WO2014015678A1 - 一种家用中央空调的hvac控制系统 - Google Patents

一种家用中央空调的hvac控制系统 Download PDF

Info

Publication number
WO2014015678A1
WO2014015678A1 PCT/CN2013/073182 CN2013073182W WO2014015678A1 WO 2014015678 A1 WO2014015678 A1 WO 2014015678A1 CN 2013073182 W CN2013073182 W CN 2013073182W WO 2014015678 A1 WO2014015678 A1 WO 2014015678A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
hvac
controller
permanent magnet
magnet synchronous
Prior art date
Application number
PCT/CN2013/073182
Other languages
English (en)
French (fr)
Inventor
赵勇
胡戈
周一桥
鲁楚平
Original Assignee
中山大洋电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大洋电机股份有限公司 filed Critical 中山大洋电机股份有限公司
Publication of WO2014015678A1 publication Critical patent/WO2014015678A1/zh
Priority to US14/334,638 priority Critical patent/US10234165B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • HVAC control system for household central air conditioner
  • the invention relates to an HVAC control system for a home central air conditioner.
  • a household central air conditioner centrally installs a compressor, a condenser, an evaporator, a throttling device, and a blower in a casing to form an independent and functional unit.
  • the control structure is as shown in Fig. 1, including HVAC system control.
  • the centrifugal blower motor, the compressor motor, the axial fan motor and the gas induced draft fan motor, the HVAC system controller controls four motors, and the thermostat HERMOSTAT establishes communication with the HVAC system controller.
  • the centrifugal blower motor and compressor motor in the traditional domestic central air conditioner adopt single-phase AC motor PSC, single-phase AC motor, low efficiency and relatively energy consumption.
  • the noise is also large, and the degree of controllability is low.
  • the axial fan motor in the figure is AC motor, no motor controller is configured.
  • the centrifugal blower motor and the compressor motor each have an independent motor controller.
  • Each motor controller is provided with a power supply part, a microprocessor, and an inverter circuit. And motor operating parameter test list Therefore, the entire control part of the circuit overlaps the configuration, the structure is complicated, and the hardware and software resources in the HVAC system controller cannot be fully utilized, which is bound to cause a great increase in product cost and waste of resources.
  • heat dissipation becomes a more difficult problem.
  • An object of the present invention is to provide an HVAC control system for a home central air conditioner, which uses a permanent magnet synchronous motor without a motor controller to integrate an inverter unit and a rotor position detecting unit of a permanent magnet synchronous motor in an HVAC system controller.
  • the HVAC microprocessor and the inverter unit and the rotor position detecting unit are used to control the permanent magnet synchronous motor without the motor controller, and the overlapping circuit configuration is deleted, the circuit structure is simplified, the product cost is greatly reduced, and resource waste is reduced.
  • An HVAC control system for a home central air conditioner comprising an HVAC system controller, a centrifugal blower motor, a compressor motor, and an axial fan motor
  • the HVAC system controller includes an HVAC microprocessor, a sensor, a motor control interface unit, and a power supply portion
  • the power supply part supplies power to each part of the circuit, and the sensor sends the detection signal to the HVAC microprocessor through the signal processing circuit.
  • At least one of the centrifugal blower motor, the compressor motor, and the axial fan motor is a permanent magnet without a motor controller.
  • Synchronous motor, motor control interface unit includes inverter unit and rotor position detecting unit, HVAC microprocessor drives permanent magnet synchronous motor without motor controller through inverter unit, rotor position detecting unit will be permanent magnet synchronous motor without motor controller The rotor position signal is sent to the HVAC microprocessor for processing.
  • the centrifugal blower motor is a permanent magnet synchronous motor without a motor controller, and the compressor motor and the axial fan motor are AC motors.
  • the compressor motor described above is a permanent magnet synchronous motor without a motor controller, and the centrifugal blower and the axial fan motor are AC motors.
  • the axial flow fan motor described above is a permanent magnet synchronous motor without a motor controller, a compressor motor,
  • the centrifugal blower is an AC motor.
  • centrifugal blower motor and the compressor motor described above are permanent magnet synchronous motors without a motor controller, and the axial flow fan motor is an alternating current motor.
  • centrifugal blower motor and the axial fan motor described above are permanent magnet synchronous motors without a motor controller, and the compressor motor is an alternating current motor.
  • the compressor motor and the axial fan motor described above are permanent magnet synchronous motors without a motor controller, and the centrifugal blower motor is an alternating current motor.
  • centrifugal blower motor the axial fan motor, and the compressor motor described above are all permanent magnet synchronous motors without a motor controller.
  • the above-mentioned HVAC system controller is also connected to a gas induced draft fan motor, and the gas induced draft fan motor is an alternating current motor or a permanent magnet synchronous motor without a motor controller.
  • the rotor position detecting unit described above is a phase current detecting circuit.
  • the motor control interface unit described above further comprises at least one relay and its driving circuit, and the HVAC microprocessor is connected to the AC motor through the relay and its driving circuit.
  • the HVAC system controller includes a HVAC microprocessor, a motor control interface unit and a power supply part, and the power supply part supplies power to each part of the circuit, the centrifugal blower motor, the compressor motor, and the shaft
  • At least one motor in the flow fan motor is a permanent magnet synchronous motor without a motor controller
  • the motor control interface unit includes an inverter unit and a rotor position detecting unit
  • the HVAC microprocessor drives the permanent magnet synchronization of the motorless controller through the inverter unit.
  • the motor and rotor position detecting unit sends the rotor position signal of the permanent magnet synchronous motor without the motor controller to the HVAC microprocessor for processing.
  • the circuit structure integrates the inverter unit and the rotor position detecting unit of the permanent magnet synchronous motor in the HVAC system controller, and cooperates with the HVAC microprocessor and the inverter unit and the rotor position detecting unit.
  • Permanent magnet synchronous motor without motor controller remove overlapping circuit configuration, replace the original motor controller microprocessor with HVAC microprocessor, simplify circuit structure, greatly reduce product cost, reduce resource waste, heat dissipation of HVAC system controller Good condition, solve the problem of unstable control caused by the difference of heat dissipation of the original motor controller; 2) At least two motors in the centrifugal blower motor, compressor motor and axial fan motor are permanent magnet synchronous motors without motor controller, or three
  • the permanent magnet synchronous motor is equipped with a motorless controller, which can increase the energy saving effect, the circuit structure is simple, the manufacturing cost is low, and the customer demand can be well satisfied.
  • the rotor position detecting unit is a phase current detecting circuit, which utilizes The phase current can be calculated to the position of the rotor and can be controlled by vector, which makes the circuit and connection more simple and reliable, and saves cost.
  • the HVAC system controller is also connected to a gas induced draft fan motor.
  • the gas induced draft fan motor has no permanent magnet synchronous motor with motor controller, which can increase the energy saving effect, the circuit structure is simple, the manufacturing cost is low, and the customer's demand can be well satisfied. .
  • Figure 1 is a schematic diagram of the control principle of a conventional home central air conditioner.
  • Figure 2 is a detailed block diagram corresponding to Figure 1.
  • FIG. 3 is a circuit block diagram of the HVAC system controller of the present invention.
  • Figure 4 is a first embodiment of Figure 3;
  • Fig. 5 is a circuit diagram of an inverter unit and a rotor position detecting unit of the present invention.
  • Figure 6 is a second detailed structural view of Figure 3;
  • Figure 7 is a third embodiment of the structure of Figure 3;
  • Figure 8 is a fourth detailed structural view of Figure 3;
  • Figure 9 is a fifth detailed structural view of Figure 3.
  • Figure 10 is a sixth embodiment of the structure of Figure 3;
  • Figure 11 is a seventh detailed structural view of Figure 3;
  • Figure 12 is a block diagram of an eighth embodiment of Figure 3;
  • Figure 13 is a ninth detailed construction diagram of Figure 3.
  • FIG. 3 and FIG. 4 show an HVAC control system for a home central air conditioner, including an HVAC system controller, a centrifugal blower motor, a compressor motor, and an axial fan motor
  • the HVAC system controller includes HVAC micro
  • the microprocessor, the compressor motor uses a permanent magnet synchronous motor without a motor controller, the centrifugal blower and the axial fan motor are AC motors, and the motor control interface unit includes an inverter unit, a rotor position detecting unit and two relays.
  • the driving circuit the HVAC microprocessor drives the 7-axis synchronous motor without the motor controller through the inverter unit, and the rotor position detecting unit sends the rotor position signal of the permanent magnet synchronous motor without the motor controller to the HVAC microprocessor for processing, and the constant temperature is THERMOSTAT through the user interface with HVAC Establishing a communications processor, a microprocessor controlling the HVAC centrifugal blower, axial fan and motor drive circuit 2 via a relay path.
  • the permanent magnet synchronous motor of the motorless controller of the present invention is controlled by a HVAC microprocessor
  • the rotor position detecting unit is a phase current detecting unit
  • the phase current detecting unit mainly comprises a resistor R20
  • a position sensorless unit is used.
  • the motor winding currents are controlled by a plurality of IGBT switches Ql, Q2, Q3, Q4, Q5, Q6 of the inverter circuit (INVERTER), circuit structure Simple, low measurement signal, simple connection, simplified circuit structure and further cost reduction.
  • Embodiment 2 As shown in FIG. 6, the difference from the first embodiment is as follows:
  • the centrifugal blower is used without electricity.
  • the permanent magnet synchronous motor of the machine controller, the compressor motor and the axial fan motor are AC motors, and the motor control interface unit includes an inverter unit, a rotor position detecting unit and two relays and a driving circuit thereof, and the HVAC microprocessor passes the inverse
  • the variable-cell driving permanent magnet synchronous motor without motor controller, the rotor position detecting unit sends the rotor position signal of the permanent magnet synchronous motor without the motor controller to the HVAC microprocessor, and the HVAC microprocessor passes the 2-way relay and The drive circuit controls the compressor motor and the axial fan motor.
  • Embodiment 3 As shown in FIG. 7, the difference from the first embodiment is as follows:
  • the axial flow fan motor uses a permanent magnet synchronous motor without a motor controller
  • the compressor motor and the centrifugal blower are AC motors
  • the motor control interface unit includes Inverter unit, rotor position detecting unit and 2-way relay and its driving circuit
  • HVAC microprocessor drives permanent magnet synchronous motor without motor controller through inverter unit
  • rotor position detecting unit synchronizes permanent magnet without motor controller
  • the rotor position signal of the motor is sent to the HVAC microprocessor for processing.
  • the HVAC microprocessor controls the compressor motor and the centrifugal blower through the 2-way relay and its drive circuit.
  • Embodiment 4 As shown in FIG. 8, the difference from the first embodiment is as follows: the compressor motor and the centrifugal blower adopt a permanent magnet synchronous motor without a motor controller, and the axial flow fan motor is an alternating current motor, and the motor control interface unit includes 2 independent inverter units, 2 independent rotor position detection units and 1 relay and its drive circuit, HVAC microprocessor drives the permanent magnet synchronous motor without motor controller through the inverter unit, rotor position detection The unit sends the rotor position signal of the permanent magnet synchronous motor without the motor controller to the HVAC microprocessor for processing. The HVAC microprocessor controls the axial fan motor through the 1-way relay and its driving circuit.
  • Embodiment 5 As shown in FIG. 9, the difference from the first embodiment is as follows: the axial flow fan motor and the centrifugal blower adopt a permanent magnet synchronous motor without a motor controller, and the compressor motor is an alternating current motor, and the motor control interface unit includes 2 independent road inverter units, 2 independent rotor position detection units and 1 channel The relay and its driving circuit, the HVAC microprocessor drives the permanent magnet synchronous motor without the motor controller through the inverter unit, and the rotor position detecting unit sends the rotor position signal of the permanent magnet synchronous motor without the motor controller to the HVAC microprocessor. Processing, the HVAC microprocessor controls the compressor motor through a 1-way relay and its drive circuit.
  • Embodiment 6 As shown in FIG. 10, the difference from the first embodiment is as follows: the axial flow fan motor and the compressor motor use a permanent magnet synchronous motor without a motor controller, and the centrifugal blower is an alternating current motor, and the motor control interface unit includes 2 independent inverter units, 2 independent rotor position detection units and 1 relay and its drive circuit, HVAC microprocessor drives 7-axis synchronous motor without motor controller through inverter unit, rotor position detection The unit sends the rotor position signal of the permanent magnet synchronous motor without the motor controller to the HVAC microprocessor for processing, and the HVAC microprocessor controls the centrifugal blower through the 1-way relay and its driving circuit.
  • Embodiment 7 As shown in FIG. 11, the difference from Embodiment 6 is that: the axial flow fan motor, the compressor motor, and the centrifugal blower all use a permanent magnet synchronous motor without a motor controller, and the motor control interface unit includes three paths. Independent circuit inverter unit and 3 independent rotor position detection units, HVAC microprocessor drives permanent magnet synchronous motor without motor controller through inverter unit, rotor position detection unit will have permanent magnet synchronous motor without motor controller The rotor position signal is sent to the HVAC microprocessor for processing.
  • Embodiment 8 As shown in FIG. 12, the difference from Embodiment 7 is: HVAC system controller is connected with a centrifugal blower motor, a compressor motor and an axial fan motor, and the HVAC system controller is also connected to a gas induced draft fan motor.
  • the centrifugal blower motor, compressor motor, axial fan motor and gas induced draft fan motor are all permanent magnet synchronous motors without motor controller.
  • the motor control interface unit includes 4 independent circuit inverter units and 4 independent channels.
  • the rotor position detecting unit, the HVAC microprocessor drives the permanent magnet synchronous motor without the motor controller through the inverter unit, and the rotor position detecting unit sends the rotor position signal of the permanent magnet synchronous motor without the motor controller to the HVAC microprocessor for processing.
  • Embodiment 9 As shown in FIG. 13, the difference from Embodiment 7 is:
  • the HVAC system controller is also connected to a gas induced draft fan motor.
  • the centrifugal blower motor, the compressor motor and the axial fan motor are all permanent magnet synchronous motors without a motor controller
  • the gas induced draft fan motor is an alternating current motor
  • the motor control interface unit comprises three independent inverting units, 3 Independent rotor position detecting unit and one relay and its driving circuit
  • HVAC microprocessor drives permanent magnet synchronous motor without motor controller through inverter unit
  • rotor position detecting unit will be permanent magnet synchronous motor without motor controller
  • the rotor position signal is sent to the HVAC microprocessor for processing.
  • the HVAC microprocessor controls the gas through the 1-way relay and its driving circuit.
  • the invention is used in a home central air-conditioning integrated machine system or the internal and external machines are at a normal distance (less than 25 meters). The range of home central air conditioning split machine systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种家用中央空调的HVAC控制系统,包括HVAC系统控制器、离心式鼓风机电机、压缩机电机和轴流风扇电机。HVAC系统控制器包括HVAC微处理器、传感器、电机控制接口单元和电源部分,电源部分为各部分电路供电,传感器将检测信号通过信号处理电路送到HVAC微处理器。离心式鼓风机电机、压缩机电机、轴流风扇电机中至少一台电机为无电机控制器的永磁同步电机,电机控制接口单元包括逆变单元和转子位置检测单元,HVAC微处理器通过逆变单元驱动无电机控制器的永磁同步电机,转子位置检测单元将无电机控制器的永磁同步电机的转子位置信号送到HVAC微处理器处理。

Description

一种家用中央空调的 HVAC控制系统
技术领域 :
本发明涉及一种家用中央空调的 HVAC控制系统。
背景技术 :
一种家用中央空调的将压缩机、 冷凝器、 蒸发器、 节流装置、 鼓风机集中 安装在一个外壳里面, 形成一个独立的功能完善的单元, 其控制结构如图 1 所示, 包括 HVAC系统控制器、 离心式鼓风机电机、 压缩机电机、 轴流风扇电 机和燃气引风机电机, HVAC系统控制器控制四台电机, 恒温器 HERMOSTAT与 HVAC系统控制器建立通信。
近几年, 随着电器领域竟争日趋激烈, 对产品技术要求不断提高, 如要求 产品节能环保、 可控性智能化程度高、 开发周期短、 噪音小等。 作为核心部件 一一电机, 无疑成为解决上述技术问题的关键部件,传统的家用中央空调里面 的离心式鼓风机电机、 压缩机电机采用单相交流电机 PSC , 单相交流电机, 效 率低, 比较耗能、 噪音也大, 可控性智能程度低。
随着电机技术的发展, 出现了永磁同步电机, 该种电机必须带有电机控制 器, 利用电机控制器实现电流的电子换向的目的, 所以行业里也有人筒称 ECM 电机( e l ec t roni ca l ly commuta ted motor ), 永磁同步电机具有节能环保、 可 靠性和可控性都比较高、 噪音小、 容易实现智能化等特点, 可以解决交流电机 的不足, 因此, 现有的家用中央空调里面的的离心式鼓风机电机、 压缩机电机 已经有釆用永磁同步电机, 如图 2所示, HVAC微处理器通过电机控制接口单 元与电机控制器连接, 图中轴流风扇电机是交流电机, 没有配置电机控制器, 现有的技术方案中,离心式鼓风机电机、压缩机电机均带有独立的电机控制器, 每个电机控制器都设置电源部分、微处理器、逆变电路和电机运行参数检测单 元, 因此导致整个控制部分电路重叠配置, 结构复杂, 也不能充分利用 HVAC 系统控制器里面的硬件和软件资源,势必造成产品成本的大大增加和资源的浪 费。 另外, 电机控制器由于布局空间有限, 散热成为较为棘手的问题。
发明内容 :
本发明的一个目的是提供一种家用中央空调的 HVAC控制系统, 它釆用无 电机控制器的永磁同步电机,将永磁同步电机的逆变单元和转子位置检测单元 集成在 HVAC系统控制器里面,利用 HVAC微处理器和逆变单元、 转子位置检测 单元的配合控制无电机控制器的永磁同步电机, 删除重叠的电路配置, 简化电 路结构, 大大降低产品成本, 减少资源浪费。
本发明的目的是通过下述技术方案予以实现的:
一种家用中央空调的 HVAC控制系统, 包括 HVAC系统控制器、 离心式鼓 风机电机、 压缩机电机、 轴流风扇电机, 其中 HVAC系统控制器包括 HVAC微处 理器、 传感器、 电机控制接口单元和电源部分, 电源部分为各部分电路供电, 传感器将检测信号通过信号处理电路送到 HVAC微处理器,离心式鼓风机电机、 压缩机电机、 轴流风扇电机中至少一台电机为无电机控制器的永磁同步电机, 电机控制接口单元包括逆变单元和转子位置检测单元, HVAC微处理器通过逆 变单元驱动无电机控制器的永磁同步电机,转子位置检测单元将无电机控制器 的永磁同步电机的转子位置信号送到 HVAC微处理器处理。
离心式鼓风机电机为无电机控制器的永磁同步电机, 压缩机电机、 轴流 风扇电机为交流电机。
上述所述的压缩机电机为无电机控制器的永磁同步电机, 离心式鼓风机、 轴流风扇电机为交流电机。
上述所述的轴流风扇电机为无电机控制器的永磁同步电机, 压缩机电机、 离心式鼓风机为交流电机。
上述所述的离心式鼓风机电机、压缩机电机为无电机控制器的永磁同步电 机, 轴流风扇电机为交流电机。
上述所述的离心式鼓风机电机、轴流风扇电机为无电机控制器的永磁同步 电机, 压缩机电机为交流电机。
上述所述的压缩机电机、 轴流风扇电机为无电机控制器的永磁同步电机, 离心式鼓风机电机为交流电机。
上述所述的离心式鼓风机电机、 轴流风扇电机、压缩机电机均为无电机控 制器的永磁同步电机。
上述所述的 HVAC系统控制器还连接一台燃气引风机电机, 燃气引风机电 机为交流电机或者无电机控制器的永磁同步电机。
上述所述的转子位置检测单元为相电流检测电路。
上述所述的电机控制接口单元还包括至少一路继电器及其驱动电路, HVAC 微处理器通过继电器及其驱动电路连接交流电机。
本发明与现有技术相比具有如下优点: 1 ) HVAC系统控制器包括 HVAC微 处理器、 电机控制接口单元和电源部分, 电源部分为各部分电路供电, 离心式 鼓风机电机、压缩机电机、 轴流风扇电机中至少一台电机为无电机控制器的永 磁同步电机, 电机控制接口单元包括逆变单元和转子位置检测单元, HVAC微 处理器通过逆变单元驱动无电机控制器的永磁同步电机,转子位置检测单元将 无电机控制器的永磁同步电机的转子位置信号送到 HVAC微处理器处理, 它只 需要一个电源部分供电, 省略原来每个电机控制器独立配置电源的设置, 简化 电路结构, 将永磁同步电机的逆变单元和转子位置检测单元集成在 HVAC系统 控制器里面, 利用 HVAC微处理器和逆变单元、 转子位置检测单元的配合控制 无电机控制器的永磁同步电机, 删除重叠的电路配置, 利用 HVAC微处理器代 替原来电机控制器的微处理器, 简化电路结构, 大大降低产品成本, 减少资源 浪费, HVAC系统控制器的散热条件较好, 解决原来电机控制器散热差导致控 制不稳定问题; 2 ) 离心式鼓风机电机、 压缩机电机、 轴流风扇电机中至少两 台电机为无电机控制器的永磁同步电机,或者三台都是釆用无电机控制器的永 磁同步电机, 可以增加节能的效果, 电路结构也简单, 制造成本低, 可以很好 满足客户需求; 3 ) 转子位置检测单元为相电流检测电路, 利用相电流可以计 算到转子的位置并可以通过矢量控制,使电路及连接更加简单可靠,节省成本。 4 ) HVAC系统控制器还连接一台燃气引风机电机, 燃气引风机电机无电机控制 器的永磁同步电机, 可以增加节能的效果, 电路结构也简单, 制造成本低, 可 以很好满足客户需求。
附图说明:
图 1 是传统的家用中央空调的控制原理示意图。
图 2 是图 1对应的具体方框图。
图 3 是本发明的 HVAC系统控制器的电路方框图。
图 4是图 3的第一种具体实施结构图;
图 5是本发明的逆变单元和转子位置检测单元的电路图。
图 6是图 3的第二种具体实施结构图;
图 7是图 3的第三种具体实施结构图;
图 8是图 3的第四种具体实施结构图;
图 9是图 3的第五种具体实施结构图;
图 10是图 3的第六种具体实施结构图;
图 11是图 3的第七种具体实施结构图; 图 12是图 3的第八种具体实施结构图;
图 13是图 3的第九种具体实施结构图。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一: 图 3、 图 4所示, 一种家用中央空调的 HVAC控制系统, 包括 HVAC系统控制器、离心式鼓风机电机、压缩机电机、轴流风扇电机,其中 HVAC 系统控制器包括 HVAC微处理器、 内部传感器、 外部传感器、 储存器、 信号处 理电路、 用户接口、 电机控制接口单元和电源部分, 电源部分为各部分电路供 电, 内部传感器、 外部传感器将检测信号通过信号处理电路送到 HVAC微处理 器, 压缩机电机釆用无电机控制器的永磁同步电机, 离心式鼓风机、 轴流风扇 电机为交流电机, 电机控制接口单元包括逆变单元、 转子位置检测单元和 2 路的继电器及其驱动电路, HVAC微处理器通过逆变单元驱动无电机控制器的 7 兹同步电机,转子位置检测单元将无电机控制器的永磁同步电机的转子位置 信号送到 HVAC微处理器处理, 恒温器 THERMOSTAT通过用户接口与 HVAC微处 理器建立通信, HVAC微处理器通过 2路的继电器及其驱动电路控制离心式鼓 风机、 轴流风扇电机。
如图 5所示, 本发明的无电机控制器的永磁同步电机是由 HVAC微处理器 控制, 转子位置检测单元为相电流检测单元, 相电流检测单元主要包括电阻 R20,釆用无位置传感器的矢量控制的方式,只检测电机绕组的相电流并计算出 转子位置, 利用逆变电路(INVERTER)的多个 IGBT开关 Ql、 Q2、 Q3、 Q4、 Q5、 Q6来控制电机绕组电流, 电路结构简单, 测量信号少, 连接简单, 简化电路 结构, 进一步降低成本 。
实施例二: 图 6所示, 与实施例一的不同点在于: 离心式鼓风机釆用无电 机控制器的永磁同步电机, 压缩机电机、 轴流风扇电机为交流电机, 电机控制 接口单元包括逆变单元、 转子位置检测单元和 2路的继电器及其驱动电路, HVAC微处理器通过逆变单元驱动无电机控制器的永磁同步电机, 转子位置检 测单元将无电机控制器的永磁同步电机的转子位置信号送到 HVAC微处理器处 理, HVAC微处理器通过 2路的继电器及其驱动电路控制压缩机电机、 轴流风 扇电机。
实施例三: 图 7所示, 与实施例一的不同点在于: 轴流风扇电机釆用无电 机控制器的永磁同步电机, 压缩机电机、 离心式鼓风机为交流电机, 电机控制 接口单元包括逆变单元、 转子位置检测单元和 2路的继电器及其驱动电路, HVAC微处理器通过逆变单元驱动无电机控制器的永磁同步电机, 转子位置检 测单元将无电机控制器的永磁同步电机的转子位置信号送到 HVAC微处理器处 理, HVAC微处理器通过 2路的继电器及其驱动电路控制压缩机电机、 离心式 鼓风机。
实施例四: 图 8所示, 与实施例一的不同点在于: 压缩机电机、 离心式鼓 风机釆用无电机控制器的永磁同步电机, 轴流风扇电机为交流电机, 电机控制 接口单元包括 2路独立的路的逆变单元、 2路独立的转子位置检测单元和 1路 的继电器及其驱动电路, HVAC微处理器通过逆变单元驱动无电机控制器的永 磁同步电机,转子位置检测单元将无电机控制器的永磁同步电机的转子位置信 号送到 HVAC微处理器处理, HVAC微处理器通过 1路的继电器及其驱动电路控 制轴流风扇电机。
实施例五: 图 9所示, 与实施例一的不同点在于: 轴流风扇电机、 离心式 鼓风机釆用无电机控制器的永磁同步电机,压缩机电机为交流电机, 电机控制 接口单元包括 2路独立的路的逆变单元、 2路独立的转子位置检测单元和 1路 的继电器及其驱动电路, HVAC微处理器通过逆变单元驱动无电机控制器的永 磁同步电机,转子位置检测单元将无电机控制器的永磁同步电机的转子位置信 号送到 HVAC微处理器处理, HVAC微处理器通过 1路的继电器及其驱动电路控 制压缩机电机。
实施例六: 图 10所示, 与实施例一的不同点在于: 轴流风扇电机、 压缩 机电机釆用无电机控制器的永磁同步电机, 离心式鼓风机为交流电机, 电机控 制接口单元包括 2路独立的路的逆变单元、 2路独立的转子位置检测单元和 1 路的继电器及其驱动电路, HVAC微处理器通过逆变单元驱动无电机控制器的 7 兹同步电机,转子位置检测单元将无电机控制器的永磁同步电机的转子位置 信号送到 HVAC微处理器处理, HVAC微处理器通过 1路的继电器及其驱动电路 控制离心式鼓风机。
实施例七: 图 11所示, 与实施例六的不同点在于: 轴流风扇电机、 压缩 机电机、 离心式鼓风机都釆用无电机控制器的永磁同步电机, 电机控制接口单 元包括 3路独立的路的逆变单元和 3路独立的转子位置检测单元, HVAC微处 理器通过逆变单元驱动无电机控制器的永磁同步电机,转子位置检测单元将无 电机控制器的永磁同步电机的转子位置信号送到 HVAC微处理器处理。
实施例八: 图 12所示, 与实施例七的不同点在于: HVAC系统控制器除了 连接离心式鼓风机电机、 压缩机电机和轴流风扇电机, HVAC系统控制器还连 接一台燃气引风机电机, 离心式鼓风机电机、 压缩机电机、 轴流风扇电机和燃 气引风机电机都为无电机控制器的永磁同步电机, 电机控制接口单元包括 4 路独立的路的逆变单元和 4路独立的转子位置检测单元, HVAC微处理器通过 逆变单元驱动无电机控制器的永磁同步电机,转子位置检测单元将无电机控制 器的永磁同步电机的转子位置信号送到 HVAC微处理器处理。 实施例九: 图 13所示, 与实施例七的不同点在于: HVAC系统控制器除了 连接离心式鼓风机电机、 压缩机电机和轴流风扇电机, HVAC系统控制器还连 接一台燃气引风机电机, 离心式鼓风机电机、压缩机电机和轴流风扇电机都为 无电机控制器的永磁同步电机, 燃气引风机电机为交流电机, 电机控制接口单 元包括 3路独立的路的逆变单元、 3路独立的转子位置检测单元和 1路继电器 及其驱动电路, HVAC微处理器通过逆变单元驱动无电机控制器的永磁同步电 机, 转子位置检测单元将无电机控制器的永磁同步电机的转子位置信号送到 HVAC微处理器处理, HVAC微处理器通过 1路的继电器及其驱动电路控制燃气 本发明使用在家用中央空调一体机系统或者内机与外机在常规距离 (25 米以下) 的范围内的家用中央空调分体机系统。
上述实施例为本发明的较佳实施方式,但本发明的实施方式不限于此, 其 他任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替代、 组合、 简 化, 均为等效的置换方式, 都包含在本发明的保护范围之内。

Claims

权利要求
1、 一种家用中央空调的 HVAC控制系统, 包括 HVAC系统控制器、 离心式 鼓风机电机、 压缩机电机、 轴流风扇电机, 其中 HVAC系统控制器包括 HVAC 微处理器、传感器、 电机控制接口单元和电源部分, 电源部分为各部分电路供 电, 传感器将检测信号通过信号处理电路送到 HVAC微处理器, 其特征在于: 离心式鼓风机电机、压缩机电机、 轴流风扇电机中至少一台电机为无电机控制 器的永磁同步电机, 电机控制接口单元包括逆变单元和转子位置检测单元, HVAC微处理器通过逆变单元驱动无电机控制器的永磁同步电机, 转子位置检 测单元将无电机控制器的永磁同步电机的转子位置信号送到 HVAC微处理器处 理。
2、 根据权利要求 1所述的一种家用中央空调的 HVAC控制系统,其特征在 于: 离心式鼓风机电机为无电机控制器的永磁同步电机, 压缩机电机、 轴流风 扇电机为交流电机。
3、 根据权利要求 1所述的一种家用中央空调的 HVAC控制系统,其特征在 于: 压缩机电机为无电机控制器的永磁同步电机, 离心式鼓风机、 轴流风扇电 机为交流电机。
4、 根据权利要求 1所述的一种家用中央空调的 HVAC控制系统,其特征在 于: 轴流风扇电机为无电机控制器的永磁同步电机, 压缩机电机、 离心式鼓风 机为交流电机。
5、 根据权利要求 1所述的一种家用中央空调的 HVAC控制系统,其特征在 于: 离心式鼓风机电机、 压缩机电机为无电机控制器的永磁同步电机, 轴流风 扇电机为交流电机。
6、 根据权利要求 1所述的一种家用中央空调的 HVAC控制系统,其特征在 于: 离心式鼓风机电机、 轴流风扇电机为无电机控制器的永磁同步电机, 压缩 机电机为交流电机。
7、 根据权利要求 1所述的一种家用中央空调的 HVAC控制系统,其特征在 于: 压缩机电机、 轴流风扇电机为无电机控制器的永磁同步电机, 离心式鼓风 机电机为交流电机。
8、 根据权利要求 1所述的一种家用中央空调的 HVAC控制系统,其特征在 于: 离心式鼓风机电机、 轴流风扇电机、 压缩机电机均为无电机控制器的永磁 同步电机。
9、 根据权利要求 1至 8中任何一项所述的一种家用中央空调的 HVAC控制 系统, 其特征在于: HVAC系统控制器还连接一台燃气引风机电机, 燃气引风 机电机为交流电机或者无电机控制器的永磁同步电机。
10、 根据权利要求 1至 8中任何一项所述的的一种家用中央空调的 HVAC 控制系统, 其特征在于: 转子位置检测单元为相电流检测电路。
11、 根据权利要求 1至 8中任何一项所述的的一种家用中央空调的 HVAC 控制系统, 其特征在于: 电机控制接口单元还包括至少一路继电器及其驱动电 路, HVAC微处理器通过继电器及其驱动电路连接交流电机。
PCT/CN2013/073182 2012-07-21 2013-03-26 一种家用中央空调的hvac控制系统 WO2014015678A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/334,638 US10234165B2 (en) 2012-07-21 2014-07-17 HVAC control system for household central air conditioning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210254503.2A CN102748834B (zh) 2012-07-21 2012-07-21 一种家用中央空调的hvac控制系统
CN201210254503.2 2012-07-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073209 Continuation-In-Part WO2014015680A1 (zh) 2012-07-21 2013-03-26 一种家用中央空调分体机的控制系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/334,638 Continuation-In-Part US10234165B2 (en) 2012-07-21 2014-07-17 HVAC control system for household central air conditioning

Publications (1)

Publication Number Publication Date
WO2014015678A1 true WO2014015678A1 (zh) 2014-01-30

Family

ID=47029224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073182 WO2014015678A1 (zh) 2012-07-21 2013-03-26 一种家用中央空调的hvac控制系统

Country Status (2)

Country Link
CN (1) CN102748834B (zh)
WO (1) WO2014015678A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748834B (zh) * 2012-07-21 2014-08-13 中山大洋电机股份有限公司 一种家用中央空调的hvac控制系统
US10234165B2 (en) 2012-07-21 2019-03-19 Zhongshan Broad-Ocean Motor Co., Ltd. HVAC control system for household central air conditioning
CN104917347B (zh) * 2014-03-13 2017-10-17 中山大洋电机股份有限公司 一种ecm电机及其应用的hvac系统
CN105737325B (zh) * 2014-12-11 2018-10-26 中山大洋电机股份有限公司 一种单机空调系统及双机空调系统
CN105299854B (zh) * 2015-11-11 2019-09-27 珠海格力电器股份有限公司 多联机空调系统的驱动装置及多联机空调系统
CN108288929A (zh) * 2018-04-17 2018-07-17 中山大洋电机股份有限公司 Bldc电机的转换电路板及应用其的旅馆用的空调控制系统
CN114151936A (zh) * 2020-09-07 2022-03-08 中山大洋电机股份有限公司 一种hvac系统控制单元及hvac系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455193A (zh) * 2002-04-29 2003-11-12 上海日立电器有限公司 数字直流变频空调控制器
JP2005086911A (ja) * 2003-09-09 2005-03-31 Matsushita Electric Ind Co Ltd 圧縮機の制御装置
CN101464032A (zh) * 2007-12-20 2009-06-24 珠海格力电器股份有限公司 正弦直流变频空调控制器及其控制方法
JP2010259132A (ja) * 2009-04-21 2010-11-11 Panasonic Corp 電動機駆動装置およびこれを具備した空気調和装置
JP2011188568A (ja) * 2010-03-05 2011-09-22 Hitachi Appliances Inc インバータ制御装置
CN202014219U (zh) * 2010-12-30 2011-10-19 海信(山东)空调有限公司 直流无刷风扇电机驱动器及采用所述驱动器的空调器
CN102400899A (zh) * 2010-09-13 2012-04-04 海尔集团公司 空调压缩机的控制装置、控制方法、变频空调
CN102457225A (zh) * 2010-10-29 2012-05-16 日立空调·家用电器株式会社 制冷装置以及永久磁铁同步电机的控制装置
JP2012138982A (ja) * 2010-12-24 2012-07-19 Sanyo Electric Co Ltd モータ制御装置及び電気機器
CN102748835A (zh) * 2012-07-21 2012-10-24 中山大洋电机股份有限公司 一种家用中央空调分体机的控制系统
CN102748834A (zh) * 2012-07-21 2012-10-24 中山大洋电机股份有限公司 一种家用中央空调的hvac控制系统
CN102769418A (zh) * 2012-07-28 2012-11-07 中山大洋电机股份有限公司 一种控制多台电机的集中式电机控制器
CN102769419A (zh) * 2012-07-28 2012-11-07 中山大洋电机股份有限公司 一种方便配置电机的集中式电机控制器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879414B2 (ja) * 2001-02-28 2007-02-14 株式会社日立製作所 空気調和機
CN1283041C (zh) * 2004-09-17 2006-11-01 清华大学 无速度传感器永磁同步电机-空调压缩机系统的控制方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455193A (zh) * 2002-04-29 2003-11-12 上海日立电器有限公司 数字直流变频空调控制器
JP2005086911A (ja) * 2003-09-09 2005-03-31 Matsushita Electric Ind Co Ltd 圧縮機の制御装置
CN101464032A (zh) * 2007-12-20 2009-06-24 珠海格力电器股份有限公司 正弦直流变频空调控制器及其控制方法
JP2010259132A (ja) * 2009-04-21 2010-11-11 Panasonic Corp 電動機駆動装置およびこれを具備した空気調和装置
JP2011188568A (ja) * 2010-03-05 2011-09-22 Hitachi Appliances Inc インバータ制御装置
CN102400899A (zh) * 2010-09-13 2012-04-04 海尔集团公司 空调压缩机的控制装置、控制方法、变频空调
CN102457225A (zh) * 2010-10-29 2012-05-16 日立空调·家用电器株式会社 制冷装置以及永久磁铁同步电机的控制装置
JP2012138982A (ja) * 2010-12-24 2012-07-19 Sanyo Electric Co Ltd モータ制御装置及び電気機器
CN202014219U (zh) * 2010-12-30 2011-10-19 海信(山东)空调有限公司 直流无刷风扇电机驱动器及采用所述驱动器的空调器
CN102748835A (zh) * 2012-07-21 2012-10-24 中山大洋电机股份有限公司 一种家用中央空调分体机的控制系统
CN102748834A (zh) * 2012-07-21 2012-10-24 中山大洋电机股份有限公司 一种家用中央空调的hvac控制系统
CN102769418A (zh) * 2012-07-28 2012-11-07 中山大洋电机股份有限公司 一种控制多台电机的集中式电机控制器
CN102769419A (zh) * 2012-07-28 2012-11-07 中山大洋电机股份有限公司 一种方便配置电机的集中式电机控制器

Also Published As

Publication number Publication date
CN102748834A (zh) 2012-10-24
CN102748834B (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2014015678A1 (zh) 一种家用中央空调的hvac控制系统
CA2934585C (en) Air volume measurement method for fan motor
CA2937558C (en) Electrical device with filter mesh blockage detection function
CN102748275B (zh) 一种变频空调器压缩机频率边界控制方法
JP2009216324A (ja) 空気調和機
CN1266428C (zh) 数字直流变频空调控制器
JP2017500470A5 (zh)
WO2014015680A1 (zh) 一种家用中央空调分体机的控制系统
CN102769418B (zh) 一种控制多台电机的集中式电机控制器
CN106154871B (zh) 一种电器设备的通风管道堵塞程度实时显示控制方法
WO2014000480A1 (zh) 一种直流电机驱动的引风机
JP2007064552A (ja) 熱交換型冷却機用ファンモータ駆動装置
CN104426440A (zh) 控制电机的方法
WO2014019371A1 (zh) 一种方便配置电机的集中式电机控制器
WO2013177899A1 (zh) Halbach阵列永磁高效节能纺织电机
CN106160587B (zh) 一种电机的控制方法及应用其的带有风道的电器设备的控制方法
CN204923245U (zh) 分体落地式空调器
CN103208961A (zh) 同步电机的驱动装置、以及使用了它的冷冻装置、空气调节器、冰箱、及同步电机的驱动方法
US10234165B2 (en) HVAC control system for household central air conditioning
JP2011030423A (ja) 同期電動機、換気扇、冷媒圧縮機、送風機、液体用ポンプ、空気調和機、及び冷蔵庫
CN105071721A (zh) 一种微型永磁同步电动机直接驱动的小功率换气扇
CN204202026U (zh) 一种风机电机及其应用的空调系统
CN204118972U (zh) 一种风机电机及其应用的空调系统
Niasar et al. Performance enhancement of evaporative water cooler equipped with permanent magnet brushless motor drive based on power control strategy
CN204115120U (zh) 一种空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822753

Country of ref document: EP

Kind code of ref document: A1