information transmitted through the paging channel, for example, and is assumed to be assigned to the mobile station 3 and held in advance. Then, the mobile station 3 extracts the resource allocation information from the control information accompanying the P-RNTI when the held P-RNTI matches the received P-RNTI.
  • the mobile station 3 can receive broadcast information by the paging channel assigned to the PDSCH radio resource from the extracted resource assignment information.
  • the broadcast information includes a group ID and a group TA value, and includes a plurality of sets when a plurality of groups are generated.
  • Example of overall operation> An example of the overall operation of the communication system 1 will be described with reference to FIG.
  • the operations AA to AC are the same as the operations AA to AC in the third embodiment.
  • the operation AD is the same as the operation AD in the fifth embodiment.
  • the operations AE to AH are the same as the operations AE to AH in the third embodiment.
  • the base station 2 broadcasts the group TA value and the assigned group ID as broadcast information through the paging channel. For example, when receiving the notification about the generation of the group TA value from the MAC control unit 102, the radio resource control unit 101 extracts the transmission destination of the group TA value from the previously transmitted P-RNTI. Then, the radio resource control unit 101 allocates the P-RNTI to the PDCCH, the group ID, and the group TA value on the PDSCH radio resource.
  • the radio resource control unit 101 generates control information accompanying the P-RNTI, and includes the resource allocation information of the group TA value in the control information.
  • Radio resource control section 101 outputs the P-RNTI and control information to multiplexing section 107, and the group ID and group TA value to packet generation section 103, respectively.
  • radio resource allocation as shown in FIG. 16B is performed, and the group ID and the group TA value are transmitted to the mobile station 3.
  • the operation of operation AJ is the same as the operation of operation AJ in the third embodiment.
  • the operation of the base station 2 will be described with reference to FIG.
  • the operations BA and BB are the same as the operations BA and BB in the third embodiment.
  • the operations BC and BD are the same as the operations BC and BD in the fifth embodiment.
  • the operations BE and BF are the same as the operations BE and BF in the third embodiment.
  • the base station 2 transmits the group ID and the group TA value as broadcast information through the paging channel.
  • the MAC control unit 102 outputs the group TA value and the group ID generated in S62 to the packet generation unit 103 as broadcast information.
  • the radio resource control unit 101 assigns radio resources to the group TA value.
  • the radio resource control unit 101 generates control information accompanying the P-RNTI, and includes the resource allocation information of broadcast information in this control information.
  • the radio resource control unit 101 allocates P-RNTI and control information accompanying the P-RNTI onto the PDCCH radio resource.
  • wireless resource control part 101 allocates group ID and group TA value which are transmitted as alerting
  • Radio resource control section 101 outputs control information associated with P-RNTI and P-RNTI to multiplexing section 107. Thereby, for example, broadcast information is broadcast to the mobile station 3.
  • the operations BH and BI are the same as the operations BH and BI in the third embodiment.
  • the operation of the base station 2 will be described with reference to FIG.
  • the operation DA is the same as the operation DA in the fifth embodiment.
  • the mobile station 3 receives the group TA value and the group ID notified as broadcast information through the paging channel.
  • control channel demodulation unit 206 when the control channel demodulation unit 206 receives the P-RNTI, when the P-RNTI matches the held P-RNTI, the control channel demodulation unit 206 recognizes that the P-RNTI is addressed to the own station, Accompanying control information is extracted. Then, control channel demodulation section 206 extracts broadcast information allocation information broadcast on the paging channel from the control information, and outputs the information to demodulation section 204 and decoding section 205.
  • the demodulating unit 204 and the decoding unit 205 demodulate and decode the broadcast information transmitted through the paging channel, and output the demodulated information to the control information processing unit 207 as broadcast information.
  • the control information processing unit 207 extracts a group ID that matches the group ID assigned to the mobile station 3 from the broadcast information, and reads a group TA value corresponding to this group ID from the broadcast information. Then, the group TA value is output to the transmission timing control unit 215, and transmission timing control is performed.
  • the operations of operations DC to DE are the same as the operations of operations CC to CE in FIG.
  • the observation signal transmitted by the representative mobile station 3 is shared for transmission timing control for a plurality of mobile stations 3 belonging to the same group. For this reason, the overhead of the control signal in the uplink communication link is reduced as compared with the case where each group of mobile stations 3 transmits an observation signal. Further, power consumption of mobile stations 3 other than the representative mobile station 3 is reduced.
  • transmission timing control can be performed collectively for a plurality of mobile stations 3 belonging to the same group.
  • the group TA value can be transmitted by one radio resource block for each group in the PDCCH. Therefore, it is possible to reduce the consumption of radio resources in the PDCCH as compared with the case where the TA value is individually transmitted for each mobile station 3.
  • transmission timing control can be performed with a frequency higher than that of the fifth embodiment.
  • the C-RNTI of the representative mobile station 3a is notified to the mobile stations 3a to 3c of the group 4a.
  • the mobile stations 3b and 3c in the group 4a other than the representative mobile station 3a receive the TA value transmitted from the base station 2 to the representative mobile station 3a using the C-RNTI of the representative mobile station 3a.
  • the mobile stations 3b and 3c perform transmission timing control with the TA value of the representative mobile station 3a.
  • FIG. 17A and (B) in FIG. 17 are diagrams showing the allocation of radio resources to the C-RNTI and TA values, respectively.
  • the C-RNTI of the representative mobile station 3a is transmitted as RRC control information using the radio resources of the PDSCH.
  • C-RNTI and control information associated with C-RNTI are allocated on the PDCCH radio resource. Further, the TA value of the representative mobile station 3a is transmitted as MAC-CE control information using PDSCH radio resources.
  • the representative mobile station 3a extracts TA value resource assignment information from the control information associated with the C-RNTI.
  • the mobile stations 3b and 3c other than the representative mobile station 3a accompany the C-RNTI when the C-RNTI of the representative mobile station 3a received as the RRC control information matches the C-RNTI received by the PDCCH radio resource.
  • TA value resource allocation information is extracted from the control information.
  • the mobile station 3 can receive the TA value assigned to the radio resource of the PDSCH from the extracted resource assignment information.
  • FIG. 18 is a sequence diagram illustrating an overall operation example of the communication system 1. Operations EA to ED are the same as the operations AA to AC and AE in FIG.
  • the base station 2 transmits the C-RNTI of the representative mobile station 3a to the mobile stations 3a to 3c as the identifier of the representative mobile station 3a.
  • the base station 2 transmits the allocated C-RNTI to the mobile station 3 as RRC control information using, for example, a radio resource of the PDSCH channel.
  • the mobile station 3a that has received the C-RNTI of the local station determines that the local station is the representative mobile station 3a.
  • the control information processing unit 207 of the mobile station 3a determines that the local station is the representative mobile station 3a when receiving the C-RNTI of the local station.
  • the representative mobile station 3a transmits an observation signal.
  • the control information processing unit 207 causes the pilot generation unit 217 to repeatedly generate a pilot signal as an observation signal.
  • the control information processing unit 207 generates a pilot signal in the pilot generation unit 217 at any time before the expiration of the TA timer of the base station 2 that detects uplink synchronization loss.
  • the control information processing unit 207 may generate a pilot signal in the pilot generation unit 217 at a cycle shorter than a period from when the TA timer is reset until it expires.
  • the pilot signal is multiplexed with the uplink signal by the multiplexing unit 211 and transmitted to the base station 2.
  • the base station 2 measures the TA value of the representative mobile station 3a based on the observation signal.
  • the base station 2 transmits the TA value to the representative mobile station 3a.
  • the mobile stations 3a to 3c receive the TA value addressed by the C-RNTI of the representative mobile station 3a.
  • the representative mobile station 3a extracts control information associated with its own C-RNTI from the PDCCH, and receives the TA value assigned to the radio resource of the PDSCH based on the resource assignment information included in the control information.
  • the mobile stations 3b and 3c extract control information accompanying the C-RNTI of the representative mobile station 3a received as the RRC control information from the PDCCH, and receive the TA value based on the resource allocation information included in the control information.
  • the operation EI is the same as the operation AJ in FIG.
  • FIG. 19 is an explanatory diagram of an operation example of the base station 2.
  • Operations FA to FD are the same as operations BA to BC and BE in FIG.
  • the base station 2 transmits the C-RNTI of the representative mobile station 3a to the mobile stations 3a to 3c as the identifier of the representative mobile station 3a.
  • the radio resource control unit 101 outputs the C-RNTI of the representative mobile station 3a to the packet generation unit 103 as RRC control information.
  • the C-RNTI is transmitted to the mobile stations 3a to 3c belonging to the same group 4a.
  • the base station 2 transmits the TA value of the representative mobile station 3a.
  • the MAC control unit 102 receives the TA value of the representative mobile station 3 a calculated by the TA value calculation unit 117 via the group generation unit 118 and the radio resource control unit 101.
  • the radio resource control unit 101 allocates radio resources to the TA value.
  • the radio resource control unit 101 generates control information associated with C-RNTI, and includes the resource allocation information of the TA value in this control information.
  • Radio resource control section 101 sets a mobile station-specific search space on the PDCCH radio resource, and allocates radio resources in this search space to C-RNTI and control information associated with C-RNTI.
  • the radio resource control unit 101 allocates the TA value on the PDSCH radio resource.
  • Radio resource control section 101 outputs C-RNTI and control information associated with C-RNTI to multiplexing section 107.
  • Operations FG and FH are the same as operations BH and BI in FIG.
  • FIG. 20 is an explanatory diagram of an operation example of the mobile station 3.
  • the mobile station 3 determines whether or not the C-RNTI of the representative mobile station 3a has been received as RRC control information.
  • the control information processing unit 207 can determine whether the C-RNTI of the representative mobile station 3a has been extracted from the output of the decoding unit 205.
  • operation GA: Y When C-RNTI is received (operation GA: Y), the operation proceeds to operation GB. If there is no C-RNTI assignment (operation GA: N), the operation proceeds to operation GD.
  • the mobile station 3 receives the group TA value addressed by C-RNTI.
  • the control channel demodulation unit 206 of the representative mobile station 3a determines whether or not the C-RNTI received through the control channel such as PDCCH matches the C-RNTI of the own station. When it is determined that they match, for example, the control channel demodulation unit 206 extracts TA value resource allocation information from the control information attached to the received C-RNTI, and decodes this resource allocation information with the demodulation unit 204. The data is output to the unit 205.
  • the representative mobile station 3a can demodulate and decode the TA value addressed by C-RNTI and transmitted by PDSCH.
  • the control channel demodulation unit 206 of the mobile stations 3b and 2c other than the representative mobile station 3a receives the C-RNTI received through the control channel such as PDCCH, and the C-RNTI of the representative mobile station 3a received from the control information processing unit 207. It is determined whether or not they match. When it is determined that they match, for example, the control channel demodulation unit 206 extracts the resource allocation information of the TA value of the representative mobile station 3a from the control information accompanying the received C-RNTI, and uses this resource allocation information. The data is output to the demodulation unit 204 and the decoding unit 205.
  • the mobile stations 3b and 3c can demodulate and decode the TA value addressed by C-RNTI and transmitted by the PDSCH. In operation GC, the mobile station 3 performs transmission timing control using the received TA value.
  • the operations GD and GE are the same as the operations CD and CE in FIG.
  • the observation signal transmitted by the representative mobile station 3 is shared for transmission timing control for a plurality of mobile stations 3 belonging to the same group. For this reason, the overhead of the control signal in the uplink communication link is reduced as compared with the case where each group of mobile stations 3 transmits an observation signal. Further, power consumption of mobile stations 3 other than the representative mobile station 3 is reduced.
  • transmission timing control can be performed collectively for a plurality of mobile stations 3 belonging to the same group.
  • the group TA value can be transmitted by one radio resource block for each group in the PDCCH. Therefore, it is possible to reduce the consumption of radio resources in the PDCCH as compared with the case where the TA value is individually transmitted for each mobile station 3.
  • FIG. 21 is an explanatory diagram of an example of the hardware configuration of the base station 2.
  • the base station 2 includes a CPU (Central Processing Unit) 150, a memory 151, an LSI (Large Scale Integration) 152, radio communication circuits 153 and 154, a transmission antenna 110, and a reception antenna 111.
  • the memory 151 may include a non-volatile memory, a read only memory (ROM), a random access memory (RAM), and the like for storing computer programs and data.
  • the LSI (Large Scale Integration) 152 may include an FPGA (Field-Programming Gate Array), an ASIC (Application Specific Integrated Circuit), a DSP (Digital Signal Processing), and the like.
  • the wireless communication circuit 153 may include a digital / analog conversion circuit, a frequency conversion circuit, and the like.
  • the wireless communication circuit 154 may include an analog / digital conversion circuit, a frequency conversion circuit, and the like.
  • the above-described operations of the wireless processing unit 109 and the wireless processing unit 112 of the base station 2 illustrated in FIG. 4 are executed by, for example, the wireless communication circuits 153 and 154.
  • the above operations of the radio resource control unit 101, the MAC control unit 102, the packet generation unit 103, the MAC scheduling unit 104, the encoding unit 105, the modulation unit 106, the multiplexing unit 107, and the IFFT unit 108 are performed by the CPU 150 and the LSI 152 in cooperation. Is executed.
  • the above operations of the FFT unit 113, the demodulation unit 114, the decoding unit 115, the RLC unit 116, the TA value calculation unit 117, the group generation unit 118, the specification unit 119, and the instruction signal generation unit 120 are performed by the CPU 150 and the LSI 152 cooperating. It is executed by.
  • FIG. 22 is an explanatory diagram of an example of the hardware configuration of the mobile station 3.
  • the mobile station 3 includes a CPU 250, a memory 251, an LSI 252, wireless communication circuits 253 and 254, and an antenna 201.
  • the memory 151 may include a non-volatile memory, a read-only memory, and a random access memory for storing computer programs and data.
  • the LSI 152 may include an FPGA, an ASIC, a DSP, and the like.
  • the wireless communication circuit 253 may include an analog / digital conversion circuit, a frequency conversion circuit, and the like.
  • the wireless communication circuit 254 may include a digital / analog conversion circuit, a frequency conversion circuit, and the like.
  • the above-described operations of the wireless processing unit 202 and the wireless processing unit 216 in FIG. 4 are executed by the wireless communication circuits 153 and 154, for example.
  • the CPU 250 and the LSI 252 cooperate in the above operations of the FFT unit 203, demodulation unit 204, decoding unit 205, control channel demodulation unit 206, control information processing unit 207, data processing unit 208, multiplexing unit 209, and symbol mapping unit 210. Is executed.
  • the operations of the multiplexing unit 211, the FFT unit 212, the frequency mapping unit 213, the IFFT unit 214, the transmission timing control unit 215, the pilot generation unit 217, and the preamble generation unit 218 are executed by the cooperation of the CPU 250 and the LSI 252. .
  • FIGS. 21 and 22 are merely an example for explaining the embodiment. Any other hardware configuration may be employed for the base station 2 and the mobile station 3 described in the present specification as long as the operations described below are executed.
  • FIGS. 2 to 5 mainly illustrate configurations related to the functions of the base station 2 and the mobile station 3 described in this specification.
  • the base station 2 and the mobile station 3 may include other components other than the illustrated components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局装置2は、移動局装置3をグループ化するグループ生成部(10、118)と、グループ生成部(10、118)により生成されたグループのうち第1移動局装置(3a)から送信される観測信号の受信タイミングに基づいて、上りリンクの送信タイミングのタイミング補正量を計算する補正量計算部(12、117)と、第1移動局装置(3a)から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量を、グループのうち第1移動局装置と異なる第2移動局装置(3b)における上りリンクの送信タイミングの補正量として送信する補正量送信部(13、101、102、107~110)を備える。

Description

基地局装置、移動局装置、通信システム及び通信方法
 本明細書で論じられる実施態様は、基地局装置、移動局装置、通信システム及び通信方法に関する。
 現在、携帯電話システムや無線LAN(Local Area Network)などの無線通信システムが広く利用されている。また、無線通信の分野では、通信速度や通信容量を更に向上させるべく次世代の通信技術について継続的な議論が行われている。次世代の通信技術として、例えばLTE(Long Term Evolution)やLTE-Advancedなどの標準化が完了若しくは検討されている。
 LTEやLTE-Advancedでは、基地局装置から移動局装置への下りリンク通信の変調方式としてOFDM(Orthogonal Frequency Division Multiplexing: 直交周波数分割多重)方式が採用されている。OFDM方式は、例えば、周波数帯域を多数の周波数帯域又はサブキャリアに分割し、直交する各周波数帯域に情報データなどをマッピングさせる通信方式である。
 一方、移動局装置から基地局装置への上りリンク通信の変調方式として、SC-FDMA(Single-Carrier Frequency-Division Multiple Access: 単一キャリア周波数分割多元接続)方式が採用されている。SC-FDMA方式は、例えば、周波数帯域を分割し、複数の移動局装置間で異なる周波数帯域を用いて送信する通信方式である。SC-FDMA方式は、OFDM方式と比較して、単一キャリア伝送であることからPAPR(Peak to Average Power Ratio: ピーク対平均電力比)を低くすることができる。そのため、SC-FDMA方式はCDMA方式と比較して、増幅器の消費電力を低くすることができ、移動局装置全体の消費電力も削減することができる。
 SC-FDMA方式では、例えば、受信側である基地局装置において波形等化処理が行われることで、無線チャネルにおける伝搬歪みを抑制することができる。そして、例えば、移動局装置は、送信信号に周期的にCP(Cyclic Prefix)を挿入することで、基地局装置において周波数領域での波形等化処理を行うことが可能となる。また、CPの挿入により、基地局装置における周波数領域での演算処理量は、時間領域よりも小さくさせることもできる。しかし、各受信信号のタイミング差がCP長よりも大きい場合、例えば、受信信号間で直交性が保てなくなり、信号間で干渉が発生し、各受信信号のタイミング差がCP長以内の場合と比較して受信品質が低下する。そこで、送信局装置では、受信信号のタイミングずれを防止するため、各移動局装置に対して送信タイミング制御を行っている。
 図23は送信タイミング制御の動作例を表すフローチャートである。移動局装置UE(User Equipment)が基地局装置eNB(evolved Node B)に対して、データ信号またはパイロット信号(Sounding Reference Signal: SRS)を送信する(S110)。基地局装置eNBは、送信フレームと、データ信号などによる受信フレームのフレームタイミング差を測定し(S111)、測定値を送信タイミング補正量NTAとし、この送信タイミング補正量NTAを制御信号としてフィードバックする(S112)。
 図24では、基地局装置eNBのフレームタイミング(下りリンク送信タイミング)と、移動局装置UEのフレームタイミング(上りリンク送信タイミング)との差の例を示す図である。基地局装置eNBからの制御信号を受信した移動局装置UEは、送信タイミング補正量NTAに固定値NTAoffsetを加算して、更に固定値Tsを乗算した時間分だけ、移動局装置UE自身の把握するフレームタイミングよりも早く送信する。これにより、基地局eNBは、フレームタイミングに同期したタイミングで移動局装置UEから送信されたデータ信号などを受信することができる。
3GPP TS 36.211 V9.1.0 3GPP TS 36.212 V9.1.0 3GPP TS 36.213 V9.1.0 3GPP TS 36.913 3GPP TS 36.814
 基地局装置に接続する移動局装置の数が増加すると、送信タイミング補正量の測定に使用する上り通信リンクの信号の送信数が増え制御信号のオーバヘッドが増加する恐れがある。本明細書に開示される装置又は方法は、移動局装置の増加数に伴って発生する送信タイミング制御のための制御信号のオーバヘッドの増加を緩和することを目的とする。
 装置の一観点によれば基地局装置が与えられる。基地局装置は、移動局装置をグループ化するグループ生成部と、グループ生成部により生成されたグループのうち第1移動局装置から送信される観測信号の受信タイミングに基づいて、上りリンクの送信タイミングのタイミング補正量を計算する補正量計算部と、第1移動局装置から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量を、グループのうち第1移動局装置と異なる第2移動局装置における上りリンクの送信タイミングの補正量として送信する補正量送信部を備える。
 装置の他の一観点によれば移動局装置が与えられる。移動局装置は、移動局装置と異なる第2移動局装置から送信される観測信号を基地局装置が受信した受信タイミングに基づいて計算されたタイミング補正量を受信する補正量受信部と、受信されたタイミング補正量に基づいて、上りリンクの送信タイミングを制御する送信タイミング制御部を備える。
 装置の他の一観点によれば移動局装置と基地局装置を備える通信システムが与えられる。通信システムは、移動局装置をグループ化するグループ生成部と、グループ生成部により生成されたグループのうち第1移動局装置から送信される観測信号を基地局装置が受信する受信タイミングに基づいて、上りリンクの送信タイミングのタイミング補正量を計算する補正量計算部と、第1移動局装置から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量を、グループのうち第1移動局装置と異なる第2移動局装置における上りリンクの送信タイミングの補正量として送信する補正量送信部を備える。
 方法の一観点によれば通信方法が与えられる。通信方法は、移動局装置をグループ化することと、移動局装置のグループのうち第1移動局装置から送信される観測信号を基地局装置が受信する受信タイミングに基づいて、上りリンクの送信タイミングのタイミング補正量を計算することと、第1移動局装置から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量を、グループのうち第1移動局装置と異なる第2移動局装置における上りリンクの送信タイミングの補正量として送信する、ことを含む。
 本明細書に開示される装置又は方法によれば、移動局装置の増加数に伴って発生する送信タイミング制御のための制御信号のオーバヘッドの増加が緩和される。
 本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
図1は、通信システムの構成例の説明図である。 基地局装置及び移動局装置の第1例の機能構成図である。 基地局装置及び移動局装置の第2例の機能構成図である。 基地局装置の第3例の機能構成図である。 移動局装置の第3例の機能構成図である。 TA値の分布例を表すグラフである。 通信システムの全体動作例を示すシーケンス図である。 基地局装置の動作例の説明図である。 (A)及び(B)は無線リソースの割り当て例を夫々表す図である。 移動局装置の動作例の説明図である。 一括して送信タイミング制御が行われている様子の例を表す図である。 TA値の時間変動量ΔTAの分布例を表すグラフである。 報知情報の構成例の一部を表す図である。 (A)及び(B)は無線リソースの割当て例を夫々表す図である。 移動局装置の動作例の説明図である。 (A)及び(B)は無線リソースの割当て例を夫々表す図である。 (A)及び(B)は無線リソースの割当て例を夫々表す図である。 通信システムの全体動作例を示すシーケンス図である。 基地局装置の動作例の説明図である。 移動局装置の動作例の説明図である。 基地局装置のハードウエア構成の一例の説明図である。 移動局装置のハードウエア構成の一例の説明図である。 送信タイミング制御の動作例を表すシーケンス図である。 受信フレームと送信フレームとのフレームタイミングの差の例を表す図である。
 <1.第1実施例>
 <1.1.通信システムの構成例>
 以下、添付される図面を参照して、好ましい実施例について説明する。図1は、通信システムの構成例の説明図である。通信システム1は、基地局装置2と移動局装置3a~3fを備える。以下の説明及び添付する図面において、基地局装置及び移動局装置をそれぞれ「基地局」及び「移動局」と表記することがある。また、移動局3a~3fを総称して「移動局3」と表記することがある。
 基地局2は、移動局3と無線接続して無線通信を行う無線通信装置である。また、基地局2は、1又は複数のセル範囲内において移動局3に対して音声通信や映像配信など種々のサービスを提供できる。さらに、基地局2は、移動局3の送信タイミングを制御することができる。
 移動局3は、基地局2と無線接続して無線通信を行う無線通信装置である。移動局3は、例えば携帯電話機や情報携帯端末装置などであってよい。移動局3は、基地局2からデータ信号などを受信し、基地局2へデータ信号などを送信することができる。本明細書において、基地局2から移動局3への通信リンクは下り通信リンク(DL: Down Link)、移動局3から基地局2への通信リンクは上り通信リンク(UL: Up Link)と表記することがある。
 基地局2は、移動局3a~3fをグループ化する。例えば図1に示すように、基地局2は、移動局3a~3cを含むグループ4aと、移動局3d及び3eを含むグループ4bを形成する。移動局3fは、いずれのグループにも属さない移動局である。以下の説明及び添付する図面において、いずれのグループにも属さない移動局を「非メンバ移動局」と表記することがある。
 基地局2は、グループ毎に共通の送信タイミング補正量を定めて、グループに属する移動局3に送信する。グループに属する移動局3は、このグループについて定められた送信タイミング補正量に従って、基地局2に送信する無線信号の送信タイミングを制御する。
 <1.2.機能構成>
 図2は、基地局2及び移動局3の第1例の機能構成図である。基地局2は、グループ生成部10と、受信部11と、補正量計算部12と、送信部13を備える。移動局3aは、観測信号送信部20と、受信部21と、送信タイミング制御部22を備える。移動局3b及び3cの構成は移動局3aと同様であってよい。
 グループ生成部10は、同一の送信タイミング補正量で制御可能な複数の移動局3a~3cをグループ化する。受信部11は、同じグループのいずれかの移動局3aから送信された観測信号を受信する。補正量計算部12は、観測信号の受信タイミングに基づいて送信タイミング補正量を計算する。送信部13は、移動局3aから送信された観測信号に基づいて計算された送信タイミング補正量を、グループ化した複数の移動局装置3a~3cに送信する。
 移動局3aの観測信号送信部20は、基地局2に観測信号を送信する。移動局3bの受信部21は、移動局3aから送信された観測信号に基づいて計算された送信タイミング補正量を、基地局2から受信する。送信タイミング制御部22は、受信した送信タイミング補正量に従って、基地局2に送信する無線信号の送信タイミングを制御する。移動局3a及び3cも移動局3bと同様に動作する。
 <1.3.効果>
 基地局2は、グループ化した複数の移動局3のうちのいずれかの移動局3aから送信された観測信号の送信タイミングに基づいて、グループで共通に使用される送信タイミング補正量を決定する。このためグループの移動局3が各々観測信号を送信する場合と比較して、上り通信リンクにおける制御信号のオーバヘッドが低減される。観測信号を送信しない移動局3b及び3cは、送信タイミング補正量の計算に使用される観測信号を送信しなくても送信タイミング補正量を受け取ることができ、上り通信リンクの同期を維持することができる。
 また、観測信号を送信する移動局3が低減されるため移動局3の消費電力も低減される。なお、観測信号を送信する移動局3の数は必ずしも1台でなくともよく、グループに属する移動局3の総数より少なければよい。
 M2M(Machine to Machine)通信のように移動局数が多い通信形態において、移動局3が送信する上り通信リンクにおける制御信号のオーバヘッドの増大を軽減することができる。また、M2M通信では移動局3の移動速度が小さいため形成済みのグループが持続し易い。このため、グループ内で同じ観測信号を共通に使用することで、上り通信リンクの送信タイミング制御のための制御信号のオーバヘッドを効率良く低減することができる。
 <2.第2実施例>
 次に、通信システム1の他の実施例について説明する。図3は、基地局2及び移動局3の第2例の機能構成図である。図2に示す構成要素と同様の構成要素には図2で使用した参照符号と同じ参照符号を付し同一の機能については説明を省略する。
 基地局2は、指定部14と、指示信号生成部15を備える。指定部14は、グループ生成部10が生成したグループ毎に、グループに属するいずれかの移動局3を指定する。指示信号生成部15は、指定部14により指定された移動局3に観測信号を送信させる指示信号を生成する。送信部13は指示信号を送信する。
 指示信号は、例えば、移動局3に対して、指定部14により指定された移動局3aを知らせる移動局3aの識別子であってよい。他の例の指示信号は、指定部14により指定された移動局3a宛に個別に送信され、移動局3aに観測信号を送信させる命令信号であってもよい。移動局3aの受信部21が指示信号を受信する。移動局3aの観測信号送信部20は、指示信号に応じて観測信号を送信する。
 本実施例によれば、観測信号を送信させる移動局3aを基地局2が明示的に指定するため、他の移動局3b及び3cは、送信タイミング補正量の計算のための観測信号の送信を停止することができる。このためグループの移動局3が各々観測信号を送信する場合と比較して、ULにおける制御信号のオーバヘッドが低減される。また、観測信号を送信しない移動局3b及び3cの消費電力も低減される。
 <3.第3実施例>
 <3.1.機能構成>
 次に、通信システム1の他の実施例について説明する。図4は、基地局2の第3例の機能構成図である。基地局2は、無線リソース制御部101、MAC(Media Access Control)制御部102、パケット生成部103、MACスケジューリング部104、符号化部105、変調部106、多重部107を備える。基地局2は、IFFT(Inverse Fast Fourier Transform)部108、無線処理部109、送信アンテナ110、受信アンテナ111、無線処理部112、FFT部113、復調部114、復号部115、RLC(Radio Link Control)部116を備える。基地局2は、TA(Timing Advance)値計算部117、グループ生成部118、指定部119及び指示信号生成部120を備える。
 なお、グループ生成部118は、図2及び図3のグループ生成部10の一例である。TA値計算部117は補正量計算部12の一例である。無線リソース制御部101、MAC制御部102、多重部107、IFFT部108、無線処理部109及び送信アンテナ110は、送信部13の一例である。受信アンテナ111、無線処理部112、FFT部1113は、受信部11の一例である。指定部119及び指示信号生成部120は、指定部14及び指示信号生成部15の一例である。
 無線リソース制御部101は、移動局3の下りリンク通信や上りリンク通信に対する無線リソース(例えば周波数と時間など)の割り当てを行う。また、無線リソース制御部101は、各種RNTI(Radio Network Temporary ID)の割り当てを行う。例えば、無線リソース制御部101は、グループ生成部118から出力されたグループに関する情報に基づいて、グループ生成部118が生成したグループにG-RNTI(Group - RNTI)を割り当てる。G-RNTIは、例えば、同一グループに属する複数の移動局3に割り当てる送信タイミング制御用のRNTIであり、グループ生成部118が生成したグループを識別するグループ識別子の一例である。G-RNTIの詳細は後述する。
 なお、無線リソース制御部101は、割り当てた無線リソースに関するリソース割当情報などをMAC制御部102に出力する。また、無線リソース制御部101は、例えば、生成したG-RNTIをRRC(Radio Resource Control)制御情報としてパケット生成部103に出力する。この場合、G-RNTIは、PDSCH(Physical Downlink Shared Channel)チャネルを用いて移動局3に送信される。更に、無線リソース制御部101は、報知情報やページング情報を生成し、パケット生成部103に出力することができる。報知情報やページング情報については第5実施例及び第6実施例で説明する。
 MAC制御部102は、無線リソース制御部101から出力されたリソース割当情報に基づいて個別制御情報を生成し、多重部107へ出力する。個別制御情報は、例えば、PDCCH(Physical Downlink Control Channel)チャネルなどの制御チャネルを利用して制御信号として移動局3に送信される。
 また、MAC制御部102は、ランダムアクセス手順において移動局3から送信されたランダムアクセスプリアンブルを、FFT部113から受信する。MAC制御部102は、ランダムアクセス手順において定められた移動局3への送信メッセージを多重部107に出力する。
 また、MAC制御部102は、無線リソース制御部101から出力されたG-RNTIを受け取る場合があり、かかる場合、G-RNTIを個別制御情報として多重部107に出力することができる。さらに、MAC制御部102は、グループ生成部118で生成されたグループに関する情報を、無線リソース制御部101を介して受け取ることもでき、かかる情報を受けたとき、グループTA値を生成してTAコマンドを生成することができる。グループTA値は、例えば、同一グループに属する複数の移動局3に与えるTA値である。その詳細については後述する。
 また、MAC制御部102は、指示信号生成部120で生成された指示信号を、無線リソース制御部101を介して受け取ることもできる。指示信号は、例えば、各グループに属する移動局3のうちグループを代表する代表移動局を指定する信号である。無線リソース制御部101は、指示信号をパケット生成部103に出力する。
 パケット生成部103は、ユーザデータや各種制御情報、グループTA値、指示信号などを入力し、送信パケットを生成する。送信パケットは、ユーザデータなどを含み、例えばPDSCHチャネルを用いて送信される。パケット生成部103は、生成したパケットをMACスケジューリング部104に出力する。
 MACスケジューリング部104は、MAC制御部102から出力されたリソース割当情報に基づいて、ユーザデータなどをスケジューリングする。例えば、MACスケジューリング部104は、PDSCHやPUSCHなどの共有チャネルの無線リソース上にユーザデータなどを割り当てるなどして、スケジューリングを行う。MACスケジューリング部104は、スケジューリングした送信パケットを符号化部105に出力する。
 符号化部105は、パケット内のユーザデータや制御情報などに対して誤り訂正符号化を行う。誤り訂正符号化の符号化方式や符号化率などは無線リソース制御部101が生成したリソース割当情報に含まれており、例えば、符号化部105は無線リソース制御部101からかかる情報を受け取って誤り訂正符号化を行うことができる。符号化部105は、誤り訂正符号化を行ったパケットを変調部106に出力する。
 変調部106は、誤り訂正符号化されたパケット内のユーザデータや各制御情報などに対して、QPSK(Quadrature Phase Shift Keying)や16QAM(Quadrature Amplitude Modulation)などの変調処理を行う。変調方式についてもリソース割当情報に含まれており、変調部106は無線リソース制御部101からリソース割当情報を受け取って変調処理を行うことができる。変調部106は変調後のパケットを多重部107に出力する。
 多重部107は、変調部106からの出力と、パイロット信号、個別制御情報及びランダムアクセス手順用の送信メッセージを多重化し、多重化した多重化情報をIFFT部108に出力する。なお、パイロット信号には、例えば、基地局2と移動局3とで既知のプリアンブルパターンが用いられる。
 IFFT部108は、多重化信号に対して逆高速フーリエ変換処理を行い、周波数領域の多重化信号を時間領域の多重化信号に変換し、時間領域の多重化信号を無線処理部109に出力する。無線処理部109は、ベースバンド帯域の多重化信号を無線帯域の無線信号に変換して出力する。送信アンテナ110は、無線処理部109から出力された無線信号を移動局3に送信する。これにより、ユーザデータや個別制御情報などが夫々データ信号や制御信号として移動局3に送信される。
 一方、受信アンテナ111は移動局3から送信された無線信号を受信する。無線処理部112は、受信アンテナ111で受信した無線帯域の無線信号をベースバンド帯域の受信信号に変換する。
 FFT部113は、無線処理部112から出力された受信信号に対して、高速フーリエ変換を行うことで、時間領域の受信信号を周波数領域の受信信号に変換する。FFT部113は、高速フーリエ変換後の受信信号を復調部114とTA値計算部117に出力する。
 復調部114は、受信信号に対して復調処理を行う。復調方式は、移動局3が送信した無線信号に対する変調方式に対応しており、例えば、無線リソース制御部101によるリソース割当情報に従う。例えば、復調部114は、無線リソース制御部101からリソース割当情報を受け取り、このリソース割当情報に従って復調を行うことができる。
 復号部115は、復調された受信信号に対して誤り訂正復号化を行う。誤り訂正復号の復号方式や符号化率についても、例えば、無線リソース制御部101から受け取ったリソース割当情報に従って行われる。RLC部116は、復号後の受信信号からユーザデータなどを抽出する。抽出されたユーザデータは、上位制御装置への送信など、他の処理部に出力される。
 TA値計算部117は、FFT部113から出力された受信信号から、移動局3から送信された観測信号を抽出し、観測信号の受信タイミングに基づいて移動局3のTA(Timing Advance)値を計算する。観測信号は、例えば、パイロット信号や、データ信号や、コンテンションフリーランダムアクセスプリアンブルや、スケジューリング要求信号などであってよい。例えばパイロット信号はSRS信号であってよい。スケジューリング要求信号は、上り送信データが発生した場合に、基地局2にスケジューリングを依頼するために移動局3から送信される信号である。
 TA値は、例えば基地局2における送信フレームのフレームタイミングと、受信した無線フレームのフレームタイミングとの差を表す値である。TA値計算部117は、移動局3から受信した上りリンクの無線フレームタイミングと基地局2の送信フレームタイミングとの差を演算することで、移動局3のTA値を測定する。複数の移動局3があれば、TA値計算部117は複数のTA値を測定する。例えば、TA値計算部117は計算したTA値をタイミング補正量NTAとしてグループ生成部118に出力する。グループ生成部118は、複数のTA値を受け取り、TA値が一定の範囲内にある移動局3をグループ化してグループを生成する。
 図6は、TA値の分布例を示すグラフであり、縦軸は移動局数、横軸はTA値を夫々表している。図6に示すように、TA値がある値のところでは移動局3の数が他よりも多くなっているところがある。例えば、電車内に複数の移動局3がある場合、各移動局3のフレームタイミングはその誤差量が一定の範囲内にあるため、例えば図6に示すような分布となる。
 グループ生成部118は、例えば、このようにTA値が一定の範囲内にある移動局3を1つのグループとしてグループ化する。又は、グループ生成部118は、例えば、同一の送信タイミング制御量で制御可能な複数の移動局3をグループとしてグループ化している。図6の例では、グループ生成部118は「グループ1」と「グループ2」とを生成している。
 グループ生成部118は、グループを生成すると、例えば、グループの識別情報とグループに属する移動局3の識別情報とをグループに関する情報として内部メモリに保持したり、無線リソース制御部101を介してMAC制御部102に出力できる。また、グループ生成部118は、グループに関する情報を指定部119へ出力する。なお、移動局3の識別情報は、例えば、移動局3から受信した受信信号に含まれている場合や、無線リソース制御部101が割り当てたRNTIなどの識別情報に基づいて移動局3の識別情報とする場合などがある。
 指定部119は、グループ生成部118から受信したグループに関する情報に基づいて、各グループに属する移動局3のうちグループを代表する代表移動局を指定する。例えば指定部119は、グループに属する複数の移動局3から代表移動局として選択する移動局を時間的に順次変更してもよい。後述の通り、代表移動局は観測信号を送信するため他の移動局よりも消費電力が大きくなるが、このように代表移動局を変更することによって電力消費の増大を複数の移動局3の間で分散することができる。
 また指定部119は、上り通信リンクのスケジューリング要求信号を送信した移動局3を、スケジューリング要求信号の送信後の一定期間、代表移動局として指定してもよい。基地局2は、スケジューリング要求信号によってTA値を求めることができるため、スケジューリング要求信号を送信した移動局3が代表移動局になることで、他の移動局から別の観測信号を送信する必要がなくなる。以下の説明では、移動局3aが代表移動局に指定された場合を想定する。
 指示信号生成部120は、指定部119により指定された移動局3aに観測信号を送信させる指示信号として、移動局3aの移動局識別子を生成する。指示信号により指定された代表移動局3aは、指示信号を受信すると、反復的に観測信号を基地局2に送信することによって、基地局2が継続的にTA値を計算することを可能にする。
 次に移動局3について説明する。図5に表されるように移動局3は、アンテナ201と、無線処理部202、FFT部203、復調部204、復号部205、制御チャネル復調部206、制御情報処理部207を備える。移動局3は、データ処理部208、多重部209、シンボルマッピング部210、多重部211、FFT部212、周波数マッピング部213、IFFT部214、送信タイミング制御部215、無線処理部216を備える。また、移動局3は、パイロット生成部217及びプリアンブル生成部218を備える。
 なお、アンテナ201、無線処理部202、FFT部203、復調部204、復号部205及び制御情報処理部207は、図2及び図3の受信部21の一例である。送信タイミング制御部215は、送信タイミング制御部22の一例である。パイロット生成部217、プリアンブル生成部218、多重部211、FFT部212、周波数マッピング部213、IFFT部214、送信タイミング制御部215、無線処理部216及びアンテナ201は、観測信号送信部20の一例である。
 アンテナ201は、基地局2から送信された無線信号を受信して無線処理部202に出力する。また、アンテナ201は無線処理部216から出力された無線信号を基地局2に送信することもできる。無線処理部202は、アンテナ201で受信した無線信号をベースバンド帯域の受信信号に変換して出力する。
 FFT部203は、無線処理部202から出力された受信信号に対して高速フーリエ変換を行うことで、時間領域の受信信号を周波数領域の受信信号に変換する。復調部204は、FFT部203から出力された受信信号に対して復調処理を行う。復調処理の方式は、例えば、PDCCHなどを利用して受信したリソース割当情報に含まれており、そのため、復調部204は制御チャネル復調部206から出力されたリソース割当情報に従って復調処理を行う。
 復号部205は、復調後の受信信号に対して誤り訂正復号化を行う。誤り訂正復号化を行うときの復号方式と符号化率などは、制御チャネル復調部206から出力されたリソース割当情報に従うことになる。復号部205は、誤り訂正復号化により、誤り訂正符号化前のユーザデータやRRC制御情報などの各種制御情報などを復号することができる。
 制御チャネル復調部206は、PDCCHなどの制御チャネルを利用して送信された制御信号を復調する。復調後の制御情報には、例えば、リソース割当情報などが含まれており、制御チャネル復調部206は復調部204と復号部205にリソース割当情報を出力する。また、制御チャネル復調部206は、制御情報処理部207から出力されたG-RNTIが、制御チャネルで送信されたG-RNTIと一致するかを判別し、一致するとき、G-RNTIに付随する制御情報からリソース割当情報を抽出することができる。抽出したリソース割当情報は復調部204と復号部205に出力されることで、移動局3は自局あてのグループTA値や、指示信号として受信された代表移動局3aの移動局識別子を復調及び復号することができる。詳細は後述する。
 制御情報処理部207は、復号部205の出力から各種制御情報を抽出する。例えば、制御情報処理部207は、復調及び復号されたRRC制御情報からG-RNTIを抽出し、抽出したG-RNTIを制御チャネル復調部206に出力する。制御情報処理部207は、例えば、復号部205の出力からグループTA値を抽出し、送信タイミング制御部215に出力することもできる。制御情報処理部207は、例えば、復号部205の出力から指示信号として受信された代表移動局3aの移動局識別子を抽出し、パイロット生成部217に出力することもできる。
 また、制御情報処理部207は、ランダムアクセス手順において定められた基地局2への送信メッセージを多重部209に出力する。プリアンブル生成部218は、コンテンションベースランダムプリアンブル及びコンテンションフリーランダムアクセスプリアンブルを生成し、多重部211に入力する。
 移動局識別子によりこの移動局3が代表移動局3aとして指定されている場合には、パイロット生成部217は、観測信号としてのパイロット信号を反復的に生成し、多重部211に入力してもよい。例えば、パイロット生成部217は、上りリンク同期外れを検出する基地局2のTAタイマの満了前のいずれかの時期にパイロット信号を生成する。例えば、パイロット生成部217は、TAタイマがリセットされてから満了するまでの期間よりも短い周期で、パイロット信号を生成してもよい。
 なお、代表移動局3aが反復的に又は周期的に送信する観測信号は、パイロット信号以外の信号であってもよい。代表移動局3aは反復的に又は周期的にダミーのユーザデータが生成し、このデータを送信するためのスケジューリング要求信号を観測信号としてもよい。
 データ処理部208は、ユーザデータに対して圧縮符号化などの各種処理を行う。処理後のデータは多重部209に出力される。多重部209は、データ処理部208から出力されるユーザデータ、各種制御情報及びランダムアクセス手順用の送信メッセージを多重化する。制御情報は、例えばRRC制御情報やMAC-CE(Medium Access Control -Control Element)制御情報であってよい。多重部209は多重化された多重化信号をシンボルマッピング部210に出力する。
 シンボルマッピング部210は、多重化信号に対して、QPSKや16QAMなどの変調処理を行う。変調方式は、リソース割当情報として基地局2において指定されているため、例えば、シンボルマッピング部210は制御チャネル復調部206からリソース割当情報を受け取って変調処理を行うことができる。
 多重部211は、シンボルマッピング部210からの出力信号、パイロット信号及びランダムアクセスプリアンブルを多重化して多重化信号として出力する。パイロット信号には、例えば、移動局3と基地局2とで既知のプリアンブルパターンが含まれている。FFT部212は、多重部211から出力された多重化信号に対して高速フーリエ変換を行うことで、時間領域の多重化信号を周波数領域の多重化信号に変換する。
 周波数マッピング部213は、FFT部212から出力された周波数領域の多重化信号に対して、所定の周波数帯域にマッピングする処理を行う。例えば、周波数マッピング部213は、移動局3に割り当てられた周波数帯域に対して多重化信号をマッピングし、それ以外の周波数帯域に「0」をマッピングするなどの処理を行う。このような処理は、例えば、サブキャリアマッピングと呼ばれることもある。移動局3に割り当てられた周波数波は、例えば、リソース割当情報に含まれ、周波数マッピング部213は制御チャネル復調部206からリソース割当情報を受け取ることができる。周波数マッピング部213は、マッピングされた多重化信号を含む信号をIFFT部214に出力する。
 IFFT部214は、周波数マッピング部213からの出力信号に対して、逆高速フーリエ変換処理を行うことで、周波数領域の出力信号を時間領域の出力信号に変換する。送信タイミング制御部215は、IFFT部214からの出力信号に対して、無線処理部216に出力するタイミングを制御することで、移動局3から送信される無線信号の送信タイミングを制御する。送信タイミング制御部215は、制御情報処理部207から出力されたグループTA値を受け取り、例えば以下の式を計算することで、送信タイミングを決定する。
 (NTA+NTAoffset)・Ts   (1)
 数(1)は、例えば図24に示す送信タイミングに対応する。送信タイミング制御部215は、例えば、自局の送信タイミングより、数(1)で計算した計算したタイミング分早くIFFT部214からの出力信号を無線処理部216に出力する。自局の送信タイミングは、例えば、制御チャネル復調部206で復調したリソース割当情報に含まれているため、送信タイミング制御部215はこの情報を利用して自局の送信タイミングとすることができる。
 数(1)において、グループTA値が数(1)の「NTA」に対応し、送信タイミング制御部215の内部メモリに「NTAoffset」及び「Ts」が保持され、送信タイミング制御部215は固定値を適宜読み出して処理を行うことができる。
 無線処理部216は、送信タイミング制御部215から出力された出力信号に対して、無線帯域の無線信号に変換する。無線処理部216から出力された無線信号は、例えば、シングルキャリア信号としてアンテナ201を介して基地局2に送信される。
 <3.2.全体動作>
 次に通信システム1や基地局2、及び移動局3の動作例について夫々説明する。最初に全体動作例を説明し、次に基地局2と移動局3の動作例について夫々説明することにする。
 図7は通信システム1の全体動作例を示すシーケンス図である。オペレーションAAにおいて、移動局3と基地局2は各々ランダムアクセス手順を実行する。オペレーションABにおいて基地局2は、ランダムアクセス手順で受信したメッセージ、又はその後に移動局3から受信したデータ又はパイロット信号に基づいて移動局3のTA値を測定する。例えば、TA値計算部117がTA値を測定する。基地局2は、測定したTA値をタイミング補正量NTAとする。
 オペレーションACにおいて基地局2は、測定したTA値からグループを生成する。例えば、グループ生成部118は、一定の範囲内にあるTA値を有する移動局3どうしをグループ化する。また基地局2は、必要に応じて既に形成されたグループの更新を行う。本例では、移動局3a~3cによりグループ4aが形成され、移動局3fが非メンバ移動局であると想定する。
 オペレーションADにおいて基地局2は、生成したグループに対してG-RNTIをグループ識別子として割り当て、割り当てたG-RNTIを移動局3に送信する。例えば、図6の例では、基地局2は、識別情報「グループ1」のグループに、「G-RNTI-1」などのG-RNTIを割り当てる。基地局2は、割り当てたG-RNTIを、例えばPDSCHチャネルの無線リソースを用いてRRC制御情報として移動局3に送信する。
 オペレーションAEにおいて基地局2は、各グループ毎に代表移動局を選択する。また基地局2は、必要に応じて以前に代表移動局が選択されたグループについて代表移動局の更新を行う。例えば、指定部119が代表移動局の選択又は更新を行う。本例では移動局3aが代表移動局として選択された場合を想定する。オペレーションAFにおいて基地局2は、代表移動局3aに指示信号を送信する。例えば、指示信号生成部120が指示信号を生成し、指示信号は、パケット生成部103により生成されるパケットに格納されて送信される。
 オペレーションAGにおいて代表移動局3aは、観測信号を送信する。例えば、パイロット生成部217は、パイロット信号を観測信号として生成し、パイロット信号は、多重部211により上りリンク信号に多重化されて基地局2に送信される。オペレーションAHにおいて基地局2は、観測信号に基づいて代表移動局3aのTA値を測定する。例えば、TA値計算部117がTA値を測定する。基地局2は、測定したTA値をタイミング補正量NTAとする。
 オペレーションAIにおいて基地局2は、G-RNTIが割り当てられた移動局3a~3cに対して、グループTA値として測定したTA値をマルチキャストで送信する。移動局3は、グループTA値を受信すると、数(1)を計算して送信タイミングを決定し、この送信タイミングでデータなどを送信する。これにより、基地局2では移動局3からのデータなどの受信タイミングをフレームタイミングに一致させることができ、例えば、各移動局3からのデータなどの受信タイミングの差がCP長以内となるようになる。従って、基地局2では受信タイミングのずれを防止し、受信品質を保つことができる。
 オペレーションAJにおいて、非メンバ移動局3fに対して個別TA値を生成して移動局3fに送信することで、非メンバ移動局3fの送信タイミング制御の補正を行う。なお、グループ4aに属する移動局3cの同期ずれがある閾値より大きくなった場合に、基地局2は、この移動局3cに対しても個別TA値を生成して移動局3cに送信することで、移動局3cの送信タイミング制御の補正を行う。グループ4a内の移動局3cに対しては、グループTA値により送信タイミングが行われるが、その後、グループTA値に基づいて送信タイミングが補正された移動局3cからの信号の受信フレームタイミングのずれが閾値より大きくなる場合がある。このような場合に基地局2は移動局3cに対して個別に送信タイミングの補正を行う。なお、更に同期ずれが継続する場合は、基地局2は移動局3cを他のグループに編入させるか、非メンバ移動局として個別に送信タイミング制御を行う。詳細は後述する。
 <3.3.基地局2の動作>
 次に基地局2の動作例について説明する。図8は基地局2の動作例の説明図である。基地局2は、以下のオペレーションBA~BIのループを繰り返す。オペレーションBAにおいて基地局2は、代表移動局3aから送信された観測信号に基づいてTA値を計算する。例えば、TA値計算部117がTA値を計算する。また基地局2は、前回のループのオペレーションBAから今回のループのオペレーションBAまでの間に観測信号を送信した、代表移動局3a以外の移動局3から送信された観測信号に基づいてTA値を計算する。
 オペレーションBBにおいて基地局2は、グループの生成を行う。例えば、グループ生成部118は、TA値計算部117からの各移動局3のTA値に基づいて、TA値が一定の範囲にある移動局3a~3cをグループ化してグループ4aを形成する。オペレーションBCにおいて基地局2はグループメンバ3a~3cに対するグループ識別子の新規割り当てを行う。本実施例ではグループ識別子としてG-RNTIを割り当てる。例えば、無線リソース制御部101は、グループ生成部118から出力されたグループに関する情報に基づいて、同一グループ4aに属する移動局3a~3cに対して同一のG-RNTIを新規に割り当てる。
 オペレーションBDにおいて基地局2は、新規に割り当てたG-RNTIを移動局3a~3cに送信する。例えば、無線リソース制御部101は、割り当てたG-RNTIをRRC制御情報としてパケット生成部103に出力する。これにより、新規に割り当てたG-RNTIは、同一のグループ4aに属する各移動局3a~3cに送信される。他のグループ4bが生成されていれば、基地局2は、他のグループ4bに対応する他のG-RNTIを更に新規に割り当てて送信することができる。
 図9の(A)は、G-RNTIに対する無線リソースの割り当て例を示す図である。縦軸は周波数領域、横軸は時間領域を表し、制御情報などはPDCCHの無線リソースを利用して制御信号として送信され、データなどはPDSCHの無線リソースを用いてデータ信号などとして送信される。例えば、無線リソース制御部101は、PDSCHの無線リソース上にG-RNTIを割り当てることで、PDSCHのチャネルによりG-RNTIが送信されることになる。
 図8を参照する。オペレーションBEにおいて基地局2は、代表移動局3aを指定する。例えば、指定部119が代表移動局3aを指定する。オペレーションBFにおいて基地局2は、代表移動局3aから受信した観測信号に基づいてグループTA値を計算する。例えば、TA値計算部117がTA値を計算する。
 オペレーションBGにおいて基地局2は、グループTA値を移動局3a~3cにマルチキャストで送信する。例えば、MAC制御部102は、TA値計算部117で計算された代表移動局3aのTA値を、グループ生成部118と無線リソース制御部101を介してグループTA値として受け取る。MAC制御部102は、複数のグループが生成されたときは、制裁されたグループの個数分のグループTA値を計算する。なお、無線リソース制御部101は、例えば、MAC制御部102からグループTA値を計算したことを通知されたとき、グループTA値に対する無線リソースの割り当てを行う。
 図9の(B)はグループTA値の無線リソースの割り当て例を表す図である。無線リソース制御部101は、例えば、グループTA値の送信先のグループ4aを特定し、割り当て済みのG-RNTIの中からこのグループに対するG-RNTIを抽出する。また、無線リソース制御部101は、G-RNTIに付随する制御情報を生成し、この制御情報にグループTA値のリソース割当情報を含ませるようにする。G-RNTIとG-RNTIに付随する制御情報とは、グループTA値の送信に付随する制御信号の一例である。
 無線リソース制御部101は、PDCCHの無線リソース上にグループ固有のサーチスペースを設定し、このサーチスペース内の無線リソースをG-RNTI及びG-RNTIに付随する制御情報に割り当てる。無線リソース制御部101は、グループTA値をPDSCHの無線リソース上に割り当てる。無線リソース制御部101は、抽出したG-RNTIとG-RNTIに付随する制御情報とを多重部107に出力する。これにより、例えば、図9の(B)で表すような無線リソースによりグループTA値が移動局3に送信される。
 図9の(B)の無線リソースの割り当て例に着目すると、PDCCHに割り当てられたG-RNTI及び制御情報は、同一グループ4a内における複数の移動局3a~3c宛のものであり、1つの無線リソース(又は無線リソースブロック)により共有できる。例えば、G-RNTI及び制御情報は、1つの無線リソースブロックにより共有できる。
 また、グループTA値が割り当てられたPDSCHの無線リソースも、複数の移動局3a~3cで共有して使用される無線リソースである。よって、無線リソース制御部101は、グループTA値に対して、複数の移動局3a~3c毎に異なる無線リソースを割り当てるのではなく、グループ単位で共通の無線リソースを割り当てることができる。これにより、基地局2は、グループ内の各移動局3にマルチキャストでグループTA値を送信することができる。
 図8に戻り、オペレーションBHにおいて基地局2は、非メンバ移動局3fに対して、個別TA値を送信する。またグループ4aの移動局3cの同期ずれがある閾値より大きくなった場合に、基地局2は移動局3cに対しても個別TA値を送信する。
 本処理では、非メンバ移動局3fに対する個別TA値の送信と、グループ4aに帰属しながら個別に補正が行われる移動局3cに対する個別TA値の送信の2つの処理がある。非メンバ移動局3fに対しては、基地局2はC-RNTI(Cell-Radio Network Temporary ID)を用いて個別TA値を送信するようにする。個別TA値は、例えば、TA値計算部117が個々の移動局3毎に個々に計算されたTA値のことである。グループ4aに帰属する移動局3cに対しては、MAC制御部102は、例えば移動局3cのTA値とグループTA値とのずれが個別補正閾値より大きいとき、移動局3cの個別補正を行うことを決定する。
 オペレーションBIにおいてMAN制御部102は、非メンバ移動局3fのTA値や移動局3cのTA値を個別TA値としてパケット生成部103に出力し、無線リソース制御部101は、個別TA値の送信を行うよう無線リソースの割り当てを行う。
 例えば、無線リソース制御部101は、個別TA値をPDSCHのチャネルにより送信されるよう、個別TA値に対する無線リソースの割り当てを行い、個別TA値をパケット生成部103に出力する。この場合の個別TA値も、例えば、PDSCHを利用して送信されるが、個別TA値の無線リソース上のリソース割当情報は、C-RNTIに付随する制御情報に含まれる。例えば、無線リソース制御部101は、この制御情報とC-RNTIを生成して、PDCCHを利用して送信されるよう制御情報とC-RNTIとを多重部107に出力する。その後に動作はオペレーションBAに戻り、基地局2は上述の処理を繰り返す。
 なお、基地局2は、グループ4aに属する移動局3cに対して個別補正を行った後、同期ずれが継続する移動局3cに対しては割り当てたグループ4aから削除して別のグループに編入させるか、C-RNTIによる個別制御を行う。
 そのため、例えば、オペレーションBAで移動局3cのTA値が計算され、移動局3cのTA値とグループTA値とのずれが個別補正閾値より大きい場合、オペレーションBBで基地局2は移動局3cをグループメンバから削除する。例えば、グループ生成部118は、移動局3cのTA値とグループTA値とのずれが個別補正閾値より大きければ、移動局3cをグループメンバから削除する。また、グループ生成部118は、移動局3cのTA値が他のグループ4bのグループTA値に対して一定範囲内に含まれるか否かを判別し、含まれる場合は移動局3cを他のグループ4bに編入させる。
 グループ生成部118は、移動局3cのTA値がどのグループの範囲内にも含まれない場合、移動局3cを非メンバ移動局にする。このようにオペレーションBBでグループが更新された場合には、グループ生成部118は更新したグループに関する情報及び非メンバ移動局に関する情報をMAC制御部102に出力する。
 オペレーションBCにおいてMAC制御部102は、更新されたグループに基づいてG-RNTIを割り当てる。これにより更新されたグループメンバに対して、変更されたG-RNTIが割り当てられることになる。なお、MAC制御部102は、例えば、非メンバ移動局3fに対して個別の送信タイミング制御を行うべく、計算したTA値を多重部107に出力する。例えば、無線リソース制御部101は、C-RNTIに付随する制御情報を生成し、この制御情報にPDCCHの無線リソース上に割り当てられた個別TA値のリソース割当情報を含ませるようにする。これにより、無線リソース制御部101は、PDCCHの無線リソースを利用して、個別TA値を送信することができる。
 <3.4.移動局3の動作>
 次に移動局3の動作例について説明する。図10は移動局3の動作例を示すフローチャートである。図10に表された処理は、例えば、移動局3がデータ信号又はパイロット信号を基地局2に送信した後など、基地局2との間で、無線信号の送信が行われているときに行われるものとする。
 オペレーションCAにおいて移動局3は、G-RNTIの割り当てがあるか否かを判別する。例えば制御情報処理部207が、復号部205の出力からG-RNTIを抽出できたか否かにより判別できる。この場合、G-RNTIは、例えばPDSCHを利用して受信したものである。G-RNTIの割り当てがある場合(オペレーションCA:Y)に動作はオペレーションCBへ進む。G-RNTIの割り当てがない場合(オペレーションCA:N)に動作はオペレーションCDへ進む。
 オペレーションCBにおいて移動局3は、G-RNTIでアドレッシングされたグループTA値を受信する。例えば、制御チャネル復調部206はPDCCHなどの制御チャネルにより受信したG-RNTIを受信し、制御情報処理部207から受け取ったG-RNTIと一致しているか否かを判別する。そして、例えば、制御チャネル復調部206は、一致していると判別したとき、受信したG-RNTIに付随した制御情報から、グループTA値のリソース割当情報を抽出し、このリソース割当情報を復調部204と復号部205に出力する。これにより、移動局3は、G-RNTIでアドレッシングされて、PDSCHにより送信されたグループTA値を復調及び復号することができる。
 オペレーションCCにおいて移動局3は、受信したグループTA値で送信タイミング制御を行う。例えば、制御情報処理部207は復調及び復号されたグループTA値を送信タイミング制御部215に出力し、送信タイミング制御部215はグループTA値に従って数(1)を計算する。送信タイミング制御部215は、例えば、数(1)の計算値分だけ自局の送信フレームタイミングより早めて、FFT処理後のデータなどを無線処理部216に出力する。
 オペレーションCDにおいて移動局3は、C-RNTIでアドレッシングされた個別TA値を受信する。例えば、制御チャネル復調部206は自局宛のC-RNTIを受信すると、C-RNTIに付随する制御情報から個別TA値のリソース割当情報を抽出する。そして、制御チャネル復調部206は、抽出したリソース割当情報を復調部204と復号部205に出力する。これにより、移動局3宛の個別TA値が復調及び復号される。
 オペレーションCEにおいて、受信した個別TA値で受信タイミング制御を行う。例えば、制御情報処理部207は、復調及び復号された個別TA値を送信タイミング制御部215に出力し、送信タイミング制御部215では個別TA値をタイミング補正量NTAとして再び数(1)を計算し、送信タイミングを調整する。これにより、同期ずれが大きくなった移動局3cや非メンバ移動局3fの送信タイミングが制御され、基地局2における受信タイミングがフレームタイミングに同期することができる。その後に処理は再びオペレーションCAに移行して、移動局3は上述した動作を繰り返すことができる。
 なお、移動局3cにおいて同期ずれが継続する場合、基地局2から更新されたG-RNTIを受け取るか、又はC-RNTIによる個別制御が行われることになる。更新されたG-RNTIを受け取った場合、移動局3は再度オペレーションCAの動作を行う。
 一方、C-RNTIによる個別制御が行われる場合は、再度オペレーションCAの動作に移行して、オペレーションCAの判断が「N」になり、動作はオペレーションCDへ進む。オペレーションCDにおいて、移動局3はC-RNTIでアドレッシングされた個別TA値を受信することになるが、この場合、C-RNTIに付随する制御情報にはPDCCH上のリソース割当情報となっている。例えば、移動局3の制御チャネル復調部206はこのリソース割当情報に従ってPDCCHから個別TA値を復調し、制御情報処理部207を介して、送信タイミング制御部215に出力する。これにより、移動局3で個別TA値による個別の送信タイミング制御が行われる。
 <3.5.効果>
 第3実施例では、同一のグループ内に属する複数の移動局3に対する送信タイミング制御に、代表移動局3が送信した観測信号を共用する。このためグループの移動局3が各々観測信号を送信する場合と比較して上り通信リンクにおける制御信号のオーバヘッドが低減される。また代表移動局3以外の移動局3の消費電力が低減される。
 また、第3実施例の通信システム1では、同一のグループ内に属する複数の移動局3に対して、送信タイミング制御を一括で行うことができる。図11は一括で送信タイミング制御が行われている様子の例を表す図である。複数の移動局3が同じ電車内で配置されるとき、移動速度は同じであるため、基地局2で測定したTA値はそれぞれ一定の範囲内に存在する。基地局2は、このような複数の移動局3をグループ化して、同一のTA値(又はグループTA値)により一括して送信タイミング制御を行うようにしている。
 また、移動局3毎に個別に送信タイミング制御が行われる場合には、図8の(B)において点線で示すように、移動局3毎に個別に割り当てたPDCCHを利用してTAコマンドが送信される。この結果、PDCCHにおける複数の無線リソース(又は無線リソースブロック)が利用されることになる。
 しかし、第3実施例では、基地局2が複数の移動局3をグループ化又はグループ化しているため、グループTA値の送信単位はグループ単位であり、PDCCHにおいてグループ単位に1つの無線リソースが用いられる。このため、個別に送信タイミング制御が行われる場合と比較して、下り通信リンクの制御信号の送信によるオーバヘッドを削減することができる。
 <3.6.変形例>
 なお、基地局2から移動局3へ送信するグループTA値や個別TA値の値は、TA値そのものの値であってもよく、以前に送信したTA値との差分であってもよい。差分値が送信されることで、TA値そのものを送信する場合と比較して制御信号のオーバヘッドを削減することができる。グループTA値の場合、例えば、MAC制御部102は、以前に計算したグループTA値を保持し、TA値計算部117から受け取った代表移動局3aのTA値と保持したグループTA値との差分値を更に計算する。そして、MAC制御部102は、この差分値をグループTA値としてパケット生成部103に出力する。MAC制御部102では、例えば、以前に計算したグループTA値そのものの値などを内部メモリなどに記憶することができる。MAC制御部102は、個別TA値についても、同様に差分値を計算しパケット生成部103に出力してよい。
 他方、移動局3においても、制御情報処理部207は以前に計算したTA値そのものを保持しており、受信した差分値と加算又は減算することで、現在のTA値を得ることができ、これを送信タイミング制御部215に出力できる。以下の実施例についても、基地局2は、TA値そのものに代えて差分値を移動局3に送信してよい。
 <4.第4実施例>
 次に通信システム1の他の実施例について説明する。第3実施例では、例えば図5に表されるように、TA値に基づいて移動局3のグループ化が行われた。TA値はある各時刻における値であり、例えば、基地局2から等距離にあり移動速度が等しいバス内と電車内の各々に移動局3が配置されていれば、これらの移動局3のTA値は等しくなる。このような場合、バス内の複数の移動局3と電車内の複数の移動局3とで同じグループが割り当てられる。
 第4実施例では、TA値についてある一定期間における時間変動量ΔTAが一定範囲内にある複数の移動局3をグループ化することで、第2の実施の形態よりも細かい送信タイミング制御を行うことができ、基地局2における受信タイミングのずれを防止できる。
 図12は、TA値の時間変動量ΔTAの分布例を表すグラフであり、縦軸は移動局数、横軸は時間変動量ΔTAを表している。例えば、バスと電車では移動速度の変化量は、時間経過により大きく異なり、バス内と電車内の各移動局3の基地局2における受信タイミング誤差量も時間経過に伴って異なるものとなる。従って、例えば図12に示すように、バス内における複数の移動局3の時間変動量ΔTAはある範囲内にあり、電車内における複数の移動局3の時間変動量ΔTAは他の範囲内に分布することになる。
 時間変動量ΔTAは、例えば、基地局2における受信タイミング誤差の変化量と言うこともできる。図11の例では、バス内の複数の移動局3が「グループ1」としてグループ化され、電車内の複数の移動局3が「グループ2」としてグループ化される。そして、2つのグループで夫々一括して送信タイミング制御が行われる。これにより、例えばある時刻でTA値が近いが異なる移動速度で移動している移動局3を別個のグループに分けることが可能になり、時間経過によりTA値のずれが大きくなる移動局3に同じタイミング補正量が与えられるという問題を回避することができる。
 第4実施例では、図4に示すTA値計算部117がある一定時間TA値の計算をすることでTA値の時間変動量ΔTAを計算し、グループ生成部118が時間変動量ΔTAによりグループを生成することができる。また、図7のオペレーションACにおいて、基地局2はTA値の時間変動量ΔTAに基づいてグループの生成や更新を行う。
 また、図8のオペレーションBAにおいてTA値計算部117は、一定期間を隔てた複数時刻でそれぞれTA値を計算する。例えば、移動局3は無線フレーム毎に参照信号を送信するため、TA値計算部117は、1無線フレーム期間を隔てた複数時刻のTA値を測定する。
 TA値計算部117は、2つのTA値の差を計算することで、TA値の時間変動量ΔTAを計算する。例えば、TA値計算部117は、測定したTA値と1無線フレーム経過後のTA値との差を計算することで時間変動量ΔTAを得る。例えば、TA値計算部117は、1無線フレーム経過後のTA値ではなく、例えば複数フレーム時間経過後のTA値を用いてもよい。TA値計算部117は、1または複数シンボルタイミング、1又は複数スロットタイミング、或いは、最初に測定したTA値からの一定時間を測定して一定時間経過後のTA値を用いてもよい。
 オペレーションBBにおいてグループ生成部118は、TA値の時間変動量ΔTAからグループを生成する。例えば、TA値計算部117は計算した時間変動量ΔTAをグループ生成部118に出力し、グループ生成部118は時間変動量ΔTAが一定範囲内にある複数の移動局3をグループ化してグループを形成する。
 第4実施例においても、同一のグループ内に属する複数の移動局3に対する送信タイミング制御に、代表移動局3が送信した観測信号を共用する。このためグループの移動局3が各々観測信号を送信する場合と比較して、上り通信リンクにおける制御信号のオーバヘッドが低減される。また代表移動局3以外の移動局3の消費電力が低減される。
 また、同一のグループ内に属する複数の移動局3に対して、送信タイミング制御を一括で行うことができる。また、グループTA値は、PDCCHにおいてグループ単位に1つの無線リソースブロックにより送信することができる。従って、移動局3毎に個別にTA値を送信する場合と比較して、PDCCHにおける無線リソースの消費を少なくすることができる。
 <5.第5実施例>
 次に通信システム1の他の実施例について説明する。第3実施例及び第4実施例では、グループTA値がG-RNTIなどによりマルチキャストで送信された。第5実施例では、グループTA値が報知情報として送信される。
 図13は、報知情報の構成例の一部を表す図である。報知情報は、グループIDとグループTA値とを1つの組として、基地局2が生成したグループの個数分の組を含んでいる。グループIDは、グループ識別子の一例である。
 報知情報は、例えばSIB(System Information Block)単位で80ms以上の周期で基地局2から送信される。図14の(A)は報知情報に対する無線リソースの割り当て例を示す図である。図14の(A)の例では、SIBはPDSCHの無線リソース上に割り当てられ、SI-RNTI(System Information RNTI)は、PDCCHの無線リソース上に割り当てられている。移動局3では、予め割り当てられたSI-RNTIと一致するSI-RNTIをPDCCHの無線リソースから得たとき、SI-RNTIに付随した制御情報に含まれるSIBのリソース割当情報を抽出する。
 移動局3は、抽出したリソース割当情報に基づき、SIBに含まれる報知情報を受信し、報知情報からグループTA値を取得することができる。なお、移動局3に割り当てられるSI-RNTIは、例えば、基地局2が予め送信したものを受信したもので、制御チャネル復調部206の内部メモリなどに保持されている。SI-RNTIは、例えば、SIBによる送信された報知情報を移動局3において受信するための識別子である。
 <5.1.全体動作例>
 図7を参照して通信システム1の全体動作例を説明する。オペレーションAA~ACの動作は第3実施例におけるオペレーションAA~ACの動作と同様である。オペレーションADにおいて基地局2は、グループにグループIDを割り当てて、グループに属する各移動局3にグループIDを送信する。例えば、グループIDは、MAC-CE(Media Access Control - Control Element)制御情報として送信される。この場合、グループIDは、例えば図14の(B)に示すようにPDSCHの無線リソースを用いて送信される。
 オペレーションAE~AHの動作は第3実施例におけるオペレーションAE~AHの動作と同様である。オペレーションAIにおいて基地局2はグループTA値を報知情報として送信する。基地局2は、例えば、図14の(A)に示すようにPDCCHの無線リソース上にSI-RNTIを割り当てて、PDSCH上の無線リソース上にグループIDとクタスタTA値とを割り当てることで送信する。報知情報を受信した移動局3a~3cは、グループ4aのグループTA値を受信し、グループTA値に従って送信タイミング制御を行うことができる。オペレーションAJの動作は第3実施例におけるオペレーションAJの動作と同様である。
 <5.2.基地局2の動作>
 図8を参照して基地局2の動作を説明する。オペレーションBA及びBBの動作は第3実施例におけるオペレーションBA及びBBの動作と同様である。オペレーションBCにおいて基地局2は、グループメンバ3a~3cに対するグループIDの新規割り当てを行う。例えば、MAC制御部102は、グループ生成部118からグループに関する情報を受け取り、同一グループ4aに属する移動局3a~3cにグループIDを割り当てる。
 オペレーションBDにおいて基地局2は割り当てたグループIDをグループ4に属する各移動局3a~3cに送信する。例えば、MAC制御部102は、グループIDをMAC-CE制御情報としてパケット生成部103に出力する。また、無線リソース制御部101は、例えば、MAC制御部102からグループIDの割り当てについて通知を受けると、PDSCHの無線リソース上にグループIDを割り当てる。オペレーションBE及びBFの動作は第3実施例におけるオペレーションBE及びBFの動作と同様である。
 オペレーションBGにおいて基地局2は、グループIDとグループTA値とを報知情報として送信する。例えばMAC制御部102はグループTA値とS62で生成したグループIDとを報知情報としてパケット生成部103に出力する。MAC制御部102は、例えば、複数のグループを生成したときは、生成したグループの個数分のグループIDとグループTA値とを出力する。無線リソース制御部101は、例えば、MAC制御部102からグループTA値を計算したことを通知されたとき、グループTA値に対する無線リソースの割り当てを行う。
 無線リソース制御部101は、SI-RNTIに付随する制御情報を生成し、この制御情報に報知情報のリソース割当情報を含ませるようにする。無線リソース制御部101は、図14の(A)に示すように、SI-RNTIとSI-RNTIに付随する制御情報をPDCCHの無線リソース上に割り当てる。また、無線リソース制御部101は、報知情報として送信するグループIDとグループTA値とをPDSCHの無線リソース上に割り当てる。無線リソース制御部101は、SI-RNTIに付随する制御情報とSI-RNTIとを多重部107に出力する。これにより、例えば、報知情報が移動局3にブロードキャストで送信される。オペレーションBH及びBIの動作は第3実施例におけるオペレーションBH及びBIの動作と同様である。
 <5.3.移動局3の動作>
 図15は移動局3の動作例の説明図である。オペレーションDAにおいて移動局3は、グループIDの割り当てがあるか否かを判別する。グループIDの割り当ての有無は、例えば、制御情報処理部207がMAC-CE制御情報として送信されたグループIDを受信したか(又は入力したか)否かにより判別できる。グループIDの割り当てがある場合(オペレーションDA:Y)に動作はオペレーションDBへ進む。グループIDの割り当てがない場合(オペレーションDA:N)に動作はオペレーションDDへ進む。
 オペレーションDBにおいて移動局3は、報知情報で通知されたグループTA値を受信する。例えば、制御チャネル復調部206は、PDCCHにより送信された制御情報を受信し、SI-RNTIを抽出して、予め自局に割り当てられたSI-RNTIと一致するとき、SI-RNTIに付随する制御情報を抽出する。制御チャネル復調部206は、SI-RNTIに付随する制御情報に含まれる報知情報のリソース割当情報を読み出し、このリソース割当情報を復調部204及び復号部205に出力する。
 これにより、例えば、移動局3はPDSCHの無線リソース上に割り当てられた報知情報を抽出できる。そして、制御情報処理部207は、例えば、報知情報からグループIDとグループTA値を読み出し、移動局3に割り当てられたグループIDと一致するグループIDを報知情報から見つけ出し、このグループIDに対応するグループTA値を抽出する。抽出されたグループTA値は、例えば、送信タイミング制御部215に出力されて、送信タイミング制御が行われる。オペレーションDC~DEの動作は、図10のオペレーションCC~CEの動作と同様である。
 <5.4.効果>
 第5実施例においても、同一のグループ内に属する複数の移動局3に対する送信タイミング制御に、代表移動局3が送信した観測信号を共用する。このためグループの移動局3が各々観測信号を送信する場合と比較して、上り通信リンクにおける制御信号のオーバヘッドが低減される。また代表移動局3以外の移動局3の消費電力が低減される。
 また、同一のグループ内に属する複数の移動局3に対して、送信タイミング制御を一括で行うことができる。また、グループTA値は、PDCCHにおいてグループ単位に1つの無線リソースブロックにより送信することができる。従って、移動局3毎に個別にTA値を送信する場合と比較して、PDCCHにおける無線リソースの消費を少なくすることができる。
 <6.第6実施例>
 次に通信システム1の他の実施例について説明する。第6実施例では、グループTA値がページングチャネルとして送信される。ページングチャネルは、例えば、移動局3宛の呼着信が発生した場合など、移動局3に対するイベントが発生したときに送信されるチャネルである。また、ページングチャネルは、例えば、基地局2からブロードキャストで報知されるチャネルでもある。
 第6の実施の形態は、ページングチャネルにより送信される報知情報の一部を利用してグループTA値を送信する。ページングチャネルによる報知情報の送信は、SIBによる送信よりも頻繁に行われるため、第6実施例では第5実施例よりも、送信タイミング制御が行われる回数を増やすことができる。
 図16の(A)及び図16の(B)は、グループID及びページングチャネルによる報知情報に対する無線リソースの割り当てを夫々表す図である。図16の(A)に示すように、割り当てが行われたグループIDはMAC-CE制御情報としてPDSCHの無線リソースを利用して送信される。
 図16の(B)に表されるように、PDCCHの無線リソース上にP-RNTI(Paging - RNTI)とP-RNTIに付随する制御情報が割り当てられ、PDSCHの無線リソース上にページングチャネルによる報知情報が夫々割り当てられている。P-RNTIは、例えば、ページングチャネルにより送信される報知情報の識別子であり、移動局3に予め割り当てられて保持されているものとする。そして、移動局3では、保持したP-RNTIと受信したP-RNTIとが一致するとき、P-RNTIに付随する制御情報からリソース割当情報を抽出する。
 移動局3は、抽出したリソース割当情報から、PDSCHの無線リソースに割り当てられたページングチャネルによる報知情報を受信することができる。報知情報には、図13の例と同様に、グループIDとグループTA値が含まれ、複数のグループが生成されたときは複数の組が含まれる。
 <6.1.全体動作例>
 図7を参照して通信システム1の全体動作例を説明する。オペレーションAA~ACの動作は第3実施例におけるオペレーションAA~ACの動作と同様である。オペレーションADの動作は第5実施例におけるオペレーションADの動作と同様である。オペレーションAE~AHの動作は第3実施例におけるオペレーションAE~AHの動作と同様である。
 オペレーションAIにおいて基地局2は、グループTA値と割り当てたグループIDとをページングチャネルにより報知情報としてブロードキャストにより送信する。例えば、無線リソース制御部101は、MAC制御部102からグループTA値の生成についての通知を受けると、予め送信したP-RNTIの中からグループTA値の送信先を抽出する。そして、無線リソース制御部101は、P-RNTIをPDCCH、グループIDとグループTA値とをPDSCHの無線リソース上に夫々割り当てる。
 さらに、無線リソース制御部101は、例えば、P-RNTIに付随する制御情報を生成し、グループTA値のリソース割当情報を当該制御情報に含めるようにする。無線リソース制御部101は、P-RNTIと制御情報とを多重部107に、グループIDとグループTA値とをパケット生成部103に夫々出力する。これにより、例えば、図16の(B)に示すような無線リソースの割り当てが行われ、グループIDとグループTA値とが移動局3に送信される。オペレーションAJの動作は第3実施例におけるオペレーションAJの動作と同様である。
 <6.2.基地局2の動作>
 図8を参照して基地局2の動作を説明する。オペレーションBA及びBBの動作は第3実施例におけるオペレーションBA及びBBの動作と同様である。オペレーションBC及びBDの動作は第5実施例におけるオペレーションBC及びBDの動作と同様である。オペレーションBE及びBFの動作は第3実施例におけるオペレーションBE及びBFの動作と同様である。
 オペレーションBGにおいて基地局2は、グループIDとグループTA値とをページングチャネルにより報知情報として送信する。例えばMAC制御部102はグループTA値とS62で生成したグループIDとを報知情報としてパケット生成部103に出力する。無線リソース制御部101は、MAC制御部102からグループTA値を計算したことを通知されたとき、グループTA値に対する無線リソースの割り当てを行う。
 無線リソース制御部101は、P-RNTIに付随する制御情報を生成し、この制御情報に報知情報のリソース割当情報を含ませるようにする。無線リソース制御部101は、P-RNTIとP-RNTIに付随する制御情報をPDCCHの無線リソース上に割り当てる。また、無線リソース制御部101は、報知情報として送信するグループIDとグループTA値とをPDSCHの無線リソース上に割り当てる。無線リソース制御部101は、P-RNTIに付随する制御情報とP-RNTIとを多重部107に出力する。これにより、例えば、報知情報が移動局3にブロードキャストで送信される。オペレーションBH及びBIの動作は第3実施例におけるオペレーションBH及びBIの動作と同様である。
 <6.3.移動局3の動作>
 図15を参照して、基地局2の動作を説明する。オペレーションDAの動作は第5実施例におけるオペレーションDAの動作と同様である。オペレーションDBにおいて移動局3は、ページングチャネルにより報知情報として通知されたグループTA値とグループIDとを受信する。
 例えば、制御チャネル復調部206はP-RNTIを受信すると、当該P-RNTIと保持したP-RNTIとが一致するとき、自局宛のP-RNTIであることを認識し、このP-RNTIに付随する制御情報を抽出する。そして、制御チャネル復調部206は、制御情報からページングチャネルにより報知された報知情報の割当情報を抽出し、復調部204及び復号部205に出力する。
 復調部204及び復号部205は、ページングチャネルにより送信された報知情報を復調及び復号し、報知情報として制御情報処理部207に出力する。例えば、制御情報処理部207は、移動局3に割り当てられたグループIDと一致するグループIDを報知情報から抽出し、このグループIDに対応するグループTA値を報知情報から読み出す。そして、グループTA値は送信タイミング制御部215に出力され、送信タイミング制御が行われる。オペレーションDC~DEの動作は、図10のオペレーションCC~CEの動作と同様である。
 <6.4.効果>
 第6実施例においても、同一のグループ内に属する複数の移動局3に対する送信タイミング制御に、代表移動局3が送信した観測信号を共用する。このためグループの移動局3が各々観測信号を送信する場合と比較して、上り通信リンクにおける制御信号のオーバヘッドが低減される。また代表移動局3以外の移動局3の消費電力が低減される。
 また、同一のグループ内に属する複数の移動局3に対して、送信タイミング制御を一括で行うことができる。また、グループTA値は、PDCCHにおいてグループ単位に1つの無線リソースブロックにより送信することができる。従って、移動局3毎に個別にTA値を送信する場合と比較して、PDCCHにおける無線リソースの消費を少なくすることができる。
 また、ページングチャネルを使用することにより、第5実施例よりも高い頻度で送信タイミング制御を行うことができる。
 <7.第7実施例>
 次に通信システム1の他の実施例について説明する。第7実施例では、代表移動局3aのC-RNTIをグループ4aの移動局3a~3cに通知する。代表移動局3a以外の、グループ4aの移動局3b及び3cは、代表移動局3aのC-RNTIを用いて、基地局2が代表移動局3aに送信したTA値を受信する。移動局3b及び3cは、代表移動局3aのTA値で送信タイミング制御を行う。
 図17の(A)及び図17の(B)は、C-RNTI及びTA値に対する無線リソースの割り当てを夫々表す図である。図17の(A)に示すように、代表移動局3aのC-RNTIは、RRC制御情報としてPDSCHの無線リソースを利用して送信される。
 図17の(B)に表されるように、PDCCHの無線リソース上にC-RNTIとC-RNTIに付随する制御情報が割り当てられる。また、代表移動局3aのTA値は、MAC-CE制御情報としてPDSCHの無線リソースを利用して送信される。代表移動局3aは、代表移動局3aに割り当てられたC-RNTIと受信したC-RNTIとが一致するとき、C-RNTIに付随する制御情報からTA値のリソース割当情報を抽出する。代表移動局3a以外の移動局3b及び3cは、RRC制御情報として受信した代表移動局3aのC-RNTIとPDCCHの無線リソースで受信したC-RNTIとが一致するとき、C-RNTIに付随する制御情報からTA値のリソース割当情報を抽出する。移動局3は、抽出したリソース割当情報から、PDSCHの無線リソースに割り当てられたTA値を受信することができる。
 <7.1.全体動作例>
 図18は、通信システム1の全体動作例を示すシーケンス図である。オペレーションEA~EDの動作は、図7のオペレーションAA~AC及びAEの動作と同様である。
 オペレーションEEにおいて基地局2は、代表移動局3aのC-RNTIを、代表移動局3aの識別子として移動局3a~3cに送信する。基地局2は、割り当てたC-RNTIを、例えばPDSCHチャネルの無線リソースを用いてRRC制御情報として移動局3に送信する。自局のC-RNTIを受信した移動局3aは、自局が代表移動局3aであると判断する。例えば、移動局3aの制御情報処理部207は、自局のC-RNTIを受信した場合に、自局が代表移動局3aであると判断する。
 オペレーションEFにおいて代表移動局3aは、観測信号を送信する。例えば、制御情報処理部207は、パイロット生成部217に、パイロット信号を観測信号として反復的に生成させる。例えば、制御情報処理部207は、上りリンク同期外れを検出する基地局2のTAタイマの満了前のいずれかの時期に、パイロット生成部217にパイロット信号を生成する。制御情報処理部207は、例えば、TAタイマがリセットされてから満了するまでの期間よりも短い周期で、パイロット生成部217にパイロット信号を生成してもよい。パイロット信号は、多重部211により上りリンク信号に多重化されて基地局2に送信される。オペレーションEGにおいて基地局2は、観測信号に基づいて代表移動局3aのTA値を測定する。
 オペレーションEHにおいて基地局2は、代表移動局3aにTA値を送信する。移動局3a~3cは、代表移動局3aのC-RNTIでアドレッシングされたTA値を受信する。代表移動局3aは、自局のC-RNTIに付随する制御情報をPDCCH上から抽出し、制御情報に含まれるリソース割当情報に基づいてPDSCHの無線リソースに割り当てられたTA値を受信する。移動局3b及び3cは、RRC制御情報として受信した代表移動局3aのC-RNTIに付随する制御情報をPDCCH上から抽出し、制御情報に含まれるリソース割当情報に基づいてTA値を受信する。オペレーションEIの動作は、図7のオペレーションAJの動作と同様である。
 <7.2.基地局2の動作>
 図19は、基地局2の動作例の説明図である。オペレーションFA~FDは、図8のオペレーションBA~BC及びBEと同様である。オペレーションFEにおいて基地局2は、代表移動局3aの識別子として、代表移動局3aのC-RNTIを移動局3a~3cに送信する。例えば、無線リソース制御部101は、代表移動局3aのC-RNTIをRRC制御情報としてパケット生成部103に出力する。これにより、C-RNTIは、同一のグループ4aに属する各移動局3a~3cに送信される。
 オペレーションFFにおいて基地局2は、代表移動局3aのTA値を送信する。例えば、MAC制御部102は、TA値計算部117で計算された代表移動局3aのTA値を、グループ生成部118と無線リソース制御部101を介して受け取る。なお、無線リソース制御部101は、例えば、MAC制御部102からTA値を計算したことを通知されたとき、TA値に対する無線リソースの割り当てを行う。
 無線リソース制御部101は、例えば、C-RNTIに付随する制御情報を生成し、この制御情報にTA値のリソース割当情報を含ませるようにする。無線リソース制御部101は、PDCCHの無線リソース上に移動局固有のサーチスペースを設定し、このサーチスペース内の無線リソースをC-RNTI及びC-RNTIに付随する制御情報に割り当てる。無線リソース制御部101は、TA値をPDSCHの無線リソース上に割り当てる。無線リソース制御部101は、C-RNTIとC-RNTIに付随する制御情報とを多重部107に出力する。オペレーションFG及びFHの動作は図8のオペレーションBH及びBIと同様である。
 <7.3.移動局3の動作>
 図20は、移動局3の動作例の説明図である。オペレーションGAにおいて移動局3は、代表移動局3aのC-RNTIをRRC制御情報として受信したか否かを判別する。例えば制御情報処理部207が、復号部205の出力から代表移動局3aのC-RNTIを抽出できたか否かにより判別できる。C-RNTIの受信がある場合(オペレーションGA:Y)に動作はオペレーションGBへ進む。C-RNTIの割り当てがない場合(オペレーションGA:N)に動作はオペレーションGDへ進む。
 オペレーションGBにおいて移動局3は、C-RNTIでアドレッシングされたグループTA値を受信する。代表移動局3aの制御チャネル復調部206は、PDCCHなどの制御チャネルにより受信したC-RNTIと自局のC-RNTIと一致しているか否かを判断する。一致していると判別したとき、例えば、制御チャネル復調部206は、受信したC-RNTIに付随した制御情報から、TA値のリソース割当情報を抽出し、このリソース割当情報を復調部204と復号部205に出力する。代表移動局3aは、C-RNTIでアドレッシングされて、PDSCHにより送信されたTA値を復調及び復号することができる。
 代表移動局3a以外の移動局3b及び2cの制御チャネル復調部206はPDCCHなどの制御チャネルにより受信したC-RNTIを受信し、制御情報処理部207から受け取った代表移動局3aのC-RNTIと一致しているか否かを判別する。一致していると判別したとき、例えば、制御チャネル復調部206は、受信したC-RNTIに付随した制御情報から、代表移動局3aのTA値のリソース割当情報を抽出し、このリソース割当情報を復調部204と復号部205に出力する。移動局3b及び3cは、C-RNTIでアドレッシングされて、PDSCHにより送信されたTA値を復調及び復号することができる。オペレーションGCにおいて移動局3は、受信したTA値で送信タイミング制御を行う。オペレーションGD及びGEの動作は、図10のオペレーションCD及びCEの動作と同様である。
 <7.4.効果>
 第7実施例においても、同一のグループ内に属する複数の移動局3に対する送信タイミング制御に、代表移動局3が送信した観測信号を共用する。このためグループの移動局3が各々観測信号を送信する場合と比較して、上り通信リンクにおける制御信号のオーバヘッドが低減される。また代表移動局3以外の移動局3の消費電力が低減される。
 また、同一のグループ内に属する複数の移動局3に対して、送信タイミング制御を一括で行うことができる。また、グループTA値は、PDCCHにおいてグループ単位に1つの無線リソースブロックにより送信することができる。従って、移動局3毎に個別にTA値を送信する場合と比較して、PDCCHにおける無線リソースの消費を少なくすることができる。
 <8.ハードウエア構成>
 最後に、上記の基地局2及び移動局3を実現するハードウエア構成の一例について説明する。図21は基地局2のハードウエア構成の一例の説明図である。基地局2は、CPU(Central Processing Unit)150と、メモリ151と、LSI(Large Scale Integration)152と、無線通信回路153及び154と、送信アンテナ110と、受信アンテナ111を備える。メモリ151は、コンピュータプログラムやデータを記憶するための、不揮発性メモリや、読み出し専用メモリ(ROM: Read Only Memory)やランダムアクセスメモリ(RAM: Random Access Memory)等を含んでいてよい。LSI(Large Scale Integration)152は、FPGA(Field-Programming Gate Array)、ASIC(Application Specific Integrated Circuit)やDSP(Digital Signal Processing)等を含んでいてよい。無線通信回路153は、デジタル・アナログ変換回路や、周波数変換回路などを含んでいてよい。無線通信回路154は、アナログ・デジタル変換回路や、周波数変換回路などを含んでいてよい。
 図4に示す基地局2の無線処理部109及び無線処理部112の上記動作は、例えば、無線通信回路153及び154によって実行される。無線リソース制御部101、MAC制御部102、パケット生成部103、MACスケジューリング部104、符号化部105、変調部106、多重部107、IFFT部108の上記動作は、CPU150とLSI152とが協働することにより実行される。FFT部113、復調部114、復号部115、RLC部116、TA値計算部117、グループ生成部118、指定部119、指示信号生成部120の上記動作は、CPU150とLSI152とが協働することにより実行される。
 図22は移動局3のハードウエア構成の一例の説明図である。移動局3は、CPU250と、メモリ251と、LSI252と、無線通信回路253及び254と、アンテナ201を備える。メモリ151は、コンピュータプログラムやデータを記憶するための、不揮発性メモリや、読み出し専用メモリやランダムアクセスメモリを含んでいてよい。LSI152は、FPGA、ASICやDSP等を含んでいてよい。無線通信回路253は、アナログ・デジタル変換回路や、周波数変換回路などを含んでいてよい。無線通信回路254は、デジタル・アナログ変換回路や、周波数変換回路などを含んでいてよい。
 図4の無線処理部202及び無線処理部216の上記動作は、例えば、無線通信回路153及び154によって実行される。FFT部203、復調部204、復号部205、制御チャネル復調部206、制御情報処理部207、データ処理部208、多重部209、シンボルマッピング部210の上記動作は、CPU250とLSI252とが協働することにより実行される。多重部211、FFT部212、周波数マッピング部213、IFFT部214、送信タイミング制御部215、パイロット生成部217及びプリアンブル生成部218の上記動作は、CPU250とLSI252とが協働することにより実行される。
 なお、図21及び図22に示すハードウエア構成は実施例の説明のための例示にすぎない。以下に記載される動作を実行するものであれば、本明細書に記載される基地局2及び移動局3は他のどのようなハードウエア構成を採用してもよい。
 また、図2~5の機能構成図は、本明細書において説明される基地局2及び移動局3の機能に関係する構成を中心に示している。基地局2及び移動局3は、図示の構成要素以外の他の構成要素を含んでいてよい。
 図7、図8、図10、図15、図18~図20を参照して説明する一連の動作は複数の手順を含む方法と解釈してもよい。この場合に「オペレーション」を「ステップ」と読み替えてもよい。
 ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。
 1  通信システム
 2  基地局装置
 3a~3f  移動局装置
 10、118  グループ生成部
 12  補正量計算部
 14、119  指定部
 15、120  指示信号生成部
 20  観測信号送信部
 22、215  送信タイミング制御部
 117  TA値計算部
 217  パイロット生成部

Claims (15)

  1.  移動局装置をグループ化するグループ生成部と、
     前記グループ生成部により生成されたグループのうち第1移動局装置から送信される観測信号の受信タイミングに基づいて、上りリンクの送信タイミングのタイミング補正量を計算する補正量計算部と、
     第1移動局装置から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量を、前記グループのうち第1移動局装置と異なる第2移動局装置における上りリンクの送信タイミングの補正量として送信する補正量送信部と、
     を備えることを特徴とする基地局装置。
  2.  前記グループのうちいずれかの移動局装置を第1移動局装置として指定する指定部と、
     第1移動局装置に前記観測信号を送信させる指示信号を送信する指示信号送信部と、
     を備えることを特徴とする基地局装置。
  3.  前記グループを識別するグループ識別子を前記グループに属する移動局装置に送信するグループ識別子送信部を備え、
     前記補正量送信部は、第1移動局装置から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量の宛先を前記グループ識別子により指定する、
     ことを特徴とする請求項1又は2に記載の基地局装置。
  4.  第1移動局装置を識別する移動局識別子を前記グループに属する移動局装置に送信する移動局識別子送信部を備え、
     前記補正量送信部は、第1移動局装置から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量の宛先を前記移動局識別子により指定する、
     ことを特徴とする請求項1又は2に記載の基地局装置。
  5.  前記指定部は、第1移動局装置として指定する移動局装置を、前記グループに属する移動局装置の間で時間的に切り替えることを特徴とする請求項2に記載の基地局装置。
  6.  前記指定部は、上りリンクのスケジューリング要求を送信した移動局装置を第1移動局装置として指定することを特徴とする請求項2に記載の基地局装置。
  7.  第1移動局装置から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量の送信に付随する制御信号に、前記グループに固有に割り当てられたサーチスペースの無線リソースを割り当てるリソース制御部を備えることを特徴とする請求項1~6の何れか一項に記載の基地局装置。
  8.  前記グループ生成部は、移動局装置毎に算出した上りリンクの送信タイミングのタイミング補正量に応じて、移動局装置をグループ化することを特徴とする請求項1~7のいずれか一項に記載の基地局装置。
  9.  移動局装置であって、
     前記移動局装置と異なる第2移動局装置から送信される観測信号を基地局装置が受信した受信タイミングに基づいて計算されたタイミング補正量を受信する補正量受信部と、
     受信された前記タイミング補正量に基づいて、上りリンクの送信タイミングを制御する送信タイミング制御部と、
     を備えることを特徴とする移動局装置。
  10.  前記観測信号を前記移動局装置に送信させる指示信号を受信する指示信号受信部と、
     前記指示信号に応答し、前記指示信号を受信した場合に前記観測信号を反復的に送信する観測信号送信部と、
     を備えることを特徴とする請求項9に記載の移動局装置。
  11.  移動局装置のグループを識別するグループ識別子を基地局装置から受信するグループ識別子受信部を備え、
     前記補正量受信部は、前記グループ識別子を宛先に指定して送信された前記タイミング補正量を受信することを特徴とする請求項9又は10に記載の移動局装置。
  12.  第2移動局装置を識別する移動局識別子を基地局装置から受信する移動局識別子受信部を備え、
     前記補正量受信部は、前記移動局識別子を宛先に指定して送信された前記タイミング補正量を受信することを特徴とする請求項9又は10に記載の移動局装置。
  13.  前記観測信号送信部は、上りリンク参照信号を反復的に送信することを特徴とする請求項10に記載の移動局装置。
  14.  移動局装置と基地局装置を備える通信システムであって、
     移動局装置をグループ化するグループ生成部と、
     前記グループ生成部により生成されたグループのうち第1移動局装置から送信される観測信号を基地局装置が受信する受信タイミングに基づいて、上りリンクの送信タイミングのタイミング補正量を計算する補正量計算部と、
     第1移動局装置から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量を、前記グループのうち第1移動局装置と異なる第2移動局装置における上りリンクの送信タイミングの補正量として送信する補正量送信部と、
     を備える通信システム。
  15.  移動局装置をグループ化し、
     移動局装置のグループのうち第1移動局装置から送信される観測信号を基地局装置が受信する受信タイミングに基づいて、上りリンクの送信タイミングのタイミング補正量を計算し、
     第1移動局装置から送信される観測信号の受信タイミングに基づいて計算されたタイミング補正量を、前記グループのうち第1移動局装置と異なる第2移動局装置における上りリンクの送信タイミングの補正量として送信する、ことを特徴とする通信方法。
PCT/JP2012/069019 2012-07-26 2012-07-26 基地局装置、移動局装置、通信システム及び通信方法 WO2014016944A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020157001503A KR20150023047A (ko) 2012-07-26 2012-07-26 기지국 장치, 이동국 장치, 통신 시스템 및 통신 방법
PCT/JP2012/069019 WO2014016944A1 (ja) 2012-07-26 2012-07-26 基地局装置、移動局装置、通信システム及び通信方法
CN201280074874.0A CN104488335B (zh) 2012-07-26 2012-07-26 基站装置、移动站装置、通信系统和通信方法
EP12881888.7A EP2879447A4 (en) 2012-07-26 2012-07-26 BASE STATION DEVICE, MOBILE STATION DEVICE, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
JP2014526675A JP6040989B2 (ja) 2012-07-26 2012-07-26 基地局装置、移動局装置、通信システム及び通信方法
US14/603,891 US20150131636A1 (en) 2012-07-26 2015-01-23 Base station device, mobile station device, communication system, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/069019 WO2014016944A1 (ja) 2012-07-26 2012-07-26 基地局装置、移動局装置、通信システム及び通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/603,891 Continuation US20150131636A1 (en) 2012-07-26 2015-01-23 Base station device, mobile station device, communication system, and communication method

Publications (1)

Publication Number Publication Date
WO2014016944A1 true WO2014016944A1 (ja) 2014-01-30

Family

ID=49996777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069019 WO2014016944A1 (ja) 2012-07-26 2012-07-26 基地局装置、移動局装置、通信システム及び通信方法

Country Status (6)

Country Link
US (1) US20150131636A1 (ja)
EP (1) EP2879447A4 (ja)
JP (1) JP6040989B2 (ja)
KR (1) KR20150023047A (ja)
CN (1) CN104488335B (ja)
WO (1) WO2014016944A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513276A (ja) * 2014-03-31 2017-05-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド スパースコード多元接続伝送のためのリソース割り振りのためのシステムおよび方法
JP2017531956A (ja) * 2014-10-09 2017-10-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated Sc−fdmaにおけるプリアンブルのないアップリンク同期化
US9923701B2 (en) 2014-03-31 2018-03-20 Huawei Technologies Co., Ltd. Method and apparatus for asynchronous OFDMA/SC-FDMA
JP2019500810A (ja) * 2015-12-31 2019-01-10 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 通信方法およびデバイス
US10701685B2 (en) 2014-03-31 2020-06-30 Huawei Technologies Co., Ltd. Method and apparatus for asynchronous OFDMA/SC-FDMA

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531432B2 (en) 2015-03-25 2020-01-07 Huawei Technologies Co., Ltd. System and method for resource allocation for sparse code multiple access transmissions
CN107431990B (zh) * 2015-04-07 2021-03-05 高通股份有限公司 用于调整时序提前值的方法、移动通信设备和存储介质
US10361830B2 (en) * 2015-05-18 2019-07-23 Lg Electronics Inc. Method and apparatus for designing uplink reference signal according to repeating pattern considering cell coverage in wireless communication system
CN107534998A (zh) * 2015-05-20 2018-01-02 华为技术有限公司 Mtc设备接入方法、基站和系统
US10470143B2 (en) * 2018-03-13 2019-11-05 Qualcomm Incorporated Systems and methods for timing synchronization and synchronization source selection for vehicle-to-vehicle communications
CN110636455B (zh) * 2018-06-25 2021-02-23 华为技术有限公司 通信方法、设备和系统
CN113748723B (zh) * 2019-04-30 2024-04-12 华为技术有限公司 一种通信方法及设备
WO2022115977A1 (en) * 2020-12-01 2022-06-09 Huawei Technologies Co., Ltd. Systems and methods for providing timing advance (ta) values
US11917606B2 (en) * 2021-01-22 2024-02-27 Qualcomm Incorporated Group-based timing advance (TA) adjustment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257641A (ja) * 2000-02-11 2001-09-21 Lucent Technol Inc マルチアクセス無線通信システム用のアップリンクタイミング同期およびアクセス制御
WO2009022473A1 (ja) * 2007-08-14 2009-02-19 Panasonic Corporation 無線通信システム、スケジューリング方法、無線基地局装置、及び無線端末装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526986B2 (en) * 2007-02-07 2013-09-03 Lg Electronics Inc. Optimized random access channel (RACH) access
KR101096955B1 (ko) * 2007-07-24 2011-12-20 후지쯔 가부시끼가이샤 통신 시스템 및 개별 제어 정보 송수신 방법
MY152443A (en) * 2007-10-30 2014-09-30 Ericsson Telefon Ab L M Methods and arrangements in a wireless communication system
US8570977B2 (en) * 2008-03-24 2013-10-29 Qualcomm Incorporated Method and apparatus for handover in a wireless communication system
CN101646234A (zh) * 2009-09-01 2010-02-10 中兴通讯股份有限公司 一种定时提前量的获取方法
KR101688263B1 (ko) * 2010-01-08 2016-12-20 인터디지탈 패튼 홀딩스, 인크 다수의 업링크 캐리어와의 시간 정렬 유지
MY164719A (en) * 2010-02-12 2018-01-30 Interdigital Patent Holdings Inc Method and apparatus for optimizing uplink random access channel transmission
US9084195B2 (en) * 2010-04-01 2015-07-14 Nokia Technologies Oy Multiple timing advance and carrier aggregation
JP2013529409A (ja) * 2010-04-02 2013-07-18 インターデイジタル パテント ホールディングス インコーポレイテッド マシン型通信デバイスのためのグループ手順
US9154277B2 (en) * 2010-09-22 2015-10-06 Texas Instruments Incorporated Resource allocation and signaling for aperiodic sounding
CN102469568A (zh) * 2010-11-03 2012-05-23 大唐移动通信设备有限公司 信息通知及定时提前量获取方法、系统和设备
US9002393B2 (en) * 2011-03-09 2015-04-07 Interdigital Patent Holdings, Inc. Desynchronized network access in M2M networks
TWI459847B (zh) * 2011-04-01 2014-11-01 Mediatek Inc 管理與維持多重時序提前的方法
CN102340797B (zh) * 2011-09-30 2014-07-09 电信科学技术研究院 一种辅小区上定时时间差的测量方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257641A (ja) * 2000-02-11 2001-09-21 Lucent Technol Inc マルチアクセス無線通信システム用のアップリンクタイミング同期およびアクセス制御
WO2009022473A1 (ja) * 2007-08-14 2009-02-19 Panasonic Corporation 無線通信システム、スケジューリング方法、無線基地局装置、及び無線端末装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2879447A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513276A (ja) * 2014-03-31 2017-05-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド スパースコード多元接続伝送のためのリソース割り振りのためのシステムおよび方法
US9923701B2 (en) 2014-03-31 2018-03-20 Huawei Technologies Co., Ltd. Method and apparatus for asynchronous OFDMA/SC-FDMA
US10701685B2 (en) 2014-03-31 2020-06-30 Huawei Technologies Co., Ltd. Method and apparatus for asynchronous OFDMA/SC-FDMA
JP2017531956A (ja) * 2014-10-09 2017-10-26 クゥアルコム・インコーポレイテッドQualcomm Incorporated Sc−fdmaにおけるプリアンブルのないアップリンク同期化
JP2019500810A (ja) * 2015-12-31 2019-01-10 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 通信方法およびデバイス
US10681768B2 (en) 2015-12-31 2020-06-09 Huawei Technologies Co., Ltd. Communication method and device
US11895724B2 (en) 2015-12-31 2024-02-06 Huawei Technologies Co., Ltd. Communication method and device

Also Published As

Publication number Publication date
JPWO2014016944A1 (ja) 2016-07-07
US20150131636A1 (en) 2015-05-14
EP2879447A4 (en) 2015-07-08
CN104488335A (zh) 2015-04-01
EP2879447A1 (en) 2015-06-03
CN104488335B (zh) 2019-01-08
KR20150023047A (ko) 2015-03-04
JP6040989B2 (ja) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6040989B2 (ja) 基地局装置、移動局装置、通信システム及び通信方法
JP7434680B2 (ja) 無線通信システムにおいて制御情報をマッピングするための方法及び装置
JP6793682B2 (ja) マシンタイプコミュニケーションのための通信システムおよび通信方法
CN106664517B (zh) 支持减小的数据传输带宽的设备和方法
EP3641457B1 (en) Method for using radio interface technology, apparatus, and communications system
KR102084502B1 (ko) 머신 타입 통신을 위한 통신 시스템 및 방법
WO2016019734A1 (zh) D2d的通信方法及装置
CN110830195B (zh) 一种信息的处理方法和通信装置
US10306571B2 (en) Terminal device, base station device, communication method, and integrated circuit
WO2015017999A1 (zh) 信息发送、接收方法及设备
EP3179822B1 (en) Terminal device and method for device-to-device communication
AU2017385290B2 (en) Terminal apparatus, base station apparatus, and communication method
US9167598B2 (en) Base station apparatus, mobile station apparatus, radio communication method, and radio communication system
JP2020074536A (ja) 通信ネットワークにおける参照信号

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526675

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012881888

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157001503

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE