WO2014015806A1 - 一种c-rnti的分配方法及系统 - Google Patents

一种c-rnti的分配方法及系统 Download PDF

Info

Publication number
WO2014015806A1
WO2014015806A1 PCT/CN2013/080069 CN2013080069W WO2014015806A1 WO 2014015806 A1 WO2014015806 A1 WO 2014015806A1 CN 2013080069 W CN2013080069 W CN 2013080069W WO 2014015806 A1 WO2014015806 A1 WO 2014015806A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
rnti
bearer
bearer separation
aggregated
Prior art date
Application number
PCT/CN2013/080069
Other languages
English (en)
French (fr)
Inventor
付喆
赵亚利
吴昱民
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US14/416,834 priority Critical patent/US9801214B2/en
Priority to EP13823489.3A priority patent/EP2879455B1/en
Priority to KR1020157004597A priority patent/KR101644869B1/ko
Publication of WO2014015806A1 publication Critical patent/WO2014015806A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and system for allocating a Cell Radio Network Temporary Identity (C-RNTI).
  • C-RNTI Cell Radio Network Temporary Identity
  • the network architecture of the Evolved Universal Terrestrial Radio Access is shown in Figure 1.
  • the E-UTRAN consists of an evolved Node B (eNB).
  • the eNB completes the access network function and communicates with the user equipment (UE) through the air interface.
  • MME Mobility Management Entity
  • SI control plane S1 interface
  • Sl-MME interface provides the UE with control plane services, including mobility management and bearer management functions.
  • the S-GW is connected to the eNB by using a user plane S1 interface (SI for the user plane, Sl-U). For each UE attached to the network, one S-GW provides services for the UE.
  • the S1-U interface provides a user plane service for the UE, and the user plane data of the UE is transmitted between the S-GW and the eNB through the S1-U bearer.
  • the traditional macro base station (Macro eNB) single-layer overlay network cannot meet this situation. Therefore, the 3rd Generation Partnership Project (3GPP) introduced a layered networking approach to solve this problem: by deploying some low-power in small coverage environments such as hotspots, home indoor environments, and office environments.
  • the base station including the Femto / Micro base station (Pico) / relay, etc.) obtains the effect of cell splitting, enabling operators to provide users with higher data rates and lower cost services.
  • the Macro eNB provides basic coverage, and a low-power small base station (referred to herein as a local base station (Local eNB)) provides hotspot coverage, and data exists between the Local eNB and the Macro eNB. / Signaling interface (which can be wired or wireless), the UE can work under the Macro eNB or Local eNB. Since the cell coverage controlled by the Local eNB is small and the number of UEs served is small, the UE connected to the Local eNB can often obtain better quality of service, such as: obtaining a higher service rate and a higher quality link.
  • a local base station referred to herein as a local base station (Local eNB)
  • Signaling interface which can be wired or wireless
  • the UE can work under the Macro eNB or Local eNB. Since the cell coverage controlled by the Local eNB is small and the number of UEs served is small, the UE connected to the Local eNB can often obtain better quality of service, such
  • the UE may be transferred to the Local eNB to obtain the service provided by the Local eNB; when the UE is away from the cell coverage corresponding to the Local eNB, the UE needs to be transferred to Macro eNB Control the cell to keep the wireless connection.
  • the network architecture shown in Figure 2 can support user bearer separation.
  • the bearers of the corresponding UEs may be scheduled and transmitted under different base stations.
  • the following is an example of a network architecture that implements user plane and control plane separation (CP/UP separation).
  • the control plane connection and the user plane connection of the UE are both in the Macro eNB, and when the UE moves to/closes the overlapping area of the Macro eNB cell and the Local eNB cell, the UE user
  • the face-bearing (all or part of) connections are transferred to the Local eNB for higher service transmission rates; the control plane connection remains at the Macro eNB to reduce the signaling overhead associated with frequent handovers.
  • the terminal may aggregate the resources of the cells of multiple base stations, and each base station performs scheduling independently.
  • the scheduling is based on Cell Radio Network Temporary Identity (C-RNTI) addressing, and the C-RNTI is used to identify a Radio Resource Control (RRC) connection in a cell.
  • C-RNTI Cell Radio Network Temporary Identity
  • RRC Radio Resource Control
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • the base station allocates a dedicated C-RNTI identifier to the UE.
  • the main functions of the C-RNTI are: dynamic scheduling indicated by the Physical Downlink Control Channel (PDCCH), scrambling uplink channel, random access and handover procedure triggered by PDCCH order (order).
  • LTE-A Release 11 Rll
  • LTE-A Release 11 Rll
  • LTE-A Release 11 Rll
  • the UE can simultaneously aggregate carriers/serving cells from different base stations to provide services for the UE.
  • C-RNTIs For different base stations aggregated by the UE, how to allocate C-RNTIs for such UEs in this scenario to complete dynamic scheduling and other processes has not been given in the prior art. Summary of the invention
  • An embodiment of the present invention provides a C-RNTI allocation method and system, and is configured to allocate a C-RNTL to a UE in a scenario in which the UE aggregates different base stations.
  • the method for allocating a C-RNTI in a scenario in which a UE aggregates a plurality of base station cell resources is provided by the embodiment of the present invention, including:
  • the initial access base station allocates a bearer separation dedicated C-RNTI used in the bearer separation state to the UE, where the bearer separation dedicated C-RNTI belongs to a bearer separation dedicated RNTI set jointly maintained by the UE aggregated base station;
  • the initial access base station notifies the C-RNTI to the UE and the base station aggregated with the base station, respectively.
  • a method for allocating a C-RNTI in a scenario in which a UE aggregates a plurality of base station cell resources includes: The initial access base station of the UE and the target base station aggregated by the UE determine the C-RNTI that each needs to allocate for the UE; the initial access base station of the UE and the target base station aggregated by the UE allocate the respective determined C-RNTI to the UE.
  • an allocating unit configured to allocate a bearer-separated dedicated C-RNTI to the UE in a scenario in which the UE aggregates multiple base station cell resources, where the bearer separation dedicated C-RNTI belongs to a bearer separation dedicated RNTI set jointly maintained by the base station aggregated by the UE;
  • a notification unit configured to notify the UE and the base station that is aggregated with the initial access base station by using the bearer separation dedicated C-RNTI.
  • the initial access base station of the UE and the target base station aggregated by the UE are the initial access base station of the UE and the target base station aggregated by the UE:
  • Each of the base stations is configured to allocate a C-RNTI corresponding to the local base station to the UE in a scenario in which the user equipment UE aggregates multiple base station cell resources.
  • FIG. 1 is a schematic diagram of an E-UTRAN network architecture in the prior art
  • FIG. 2 is a schematic diagram of a hierarchical network deployment scenario in the prior art
  • FIG. 3 is a schematic flowchart of a method for allocating a C-RNTI according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for allocating a C-RNTI according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for allocating a C-RNTI according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for allocating a C-RNTI according to an embodiment of the present disclosure
  • Figure ⁇ is a schematic flowchart of a C-RNTI allocation method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for allocating a C-RNTI according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flowchart of a method for allocating a C-RNTI according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart diagram of a C-RNTI allocation method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a function of an initial access base station according to an embodiment of the present disclosure.
  • FIG. 11B is a schematic diagram of an entity structure of an initial access base station according to an embodiment of the present invention.
  • the embodiments of the present invention provide a technical solution for how different base stations aggregated by a UE allocate C-RNTIs to UEs in a hierarchical networking scenario in which a user aggregates a plurality of base station cell resources, in particular, in a framework that supports bearer separation. , used to complete the dynamic Scheduling and other processes.
  • an embodiment of the present invention provides a method for allocating a C-RNTI, where the method includes the following steps:
  • the scenario is a hierarchical networking scenario that supports bearer separation.
  • the aggregated target base station allocates a C-RNTI corresponding to the local base station to the UE, and notifies the C-RNTI to the UE through the initial access base station; or In the bearer separation process, and in the random access procedure initiated by the UE in the aggregated target base station, the aggregated target base station allocates a C-RNTI corresponding to the base station to the UE.
  • An embodiment of the present invention provides another method for allocating a C-RNTI, where the method includes:
  • the initial access base station allocates a bearer separation dedicated C-RNTI used in the bearer separation state to the UE, where the bearer separation dedicated C-RNTI belongs to the UE aggregated base station for common maintenance.
  • Bearer separation dedicated RNTI set
  • the initial access base station notifies the C-RNTI to the UE and the base station aggregated with the initial access base station, respectively.
  • the initial access base station allocates a bearer separation dedicated C-RNTI to the UE when the initial radio link control RRC connection is established or during the bearer separation process.
  • the aggregated target base station uses the dedicated C-RNTI allocated by the initial access base station for the UE to be used in the bearer separation state for communication, and the initial access base station also uses the dedicated C-RNTI for communication; or
  • the aggregated target base station performs communication using the dedicated C-RNTI allocated by the initial access base station for the UE in the bearer separation state, and the initial access base station still uses the initial connection establishment process initiated by the UE.
  • the C-RNTI allocated by the access base station to the UE communicates.
  • Embodiment 1 The Macro eNB and the Local eNB each allocate a C-RNTI corresponding to the local base station to the UE.
  • the target eNB (such as the Local eNB) allocates the C-RNTI used in the corresponding cell to the UE, and informs the initial access base station (such as the Macro eNB) of the UE through the interface between the base stations, and then through the initial access.
  • the base station informs the UE.
  • the steps include:
  • the Macro eNB may allocate a dedicated C-RNTI to the UE according to the existing rules. For example, the UE may be randomly assigned a dedicated C-RNTI.
  • the Macro eNB uses the C-RNTI scrambled PDCCH to implement dynamic scheduling of the UE to the UE.
  • S302 The allocation of the C-RNTI when the bearer is separated.
  • the Macro eNB informs the Local eNB of the bearer separation command between the base stations of the UE through the interface between the base stations (the message includes: configuration information of the bearer to be transferred in the bearer separation, the UE identifier, etc.), requesting Local
  • the eNB allocates a C-RNTI dedicated to the UE under Local for the UE.
  • the Local eNB interacts with the C-RNTI assigned to the UE to the Macro e B.
  • the macro eNB sends a bearer separation command to the UE, and notifies the UE of the C-RNTI allocated by the local eNB to the UE. This notification can be implemented through the RRC connection reconfiguration process, or other newly defined methods.
  • the Macro eNB and the Local eNB respectively use the C-RNTI allocated to the UE to complete the process of dynamic scheduling and the like.
  • the UE uses the corresponding C-RNTI on the Local and Macro to complete the PDCCH descrambling, Physical Uplink Control Channel (PUCCH) / Physical Uplink Shared Channel (Physical Uplink Shared Channel). , PUSCH) scrambling and other operations.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the Macro eNB When the Macro eNB determines that the Local eNB no longer satisfies the bearer separation condition, it will notify the UE of the bearer aggregation command or the bearer re-separation command. After receiving the command, the UE performs the corresponding operation (for example, deleting the C-RNTI corresponding to the original Local). At the same time, the base station that maintains the RRC connection (ie, the Macro eNB) notifies the Local eNB to initiate a bearer aggregation process or a bearer re-separation process for the corresponding UE through an interface between the base stations. After receiving the command, the Local eNB releases the C-RNTI allocated to the UE before the Local eNB, and performs other corresponding operations.
  • the UE After receiving the command, the Local eNB releases the C-RNTI allocated to the UE before the Local eNB, and performs other corresponding operations.
  • the so-called bearer separation process that is, the radio bearer (RB) transferred from the bearer separation process is first transferred back to the Macro eNB, and then the new bearer separation command is used to re-send some/all data radio bearers (DRBs). Transfer to another Local eNB; or transfer some/all RBs transferred by the bearer separation process directly to another Local eNB.
  • RB radio bearer
  • DRB data radio bearers
  • Embodiment 2 The Macro eNB and the Local eNB each allocate a C-RNTI corresponding to the local base station to the UE.
  • the target eNB (assumed to be a Macro eNB) allocates the C-RNTI used in the corresponding cell to the UE, and informs the initial access base station of the UE (assumed to be the Local eNB) through the interface between the base stations, and then passes the initial The access base station informs the UE.
  • the steps include:
  • the Local eNB may allocate a dedicated C-RNTL to the UE according to the existing rules.
  • S402 The allocation of the C-RNTI when the bearer is separated.
  • the Local eNB or the handover process is used to switch the UE to the Macro eNB, and then the Macro eNB initiates the bearer separation process; or the Local eNB directly initiates the bearer separation process.
  • the UE first switches to the Macro eNB its bearer separation and use of the C-RNTI are as follows. The following is only for Local eNB The directly initiated bearer separation process is described.
  • the local eNB notifies the Macro eNB of the bearer separation command between the base stations of the UE through the interface between the base stations (the message includes: configuration information of the bearer such as the SRB that needs to be transferred in the bearer separation, the UE identifier, etc.), and requests the Macro eNB as the UE.
  • the UE is assigned a dedicated C-RNTI under the Macro eNB.
  • the Macro eNB then interacts with the local e B for the C-RNTI assigned to the UE.
  • the Local eNB sends a bearer separation command to the UE, and notifies the UE of the C-RNTI allocated by the received Mcaro eNB for the UE. This notification can be achieved through the RRC connection reconfiguration process, or other completely new definitions.
  • the UE's RRC connection is maintained on the Macro.
  • the Macro eNB and the Local eNB respectively use the C-RNTI allocated to the UE to complete the process of dynamic scheduling and the like.
  • the UE uses the corresponding C-RNTI on the Local and the Macro to perform operations such as PDCCH descrambling and PUCCH/PUSCH scrambling.
  • the Macro eNB When the Macro eNB determines that the Local eNB no longer satisfies the bearer separation condition, it will notify the UE of the bearer aggregation command or the bearer re-separation command. After receiving the command, the UE performs the corresponding operation (for example, deleting the C-RNTI corresponding to the original Local). At the same time, the base station that maintains the RRC connection (ie, the Macro eNB) notifies the Local eNB to initiate a bearer aggregation process or a bearer re-separation process for the corresponding UE through an interface between the base stations. After receiving the command, the Local eNB releases the C-RNTI allocated to the UE before the Local eNB, and performs other corresponding operations.
  • the UE After receiving the command, the Local eNB releases the C-RNTI allocated to the UE before the Local eNB, and performs other corresponding operations.
  • Embodiment 3 The Macro eNB and the Local eNB each allocate a C-RNTI corresponding to the local base station to the UE.
  • the local eNB allocates the C-RNTI dedicated to the UE under the Local when the UE initiates the Local RA.
  • the UE may allocate a dedicated C-RNTI according to an existing rule.
  • the Macro eNB uses the C-RNTI scrambled PDCCH to implement dynamic scheduling of the UE to the UE.
  • the Macro eNB When the bearer separation condition is met, the Macro eNB notifies the Local eNB of the bearer separation command between the eNBs of the UE through the interface between the base stations (the message includes: configuration information of the bearer to be transferred in the bearer separation, UE identification, etc.). At the same time, the Macro eNB sends a bearer separation command to the UE.
  • S503 The UE initiates a radio access (RA) process.
  • RA radio access
  • the UE After receiving the command, the UE performs the corresponding operation: for example, activating another physical layer (Physical Layer, PHY) and Medium Access Control (MAC) entity corresponding to the Local eNB, and then using the corresponding corresponding to the Local eNB.
  • the set of PHY and MAC entities initiates the RA process at Local.
  • the Local eNB allocates a C-RNTI dedicated to the UE under the Local in the random access procedure initiated by the UE.
  • S504 Used by C-RNTI.
  • the Macro eNB and the Local eNB respectively use the C-RNTI allocated to the UE to complete the process of dynamic scheduling and the like.
  • the UE uses the corresponding C-RNTI on the Local and the Macro to perform operations such as PDCCH descrambling and PUCCH/PUSCH scrambling.
  • the Macro eNB When the Macro eNB determines that the Local eNB no longer satisfies the bearer separation condition, it will notify the UE of the bearer aggregation command or the bearer re-separation command. After receiving the command, the UE performs the corresponding operation (for example, deleting the C-RNTI corresponding to the original Local). At the same time, the Macro eNB notifies the Local eNB to initiate a bearer aggregation process or a bearer re-separation process for the corresponding UE through an interface between the base stations. After receiving the command, the Local eNB reclaims the dedicated C-RNTI allocated to the UE under Local and performs other corresponding operations.
  • Embodiment 4 The Macro eNB and the Local eNB jointly maintain a range of RNTI values; when the bearer is separated, the initial access base station of the UE allocates (assuming the Macro eNB) the C-RNTI used in the bearer separated state, and The C-RNTI value used by the UE in the cell corresponding to the Local eNB is used to notify the target eNB (assumed to be the Local eNB) by means of the interface interaction between the base stations.
  • the interworking base station jointly maintains a dedicated set of RNTIs.
  • the aggregated base station maintains a range of RNTI values (called a bearer separation dedicated RNTI set), which is reserved for the base station to interact with the C-RNTI.
  • the RNTI-specific set jointly maintained by the foregoing base station may be configured by the OAM, or may also be performed through an X2 interface between the Local eNB and the Macro eNB, or an S1 interface, or a newly defined interface.
  • the Macro eNB allocates a C-RNTI to the UE according to the existing rules when the C-RNTI is allocated to the UE that is initially accessed.
  • the value of the C-RNTI is the bearer maintained by the base station. Separate the dedicated RNTI set.
  • S603 The allocation of the C-RNTI when the bearer is separated.
  • the Macro eNB When the bearer separation condition is satisfied, the Macro eNB initiates a bearer separation process.
  • the macro eNB selects a C-RNTI (referred to as a bearer separation dedicated C-RNTI) used by the UE in the bearer and the local in the reserved RNTI dedicated set, and notifies the UE of the bearer separation dedicated C-RNTI in the bearer separated state.
  • This notification may be implemented using an RRC connection reconfiguration procedure, or using a handover procedure, or using a PDCCH scheduling C-RNTI MAC CE scheme, or other completely defined manner.
  • the Macro eNB notifies the Local eNB of the UE ID, the bearer separation dedicated C-RNTI allocated by the UE for the UE, and the transferred DRB configuration through the interface between the base stations. Further, the Macro eNB will allocate the dedicated C-bearing for the UE.
  • the RNTI interacts with all Local eNBs that are aggregated with the Macro eNB.
  • the UE After the UE receives the bearer separation dedicated C-RNTI notified by the Macro eNB and correctly decodes, the UE uses the bearer separation dedicated C-RNTI, Performing operations such as PDCCH descrambling and PUCCH/PUSCH scrambling; when the feedback of the received UE is in the bearer separation state, the base station performs dynamic scheduling and the like by using the bearer separation dedicated C-RNTI.
  • the base station may be reassigned to other UEs, or may be reserved for subsequent use by the UE (the base station may process after receiving the bearer separation complete message fed back by the UE) .
  • the bearer separation dedicated C-RNTI allocated by the Macro for the UE is used in the corresponding cells of the Macro eNB and the Local eNB, and the dynamic scheduling of each cell is completed.
  • the UE uses the bearer-dedicated C-RNTI to perform operations such as PDCCH descrambling and PUCCH/PUSCH scrambling.
  • the Macro eNB determines that the Local eNB no longer satisfies the bearer separation condition, the bearer aggregation process or the bearer re-separation process is initiated.
  • the Macro eNB needs to determine the C-RNTI used by the UE after aggregation:
  • the reserved C-RNTI can be directly used as the identifier of the corresponding cell of the UE in the Macro eNB after the aggregation;
  • the C-RNTI allocated by the Macro eNB is not reserved in the initial access of the UE, the C-RNTI value other than the set of dedicated RNTIs for the UE is allocated in a similar manner to the initial access.
  • the Macro eNB informs the Local eNB to initiate a bearer aggregation process for the corresponding UE through the interface between the base stations, and the bearer separate dedicated C-RNTI allocated to the UE is recovered by the Macro and the local eNB after receiving the bearer aggregation fed back by the UE.
  • the bearer separation dedicated C-RNTI reserved by the Local eNB may also be recovered when the Macro eNB initiates the bearer aggregation process notification.
  • the original bearer separation dedicated C-RNTI initiates bearer separation at the Macro eNB, it is notified to all
  • the original bearer separation dedicated C-RNTI is recovered from other Local eNBs that are aggregated with the Macro eNB and notified.
  • the UE uses the new C-RNTI to perform subsequent PDCCH descrambling, PUCCH/PUSCH scrambling, and the like.
  • the UE deletes the bearer separation dedicated C-RNTI.
  • the base station performs dynamic scheduling and the like by using the new C-RNTI.
  • the so-called bearer separation process that is, the RB transferred by the bearer separation process is first transferred back to the Macro eNB, and then some/all DRBs are re-transferred to another Local eNB through a new bearer separation command; or the part transferred by the bearer separation process/ All RBs are directly transferred to another Local eNB.
  • step S602 For the bearer re-separation of the eNB to be transferred back to the Macro eNB, the basic processing is consistent with the bearer aggregation process. For the re-separation process directly from the Local eNB1 to the Local eNB2, a similar method of step S602 is needed to reallocate one for the Macro eNB and the Local eNB2.
  • the new bearer separation dedicated C-RNTI (further, this new bearer separation dedicated C-RNTI can be exchanged to all Local eNBs aggregated with the Macro eNB), and the original bearer separation dedicated C-RNTI from the Macro eNB and the Local eNB1 Recycling (further, when the original bearer separation dedicated C-RNTI is When the Macro eNB initiates bearer separation and informs all base stations that are aggregated with Macro e B, the original bearer separation dedicated C-RNTI is recovered from other Local eNBs that are aggregated with the Macro eNB and notified.
  • the UE deletes the original bearer-separated dedicated C-RNTI, and then uses the new bearer to separate the dedicated C-RNTI.
  • the specific method is as follows: The original bearer is allocated to the UE to separate the dedicated C-RNTI, and the bearer is separated from the feedback received by the UE. After being completed, it is reclaimed by the Macro eNB.
  • the Macro eNB notifies the UE to initiate the bearer re-separation command, it informs the UE that the new bearer separation dedicated C-RNTK is referred to as C-RNTI1 for short, and the UE receives the notification of carrying the C-RNTI1.
  • the UE uses C-RNTI1 to perform operations such as PDCCH descrambling and PUCCH/PUSCH scrambling. At the same time, the UE deletes the original bearer separation dedicated C-RNTI.
  • the base station After receiving the bearer re-separation feedback from the UE, the base station uses C-RNTI1 to perform dynamic scheduling and the like; or when the Macro eNB initiates bearer separation, it informs all the base stations with its aggregated bearer to separate the dedicated C-RNTI, and the Local e B2 directly Use the original bearer separation dedicated C-RNTI for subsequent processing and operation; or when the Macro eNB initiates bearer separation, only inform the aggregated target base station to carry the separate dedicated C-RNTI, then the Macro eNB separates the original bearer.
  • the RNTI is directly allocated to the Local eNB 2, and the value of the original bearer separation dedicated C-RNTI on the Local eNB 1 can be further recovered (the original bearer separation dedicated C-RNTI, the Local eNB1 can receive the UE after the bearer separation is completed. The recovery may also be recovered when the Local eNB1 receives the notification that the Macro eNB initiates the bearer re-separation process.
  • Embodiment 5 The Macro eNB and the Local eNB jointly maintain a range of RNTI values; when the bearer is separated, the initial access base station of the UE (assumed to be a Macro eNB) allocates a bearer separation dedicated C to the target eNB (assumed to be a Local eNB). - RNTI, and notify the target eNB (assumed to be Local eNB) by means of interface interaction between the base stations. The value of the C-RNTI of the UE corresponding to the macro eNB does not need to be changed in the whole process.
  • S701 A dedicated set of RNTIs jointly maintained by the interworking base station.
  • the aggregated base station maintains a range of RNTI values (called a dedicated RNTI set for bearer separation), which is reserved for use by the base station to exchange C-RNTI.
  • the RNTI-specific set jointly maintained by the foregoing base station may be configured by the OAM, or may also be exchanged through an X2 interface between the Local eNB and the Macro eNB, or an S1 interface, or a newly defined interface.
  • the Macro eNB may allocate the CR TI to the UE according to the existing rules.
  • the value range of the C-RNTI is separated from the bearer maintained by the base station. Outside the private RNTI set.
  • S703 The allocation of the C-RNTI when the bearer is separated.
  • the Macro eNB When the bearer separation condition is satisfied, the Macro eNB initiates a bearer separation process.
  • the macro eNB selects a C-RNTI (referred to as a bearer separation dedicated C-RNTI) used by the UE in the local eNB corresponding cell in the reserved RNTI dedicated set, and notifies the UE of the bearer separation dedicated CR TI to the UE in the bearer separated state. .
  • This notification can be implemented using the RRC connection reconfiguration process, or other completely defined methods.
  • the Macro eNB will pass the interface between the base stations.
  • the Local eNB informs the Local eNB of the UE identity, the bearer separation dedicated C-RNTI, the transferred DRB configuration, and the like (further, the Macro eNB exchanges the bearer separation dedicated C-RNTI allocated for the UE to all Local eNBs aggregated with the Macro eNB).
  • the dynamic scheduling of the UE is performed by using different C-RNTIs in the corresponding cells of the Macro eNB and the Local eNB.
  • the C-RNTI allocated to the UE when the initial access is used in the Macro is used in the Local.
  • the bearer separated by the Macro eNB separates the dedicated C-RNTI.
  • the UE uses the corresponding C-RNTI on the Local and the Macro to complete the PDCCH descrambling and PUCCH PUSCH scrambling operations.
  • the Macro eNB determines that the Local eNB no longer satisfies the bearer separation condition, the bearer aggregation process or the bearer re-separation process is initiated.
  • the Macro eNB For the bearer aggregation process, the Macro eNB still uses the C-RNTI allocated at the time of initial access. At the same time, the Macro eNB informs the Local eNB to initiate a bearer aggregation process for the corresponding UE through the interface between the base stations, and the bearer separation dedicated C-RNTI previously allocated to the UE is reclaimed by the Macro and the local eNB (the bearer separate dedicated C-RNTI can be fed back in the UE) The aggregation is completed after the aggregation is completed, and may also be recovered when the Local eNB receives the notification that the Macro eNB initiates the bearer aggregation process.
  • the original bearer separation dedicated C-RNTI initiates the bearer separation at the Macro eNB, it is notified to all the Macro eNBs.
  • the original bearer separation dedicated C-RNTI is recovered from other Local eNBs that are aggregated with the Macro eNB and are informed.
  • the UE deletes the bearer separation dedicated C-RNTI.
  • the basic processing is the same as the bearer aggregation process.
  • a new method similar to the step S702 is needed to reallocate a new local eNB2.
  • the bearer separates the dedicated C-RNTI (further, this new bearer separation dedicated C-RNTI can be exchanged to all Local eNBs aggregated with the Macro eNB), and the original bearer separate dedicated C-RNTI from the Macro eNB and the Local eNB 1 Recycling (further, when the original bearer separation dedicated C-RNTI is notified to all base stations aggregated with the Macro eNB when the Macro eNB initiates bearer separation, the original bearer separation dedicated C-RNTI is aggregated from the Macro eNB and is informed. Other Local eNBs are reclaimed) (correspondingly, the UE deletes the original bearer to separate the dedicated C-RNTI, and then uses the new bearer to separate the dedicated C-RNTI.
  • the method is similar to that described in Embodiment 4); or initiates bearer separation in the Macro eNB.
  • Local e B2 directly uses the original bearer separation dedicated CR. NTI, for subsequent processing and operation; or when the Macro eNB initiates bearer separation and only informs the aggregated target base station to carry the separate dedicated C-RNTI, then the Macro eNB directly allocates the original bearer separation dedicated C-RNTI to the Local e B2.
  • the Local eNB1 may recover after receiving the UE feedback, the load separation is completed, or may be in the Local eNB1 Reclaimed when the Macro eNB initiates a notification of the bearer re-separation process.
  • Embodiment 6 The Macro eNB and the Local eNB jointly maintain a range of values of a RNTI;
  • the accessing base station (the bearer is set to the Macro eNB) allocates the C-RNTI used by the UE in the off-load state at the beginning of the connection establishment, and communicates with the interface between the base stations to notify the target after the UE establishes the RRC connection.
  • the base station (assumed to be a Local eNB) takes the value of the C-RNTI used by the UE in the cell corresponding to the Local eNB.
  • S801 A dedicated set of RNTIs jointly maintained by the interworking base station.
  • the aggregated base station maintains a range of RNTI values (called a dedicated RNTI set for bearer separation), which is reserved for use by the base station to exchange C-RNTI.
  • a dedicated RNTI set for bearer separation may be configured by OAM, or may also be exchanged through an X2 interface between the Local eNB and the Macro eNB, or an S1 interface, or a newly defined interface.
  • the C-RNTK is allocated to the UE according to the existing rule as C-RNTI1.
  • the value range of the C-RNTI1 is outside the bearer separation dedicated RNTI set.
  • the Macro eNB After the RRC connection is established, when the Macro eNB learns that the UE has the capability of supporting bearer separation, the UE is re-assigned to the C-RNTI used in the Macro eNB and the subsequent Local eNB (referred to as C-RNTI2, belonging to the bearer separation dedicated RNTI set). ). After the C-RNTI2 is allocated, the Macro eNB informs all Local eNBs that may be aggregated through the interface between the base stations, and also informs the UE identity; meanwhile, the Macro eNB informs the UE that the C-RNTI to be used is changed from C-RNTI1. It is C-RNTI2 (here, C-RNTI1 can be allocated to other UEs). After receiving and successfully decoding the C-RNTI2 notified by the Macro eNB, the UE performs subsequent PDCCH descrambling, PUCCH/PUSCH scrambling, and the like using the C-RNTI2.
  • the Macro eNB When the bearer separation condition is satisfied, the Macro eNB initiates a bearer separation process.
  • the Macro eNB notifies the Local eNB of the UE identity, the transferred DRB configuration, and the like through the interface between the base stations; at this time, it is not necessary to inform the Local eNB of the C-RNTI allocated to the UE.
  • the UE performs related operations using the C-RNTI2 in both the Macro eNB and the Local eNB.
  • the UE performs operations such as PDCCH descrambling and PUCCH/PUSCH scrambling using C-RNTI2.
  • the Macro eNB determines that the Local eNB no longer satisfies the bearer separation condition, the bearer aggregation process or the bearer re-separation process is initiated.
  • the Macro eNB still uses C-RNTI2 for the bearer aggregation process, the bearer re-separation process that is first transferred back to the Macro eNB, and the re-separation process that is directly transferred from the Local eNB 1 to the Local eNB 2.
  • the UE performs the corresponding PDCCH descrambling, PUCCH/PUSCH scrambling, and the like using the C-RNTI2.
  • the Macro eNB allocates the C-RNTI2 according to the UE capability, all the Local eNBs that may be aggregated reserve the C-RNTI2 to the UE, so The Local eNB2 needs to be informed of the C-RNTI value of the UE.
  • Embodiment 7 The Macro eNB and the Local eNB jointly maintain a range of RNTI values; the base station initially accessed by the UE (assumed to be a Local eNB) allocates the C-RNTI used by the UE in the bearer separation state at the beginning of the connection establishment. And, by means of the interface interaction between the base stations, after the UE establishes the RRC connection, the target base station (assumed to be a Macro eNB) is notified of the value of the C-RNTI used by the UE in the bearer separation.
  • S901 A dedicated set of RNTIs jointly maintained by the interworking base station.
  • the aggregated base station maintains a range of RNTI values (called a dedicated RNTI set for bearer separation), which is reserved for use by the base station to exchange C-RNTI.
  • a dedicated RNTI set for bearer separation may be configured by OAM, or may also be exchanged through an X2 interface between the Local eNB and the Macro eNB, or an S1 interface, or a newly defined interface.
  • the local eNB allocates a C-RNTI to the UE that is initially accessed
  • the C-RNT is allocated to the UE according to the existing rule as C-RNTI1
  • the value range of the C-RNTI1 is outside the bearer separation dedicated RNTI set.
  • the UE After the establishment of the RRC connection, when the local eNB learns that the UE has the capability of supporting bearer separation, the UE is again allocated the C-RNTI (denoted as C-RNTI2) used by the Macro eNB in the Local eNB and the subsequent bearer separation state.
  • the bearer separates the dedicated RNTI set).
  • the Local eNB informs the Macro eNB through the interface between the base stations (the Macro eNB re-informs other Local eNBs it aggregates), and also informs the UE identity; and the Local eNB informs the UE that the C will be used.
  • the RNTI is changed from C-RNTI1 to C-RNTI2 (hereinafter C-RNTI1 can be allocated to other UEs).
  • C-RNTI1 can be allocated to other UEs.
  • the UE After receiving and successfully decoding the C-RNTI2 notified by the Local eNB, the UE performs subsequent PDCCH descrambling, PUCCH/PUSCH scrambling, and the like using the C-RNTI2.
  • the Local eNB adopts a handover procedure to first handover the UE to the Macro eNB, and then the Macro eNB initiates a bearer separation process. At this time, there is no need to exchange the bearer separation dedicated C-RNTI allocated to the UE.
  • the UE performs related operations using the C-RNTI2 in both the Macro eNB and the Local eNB.
  • the UE performs operations such as PDCCH descrambling and PUCCH/PUSCH scrambling using C-RNTI2.
  • the Macro eNB determines that the Local eNB no longer satisfies the bearer separation condition, the bearer aggregation process or the bearer re-separation process is initiated.
  • the Macro eNB still uses C-RNTI2 for the bearer aggregation process, the bearer re-separation process that is first transferred back to the Macro eNB, and the re-separation process that is directly transferred from Local e B 1 to Local eNB 2.
  • the UE performs the corresponding PDCCH descrambling, PUCCH/PUSCH scrambling, and the like using the C-RNTI2.
  • the base station For the re-separation process to be directly transferred from the Local eNB1 to the Local eNB2, after the base station allocates and interacts with the C-RNTI2 according to the UE capability, all the base stations that may perform the aggregation reserve the C-RNTI2 to the UE, so The Local eNB2 is informed of the C-RNTI value of the UE.
  • An embodiment of the present invention provides a C-RNTI allocation system, where the system includes an initial access base station of the UE and a target base station aggregated by the UE:
  • Each of the base stations is configured to allocate a C-RNTI corresponding to the local base station to the UE in a scenario in which the user equipment UE aggregates multiple base station cell resources.
  • the scenario is a hierarchical networking scenario that supports bearer separation.
  • the aggregated target base station is specifically configured to allocate a C-RNTI of the target target base station cell to the UE in the bearer separation process, and pass the initial access base station of the UE. Notifying the C-RNTI to the UE; or, in the bearer separation process, and in the random access procedure initiated by the UE in the aggregated target base station, allocating the C-RNTI corresponding to the local base station to the UE, and the C - The RNTI is notified to the UE.
  • the base station includes:
  • the allocating unit 1001 is configured to allocate a bearer separation dedicated C-RNTI to the UE in a scenario in which the UE aggregates multiple base station cell resources, where the bearer separation dedicated C-RNTI belongs to a bearer separation dedicated RNTI set jointly maintained by the UE aggregated base station ;
  • the notifying unit 1002 is configured to notify the UE and the base station that is aggregated with the base station by using the bearer separation dedicated C-RNTI.
  • the scenario is a hierarchical networking scenario that supports bearer separation.
  • the allocating unit 1001 is specifically configured to:
  • the UE may be allocated a C-RNTI used during bearer separation during initial RRC connection establishment; or may be allocated a C-bearing period during the bearer separation process.
  • RNTL RNTI
  • the base station is an initial access base station.
  • the base station may be either a macro base station or a local base station.
  • the aggregated target base station performs communication using the C-RNTI allocated by the initial access base station for the UE in the bearer separation state, and the initial access base station also uses the allocated C-RNTI.
  • the aggregated target base station performs communication using the C-RNTI allocated by the initial access base station for the UE in the bearer separation state, and the initial access base station still uses the initial connection establishment initiated by the UE.
  • the initial access base station allocates a C-RNTI allocated to the UE for communication.
  • the allocation unit 1001 may be a processor, and the notification unit 1002 may include a transceiver antenna.
  • the signal transmitting and receiving device of the device in this case, as shown in FIG. 11B, the base station provided by the embodiment of the present invention includes: a processor 101, configured to allocate a bearer separation dedicated C to the UE in a scenario in which the UE aggregates multiple base station cell resources.
  • a processor 101 configured to allocate a bearer separation dedicated C to the UE in a scenario in which the UE aggregates multiple base station cell resources.
  • the bearer separation dedicated C-RNTI belongs to a bearer separation dedicated RNTI set jointly maintained by the base station aggregated by the UE;
  • the signal transceiving device 102 is configured to notify the UE and the base station aggregated with the base station by using the bearer separation dedicated C-RNTI.
  • the scenario is a hierarchical networking scenario that supports bearer separation.
  • the processor 101 is specifically configured to:
  • the UE may be allocated a C-RNTI used during bearer separation during initial RRC connection establishment; or may be allocated a C-bearing period during the bearer separation process.
  • RNTL RNTI
  • the base station is an initial access base station.
  • the base station may be either a macro base station or a local base station.
  • the aggregated target base station performs communication using the C-RNTI allocated by the initial access base station for the UE in the bearer separation state, and the initial access base station also uses the allocated C-RNTI.
  • the aggregated target base station performs communication using the C-RNTI allocated by the initial access base station for the UE in the bearer separation state, and the initial access base station still uses the initial connection establishment initiated by the UE.
  • the initial access base station allocates a C-RNTI allocated to the UE for communication.
  • the present invention discloses a method for allocating C-RNTIs to UEs by different base stations aggregated by UEs in a scenario where users aggregate multiple base cell resources, especially in a layered networking scenario that supports bearer separation. , to complete the process of dynamic scheduling of the base station to the UE.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can be embodied in the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种小区无线网络临时标识C-RNTI的分配方法及系统,用以在UE聚合不同基站的场景下实现为UE分配C-RNTI。该方法包括:用户设备UE聚合多个基站小区资源的场景下,UE的初始接入基站和UE聚合的目标基站确定各自需要为该UE分配的C-RNTI,UE的初始接入基站和UE聚合的目标基站将各自确定的C-RNTI分配给UE;或者,用户设备UE聚合多个基站小区资源的场景下,由初始接入基站为该UE分配承载分离专用C-RNTI,其中,该C-RNTI属于UE聚合的基站共同维护的承载分离专用无线网络临时标识RNTI的预设范围。

Description

一种 C-RNTI的分配方法及系统 本申请要求在 2012年 07月 26 日提交中国专利局、 申请号为 201210262984.1、 发明 名称为 "一种 C-RNTI的分配方法及系统"的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种小区无线网络临时标识( Cell Radio Network Temporary Identity, C-RNTI )的分配方法及系统。 背景技术
演进型通用陆地无线接入网( Evolved Universal Terrestrial Radio Access, E-UTRAN )的 网络架构如图 1所示, E-UTRAN由演进型基站( evolved Node B, eNB )组成。 eNB完成 接入网功能, 与用户设备 ( User Equipment, UE )通过空中接口通信。 UE与 eNB之间既存 在控制面连接又存在用户面连接。 对于每一个附着到网络的 UE, 由一个移动性管理实体 ( Mobility Management Entity, MME )为其提供服务, MME与 eNB之间釆用控制平面 S1 接口 ( SI for the control plane, Sl-MME )相连。 Sl-MME接口为 UE提供对控制面服务, 包括移动性管理和承载管理功能。 S-GW与 eNB之间釆用用户平面 S1接口( SI for the user plane, Sl-U )相连, 对于每一个附着到网络的 UE, 有一个 S-GW为其提供服务。 S1-U接 口为 UE提供用户面服务, UE的用户面数据通过 S1-U承载在 S-GW和 eNB之间传输。
随着智能终端的快速发展以及用户对数据业务速率和容量的需求不断增长, 传统的宏 基站(Macro eNB )单层覆盖网络已经不能满足这种状况。 因此,第三代合作伙伴计划( 3rd Generation Partnership Project, 3 GPP )引入了分层组网的方式来解决该问题: 通过在热点区 域、 家庭室内环境、 办公环境等小覆盖环境布设一些低功率的基站(包括毫微微蜂窝式基 站(Femto ) /微基站(Pico ) /中继等形式), 获得小区分裂的效果, 使得运营商能够为用户 提供更高数据速率、 更低成本的业务。
在如图 2所示的现有分层网络中, Macro eNB提供基础覆盖, 低功率的小型基站(本 文称之为本地基站( Local eNB ) )提供热点覆盖, Local eNB与 Macro eNB之间存在数据 / 信令接口 (可以是有线或无线接口), UE可以工作在 Macro eNB或 Local eNB下。 由于 Local eNB控制的小区覆盖范围小, 服务的 UE少, 所以, 连接到 Local eNB的 UE往往能 获得更好的服务质量,如: 莰得更高的业务速率、更高质量的链路。 因此, 当连接到 Macro eNB的 UE进入 Local eNB所对应的小区的覆盖范围时,可以转移到 Local eNB以获得 Local eNB提供的服务;当 UE远离 Local eNB所对应的小区覆盖范围时,需要转移到 Macro eNB 控制的小区, 以保持无线连接。
图 2所示网络架构可以支持用户承载分离。 在 Macro e B小区和 Local eNB小区重叠 覆盖区域时, 可以将对应的 UE的承载在不同的基站下进行调度和传输。 特别的, 以下对 实现用户面和控制面分离 ( CP/UP分离)的网络架构进行举例。 在该方式下, 当 UE在只 有 Macro eNB小区覆盖的区域, UE的控制面连接和用户面连接都在 Macro eNB,当 UE移 动到 /接近 Macro eNB小区和 Local eNB小区重叠覆盖区域时, UE用户面承载(全部或部 分)连接被转移到 Local eNB, 以获得更高的业务传输速率; 控制面连接仍然保持在 Macro eNB , 以减少频繁切换带来的信令开销。
分层组网情况下为了增强移动性管理或者提高峰值速率, 终端可能聚合多个基站的小 区的资源, 每个基站下独立进行调度。 而调度是基于小区无线网络临时标识(Cell Radio Network Temporary Identity, C-RNTI )寻址, C-RNTI是用于标识一个小区内的有无线资源 控制( Radio Resource Control, RRC )连接的 UE,在长期演进 ( Long Term Evolution, LTE ) 系统中由各个基站分配, 用于唯一标识一个小区内的各个 UE。 通常, 在 UE发起 RRC连 接时或切换过程中, 基站为该 UE分配专用的 C-RNTI标识。 C-RNTI的主要作用有: 加扰 物理下行控制信道( Physical Downlink Control Channel, PDCCH )指示的动态调度、加扰上 行信道、 PDCCH命令(order )触发的随机接入和切换过程。
但是, 对于高级长期演进 ( Long Term Evolution Advanced, LTE-A )版本 11 ( Rll ) 以 及之前的版本来说, 其只支持 UE聚合同一个 eNB下的载波, 并由这个基站为 UE分配 C-RNTI。 而在包含 Local eNB和 Macro eNB的分层网络部署场景下,特别是在承载分离的 架构下, UE可以同时聚合来自不同基站下的载波 /服务小区为其提供服务。 对 UE聚合的 不同基站来说, 如何为此场景下的此类 UE分配 C-RNTI用于完成动态调度等过程, 现有 技术中还没有给出解决方案。 发明内容
本发明实施例提供了了一种 C-RNTI的分配方法及系统, 用以在 UE聚合不同基站的 场景下实现为 UE分配 C-RNTL
本发明实施例提供的一种在 UE聚合多个基站小区资源的场景下 C-RNTI的分配方法 包括:
初始接入基站为 UE分配承载分离状态下使用的承载分离专用 C-RNTI,其中,所述承 载分离专用 C-RNTI属于 UE聚合的基站共同维护的承载分离专用 RNTI集合;
初始接入基站将所述 C-RNTI分别通知给 UE和与该基站聚合的基站。
本发明实施例提供的另一种 UE聚合多个基站小区资源的场景下 C-RNTI的分配方法 包括: UE的初始接入基站和 UE聚合的目标基站确定各自需要为该 UE分配的 C-RNTI; UE的初始接入基站和 UE聚合的目标基站将各自确定的 C-RNTI分配给 UE。
本发明实施例提供的一种基站, 包括:
分配单元, 用于在 UE聚合多个基站小区资源的场景下, 为该 UE分配承载分离专用 C-RNTI, 所述承载分离专用 C-RNTI属于 UE聚合的基站共同维护的承载分离专用 RNTI 集合; 通知单元, 用于将所述承载分离专用 C-RNTI通知给 UE和与初始接入基站聚合的 基站。
本发明实施例提供的一种 C-RNTI的分配系统包括:
UE的初始接入基站和 UE聚合的目标基站:
每一基站用于在用户设备 UE聚合多个基站小区资源的场景下, 各自为该 UE分配与 本基站对应的 C-RNTI。
通过以上技术方案可知,在 UE聚合多个基站小区资源的场景下, C-RNTI的分配有两 套不同的方案: 由初始接入基站为该 UE分配承载分离专用 C-RNTI; 或者 UE聚合的不同 基站确定各自需要为该 UE分配的 C-RNTI, UE聚合的基站将各自确定的 C-RNTI分配给 UE。 为 UE聚合不同基站的场景下 C-RNTI的分配, 提供了解决方案。 附图说明 图 1为现有技术中的 E-UTRAN网络架构图;
图 2为现有技术中的分层网络部署场景图;
图 3为本发明实施例提供的一种 C-RNTI分配方法的流程示意图;
图 4为本发明实施例提供的一种 C-RNTI分配方法的流程示意图;
图 5为本发明实施例提供的一种 C-RNTI分配方法的流程示意图;
图 6为本发明实施例提供的一种 C-RNTI分配方法的流程示意图;
图 Ί为本发明实施例提供的一种 C-RNTI分配方法的流程示意图;
图 8为本发明实施例提供的一种 C-RNTI分配方法的流程示意图;
图 9为本发明实施例提供的一种 C-RNTI分配方法的流程示意图;
图 10为本发明实施例提供的一种 C-RNTI分配方法的流程示意图;
图 11A为本发明实施例提供的一种初始接入基站的功能结构示意图;
图 11B为本发明实施例提供的一种初始接入基站的实体结构示意图。 具体实施方式 本发明实施例给出了用户聚合多个基站小区资源的分层组网场景下, 特别是在支持承 载分离的架构下, UE聚合的不同基站如何为 UE分配 C-RNTI的技术方案, 用于完成动态 调度等过程。
参见图 3 , 本发明实施例提供了一种 C-RNTI的分配方法, 该方法包括步骤:
S201 : 在 UE聚合多个基站小区资源的场景下, UE的初始接入基站和 UE聚合的目标 基站确定各自需要为该 UE分配的 C-RNTI;
S202: UE的初始接入基站和 UE聚合的目标基站将各自确定的 C-RNTI分配给 UE。 较佳的, 所述场景为支持承载分离的分层组网场景。
对于支持承载分离的分层组网场景, 在承载分离过程中, 聚合的目标基站为 UE分配 与本基站对应的 C-RNTI, 并通过初始接入基站将该 C-RNTI通知给 UE; 或者, 在承载分 离过程中,并且在由 UE在聚合的目标基站发起的随机接入过程中,聚合的目标基站为 UE 分配与本基站对应的 C-RNTI。
本发明实施例提供了另一种 C-RNTI的分配方法, 该方法包括:
在 UE聚合多个基站小区资源的场景下, 由初始接入基站为 UE分配承载分离状态下 使用的承载分离专用 C-RNTI, 其中, 所述承载分离专用 C-RNTI属于 UE聚合的基站共同 维护的承载分离专用 RNTI集合;
初始接入基站将所述 C-RNTI分别通知给 UE和与初始接入基站聚合的基站。
对于支持承载分离的分层组网场景, 在初始无线链路控制 RRC连接建立时, 或者在 承载分离过程中, 初始接入基站为该 UE分配承载分离专用 C-RNTI。
在承载分离状态下, 聚合的目标基站使用初始接入基站为该 UE分配的在承载分离状 态下使用的专用 C-RNTI进行通信, 初始接入基站同样使用该专用 C-RNTI进行通信; 或 者,
在承载分离状态下, 聚合的目标基站使用初始接入基站为该 UE分配的在承载分离状 态下使用的专用 C-RNTI进行通信, 初始接入基站仍然使用在 UE发起的初始连接建立过 程中初始接入基站分配给 UE的 C-RNTI进行通信。
下面给出几个具体实施例的说明。
具体实施例一: Macro eNB和 Local eNB各自为 UE分配与本基站对应 C-RNTI。在承 载分离过程中, 目标 eNB (如 Local eNB )为 UE分配在对应小区中使用的 C-RNTI, 通过 基站之间的接口告知 UE的初始接入基站(如 Macro eNB ),再通过初始接入基站告知 UE。
参见图 4, 具体包括步驟:
S301 : C-RNTI的初始分配。
作为 UE初始接入的基站, Macro eNB在为 UE分配 C-RNTI时,可以按照现有的规则 为 UE分配专用 C-RNTI, 例如可以随机为 UE分配专用 C-RNTI。 在 UE保持 RRC连接期 间, Macro eNB使用此 C-RNTI加扰的 PDCCH, 实现 Macro对 UE的动态调度等操作。
S302: 承载分离时 C-RNTI的分配。 当满足承载分离条件, Macro eNB通过基站之间的接口通知 Local eNB针对某 UE的 基站间的承载分离命令(消息包括: 在承载分离中需要转移的承载的配置信息、 UE标识 等), 请求Local eNB为该UE分配UE在Local下专用的C-RNTI。 而后, Local eNB将为 该 UE分配的 C-RNTI交互给 Macro e B。 Macro eNB向 UE发送承载分离命令,并将收到 的 Local eNB为该 UE分配的 C-RNTI通知给 UE。 此通知可通过 RRC连接重配置过程、 或其他全新定义的方式来实现。
S303: C-RNTI的使用。
在承载分离状态下, Macro eNB和 Local eNB分别使用各自为 UE分配的 C-RNTI, 完 成动态调度等过程。相应的,在承载分离状态下, UE在 Local和 Macro上分别使用相应的 C-RNTI,完成 PDCCH解扰、物理上行控制信道( Physical Uplink Control Channel,PUCCH ) /物理上行共享信道( Physical Uplink Shared Channel,PUSCH )加扰等操作。
S304: C-RNTI的回收。
当 Macro eNB判定 Local eNB不再满足承载分离条件时,将通知 UE承载聚合命令或 承载重分离命令, UE收到此命令后执行相应的操作(如,删除与原 Local对应的 C-RNTI )。 同时, 维持 RRC连接的基站(即 Macro eNB )通过基站之间的接口通知 Local eNB为相应 UE发起承载聚合过程或承载重分离过程。 Local eNB收到此命令后, 释放 Local eNB之前 为这个 UE分配的 C-RNTI, 并执行其他相应的操作。
所谓承载重分离过程, 即由承载分离过程转移的无线承载( Radio Bearer,RB )先转移 回 Macro eNB , 再通过新的承载分离命令, 将部分 /全部数据无线承载 (Data Radio Bearer,DRB)重新转移到另外一个 Local eNB; 或者由承载分离过程转移的部分 /全部 RB直 接转移到另外一个 Local eNB。
具体实施例二: Macro eNB和 Local eNB各自为 UE分配与本基站对应 C-RNTI。在承 载分离过程中, 目标 eNB (假设为 Macro eNB )为 UE分配在对应小区中使用的 C-RNTI , 通过基站之间的接口告知 UE的初始接入基站(假设为 Local eNB ), 再通过初始接入基站 告知 UE。
参见图 5, 具体包括步骤:
S401 : C-RNTI的初始分配。
作为 UE初始接入的基站, Local eNB在为 UE分配 C-RNTI时, 可以按照现有的规则 为 UE分配专用 C-RNTL
S402: 承载分离时 C-RNTI的分配。
当满足承载分离条件, Local eNB或采用切换过程, 将 UE先切换到 Macro eNB, 再由 Macro eNB发起承载分离过程; 或由 Local eNB直接发起承载分离过程。 对于 UE先切换 到 Macro eNB的情况,其承载分离和 C-RNTI的使用与实施例——致。以下仅对 Local eNB 直接发起的承载分离过程进行描述。
Local eNB通过基站之间的接口通知 Macro eNB针对某 UE的基站间的承载分离命令 (消息包括: 在承载分离中需要转移的 SRB等承载的配置信息、 UE标识等), 请求 Macro eNB为该 UE分配 UE在 Macro eNB下专用的 C-RNTI。 而后, Macro eNB将为该 UE分配 的 C-RNTI交互给 Local e B。 Local eNB向 UE发送承载分离命令,并将收到的 Mcaro eNB 为该 UE分配的 C-RNTI通知给 UE。 此通知可通过 RRC连接重配置过程、 或其他全新定 义的方式来实现。 承载分离成功后, UE的 RRC连接在 Macro上维持。
S403: C-RNTI使用。
在承载分离状态下, Macro eNB和 Local eNB分别使用各自为 UE分配的 C-RNTI, 完 成动态调度等过程。相应的,在承载分离状态下, UE在 Local和 Macro上分别使用相应的 C-RNTI, 完成 PDCCH解扰、 PUCCH/PUSCH加扰等操作。
S404: C-RNTI回收。
当 Macro eNB判定 Local eNB不再满足承载分离条件时,将通知 UE承载聚合命令或 承载重分离命令, UE收到此命令后执行相应的操作(如,删除与原 Local对应的 C-RNTI )。 同时, 维持 RRC连接的基站(即 Macro eNB )通过基站之间的接口通知 Local eNB为相应 UE发起承载聚合过程或承载重分离过程。 Local eNB收到此命令后, 释放 Local eNB之前 为这个 UE分配的 C-RNTI, 并执行其他相应的操作。
具体实施例三: Macro eNB和 Local eNB各自为 UE分配与本基站对应的 C-RNTI。 Local eNB在 UE发起 Local RA时为 UE分配的 Local下 UE专用的 C-RNTI。
参见图 6, 具体包括步骤:
S501 : C-RNTI 的初始分配。
作为 UE初始接入的基站, Macro eNB在为 UE分配 C-RNTI时,可以按照现有的规则 为 UE分配专用 C-RNTI。 在 UE保持 RRC连接期间, Macro eNB使用此 C-RNTI加扰的 PDCCH, 实现 Macro对 UE的动态调度等操作。
S502: 通知进行承载分离。
当满足承载分离条件时, Macro eNB通过基站之间的接口通知 Local eNB针对某 UE 的 eNB间的承载分离命令(消息包括: 在承载分离中需要转移的承载的配置信息、 UE标 识等)。 同时, Macro eNB向 UE发送承载分离命令。
S503: UE发起无线接入( Radio Access, RA )过程。
UE收到此命令后执行相应的操作:如激活另外一套对应 Local eNB的物理层( Physical Layer,PHY )和媒体接入控制 ( Medium Access Control,MAC ) 实体, 而后用与 Local eNB 对应的这套 PHY和 MAC实体,在 Local发起 RA过程。 Local eNB在 UE发起的随机接入 过程中为 UE分配 Local下 UE专用的 C-RNTI。 S504: C-RNTI使用。
在承载分离状态下, Macro eNB和 Local eNB分别使用各自为 UE分配的 C-RNTI, 完 成动态调度等过程。相应的,在承载分离状态下, UE在 Local和 Macro上分别使用相应的 C-RNTI, 完成 PDCCH解扰、 PUCCH/PUSCH加扰等操作。
S505: C-RNTI回收。
当 Macro eNB判定 Local eNB不再满足承载分离条件时,将通知 UE承载聚合命令或 承载重分离命令, UE收到此命令后执行相应的操作(如,删除与原 Local对应的 C-RNTI )。 同时, Macro eNB通过基站之间的接口通知 Local eNB为相应 UE发起承载聚合过程或承 载重分离过程。 Local eNB收到此命令后,回收为这个 UE分配的在 Local下的专用 C-RNTI, 并执行其他相应的操作。
具体实施例四: Macro eNB和 Local eNB共同维护一段 RNTI的取值范围; 在承载分 离时,由 UE的初始接入基站分配(假设为 Macro eNB )在承载分离状态下使用的 C-RNTI, 并通过基站之间的接口交互的方式,通知目标 eNB (假设为 Local eNB )该 UE在 Local eNB 对应的小区中使用的 C-RNTI取值。
参见图 7, 具体包括步骤:
S601 : 交互基站共同维护 RNTI专用集合。
为避免 C-R TI的使用冲突, 聚合的基站共同维护一段 RNTI的取值范围 (称为承载 分离专用 RNTI集合), 预留给基站交互 C-RNTI时使用。 上述基站共同维护的 RNTI专用 集合, 可由 OAM配置, 或也可通过 Local eNB和 Macro eNB之间的 X2接口, 或是 S1接 口, 或是全新定义的接口进行交互。
S602: C-RNTI的初始分配。
作为 UE初始接入的基站, Macro eNB在为初始接入的 UE分配 C-RNTI时,可以按照 现有的规则为 UE分配 C-RNTI, 此 C-RNTI的取值范围在基站共同维护的承载分离专用 RNTI集合之外。
S603: 承载分离时 C-RNTI的分配。
当满足承载分离条件, Macro eNB发起承载分离过程。 Macro eNB在预留的 RNTI专 用集合中, 选择在承载分离状态下 UE在 Macro和 Local使用的 C-RNTI (记为承载分离专 用 C-RNTI ), 并将这个承载分离专用 C-RNTI通知给 UE。 此通知可以采用 RRC连接重配 置过程、 或使用切换过程、 或使用 PDCCH调度 C-RNTI MAC CE方式、 或其他全新定义 的方式来实现。 同时, Macro eNB通过基站之间的接口将 UE标识、 Macro为 UE分配的承 载分离专用 C-RNTI, 转移的 DRB配置等信息通知 Local eNB (进一步, Macro eNB将为 UE分配的承载分离专用 C-RNTI交互给与 Macro eNB聚合的所有 Local eNB )。 在 UE收 到 Macro eNB告知的承载分离专用 C-RNTI并正确解码后, UE使用承载分离专用 C-RNTI , 完成 PDCCH解扰、 PUCCH/PUSCH加扰等操作; 在收到 UE的反馈在承载分离状态下, 基站使用承载分离专用 C-RNTI完成动态调度等操作。
对于 Macro eNB在初始接入时为 UE分配的 C-RNTI, 基站可以重新分配给其它 UE, 也可以为该 UE保留供后续使用(基站可在收到 UE反馈的承载分离完成消息后进行处理)。
S604: C-RNTI的使用。
在承载分离状态下, 在 Macro eNB和 Local eNB的对应小区中分别使用 Macro为 UE 分配的承载分离专用 C-RNTI, 完成各小区的动态调度等过程。 相应的, 在承载分离状态 下, UE使用该承载专用 C-RNTI, 完成 PDCCH解扰、 PUCCH/PUSCH加扰等操作。
S605: 承载聚合或重分离中的处理。
当 Macro eNB判定 Local eNB不再满足承载分离条件时, 将发起承载聚合过程或承载 重分离过程。
对于承载聚合过程, Macro eNB需要确定聚合后 UE使用的 C-RNTI:
若在 UE初始接入时 Macro eNB分配的 C-RNTI仍然保留, 则可以直接使用该保留的 C-RNTI作为聚合后该 UE在 Macro eNB对应小区的标识;
若不保留 UE初始接入时 Macro eNB分配的 C-RNTI, 则需要采用与初始接入类似的 方式为该 UE分配承载分离专用 RNTI集合之外的 C-RNTI取值。
同时, Macro eNB通过基站之间的接口通知 Local eNB为相应 UE发起承载聚合过程, 之前分配给 UE的承载分离专用 C-RNTI, 在收到 UE反馈的承载聚合完成后被 Macro和 local eNB回收( Local eNB保留的承载分离专用 C-RNTI, 也可在收到 Macro eNB发起承 载聚合过程通知时回收)(进一步, 当原来的承载分离专用 C-RNTI在 Macro eNB发起承 载分离时一并告知给所有与 Macro eNB聚合的基站时, 原来的承载分离专用 C-RNTI从与 Macro eNB聚合并被告知的其他 Local eNB回收)。 相应的, UE收到 Macro eNB发送的携 带新的 C-RNTI的通知并正确解码后, UE使用新的 C-RNTI, 完成后续 PDCCH解扰、 PUCCH/PUSCH加扰等操作。 同时, UE删除这个承载分离专用 C-RNTI。 在收到 UE反馈 的承载聚合完成后, 基站使用新的 C-RNTI完成动态调度等操作。
所谓承载重分离过程, 即由承载分离过程转移的 RB先转移回 Macro eNB, 再通过新 的承载分离命令,将部分 /全部 DRB重新转移到另外一个 Local eNB;或者由承载分离过程 转移的部分 /全部 RB直接转移到另外一个 Local eNB。
对于先转移回 Macro eNB的承载重分离, 其基本处理与承载聚合过程一致; 对于直接 从 Local eNBl转移到 Local eNB2的重分离过程, 需要采用步驟 S602类似的手段为 Macro eNB和 Local eNB2重新分配一个新的承载分离专用 C-RNTI (进一步, 可将此新的承载分 离专用 C-RNTI交互给与 Macro eNB聚合的所有 Local eNB ), 并将原来的承载分离专用 C-RNTI从 Macro eNB和 Local eNBl回收(进一步, 当原来的承载分离专用 C-RNTI在 Macro eNB发起承载分离时一并告知给所有与 Macro e B聚合的基站时,原来的承载分离 专用 C-RNTI从与 Macro eNB聚合并被告知的其他 Local eNB回收)。 (相应的, UE删除原 承载分离专用 C-RNTI, 之后使用新的承载分离专用 C-RNTI。 具体做法如: 分配给 UE的 原承载分离专用 C-RNTI, 在收到 UE反馈的承载重分离完成后被 Macro eNB回收。 相应 的, 在 Macro eNB通知 UE发起承载重分离命令时, 告知 UE后续使用的新承载分离专用 C-RNTK简称 C-RNTI1 ), UE收到携带 C-RNTI1的通知并正确解码后, UE使用 C-RNTI1 , 完成 PDCCH解扰、 PUCCH/PUSCH加扰等操作。 同时, UE删除原承载分离专用 C-RNTI。 在收到 UE反馈的承载重分离后,基站使用 C-RNTI1完成动态调度等操作 );或者在 Macro eNB发起承载分离时即告知所有与其聚合的基站承载分离专用 C-RNTI时, Local e B2直 接使用原来的承载分离专用 C-RNTI, 进行后续处理和操作; 又或者在 Macro eNB发起承 载分离时仅告知聚合的目标基站承载分离专用 C-RNTI时, 此时 Macro eNB将原来的承载 分离专用 C-RNTI直接分配给 Local eNB2,并且进一步可以回收 Local eNB 1上的原承载分 离专用 C-RNTI的取值 (原承载分离专用 C-RNTI, Local eNBl可在收到 UE反馈的承载重 分离完成后回收, 也可在 Local eNBl收到 Macro eNB发起承载重分离过程通知时回收)。
具体实施例五: Macro eNB和 Local eNB共同维护一段 RNTI的取值范围; 在承载分 离时由 UE的初始接入基站(假设为 Macro eNB )为目标 eNB (假设为 Local eNB )分配承 载分离专用 C-RNTI, 并通过基站之间的接口交互的方式, 通知目标 eNB (假设为 Local eNB )。 在整个过程中不需要改变 UE在 Macro eNB所对应小区的 C-RNTI的取值。
参见图 8, 具体包括步骤:
S701 : 交互基站共同维护的 RNTI专用集合。
为避免 C-RNTI的使用冲突, 聚合的基站共同维护一段 RNTI的取值范围 (称为承载 分离专用 RNTI集合), 预留给基站交互 C-RNTI时使用。 上述基站共同维护的 RNTI专用 集合, 可由 OAM配置, 或也可以通过 Local eNB和 Macro eNB之间的 X2接口, 或是 S1 接口, 或是全新定义的接口进行交互。
S702: C-RNTI的初始分配。
作为 UE初始接入的基站, Macro eNB在为初始接入的 UE分配 C-RNTI时,可以按照 现有的规则为 UE分配 C-R TI, 此 C-RNTI的取值范围在基站共同维护的承载分离专用 RNTI集合之外。
S703: 承载分离时 C-RNTI的分配。
当满足承载分离条件时, Macro eNB发起承载分离过程。 Macro eNB在预留的 RNTI 专用集合中,选择在承载分离状态下 UE在 Local eNB对应小区使用的 C-RNTI (记为承载 分离专用 C-RNTI ), 并将这个 载分离专用 C-R TI通知给 UE。 此通知可以采用 RRC连 接重配置过程、 或其他全新定义的方式来实现。 同时, Macro eNB通过基站之间的接口将 UE标识、承载分离专用 C-RNTI、转移的 DRB配置等信息通知 Local eNB (进一步, Macro eNB将为 UE分配的承载分离专用 C-RNTI交互给与 Macro eNB聚合的所有 Local eNB )。
S704: C-RNTI使用。
在承载分离状态下, 在 Macro eNB和 Local eNB的对应小区中使用不同的 C-RNTI完 成对 UE的动态调度等操作: Macro中使用初始接入时为 UE分配的 C-RNTI, Local中则 使用 Macro eNB分配的承载分离专用 C-RNTI。 相应的, 在承载分离状态下, UE在 Local 和 Macro上分别使用相应的 C-RNTI, 完成 PDCCH解扰、 PUCCH PUSCH加扰等操作。
S705: 承载聚合或重分离中的处理。
当 Macro eNB判定 Local eNB不再满足承载分离条件时, 将发起承载聚合过程或承载 重分离过程。
对于承载聚合过程, Macro eNB仍然使用初始接入时分配的 C-RNTI。同时, Macro eNB 通过基站之间的接口通知 Local eNB为相应 UE发起承载聚合过程, 之前分配给 UE的承 载分离专用 C-RNTI被 Macro和 local eNB回收(承载分离专用 C-RNTI可在 UE反馈承载 聚合完成后回收, 也可在 Local eNB收到 Macro eNB发起承载聚合过程通知时回收)(进 一步, 当原来的承载分离专用 C-RNTI在 Macro eNB发起承载分离时一并告知给所有与 Macro eNB聚合的基站时, 原来的承载分离专用 C-RNTI从与 Macro eNB聚合并被告知的 其他 Local eNB回收)。相应的, 在 UE反馈承载聚合完成后或 UE收到 Macro eNB发送的 承载聚合命令并成功解码后, UE删除这个承载分离专用 C-RNTI。
对于先转移回 Macro eNB的承载重分离过程, 其基本处理与承载聚合过程一致; 对于 直接从 Local eNBl转移到 Local e B2的重分离过程, 需要采用步骤 S702类似的手段为 Local eNB2重新分配一个新的承载分离专用 C-RNTI (进一步, 可将此新的承载分离专用 C-RNTI交互给与 Macro eNB聚合的所有 Local eNB ), 并将原来的承载分离专用 C-RNTI 从 Macro eNB和 Local eNB 1回收(进一步, 当原来的承载分离专用 C-RNTI在 Macro eNB 发起承载分离时一并告知给所有与 Macro eNB聚合的基站时,原来的承载分离专用 C-RNTI 从与 Macro eNB聚合并被告知的其他 Local eNB回收)(相应的, UE删除原承载分离专用 C-RNTI, 之后使用新的承载分离专用 C-RNTI。 具体^:法类似实施例四中所述); 或者在 Macro eNB发起承载分离时即告知所有与其聚合基站承载分离专用 C-RNTI时, Local e B2 直接使用原来的承载分离专用 C-RNTI, 进行后续处理和操作; 又或者在 Macro eNB发起 承载分离时仅告知聚合的目标基站承载分离专用 C-RNTI时, 此时 Macro eNB将原来的承 载分离专用 C-RNTI直接分配给 Local e B2,并且进一步可以回收 Local eNBl上的原承载 分离专用 C-RNTI的取值 (原^载分离专用 C-RNTI, Local eNBl可在收到 UE反馈的 ? 载 重分离完成后回收,也可在 Local eNBl收到 Macro eNB发起承载重分离过程通知时回收)。
具体实施例六: Macro eNB和 Local eNB共同维护一段 RNTI的取值范围; 由 UE初始 接入的基站( 支设为 Macro eNB )在连接建立之初即分配 UE在 载分离状态下使用的 C-RNTI,并通过基站之间的接口交互的方式,在 UE建立 RRC连接后即通知目标基站(假 设为 Local eNB )该 UE在 Local eNB对应的小区中使用的 C-RNTI取值。
参见图 9, 具体包括步骤:
S801 : 交互基站共同维护的 RNTI专用集合。
为避免 C-RNTI的使用冲突, 聚合的基站共同维护一段 RNTI的取值范围 (称为承载 分离专用 RNTI集合), 预留给基站交互 C-RNTI时使用。 上述承载分离专用 RNTI集合可 由 OAM配置, 或也可以通过 Local eNB和 Macro eNB之间的 X2接口, 或是 S 1接口, 或 是全新定义的接口进行交互。
S802: C-RNTI初始分配。
Macro eNB为初始接入的 UE分配 C-RNTI时,按照现有的规则为 UE分配 C-RNTK记 为 C-RNTI1 ), 此 C-RNTI1的取值范围在承载分离专用 RNTI集合之外。
S803: 对承载分离专用 C-RNTI的预先分配。
建立 RRC连接以后, 当 Macro eNB获知 UE具备支持承载分离的能力时, 重新为该 UE分配在 Macro eNB以及后续 Local eNB中使用的 C-RNTI (记为 C-RNTI2, 归属于承载 分离专用 RNTI集合)。 C-RNTI2在分配后, 即由 Macro eNB通过基站之间的接口告知所 有可能进行聚合的 Local eNB , 同时告知的还有 UE标识; 同时 Macro eNB告知 UE将使用 的 C-RNTI由 C-RNTI1改为 C-RNTI2 (此后 C-RNTI1可以分配给其他的 UE )。 UE收到并 成功解码 Macro eNB告知的 C-RNTI2后, 使用 C-RNTI2 完成后续的 PDCCH解扰、 PUCCH/PUSCH加扰等操作。
当满足承载分离条件时, Macro eNB发起承载分离过程。 Macro eNB通过基站之间的 接口将 UE标识、 转移的 DRB配置等信息通知 Local eNB; 此时不需要告知 Local eNB为 该 UE分配的 C-RNTI。
S804: C-RNTI的使用。
在承载分离状态下,UE在 Macro eNB和 Local eNB均使用 C-RNTI2完成相关的操作。 相应的, 在承载分离状态下, UE使用 C-RNTI2完成 PDCCH解扰、 PUCCH/PUSCH加扰 等操作。
S805: C-RNTI的变更。
当 Macro eNB判定 Local eNB不再满足承载分离条件时, 将发起承载聚合过程或承载 重分离过程。
对于承载聚合过程、先转移回 Macro eNB的承载重分离过程、 以及直接从 Local eNB 1 转移到 Local eNB2的重分离过程, Macro eNB仍然使用 C-RNTI2。相应的, UE使用 C-RNTI2 完成对应的 PDCCH解扰、 PUCCH/PUSCH加扰等操作。 对于直接从 Local eNBl转移到 Local eNB2的重分离过程,由于 Macro eNB在根据 UE 能力分配 C-RNTI2之后 , 所有可能进行聚合的 Local eNB均将 C-RNTI2预留给该 UE了 , 因此此时不需要告知 Local eNB2该 UE的 C-RNTI取值。
具体实施例七: Macro eNB和 Local eNB共同维护一段 RNTI的取值范围; 由 UE初始 接入的基站(假设为 Local eNB )在连接建立之初即分配 UE在承载分离状态下使用的 C-RNTI,并通过基站之间的接口交互的方式,在 UE建立 RRC连接后即通知目标基站(假 设为 Macro eNB )该 UE在承载分离时使用的 C-RNTI取值。
参见图 10, 具体包括步
S901 : 交互基站共同维护的 RNTI专用集合。
为避免 C-RNTI的使用冲突, 聚合的基站共同维护一段 RNTI的取值范围 (称为承载 分离专用 RNTI集合), 预留给基站交互 C-RNTI时使用。 上述承载分离专用 RNTI集合可 由 OAM配置, 或也可以通过 Local eNB和 Macro eNB之间的 X2接口, 或是 S 1接口, 或 是全新定义的接口进行交互。
S902: C-RNTI初始分配。
Local eNB为初始接入的 UE分配 C-RNTI时,按照现有的规则为 UE分配 C-RNT 记 为 C-RNTI1 ), 此 C-RNTI1的取值范围在承载分离专用 RNTI集合之外。
S903: 对承载分离专用 C-R TI的预先分配。
建立 RRC连接以后, 当 Local eNB获知 UE具备支持承载分离的能力时, 重新为该 UE分配在该 Local eNB 以及后续承载分离状态下在 Macro eNB使用的 C-RNTI (记为 C-RNTI2, 归属于承载分离专用 RNTI集合)。 C-RNTI2在分配后, 即由 Local eNB通过基 站之间的接口告知 Macro eNB ( Macro eNB再告知与其聚合的其他 Local eNB ), 同时告知 的还有 UE标识;同时 Local eNB告知 UE将使用的 C-RNTI由 C-RNTI1改为 C-RNTI2(此 后 C-RNTI1可以分配给其他的 UE )。 UE收到并成功解码 Local eNB告知的 C-RNTI2后, 使用 C-RNTI2完成后续的 PDCCH解扰、 PUCCH/PUSCH加扰等操作。
当满足承载分离条件时, Local eNB采用切换过程, 将 UE先切换到 Macro eNB, 再由 Macro eNB发起承载分离过程。 此时不需要交互为该 UE分配的承载分离专用 C-RNTI。
S904: C-RNTI的使用。
在承载分离状态下,UE在 Macro eNB和 Local eNB均使用 C-RNTI2完成相关的操作。 相应的, 在承载分离状态下, UE使用 C-RNTI2完成 PDCCH解扰、 PUCCH/PUSCH加扰 等操作。
S905: C-RNTI的变更。
当 Macro eNB判定 Local eNB不再满足承载分离条件时, 将发起承载聚合过程或承载 重分离过程。 对于承载聚合过程、先转移回 Macro eNB的承载重分离过程、 以及直接从 Local e B 1 转移到 Local eNB2的重分离过程, Macro eNB仍然使用 C-RNTI2。相应的, UE使用 C-RNTI2 完成对应的 PDCCH解扰、 PUCCH/PUSCH加扰等操作。
对于直接从 Local eNBl转移到 Local eNB2的重分离过程, 由于基站根据 UE能力分 配并交互 C-RNTI2之后, 所有可能进行聚合的基站均将 C-RNTI2预留给该 UE了, 因此 此时不需要告知 Local eNB2该 UE的 C-RNTI取值。
本发明实施例提供了一种 C-RNTI的分配系统,该系统包括 UE的初始接入基站和 UE 聚合的目标基站:
每一基站用于在用户设备 UE聚合多个基站小区资源的场景下, 各自为该 UE分配与 本基站对应的 C-RNTI。
较佳的, 所述场景为支持承载分离的分层组网场景。
对于支持承载分离的分层组网场景, 所述聚合的目标基站, 具体用于在承载分离过程 中, 为 UE分配在该聚合的目标基站小区的 C-RNTI, 并通过 UE 的初始接入基站将该 C-RNTI通知给 UE; 或者, 在承载分离过程中, 并且在由 UE在聚合的目标基站发起的随 机接入过程中, 为 UE分配与本基站对应的 C-RNTI, 并将该 C-RNTI通知给 UE。
本发明实施例提供了一种基站, 参见图 11A, 该基站包括:
分配单元 1001 , 用于在 UE聚合多个基站小区资源的场景下, 为该 UE分配承载分离 专用 C-RNTI, 所述承载分离专用 C-RNTI属于 UE聚合的基站共同维护的承载分离专用 RNTI集合;
通知单元 1002,用于将所述承载分离专用 C-RNTI通知给 UE和与该基站聚合的基站。 较佳的, 所述场景为支持承载分离的分层组网场景。
所述分配单元 1001 , 具体用于:
对于支持承载分离的分层组网场景,可以在初始 RRC连接建立时, 为该 UE分配承载 分离期间使用的 C-RNTI; 也可以在承载分离过程中, 为该 UE 分配承载分离期间的 C-RNTL
较佳的, 该基站为初始接入基站。
较佳的, 该基站既有可能是宏基站, 也有可能是本地基站。
较佳的, 在承载分离状态下, 聚合的目标基站使用初始接入基站为该 UE分配的在承 载分离状态下使用的 C-RNTI进行通信, 初始接入基站同样使用该分配的 C-RNTI进行通 信; 或者, 在承载分离状态下, 聚合的目标基站使用初始接入基站为该 UE分配的在承载 分离状态下使用的 C-RNTI进行通信, 初始接入基站仍然使用在 UE发起的初始连接建立 过程中初始接入基站分配给 UE的 C-RNTI进行通信。
具体的, 在硬件上分配单元 1001可以是处理器, 通知单元 1002可以是包含收发天线 等的信号收发装置, 此时, 如图 11B所示, 本发明实施例提供的基站包括: 处理器 101 ,用于在 UE聚合多个基站小区资源的场景下,为该 UE分配承载分离专用 C-RNTI, 所述承载分离专用 C-RNTI属于 UE聚合的基站共同维护的承载分离专用 RNTI 集合;
信号收发装置 102,用于将所述承载分离专用 C-RNTI通知给 UE和与该基站聚合的基 站。
较佳的, 所述场景为支持承载分离的分层组网场景。
所述处理器 101 , 具体用于:
对于支持承载分离的分层组网场景,可以在初始 RRC连接建立时, 为该 UE分配承载 分离期间使用的 C-RNTI; 也可以在承载分离过程中, 为该 UE 分配承载分离期间的 C-RNTL
较佳的, 该基站为初始接入基站。
较佳的, 该基站既有可能是宏基站, 也有可能是本地基站。
较佳的, 在承载分离状态下, 聚合的目标基站使用初始接入基站为该 UE分配的在承 载分离状态下使用的 C-RNTI进行通信, 初始接入基站同样使用该分配的 C-RNTI进行通 信; 或者, 在承载分离状态下, 聚合的目标基站使用初始接入基站为该 UE分配的在承载 分离状态下使用的 C-RNTI进行通信, 初始接入基站仍然使用在 UE发起的初始连接建立 过程中初始接入基站分配给 UE的 C-RNTI进行通信。
综上所述, 本发明公开了一种在用户聚合多个基小区资源的场景下, 特别是在支持承 载分离的分层组网场景下, UE聚合的不同基站为 UE分配 C-RNTI的方法, 用以完成基站 对 UE的动态调度等过程。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形 式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。 这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利 要求
1、 一种用户设备 UE聚合多个基站小区资源的场景下小区无线网络临时标识 C-RNTI 的分配方法, 其特征在于, 该方法包括:
初始接入基站为 UE分配承载分离状态下使用的承载分离专用 C-RNTI,其中,所述承 载分离专用 C-RNTI属于 UE聚合的基站共同维护的承载分离专用无线网络临时标识 RNTI 集合;
初始接入基站将所述 C-RNTI分别通知给 UE和与初始接入基站聚合的基站。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述场景为支持承载分离的分层组网 场景。
3、根据权利要求 2所述的方法, 其特征在于, 初始接入基站为 UE分配承载分离专用 C-RNTI, 包括:
在初始无线链路控制 RRC连接建立时, 或者, 在承载分离过程中, 初始接入基站为 该 UE分配承载分离专用 C-RNTI。
4、 根据权利要求 3所述的方法, 其特征在于, 该方法还包括:
在承载分离状态下, UE聚合的基站使用所述承载分离专用 C-RNTI进行通信, 或者, UE聚合的基站中的初始接入基站使用在 UE发起的初始连接建立过程中初始接入基站分 配给 UE的 C-RNTI进行通信, UE聚合的基站中初始接入基站之外的基站使用所述承载分 离专用 C-RNTI进行通信。
5、 根据权利要求 1 所述的方法, 其特征在于, 所述初始接入基站, 为宏基站或本地 基站。
6、 一种用户设备 UE聚合多个基站小区资源的场景下小区无线网络临时标识 C-RNTI 的分配方法, 其特征在于, 该方法包括:
UE的初始接入基站和 UE聚合的目标基站确定各自需要为该 UE分配的 C-RNTI; UE的初始接入基站和 UE聚合的目标基站将各自确定的 C-RNTI分配给 UE。
7、 根据权利要求 6所述的方法, 其特征在于, 所述场景为支持承载分离的分层组网 场景。
8、 根据权利要求 7所述的方法, 其特征在于, 所述 UE聚合的目标基站将需要为 UE 分配的 C-RNTI分配给 UE, 包括:
在承载分离过程中, UE聚合的目标基站为 UE分配与本基站对应的 C-RNTI, 并通过 UE的初始接入基站将该 C-RNTI通知给 UE; 或者,
在承载分离过程中,并且在由 UE在聚合的目标基站发起的随机接入过程中, UE聚合 的目标基站为 UE分配与本基站对应的 C-RNTI, 并将该 C-RNTI通知给 UE。
9、 一种基站, 其特征在于, 该基站包括:
分配单元, 用于在用户设备 UE聚合多个基站小区资源的场景下, 为该 UE分配承载 分离专用 C-RNTI,所述承载分离专用 C-RNTI属于 UE聚合的基站共同维护的承载分离专 用无线网络临时标识 RNTI集合;
通知单元, 用于将所述承载分离专用 C-RNTI通知给 UE和与该基站聚合的基站。
10、 根据权利要求 9所述的基站, 其特征在于, 所述场景为支持承载分离的分层组网 场景。
11、 根据权利要求 10所述的基站, 其特征在于, 所述分配单元, 具体用于: 在初始无线链路控制 RRC连接建立时, 或者, 在承载分离过程中, 为该 UE分配承载 分离专用 C-RNTI。
12、 根据权利要求 9所述的基站, 其特征在于, 该基站为 UE的初始接入基站。
13、 根据权利要求 9所述的基站, 其特征在于, 该基站为宏基站或本地基站。
14、 一种小区无线网络临时标识 C-RNTI的分配系统, 其特征在于, 该系统包括 UE 的初始接入基站和 UE聚合的目标基站:
每一基站用于在用户设备 UE聚合多个基站小区资源的场景下, 各自为该 UE分配与 本基站对应的 C-RNTI。
15、 根据权利要求 14所述的系统, 其特征在于, 所述场景为支持承载分离的分层组 网场景。
16、 根据权利要求 15所述的系统, 其特征在于, 所述聚合的目标基站, 具体用于: 在承载分离过程中, 为 UE分配在该聚合的目标基站小区的 C-RNTI, 并通过 UE的初 始接入基站将该 C-RNTI通知给 UE; 或者,
在承载分离过程中, 并且在由 UE在聚合的目标基站发起的随机接入过程中, 为 UE 分配与本基站对应的 C-RNTI, 并将该 C-RNTI通知给 UE。
PCT/CN2013/080069 2012-07-26 2013-07-25 一种c-rnti的分配方法及系统 WO2014015806A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/416,834 US9801214B2 (en) 2012-07-26 2013-07-25 Method and system for assigning C-RNTI
EP13823489.3A EP2879455B1 (en) 2012-07-26 2013-07-25 Method and system for assigning c-rnti
KR1020157004597A KR101644869B1 (ko) 2012-07-26 2013-07-25 C-rnti의 할당 방법 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210262984.1A CN103582133B (zh) 2012-07-26 2012-07-26 一种c‑rnti的分配方法及系统
CN201210262984.1 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014015806A1 true WO2014015806A1 (zh) 2014-01-30

Family

ID=49996600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080069 WO2014015806A1 (zh) 2012-07-26 2013-07-25 一种c-rnti的分配方法及系统

Country Status (5)

Country Link
US (1) US9801214B2 (zh)
EP (1) EP2879455B1 (zh)
KR (1) KR101644869B1 (zh)
CN (1) CN103582133B (zh)
WO (1) WO2014015806A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123434B1 (ko) * 2013-08-09 2020-06-17 삼성전자 주식회사 셀룰러 이동 통신 시스템에서 스케쥴링 요청 방법 및 장치
WO2015081552A1 (zh) * 2013-12-06 2015-06-11 华为技术有限公司 一种终端接入基站的方法及装置
WO2015159351A1 (ja) * 2014-04-14 2015-10-22 富士通株式会社 基地局装置
CN105307177B (zh) * 2014-07-22 2019-06-25 中国移动通信集团公司 小区无线网络临时标识分配方法及装置
WO2016106507A1 (zh) 2014-12-29 2016-07-07 华为技术有限公司 一种小区无线网络临时标识c-rnti的分配方法和设备
WO2017086496A1 (ko) * 2015-11-17 2017-05-26 엘지전자(주) 무선통신 시스템에서 단말 식별자를 할당하기 위한 방법 및 장치
CN105472600B (zh) * 2015-11-20 2019-03-12 北京佰才邦技术有限公司 C-rnti配置方法和装置及系统
CN107690172B (zh) * 2016-08-05 2019-12-20 电信科学技术研究院 一种无线网络中的接入方法及设备
BR112019025347A2 (pt) * 2017-08-28 2020-06-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método de transmissão de dados, dispositivo de rede, e dispositivo terminal
CN111416697B (zh) * 2019-01-07 2022-04-01 中国移动通信有限公司研究院 一种小区无线网络临时标识的配置方法及设备
US11838090B2 (en) 2019-06-26 2023-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for information sharing
CN114554502B (zh) * 2020-11-18 2023-08-29 大唐移动通信设备有限公司 小区无线网络临时标识的分配方法、装置、基站及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873614A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种lte-a系统中多载波聚合小区的配置方法和设备
US20110021191A1 (en) * 2009-07-23 2011-01-27 Qualcomm Incorporated Cross-carrier control for lte-advanced multicarrier system
CN101998636A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 一种终端标识的使用方法、系统和设备
CN101998550A (zh) * 2009-08-11 2011-03-30 大唐移动通信设备有限公司 一种载波聚合系统中rnti分配的方法和装置
CN102378394A (zh) * 2010-08-12 2012-03-14 华为技术有限公司 一种网络连接方法和系统
CN102438247A (zh) * 2011-11-03 2012-05-02 中兴通讯股份有限公司 物理小区标识分配、获取方法,基站及用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI442794B (zh) * 2009-03-12 2014-06-21 Interdigital Patent Holdings 執行分量載波特定再配置方法及裝置
CN102006655A (zh) * 2009-08-31 2011-04-06 中兴通讯股份有限公司 载波聚合中无线资源控制连接重建的方法和装置
US9326211B2 (en) * 2010-06-10 2016-04-26 Interdigital Patent Holdings, Inc. Reconfiguration and handover procedures for fuzzy cells
CN102469557B (zh) * 2010-11-15 2014-08-13 华为技术有限公司 接入基站方法、基站和用户设备
EP3229509B1 (en) * 2012-01-03 2019-03-13 Telefonaktiebolaget LM Ericsson (publ) A radio communication system for assigning a shortlived c-rnti
WO2013104416A1 (en) * 2012-01-11 2013-07-18 Nokia Siemens Networks Oy Secondary cell preparation for inter- site carrier aggregation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873614A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种lte-a系统中多载波聚合小区的配置方法和设备
US20110021191A1 (en) * 2009-07-23 2011-01-27 Qualcomm Incorporated Cross-carrier control for lte-advanced multicarrier system
CN101998550A (zh) * 2009-08-11 2011-03-30 大唐移动通信设备有限公司 一种载波聚合系统中rnti分配的方法和装置
CN101998636A (zh) * 2009-08-14 2011-03-30 大唐移动通信设备有限公司 一种终端标识的使用方法、系统和设备
CN102378394A (zh) * 2010-08-12 2012-03-14 华为技术有限公司 一种网络连接方法和系统
CN102438247A (zh) * 2011-11-03 2012-05-02 中兴通讯股份有限公司 物理小区标识分配、获取方法,基站及用户设备

Also Published As

Publication number Publication date
US9801214B2 (en) 2017-10-24
KR20150036743A (ko) 2015-04-07
EP2879455A1 (en) 2015-06-03
US20150208448A1 (en) 2015-07-23
EP2879455A4 (en) 2016-01-13
CN103582133A (zh) 2014-02-12
CN103582133B (zh) 2017-06-23
EP2879455B1 (en) 2017-11-22
KR101644869B1 (ko) 2016-08-02

Similar Documents

Publication Publication Date Title
WO2014015806A1 (zh) 一种c-rnti的分配方法及系统
JP6018332B1 (ja) 基地局及びプロセッサ
EP3652993B1 (en) Method for supporting handover and corresponding apparatus.
CN108886721B (zh) 切换控制方法及其设备
CN106535332B (zh) 资源配置的传输方法及装置
CN104427566B (zh) 一种切换方法及载波聚合系统
EP4167641A1 (en) Method for data forwarding in a small cell system
CN106941700B (zh) 一种数据传输方法及装置和基站及ue
CN102833802A (zh) 一种数据转发方法及设备
WO2017166300A1 (zh) 一种无线资源管理方法和装置
CN105025465B (zh) 用户终端位置上报方法、基站、移动管理实体及系统
JP2015530839A (ja) 異種ネットワーク内のハンドオーバー管理のための方法
JP6345336B2 (ja) 閉鎖加入者グループ身元状態のアップデート方法、システム及び基地局
WO2014008845A1 (zh) 一种小区接入的方法、系统和设备
US20160183315A1 (en) Method and system for managing cell radio network temporary identifiers, computer program product
WO2011000161A1 (zh) 一种切换方法和装置
WO2014166458A1 (zh) 切换方法、装置、基站、系统及计算机存储介质
EP3340662B1 (en) Method and apparatus for acquiring device-to-device (d2d) authorization information
CN103889059B (zh) 小区资源配置方法和设备
CN106559885B (zh) 一种小区无线网络临时标识分配的方法、接入网节点及ue
CN103582132B (zh) 一种c-rnti的分配方法及系统
CN104581699B (zh) 一种双连接用户标识的确定方法
WO2018054503A1 (en) Communication system
WO2014113998A1 (zh) 接入无线通信节点的方法、无线通信节点及系统
WO2016101468A1 (zh) 移动性管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823489

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14416834

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013823489

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013823489

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157004597

Country of ref document: KR

Kind code of ref document: A