WO2014015568A1 - 蓝相液晶显示装置以及显示设备 - Google Patents

蓝相液晶显示装置以及显示设备 Download PDF

Info

Publication number
WO2014015568A1
WO2014015568A1 PCT/CN2012/083732 CN2012083732W WO2014015568A1 WO 2014015568 A1 WO2014015568 A1 WO 2014015568A1 CN 2012083732 W CN2012083732 W CN 2012083732W WO 2014015568 A1 WO2014015568 A1 WO 2014015568A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
phase liquid
blue phase
display device
crystal display
Prior art date
Application number
PCT/CN2012/083732
Other languages
English (en)
French (fr)
Inventor
赵伟利
柳在健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2014015568A1 publication Critical patent/WO2014015568A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases

Definitions

  • Embodiments of the present invention relate to a blue phase liquid crystal display device and a display device including the blue phase liquid crystal display device. Background technique
  • the blue phase liquid crystal is a special phase state of the liquid crystal, which can be equivalently considered to be spherical when it is not applied with voltage, is isotropic, and does not produce an optical path difference to the passing light;
  • the stretched granular shape, and the long axis is consistent with the direction of the electric field, and is anisotropic. According to the principle of birefringence (Kerr effect), an optical path difference is generated for the passing light.
  • the blue phase liquid crystal has the following advantages when used for preparing a liquid crystal display: 1.
  • the response speed is fast (less than 1 ms), so that field sequential color control can be realized, thereby eliminating the color filter; 2.
  • Blue phase liquid crystal is isotropic when no power is applied, no light leakage in dark state, and wide viewing angle. Therefore, blue phase liquid crystal is a promising liquid crystal display material.
  • the blue phase liquid crystal Since the light in the liquid crystal display is vertically passed through the liquid crystal cell, if the light passing through the blue phase liquid crystal is to be birefringent, the blue phase liquid crystal must be laterally stretched, so that the driving mode of the existing blue phase liquid crystal display device is basically Both are transverse electric field type, such as In-Plane Switching (IPS) mode.
  • IPS In-Plane Switching
  • the blue phase liquid crystal is stretched by an electric field in the vicinity of the pixel electrode and the common electrode located in the same plane to generate anisotropy. Since the length and the width of the liquid crystal display device are many times larger than the thickness thereof, and the lateral electric field cannot be uniformly distributed to the entire liquid crystal layer, the lateral electric field driving requires a large driving voltage. Therefore, the conventional blue phase liquid crystal display device has a problem that the driving voltage is too high. Summary of the invention
  • Embodiments of the present invention provide a blue phase liquid crystal display device and a display device including the blue phase liquid crystal display device, which solves the problem that the driving voltage of the conventional blue phase liquid crystal display device is too high.
  • One aspect of the present invention provides a blue phase liquid crystal display device including a lower substrate, an upper substrate, and a blue phase liquid crystal and a plurality of reflective sheets between the lower substrate and the upper substrate.
  • Several reflective sheets are arranged in parallel It is disposed between the lower substrate and the upper substrate, and is at an angle of 45° with the lower substrate and the upper substrate; the blue phase liquid crystal is located in the gap of the plurality of reflective sheets.
  • Another aspect of the present invention provides a display device including the above-described blue phase liquid crystal display device.
  • the blue phase liquid crystal display device provided by the embodiment of the invention can drive the blue phase liquid crystal with a vertical electric field to realize the display function, thereby greatly reducing the driving voltage, thereby solving the problem that the driving voltage of the existing blue phase liquid crystal display device is too high. . DRAWINGS
  • FIG. 1 and FIG. 1b are respectively schematic diagrams showing the structure of the blue phase liquid crystal display device provided in Embodiment 1 of the present invention when no electric field is applied and an electric field is applied;
  • FIGS. 2a and 2b are respectively schematic diagrams showing a specific structure of a blue phase liquid crystal display device according to Embodiment 1 of the present invention when no electric field is applied and an electric field is applied;
  • 3a and 3b are schematic views of a case where the blue phase liquid crystal display device described in Embodiment 1 of the present invention should be avoided;
  • 4a and 4b are respectively schematic views showing a specific structure of a blue phase liquid crystal display device according to Embodiment 2 of the present invention when no electric field is applied and an electric field is applied. detailed description
  • the blue phase liquid crystal display device provided by the embodiment of the present invention includes a lower substrate 1, an upper substrate 2, and a blue phase liquid crystal 3 and a plurality of reflective sheets between the lower substrate 1 and the upper substrate 2. 4.
  • the reflection sheets 4 are arranged in parallel between the lower substrate 1 and the upper substrate 2 at an angle of 45° with the lower substrate 1 and the upper substrate 2; the blue phase liquid crystal 3 is located in the gap of the plurality of reflection sheets 4.
  • Both sides of the reflection sheet 4 are reflection surfaces, that is, a first reflection surface R1 and a second reflection surface R2.
  • the blue phase liquid crystal display device includes, for example, pixel cells arranged in a matrix, which are defined, for example, by gate lines and data lines crossing each other.
  • Each of the pixel units may include a switching element such as a thin film transistor, a pixel electrode, and a common electrode. Whether the pixel electrode is energized or not is controlled by the switching element.
  • a reflective sheet 4 can be provided for each pixel unit to reflect light from, for example, a backlight to change the direction of the optical path.
  • the lower substrate 1 and the upper substrate 2 are opposed to each other, and the two may be spaced apart by a spacer (for example, a column spacer), and sealed by a sealant to form a liquid crystal cell (Cell) to obtain a liquid crystal panel.
  • the backlight is disposed, for example, below (or behind) the liquid crystal panel, and may be any type of backlight, such as a direct type or a side illumination type, and may be a line source such as a cold cathode fluorescent lamp (CCFL) or a light emitting diode (LED). Point light source.
  • CCFL cold cathode fluorescent lamp
  • LED light emitting diode
  • the blue phase liquid crystal display device can be provided with a pixel electrode and a common electrode on the upper substrate 2 and the lower substrate 1, respectively, so that a vertical electric field is applied between them after energization for driving the blue phase liquid crystal 3.
  • the blue phase liquid crystal 3 can be equivalently considered to be spherical, and no optical path difference is generated for light passing through any direction.
  • the light L emitted from the backlight (not shown) is vertically transmitted through the lower substrate 1 into the liquid crystal cell, and is reflected by the first reflective surface R1 of the reflective sheet 4 because the reflective sheet 4 and the upper and lower substrates are 2, 1 is at an angle of 45°, so the light propagates in the lateral direction after being reflected; then, the light is reflected through the second reflecting surface R2 of the other reflecting sheet 4, and finally vertically passes through the upper substrate 2, and the light passes through
  • the blue phase liquid crystal 3 does not produce an optical path difference.
  • the blue phase liquid crystal 3 can be equivalently considered to be a grain shape stretched in the vertical direction, and its long axis is a vertical direction, and the short axis is a horizontal direction.
  • the light L emitted from the backlight (not shown) is vertically transmitted through the lower substrate 1 into the liquid crystal cell, and first passes through the long axis of the blue phase liquid crystal 3, Therefore, the optical path difference is not generated; it is then reflected by the first reflecting surface of the reflection sheet 4 because the reflection sheet 4 is 45 with the upper and lower substrates 2, 1.
  • the angle is so that after the reflection, the light propagates in the lateral direction, so the light will pass through the short axis of the blue phase liquid crystal 3, and the optical path difference is generated according to the principle of birefringence; then, the light passes through the second reflection of the other reflection sheet 4 After the surface reflection, it passes through the long axis of the blue phase liquid crystal 3 in the vertical direction, and finally passes through the upper substrate 2 vertically to realize the display function.
  • the blue phase liquid crystal display device provided by the embodiment of the present invention can drive the blue phase liquid crystal by the vertical electric field, and simultaneously pass the light through the short axis of the blue phase liquid crystal to realize the display function, thereby greatly reducing the driving voltage.
  • the problem that the driving voltage of the conventional blue phase liquid crystal display device is too high is solved.
  • the lower substrate 1 includes a lower polarizing plate 11, a lower quarter wave plate 12, and a thin film transistor (TFT) layer 13 in order from bottom to top.
  • Pixel electrode layer 14 includes pixel electrodes provided for each pixel unit.
  • the upper substrate 2 includes an upper polarizing plate 21, an upper quarter wave plate 22, and a common electrode layer 23 in this order from top to bottom. The angle between the optical axis of the upper quarter wave plate 22 and the transmission axis of the upper polarizing plate 21 is 45.
  • the common electrode layer 23 includes a common electrode provided for each pixel unit.
  • the transmission axes of the lower polarizing plate 11 and the upper polarizing plate 21 are parallel to each other.
  • the blue phase liquid crystal 3 is equivalently considered to be spherical and is isotropic, and does not cause an optical path difference for light passing through any direction.
  • the light L emitted from the backlight is directed perpendicularly to the display panel, and becomes linearly polarized light having a certain polarization state when passing through the lower polarizing plate 11, and the polarization direction can be set to zero.
  • the phase changes by ⁇ /2 to become left-handed polarization; after continuing through the TFT layer 13 and the pixel electrode layer 14, the phase does not change.
  • the first reflecting surface R1 of the film 4 is reflected, and the phase changes by ⁇ to become right-handed polarized light, since the reflecting sheet 4 and the upper and lower substrates 2 and 1 are 45. ° angle, so the reflected light is transmitted laterally; then, the light is reflected by the second reflecting surface R2 of the adjacent reflecting sheet 4, and the phase is changed by ⁇ to become left-handed polarized light, also due to the reflecting sheet 4 and the upper and lower substrates 2 1 is 45. Angle, so the reflected light still travels in the vertical direction.
  • the blue phase liquid crystal 3 in the liquid crystal cell does not cause an optical path difference or a change in the phase of the light.
  • the light passes through the common electrode layer 23, and the phase does not change; after passing through the upper quarter-wave plate 22, the phase changes by ⁇ /2 to become 90.
  • Linearly polarized light Since the transmission axes of the upper polarizing plate 21 and the lower polarizing plate 11 are parallel, the polarized light of 90° is completely absorbed by the upper polarizing plate 21 at this time, and the display device is in a dark state.
  • FIG. 2b when a vertical electric field is applied between the common electrode 23 of the upper substrate 2 and the pixel electrode layer 14 of the lower substrate, it is equivalently considered that the blue phase liquid crystal 3 is stretched and grained in the vertical direction, and Its long axis is vertical and the short axis is horizontal.
  • the left-handed polarized light is incident on the liquid crystal cell as in the case of the above-described no-charge. Then, the light passes through the long axis of the blue phase liquid crystal 3, so that the optical path difference does not occur, and the phase does not change. After the first reflection surface R1 of the reflection sheet 4 is reflected, the phase changes by ⁇ , and becomes a laterally-developed right-handed polarization. After that, the light will pass through the short axis of the blue phase liquid crystal 3, and the optical path difference Snd is generated according to the principle of birefringence.
  • is the wavelength of the incident light
  • is the Kerr constant
  • is the electric field strength
  • is equal to the voltage difference U between the common electrode 23 and the pixel electrode 14 divided by the cell thickness d of the liquid crystal cell.
  • the light can be completely transmitted from the upper polarizing plate 21, and exhibits the most bright display effect.
  • the phase change degree of the blue phase liquid crystal 3 is also different, thereby realizing a The display effect of the series gray scale.
  • the response speed of the blue phase liquid crystal is ⁇ , so that the blue phase liquid crystal display device of the present embodiment can be provided with no color film, and three colors such as red, green, and blue are respectively displayed in different time periods in the display time of one frame. , realize field sequential color control, which can improve the resolution of the display device.
  • the backlight includes three kinds of light sources of red, green and blue, and the red, green and blue light sources are sequentially turned on under the control of the controller, for example, in the field sequential color control mode.
  • the projections of the respective reflection sheets 4 on the lower substrate 1 or the upper substrate 2 are joined end to end.
  • the projection of each of the reflection sheets 4 on the horizontal plane has no gap and no overlapping portion.
  • a part of the light is not reflected by the reflection sheet 4, and a straight line passes through the liquid crystal cell.
  • this part of the light passes through only the long axis of the blue phase liquid crystal 3, so that the optical path difference does not occur and the phase does not change, thereby being in the lower quarter wave plate 12 and the upper quarter.
  • the wave plate 22 is completely absorbed by the upper polarizing plate 21, and the transmittance of the display device is lowered.
  • this part of the light is also absorbed by the upper polarizing plate.
  • the arrangement of the reflective sheet can prevent the transmittance from being lowered and the gray scale deviation of the display device from being locally generated.
  • the pixel electrode layer 14 and the common electrode layer 23 may be transparent conductive materials such as Indium Tin Oxides (ITO), indium oxide (ITO), oxidized fine (SnOx), and the like. Since ITO has good electrical conductivity and transparency, a transparent conductive layer formed of ITO is used for the pixel electrode layer 14 and the common electrode layer 23, and an electric field can be generated without affecting light transmission.
  • ITO Indium Tin Oxides
  • ITO indium oxide
  • SnOx oxidized fine
  • the upper substrate 2 further includes a color film 24.
  • the color film 24 is located between the upper quarter wave plate 22 and the common electrode layer 23.
  • a color film 24 is disposed in the upper substrate 2, and includes, for example, red, green, and blue pixels for respectively obtaining light of three colors of red, green, and blue to realize color display.
  • the backlight can include a white light source.
  • the blue phase liquid crystal display device can save the color film as described in Embodiment 1, and display the red, green and blue colors in the field sequential color control, or can be realized by using the conventional color film as described in the embodiment.
  • the three-color display can be flexibly designed according to the actual situation in specific application scenarios.
  • the embodiment of the invention provides a display device, which comprises the blue phase liquid crystal display device provided in the first embodiment, and the display device can be a television, a computer, a mobile phone, a game machine or the like.
  • the display device provided by the embodiment of the present invention has the same technical features as the blue phase liquid crystal display device provided by the above embodiments, the same technical effect can be produced and the same technical problem can be solved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种蓝相液晶显示装置,包括下基板(1)、上基板(2),以及位于下基板(1)与上基板(2)之间的蓝相液晶(3)和若干反射片(4)。若干反射片(4)平行排列于下基板(1)与上基板(2)之间,且与下基板(1)和上基板(2)成45°夹角;蓝相液晶(3)位于若干反射片(4)的间隙中。还提供了一种包括该蓝相液晶显示装置的显示设备。该蓝相液晶显示装置解决了现有的蓝相液晶显示装置存在的驱动电压过高的问题。

Description

蓝相液晶显示装置以及显示设备 技术领域
本发明的实施例涉及一种蓝相液晶显示装置以及包括该蓝相液晶显示装 置的显示设备。 背景技术
蓝相液晶是液晶的一个特殊相态 ,其在不加电压时可被等效认为呈球形 , 呈各向同性, 不会对通过的光产生光程差; 但加电压时可被等效认为拉伸的 粒状, 且长轴与电场方向一致, 呈各向异性, 根据双折射原理(克尔效应), 会对通过的光产生光程差。蓝相液晶如用于制备液晶显示器具有以下优点:1、 响应速度快(小于 1ms ),所以可以实现场序色控,从而省去彩膜( color filter ); 2、 可直接利用电场诱导双折射原理实现显示, 无需取向层及摩擦处理; 3、 在不加电时蓝相液晶各向同性, 暗态无漏光, 视角宽。 因此, 蓝相液晶是一 种有前景的液晶显示材料。
因为液晶显示器中光都是垂直经过液晶盒的, 而如果要使通过蓝相液晶 的光产生双折射, 就必须将蓝相液晶横向拉伸, 所以现有的蓝相液晶显示装 置的驱动方式基本上都是横向电场型的, 例如平面转换(In-Plane Switching, IPS )模式。 在该 IPS模式中, 蓝相液晶在位于同一平面的像素电极和公共电 极附近被电场驱动拉伸而产生各向异性。 由于液晶显示装置横向上的长、 宽 尺寸要比其厚度大很多倍, 且横向电场无法均匀分布到整个液晶层, 因此横 向电场驱动需要艮大的驱动电压。 所以, 现有的蓝相液晶显示装置存在驱动 电压过高的问题。 发明内容
本发明实施例提供了一种蓝相液晶显示装置以及包括该蓝相液晶显示装 置的显示设备, 解决了现有的蓝相液晶显示装置的驱动电压过高的问题。
本发明的一个方面提供了一种蓝相液晶显示装置, 包括下基板、上基板, 以及位于下基板与上基板之间的蓝相液晶和若干反射片。 若干反射片平行排 列于下基板与上基板之间, 且与下基板和上基板呈 45°夹角; 蓝相液晶位于 若干反射片的间隙中。
本发明的另一个方面提供了一种显示设备,包括上述蓝相液晶显示装置。 本发明实施例提供的蓝相液晶显示装置可以用垂直电场驱动蓝相液晶, 以实现显示功能, 因此可以大大降低驱动电压, 从而解决了现有的蓝相液晶 显示装置的驱动电压过高的问题。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 la和图 lb分别为本发明的实施例 1所提供的蓝相液晶显示装置在不 施加电场和施加电场时的结构示意图;
图 2a和图 2b分别为本发明的实施例 1所提供的蓝相液晶显示装置在不 施加电场和施加电场时的具体结构示意图;
图 3a和图 3b为本发明的实施例 1中所描述的蓝相液晶显示装置应当避 免的情况的示意图;
图 4a和图 4b分别为本发明的实施例 2所提供的蓝相液晶显示装置在不 施加电场和施加电场时的具体结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性, 而只是用来区分不同的组成部分。 "上" 、 "下" 等仅用 于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位置关系 也相应地改变。
实施例 1
如图 la和图 lb所示, 本发明实施例所提供的蓝相液晶显示装置包括下 基板 1、上基板 2, 以及位于下基板 1与上基板 2之间的蓝相液晶 3和若干反 射片 4。 这些反射片 4平行排列于下基板 1与上基板 2之间, 且与下基板 1 和上基板 2呈 45°夹角; 蓝相液晶 3位于若干反射片 4的间隙中。 反射片 4 的两面均为反射面, 即第一反射面 R1和第二反射面 R2。
该蓝相液晶显示装置例如包括排列为矩阵的像素单元, 这些像素单元例 如由彼此交叉的栅线和数据线限定。 每个像素单元可以包括例如薄膜晶体管 的开关元件、像素电极和公共电极。像素电极的通电与否受开关元件的控制。 对于每个像素单元可以设置一个反射片 4, 反射来自例如背光源的光以改变 光路的方向。
下基板 1和上基板 2彼此对置,二者可以通过隔垫物(例如柱状隔垫物 ) 间隔开, 并通过封框胶密封形成液晶盒(Cell ) , 得到液晶面板。 背光源例 如设置在该液晶面板的下方 (或后方) , 可以为任何类型的背光源, 例如直 下式或侧面照射式, 可以釆用例如冷阴极荧光灯(CCFL ) 的线光源或例如 发光二极管 (LED ) 的点光源。
该蓝相液晶显示装置可以通过在上基板 2与下基板 1上分别设置像素电 极和公共电极, 从而在通电之后在它们之间施加垂直方向的电场, 用于驱动 蓝相液晶 3。
在未施加电场时, 蓝相液晶 3可被等效认为球状, 对从任意方向穿过的 光都不会产生光程差。 如图 la所示, 背光源 (未示出)发出的光 L垂直透 过下基板 1射入液晶盒之后, 经反射片 4的第一反射面 R1反射, 因为反射 片 4与上、 下基板 2、 1呈 45°夹角, 所以经反射后光沿横向传播; 然后, 光 再经过另一反射片 4的第二反射面 R2反射之后, 最后垂直透过上基板 2,该 光 L穿过蓝相液晶 3而没有产生光程差。
在施加电场之后,蓝相液晶 3可被等效认为在垂直方向上被拉伸的粒状, 且其长轴为垂直方向, 短轴为水平方向。 如图 lb所示, 背光源(未示出)发 出的光 L垂直透过下基板 1射入液晶盒之后,首先经蓝相液晶 3的长轴穿过, 因此不会产生光程差; 然后经反射片 4的第一反射面反射, 因为反射片 4与 上、 下基板 2、 1呈 45。夹角, 所以经反射后光沿横向传播, 因此光将会经蓝 相液晶 3的短轴穿过, 根据双折射原理产生光程差; 然后, 光再经过另一反 射片 4的第二反射面反射之后, 再沿垂直方向经蓝相液晶 3的长轴穿过, 最 后垂直透过上基板 2, 实现显示功能。
综上所述, 本发明实施例提供的蓝相液晶显示装置可以用垂直电场驱动 蓝相液晶, 同时使光经蓝相液晶的短轴穿过, 实现显示功能, 因此可以大大 降低驱动电压,从而解决了现有的蓝相液晶显示装置的驱动电压过高的问题。
在一个示例中, 如图 2a和图 2b所示, 所述下基板 1从下至上依次包括 下偏振片 11、 下四分之一波片 12、 薄膜晶体管(Thin Film Transistor, TFT ) 层 13、像素电极层 14。下四分之一波片 12的光轴与下偏振片 11的透过轴之 间的夹角为 45。; 像素电极层 14包括为每个像素单元设置的像素电极。 所述 上基板 2从上至下依次包括上偏振片 21、 上四分之一波片 22、 公共电极层 23。 上四分之一波片 22的光轴与上偏振片 21的透过轴之间的夹角为 45。; 公共电极层 23包括为每个像素单元设置的公共电极。 下偏振片 11与上偏振 片 21的透过轴彼此平行。
如图 2a所示,在上基板 2与下基板 1之间不加电时。蓝相液晶 3可等效 认为呈球形, 是各向同性的, 对从任意方向穿过的光都不会产生光程差。 背 光源发出的光 L垂直射向显示面板, 经过下偏振片 11时成为具有某一偏振 态的线偏振光, 可将该偏振方向规定为 0。; 经过下四分之一波片 12时相位 改变 π/2, 成为左旋偏光; 再继续经过 TFT层 13和像素电极层 14, 相位不 发生变化。 在光 L进入各向同性的蓝相液晶 3后, 首先^ 射片 4的第一反 射面 R1反射, 相位改变 π, 成为右旋偏光, 由于反射片 4与上、 下基板 2、 1呈 45°夹角, 所以反射后的光横向传播; 然后, 光再被相邻反射片 4的第二 反射面 R2反射, 相位再改变 π, 成为左旋偏光, 同样由于反射片 4与上、 下 基板 2、 1呈 45。夹角, 所以反射后的光仍沿垂直方向传播。 当然, 液晶盒中 的蓝相液晶 3不会使光产生光程差, 也不会改变光的相位。 光经过公共电极 层 23 , 相位不发生变化; 经过上四分之一波片 22后相位改变 π/2, 成为 90。 的线偏振光。 因为上偏振片 21和下偏振片 11的透过轴平行, 所以此时 90° 的偏振光完全被上偏振片 21吸收, 显示装置呈暗态。 如图 2b所示,在上基板 2的公共电极 23与下基板的像素电极层 14之间 施加垂直方向的电场时,可等效认为蓝相液晶 3在垂直方向上被拉伸呈粒状, 且其长轴为垂直方向, 短轴为水平方向。 来自背光源的光 L垂直经过下基板 1 各层时, 与上述不加电的情况相同, 成为左旋偏光射入液晶盒。 然后, 光 经蓝相液晶 3的长轴穿过, 因此不会产生光程差, 相位无变化; 再经反射片 4的第一反射面 R1反射, 相位改变 π, 成为横向传播的右旋偏光; 之后光将 会经蓝相液晶 3的短轴穿过, 根据双折射原理产生光程差 Snd。 根据克尔效 应,
Figure imgf000006_0001
其中 λ为入射光波长, Κ为克尔常数, Ε为电场强度, Ε等 于公共电极 23与像素电极 14之间的电压差 U除以液晶盒的盒厚 d。 以最亮 态为例, 当 δη(1=λ/2时, 光的相位改变 π, 右旋偏光成为左旋偏光。 光再被 相邻反射片 4的第二反射面 R2反射, 相位再改变 π, 成为右旋偏光; 然后经 蓝相液晶 3的长轴穿过, 到达上基板。 经过上四分之一波 22片后,相位改变 πΙ2成为 0°的线偏振光。 此时 0°的偏振光正好可以从上偏振片 21完全透过, 呈最亮态的显示效果。 通过控制电压 U来获得不同的场强 E, 蓝相液晶 3对 光的相位改变程度也有所不同, 由此实现一系列灰阶的显示效果。
上述描述系针对一个或多个像素单元而进行的, 其他像素单元可同样适 用。
蓝相液晶的响应速度 ^ ·夬, 因此本实施例的蓝相液晶显示装置中可以不 设置彩膜, 在一帧画面的显示时间中以不同时间段分别显示例如红、 绿、 蓝 三种颜色, 实现场序色控, 这能够提高了显示装置的分辨率。 相应地, 背光 源包括红、 绿和蓝色三种光源, 在控制器的控制下例如以场序色控方式依次 打开红、 绿、 蓝光源。 作为一个优选方案, 各个反射片 4在下基板 1或上基 板 2上的投影首尾相接。 这样使各个反射片 4在水平面上的投影没有缝隙, 也没有重叠的部分。
如图 3a所示,如果反射片 4在水平面上的投影(如虚线所示)存在缝隙, 一部分光就不会被反射片 4反射,而直线穿过液晶盒。对液晶盒施加电场时, 这一部分光只是经蓝相液晶 3的长轴穿过, 因此不会产生光程差, 相位也不 变, 从而在下四分之一波片 12和上四分之一波片 22的作用下, 被上偏振片 21完全吸收,使显示装置的透过率降低。 当然,液晶盒两侧没有施加电场时, 这一部分光也会被上偏振片吸收。 如图 3b所示, 如果反射片 4在水平面上的投影(如虚线所示)存在重叠 的部分, 一部分光会在两个反射片 4之间反射四次。 对液晶盒施加电场时, 这一部分光就会横向经过蓝相液晶 3两次, 而造成灰度偏差。 当然, 液晶盒 两侧没有施加电场时, 这一部分光会被上偏振片吸收。
因此, 本发明实施例中反射片的设置, 既可以避免透过率降低, 又可以 避免显示装置的局部产生灰度偏差。
本发明实施例中,像素电极层 14与公共电极层 23可以为透明导电材料, 例如铟锡氧化物 (Indium Tin Oxides, ITO ) 、 铟辞氧化物( ΙΖΟ ) 、 氧化细 ( SnOx )等。 ITO具有艮好的导电性和透明性, 因此以 ITO形成的透明导电 层用于像素电极层 14和公共电极层 23, 能够在产生电场的同时不影响光的 透过。
实施例 2
本实施例与实施例 1基本相同, 其不同点在于: 如图 4a和图 4b所示, 本实施例中, 上基板 2还包括彩膜 24。 作为一个优选方案, 彩膜 24位于上 四分之一波片 22与公共电极层 23之间。
本实施例中, 上基板 2中设有彩膜 24, 包括例如红、 绿、 蓝像素, 用于 分别得到红、 绿、 蓝三种颜色的光, 以实现彩色显示。 相应地, 背光源可以 包括白光源。
蓝相液晶显示装置可以如实施例 1中所述, 省去彩膜, 以场序色控显示 红、 绿、 蓝三种颜色, 也可以如本实施例中所述, 利用常规的彩膜实现三色 显示, 在具体的应用场景中, 可根据实际情况灵活设计。
实施例 3
本发明实施例提供了一种显示设备, 包括上述实施例 1提供的蓝相液晶 显示装置, 该显示设备可以是电视机、 电脑、 手机、 游戏机等。
由于本发明实施例提供的显示设备与上述实施例所提供的蓝相液晶显示 装置具有相同的技术特征, 所以也能产生相同的技术效果, 解决相同的技术 问题。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、 一种蓝相液晶显示装置, 包括:
下基板;
上基板, 与所述下基板相对设置; 以及
位于所述下基板与所述上基板之间的蓝相液晶和若干反射片, 其中 所述若干反射片平行排列于所述下基板与所述上基板之间, 且与所述下 基板和所述上基板呈 45°夹角;
所述蓝相液晶位于所述若干反射片的间隙中。
2、根据权利要求 1所述的蓝相液晶显示装置,其中各个反射片在所述下 基板或所述上基板上的投影首尾相接。
3、根据权利要求 1或 2所述的蓝相液晶显示装置,其中所述下基板从下 至上依次包括下偏振片、 下四分之一波片、 薄膜晶体管层、 像素电极层, 所 述下四分之一波片的光轴与所述下偏振片的透过轴夹角为 45。;
所述上基板从上至下依次包括上偏振片、上四分之一波片、公共电极层, 所述上四分之一波片的光轴与所述上偏振片的透过轴夹角为 45。;
所述下偏振片与所述上偏振片的透过轴平行。
4、 根据权利要求 1-3任一所述的蓝相液晶显示装置, 还包括背光源, 其 中所述背光源以场序色控方式发出不同颜色的光。
5、根据权利要求 3所述的蓝相液晶显示装置,其中所述上基板还包括彩 膜。
6、根据权利要求 5任一所述的蓝相液晶显示装置,还包括背光源, 其中 所述背光源发白光。
7、根据权利要求 5所述的蓝相液晶显示装置,其中所述彩膜位于所述上 四分之一波片与所述公共电极层之间。
8、根据权利要求 3-7任一所述的蓝相液晶显示装置, 其中所述像素电极 层与所述公共电极层为铟锡氧化物。
9、一种显示设备, 包括上述权利要求 1至 8任一项所述的蓝相液晶显示 装置。
PCT/CN2012/083732 2012-07-26 2012-10-30 蓝相液晶显示装置以及显示设备 WO2014015568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210262870.7 2012-07-26
CN201210262870.7A CN102789087B (zh) 2012-07-26 2012-07-26 蓝相液晶显示装置以及显示设备

Publications (1)

Publication Number Publication Date
WO2014015568A1 true WO2014015568A1 (zh) 2014-01-30

Family

ID=47154529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083732 WO2014015568A1 (zh) 2012-07-26 2012-10-30 蓝相液晶显示装置以及显示设备

Country Status (2)

Country Link
CN (1) CN102789087B (zh)
WO (1) WO2014015568A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998840A (zh) * 2012-12-12 2013-03-27 京东方科技集团股份有限公司 显示面板以及具有该显示面板的显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886691A (zh) * 2003-11-27 2006-12-27 旭硝子株式会社 使用具有光学上各向同性的液晶的光学元件
CN101976002A (zh) * 2010-11-02 2011-02-16 昆山龙腾光电有限公司 蓝相液晶显示面板及液晶显示器
CN102081268A (zh) * 2011-03-09 2011-06-01 四川大学 低工作电压高光效率单盒厚透反蓝相液晶显示器
JP2012126894A (ja) * 2010-11-26 2012-07-05 Semiconductor Energy Lab Co Ltd 液晶組成物及び液晶表示装置
CN102778778A (zh) * 2012-07-05 2012-11-14 京东方科技集团股份有限公司 一种透反式液晶显示面板及透反式液晶显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886691A (zh) * 2003-11-27 2006-12-27 旭硝子株式会社 使用具有光学上各向同性的液晶的光学元件
CN101976002A (zh) * 2010-11-02 2011-02-16 昆山龙腾光电有限公司 蓝相液晶显示面板及液晶显示器
JP2012126894A (ja) * 2010-11-26 2012-07-05 Semiconductor Energy Lab Co Ltd 液晶組成物及び液晶表示装置
CN102081268A (zh) * 2011-03-09 2011-06-01 四川大学 低工作电压高光效率单盒厚透反蓝相液晶显示器
CN102778778A (zh) * 2012-07-05 2012-11-14 京东方科技集团股份有限公司 一种透反式液晶显示面板及透反式液晶显示器

Also Published As

Publication number Publication date
CN102789087B (zh) 2015-07-08
CN102789087A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
CN101976002B (zh) 蓝相液晶显示面板及液晶显示器
JP5074526B2 (ja) 能動型反射偏光子を採用して反射モード及び透過モード間で切替可能な液晶ディスプレイ装置
CN112379550B (zh) 显示面板及驱动方法和显示装置
US9423647B2 (en) Display device with mirror function
JPWO2018221413A1 (ja) 表示装置
KR20150073695A (ko) 거울 겸용 표시 장치
CN102650778B (zh) 半透半反式蓝相液晶显示装置
US8970797B2 (en) Liquid crystal display adopting structure of liquid crystal lens
US10451931B2 (en) Transflective display panel and transflective display device
WO2015158123A1 (zh) 柔性显示面板和柔性显示器
WO2019103012A1 (ja) 表示装置
WO2016074253A1 (zh) 液晶显示装置及其液晶显示面板
CN104297997A (zh) 一种液晶显示面板及其显示方法、显示装置
KR20180003687A (ko) 반사형 액정표시장치
CN109212843A (zh) 一种基于双边IPS电极结构的LCoS微显示器
TWI308307B (en) Image display system
US9995984B2 (en) Transflective liquid crystal display device and driving method thereof
US20140160407A1 (en) Display panel and display apparatus having the display panel
KR100805792B1 (ko) 고분자 분산형 액정 표시 장치
TWI230295B (en) A pixel device of a transflective-type LCD panel
KR101420829B1 (ko) 표시 장치
US9007548B2 (en) Wide view angle liquid crystal display device operating in normally white mode
JP2005084593A (ja) 液晶表示素子およびその製造方法
JP2002169155A (ja) 液晶表示素子
WO2015021793A1 (zh) 半透半反式液晶面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17-06-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12881545

Country of ref document: EP

Kind code of ref document: A1