WO2014014253A1 - 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치 - Google Patents

무선 통신 시스템에서 채널상태정보 보고 방법 및 장치 Download PDF

Info

Publication number
WO2014014253A1
WO2014014253A1 PCT/KR2013/006345 KR2013006345W WO2014014253A1 WO 2014014253 A1 WO2014014253 A1 WO 2014014253A1 KR 2013006345 W KR2013006345 W KR 2013006345W WO 2014014253 A1 WO2014014253 A1 WO 2014014253A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
information
cell
crs
hypothesis
Prior art date
Application number
PCT/KR2013/006345
Other languages
English (en)
French (fr)
Inventor
김기준
박종현
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR20147033370A priority Critical patent/KR20150035556A/ko
Priority to EP13819354.5A priority patent/EP2874335B1/en
Priority to US14/414,864 priority patent/US9554371B2/en
Publication of WO2014014253A1 publication Critical patent/WO2014014253A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2612Arrangements for wireless medium access control, e.g. by allocating physical layer transmission capacity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and apparatus for reporting channel state information.
  • Wireless communication systems have been widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, OFDMACorthogonal frequency division multiple access (SCDMA) systems, and SC—single carrier frequency division multiple access (MC) system, MC—multicarrier frequency division multiple access (FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • SCDMA OFDMACorthogonal frequency division multiple access
  • SC single carrier frequency division multiple access
  • MC multicarrier frequency division multiple access
  • a method of reporting channel state information when a cell-specific reference signal and a quasi co-located (QC) assumption of a specific cell is possible is a technical problem.
  • a first technical aspect of the present invention is a QSI (Quasi Co-located) assumption in a CSI reporting method of a terminal in which a plurality of CSKChannel State Information (RS) -Reference Resource (RS) configurations are configured in a wireless communication system.
  • RS CSKChannel State Information
  • RS Reference Resource
  • MCS Modulation and Coding Scheme
  • a second technical aspect of the present invention is a terminal device in which a plurality of CSKCharmel State Information (RS) configurations are configured in a wireless communication system, comprising: reception modules; And a processor, wherein the processor receives information for a quasi co-located (QC) assumption, measures a channel state using a CSI-RS, and based on the measurement result and the information for the QC assumption Deriving a MCSI Modulation and Coding Scheme), reporting a CSI including a CQI index related to the MCS, and if there is a physical sal ID corresponding to the CSI-RS in the information for the QC hypothesis, the MSC
  • QC quasi co-located
  • MCS Physical sal ID
  • the MSC A terminal device having a value capable of receiving data below a predetermined error rate when receiving data under a 3 ⁇ 4-specific RS (CRS) and a QC assumption transmitted from a cell of a sal ID.
  • CRS 3 ⁇ 4-specific RS
  • the first to second technical aspects of the present invention may include the following.
  • the information for the QC hypothesis may indicate a physical cell ID for which a QC hypothesis is possible for each of the plurality of CSI-RS configurations.
  • the information for the QC hypothesis may indicate a physical cell ID capable of QC hypothesis with respect to a CSI-RS configuration in which a cell capable of QC hypothesis exists among the plurality of CSI-RS configurations.
  • the terminal may consider the number of ports of the CRS when calculating the number of data resource elements of a CSI reference resource for deriving the MCS.
  • a resource element corresponding to the port of the CRS may be excluded when calculating the number of data resource elements.
  • the information for the QC hypothesis may further include a serving cell CRS rate matching flag.
  • the serving cell CRS rate matching flag may indicate to exclude a resource element corresponding to a CRS port of a serving cell when calculating the number of data resource elements of a CSI reference resource for the MSC derivation.
  • the MCS may be the largest MCS capable of receiving data below the predetermined error rate.
  • the predetermined error rate may be a BLock (BLock Error Rate) of 10% or less.
  • Each of the plurality of CSI configurations may be included in a CoM Coordinated Multi-Point) measurement set.
  • Receiving data under the CRS and QC hypothesis may mean using a wide range characteristic estimated from the CRS port when estimating a channel for the data.
  • the wide characteristic may include delay spread Doppler spread, frequency shift, average received power, and receive timing.
  • 1 is a diagram illustrating a structure of a radio frame.
  • 2 is a diagram illustrating a resource grid in a downlink slot.
  • 3 is a diagram illustrating a structure of a downlink subframe.
  • FIG. 4 is a diagram illustrating a structure of an uplink subframe.
  • 5 is a diagram for explaining a reference signal.
  • FIG. 6 is a diagram for explaining a channel state information reference signal.
  • FIG. 7 is a diagram for explaining a demodulation reference signal.
  • FIG. 8 is a diagram for explaining a heterogeneous network environment.
  • FIG. 9 is a diagram illustrating an example of a cooperative multipoint cluster to which an embodiment of the present invention can be applied.
  • 10 to 11 are diagrams for explaining QC hypothesis and channel state report according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a configuration of a transmitting and receiving device.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in another embodiment or may be substituted for components or features of another embodiment.
  • Embodiments of the present invention will be described with reference to the relationship between data transmission and reception between a base station and a terminal.
  • the base station has a meaning as a terminal node of the network that directly communicates with the terminal. Certain operations described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), and an access point (AP).
  • the repeater may be replaced by terms such as relay node (RN) and relay station (RS).
  • RN relay node
  • RS relay station
  • terminal may be replaced with terms such as UE Jser Equipment (MS), Mobile Station (MS), Mobile Subscriber Station (MSS), and SSCSubscriber Station (MSS).
  • MS UE Jser Equipment
  • MS Mobile Station
  • MSS Mobile Subscriber Station
  • MSS SSCSubscriber Station
  • the cell names described below are applied to transmission and reception points such as a base station (eNB), a sector, a remote radio head (RRH), a relay, and the like. It may be used as a generic term for identifying a component carrier.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of an IEEE 802 system, a 3GPP system, a 3GPP LTE, an LTE-L (LTE-Advanced) system, and a 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the standard document.
  • CDMAC Code Division Multiple Access CDMAC Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • SCDMA OFDM ACOrthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • CDMA may be implemented by radio technology such as UTRACUniversal Terrestrial Radio Access) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of UMTS Jniversal Mobile Telecommunications System.
  • 3GPP LTEdong term evolution (3GPP) is part of Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE ⁇ A Advanced
  • WiMAX can be described by the IEEE 802.16e standard (WirelessMAN—OFDMA Reference System) and the advanced IEEE 802.16m standard (WirelessMAN-OFDMA Advanced system). For clarity, the following description focuses on 3GPP LTE and 3GPP LTE-A systems, but the technical spirit of the present invention is not limited thereto.
  • a structure of a radio frame will be described with reference to FIG. 1.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to TDD time division duplex (FDD).
  • FIG. 1 (a) is a diagram illustrating a structure of a type 1 radio frame.
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time it takes for one subframe to be transmitted is called a TTKtransmission time interval).
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and includes a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • an OFDM symbol represents one symbol period.
  • An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period.
  • a resource block (RB) is a resource allocation unit and may include a plurality of consecutive subcarriers in one block.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CP has extended CHextended CP) and normal CPnormal CP).
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by an extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the normal CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the terminal moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the beginning of each subframe Two or three OFDM symbols may be allocated to a physical downlink control channel (PDCCH) and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • FIG. Kb shows a texture of a type 2 radio frame.
  • Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • the DwPTS is used for initial cell discovery, synchronization, or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • one subframe consists of two slots regardless of the radio frame type.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe and the number of symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid in a downlink slot.
  • One downlink slot includes seven OFDM symbols in the time domain and one resource block (RB) is shown to include 12 subcarriers in the frequency domain, but the present invention is not limited thereto.
  • one slot includes 7 OFDM symbols, but in the case of an extended CP, one slot may include 6 OFDM symbols.
  • Each element on the resource grid is called a resource element.
  • One resource block includes 12 ⁇ 7 resource elements.
  • the number N DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 is a diagram illustrating a structure of a downlink subframe.
  • Up to three OFDM symbols at the front of the first slot in one subframe correspond to a control region to which a control channel is allocated. The remaining OFDM symbols It corresponds to a data area to which a Physical Downlink Shared Channel (PDSCH) is allocated.
  • Downlink control channels used in the 3GPP LTE / LTE-A system include, for example, a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), Physical HARQ indicator channel (Physical Hybrid automatic repeat request Indicator Channel; PHICH).
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and includes information on the number of OFDM symbols used for control channel transmission in the subframe.
  • the PHICH includes a HARQ ACK / NACK signal as a male answer for uplink transmission.
  • Control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI includes uplink or downlink scheduling information or an uplink transmit power control command for a certain terminal group.
  • the PDCCH is allocated to the resource allocation and transmission format of the downlink shared channel (DL-SCH), the resource allocation information of the uplink shared channel (UL-SCH), the paging information of the paging channel (PCH), the system information on the DL-SCH, and the PDSCH.
  • Resource allocation of upper layer control messages such as random access response transmitted, set of transmit power control commands for individual terminals in a certain terminal group, transmit power control information, activation of voice over IP (VoIP), etc.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted in an aggregation of one or more consecutive Control Channel Elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH at a coding rate based on the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • the CRC is masked with an identifier called Radio Network Temporary Identifier (RNTI) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the eel ⁇ RNTKC-RNTI eel ⁇ RNTKC-RNTI
  • P-RNTI paging indicator identifier
  • PDCCH is a system information (more specifically, System information block (SIB), the system information identifier and system information RNTKSI-RNTI may be masked to the CRC.
  • SIB System information block
  • RNTKSI-RNTI random access -RNTI
  • RA-RNTI random access -RNTI
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) including uplink control information is allocated to the control region.
  • a physical uplink shared channel (PUSCH) including user data is allocated.
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blits belonging to a resource blit pair occupy different subcarriers for two slots. This is called a resource block pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • a signal When a packet is transmitted in a wireless communication system, a signal may be distorted in the transmission process because the transmitted packet is transmitted through a wireless channel. In order to correctly receive the distorted signal at the receiving end, the distortion must be corrected in the received signal using the channel information. In order to find out the channel information, a signal known to both the transmission axis and the receiving side is transmitted, and a method of finding the channel information with a degree of distortion when the signal is received through the channel is mainly used. The signal is called a pilot signal or a reference signal.
  • the reference signal may be divided into an uplink reference signal and a downlink reference signal.
  • an uplink reference signal i) DeModulation-Reierence Signal (DM-RS) for channel estimation for coherent demodulation of information transmitted on PUSCH and PUCCH;
  • DM-RS DeModulation-Reierence Signal
  • SRS sounding reference signal
  • UE-specific Reference Signal UE-specific Reference Signal only for a specific UE iii) when the PDSCH is transmitted for coherent demodulation (DeModulation-Reference Signal, DM-RS)
  • CSI-RS Channel State Information Reference Signal
  • MBSFN MBSFN reference signal
  • MBSFN Multimedia Broadcast Single Frequency Network
  • Reference signals can be classified into two types according to their purpose. There is a reference signal for obtaining channel information and a reference signal used for data demodulation. Since the former has a purpose for the UE to acquire channel information on the downlink, it should be transmitted over a wide band, and even a terminal that does not receive downlink data in a specific subframe should receive the reference signal. It is also used in situations such as handover.
  • the latter is a reference signal transmitted together with a corresponding resource when the base station transmits a downlink, and the terminal can demodulate data by performing channel measurement by receiving the reference signal. This reference signal should be transmitted in the area where data is transmitted.
  • the CRS is used for two purposes of channel information acquisition and data demodulation, and the UE-specific reference signal is used only for data demodulation.
  • CRS serves every broadband Each frame is transmitted, and reference signals for up to four antenna ports are transmitted according to the number of transmitting antennas of the base station.
  • the CRSs for antenna ports 0 and 1 are transmitted, and the CRSs for antenna ports 0 to 3 are transmitted when four.
  • FIG. 5 is a diagram illustrating a pattern in which CRSs and DRSs defined in an existing 3GPP LTE / LTE-A system (for example, release-8) are mapped onto a downlink resource block pair (RB pair).
  • a downlink resource block pair as a unit to which a reference signal is mapped may be expressed in units of 12 subcarriers on one subframe X frequency in time. That is, one resource block pair has 14 OFDM symbol lengths in the case of a general CP (FIG. 5 (a)) and 12 OFDM symbol lengths in the case of an extended CP (FIG. 5 (b)).
  • FIG. 5 shows a position of a reference signal on a resource block pair in a system in which a base station supports four transmit antennas.
  • resource elements RE denoted by ⁇ 1 , ' ⁇ ,' 2 ', and' 3 ' indicate positions of CRSs for antenna port indexes 0, 1, 2, and 3, respectively.
  • a resource element denoted by 'D' in FIG. 5 indicates a position of DMRS.
  • Channel State Information Reference Signal Channel State Information-RS, CSI-RS
  • the CSI-RS is for an LTE-A system supporting up to eight antenna ports in downlink and is a reference signal for channel measurement purposes.
  • the advantage is that CRS differs from that for channel measurement and data demodulation, so CSI-RS does not need to be transmitted every subframe like CRS.
  • CSI-RS is used in transmission mode 9, and DMRS is transmitted for data demodulation.
  • the CSI-RS can be transmitted through 1, 2, 4, 8 antenna ports, 15 for 1 antenna port, 15 for 2 antenna ports, 16, 4 antenna ports 15-18, 8 antenna ports 15-22 antenna ports can be used.
  • the CSI 'RS may be generated using Equation 1 below.
  • Number 1 denotes an OFDM symbol
  • V RB denotes a maximum number of RBs of a downlink bandwidth, respectively.
  • the CSI-RS generated by m may be mapped to RE for each antenna port using Equation 2 below.
  • nal configurations 0-19 normal cyclic prefix nal configurations 20-31, normal cyclic prefix nal configurations 0-27 , extended cyclic prefix
  • 1 ⁇ may be determined according to the CSI-RS configuration shown in Table 1 below.
  • each antenna port is mapped to an RE in a specific CSI-RS configuration.
  • CSI-RSs are mapped to antenna ports according to the above description.
  • R0 to R3 indicate that the CRSs for each antenna port are mapped, and a pair indicator indicates that the CSI-RSs for each antenna port are mapped.
  • the REs indicated by the numbers 0 and 1 are mapped to the CSI ⁇ RS corresponding to the antenna port 0 or 1.
  • CSI ⁇ RSs corresponding to two antenna ports are mapped to the same RE, which may be distinguished by different orthogonal codes.
  • the CSI-RS may be transmitted in a specific subframe instead of every subframe.
  • the CSI-RS refers to a CSI-RS subframe configuration shown in Table 2 below, but may be transmitted in a subframe that satisfies Equation 3 below.
  • CSI-RS denotes a period in which CSI-RSs are transmitted
  • CSI-RS denotes an offset value "" f denotes a system frame number, and a slot number, respectively.
  • CSI-RS may be signaled to the UE as a CSI-RS configuration element (CSI-RS—Configure rlO) as shown in Table 3 below.
  • CSI-RS—Configure rlO CSI-RS configuration element
  • resourceConfig-rlO INTEGER (0..31), subframeConfig-rlO INTEGER (0..154) p-C-rl0 INTEGER
  • 'antennaPortsCount' is the number of antennas through which the CSI-RS is transmitted (select among 1, 2, 4, and 8), and 'resourceConfig' is one RB on time-resource frequency.
  • RE is located, which subframe is transmitted in which subframe, and the CSI-RS EPRE value for the PDSCH EPRE is transmitted.
  • the eNB also transmits information about a zero power CSI-RS.
  • 'resourceConfig' in CSI-RS Config indicates a location where CSI—RS is transmitted. This is according to the CSI-RS set of table 1, expressed as seutja of from 0 to 31, "it indicates the location of the correct symbols and the carrier in a RB.
  • the MIMO scheme can be classified into an open-loop scheme and a closed-loop scheme.
  • the open loop MIMO scheme means that the MIMO transmission is performed at the transmitting end without the feedback of the CSI from the MIMO receiving end.
  • the closed-loop MIMO scheme means that the transmitter performs MIMO transmission by receiving CSI feedback from the MIMO receiver.
  • each of the transmitter and the receiver may perform the bumping based on the channel state information in order to obtain the multiplexing gain of the MIMO transmit antenna.
  • the transmitting end eg, the base station
  • the fed back CSI may include a tank indicator (RI), a precoding matrix index (PMI), and a channel quality indicator (CQI).
  • RI tank indicator
  • PMI precoding matrix index
  • CQI channel quality indicator
  • RI is information about channel tanks.
  • the tanks in the channel determine the maximum number of layers (or streams) that can send different information over the same time-frequency resource.
  • the tank value is mainly determined by the long term fading of the channel, so it can generally be fed back over longer periods than PMI and CQI.
  • the PMI is information on a precoding matrix used for transmission from a transmitter and is a value reflecting spatial characteristics of a channel.
  • Precoding means mapping a transmission layer to a transmission antenna, and a layer-antenna mapping relationship may be determined by a precoding matrix.
  • the PMI corresponds to a precoding matrix index of a base station preferred by a terminal based on metrics such as Signal to Noise and Noise Ratio (SINR).
  • SINR Signal to Noise and Noise Ratio
  • MU-MIMO multi-user multi-multi input multi output
  • a new CSI feedback scheme that improves CSIs consisting of RI, PMI, and CQI may be applied.
  • precoding information fed back by the receiving end may be indicated by a combination of two PMIs.
  • One of the two PMIs (the first PMI) may be an attribute of a long term and / or wideband Gong term and / or wideband.
  • the other one of the two PMIs (second PMI) may have a short term and / or subband attribute and may be referred to as W2.
  • the CQI is information indicating channel quality or channel strength.
  • CQI is predetermined It may be represented by an index corresponding to the MCS combination. That is, the fed back CQI index indicates a corresponding modulation scheme and code rate.
  • the CQI is a value reflecting the received SINR obtained when the base station configures a spatial channel using the PMI.
  • the CSI feedback method is divided into periodic reporting through PUCCH, which is an uplink control channel, and aperiodic reporting through the UL data channel PUSCH, at the request of a base station.
  • LTE / LTE-A defines a CSI Reference Resource related to channel measurement for CSI feedback / reporting as described above.
  • the CSI reference resource is defined as a group of physical RBs corresponding to a frequency band to which the calculated CQI is associated in the frequency domain.
  • nn CQLref is defined, where n is a subframe to transmit / report CSI and n CQ ef is i) the smallest value of 4 or more, to be treated as a valid subframe for periodic CSI reporting, ii.
  • aperiodic CSI reporting it is a valid subframe that the subframe in which the CSI request in the uplink DCI format is transmitted is transmitted, and iii) the case of the CSI request in the random access voice response grant in the aperiodic CSI report.
  • a valid subframe is to be a downlink subframe for a corresponding UE, not a MBSFN subframe when the transmission mode is other than 9, a length of a DwPTS in a TDD is greater than or equal to a certain size, and a measurement gap configured for the corresponding UE Not included in the (gap), when the UE is set to the CSI subframe set in the periodic CSI report means that the condition that corresponds to the elements of the CSI subframe set.
  • the CSI subframe set (C CSI , ⁇ may be configured in the UE by a higher layer, and in the current standard, the CSI reference resource is included in any one of the two subframe sets (C CSI ⁇ C CS [> 1 )). It is defined to not be included in both sets.
  • DMRS Demodulation Reference Signal
  • DMRS is defined by the UE for the purpose of channel estimation for PDSCH Reference signal.
  • DMRS may be used in transmission modes 7, 8 and 9.
  • DMRS was initially defined for single layer transmission of antenna port 5, but has since been extended to spatial multiplexing of up to eight layers.
  • DMRS is transmitted only for one specific terminal, as can be seen from its other name, UE specific reference signal, and therefore can be transmitted only in an RB through which a PDSCH for the specific UE is transmitted.
  • the generation of DMRS for up to eight layers is described below.
  • the DMRS is a complex-valued symbol with a reference-signal sequence r (m) generated according to Equation 4 below according to Equation 5.
  • FIG. 7 illustrates antenna ports 7 to 10 as DMRSs are mapped to resource grids on a subframe in the case of a general CP according to Equation 2.
  • rO denotes a reference signal sequence, and denotes the maximum number of RBs of the pseudo random sequence RB downlink bandwidth, respectively.
  • the reference signal sequence is orthogonal as shown in Table 4 according to the antenna port when mapping to the complex modulation symbol. Apply.
  • the DMRS may perform channel estimation in different ways depending on the spreading factor (2 or 4).
  • the spreading factor 2 or 4
  • the spreading factor is 2 and the spreading factor at antenna ports 11 to 14 is 4. If the spreading factor is 2, the terminal of the first slot
  • the channel estimation can be performed through time interpolation after despreading the DMRS and the DMRS of the second slot with spreading factor 2, respectively. If the spreading factor is 4, channel estimation can be performed by backspreading the DMRS to spreading factor 4 in all subframes.
  • the channel estimation according to the above-described spreading factor in the case of spreading factor 2, can obtain the gain of decoding time due to the possibility of applying the time interpolation at high mobility and the back spreading to the DMRS of the first slot. And, using the spreading factor 4 has the advantage that can support more terminals or ranks (rank). [88] Heterogeneous deployments
  • HetNet refers to a network in which a macro base station (MeNB) and a micro base station (PeNB or FeNB) coexist even with the same radio access technology (RAT).
  • RAT radio access technology
  • a macro base station has a wide coverage and high transmit power and means a general base station of a wireless communication system.
  • the macro base station (MeNB) may be referred to as a macro cell.
  • a micro base station may be, for example, a micro cell, a pico cell, a femto cell, a home eNB, a relay, or the like. (The illustrated micro base station and macro base station may be collectively referred to as a transmission point).
  • a micro base station (PeNB or FeNB) is a small version of a macro base station (MeNB) that can operate independently while performing most of the functions of a macro base station. This is a non-overlay type of base station that can be installed in shaded areas that cannot be covered.
  • the micro base station (PeNB or FeNB) can accommodate fewer terminals with narrower coverage and lower transmission power than the macro base station (MeNB).
  • the UE may be directly served by a macro base station (MeNB) (hereinafter referred to as a macro-terminal), and the UE may be served by a micro base station (PeNB or FeNB). It may be (hereinafter referred to as a micro-terminal).
  • a UE (PUE) that is within coverage of a micro base station (MeNB) may be served from a macro base station (MeNB).
  • the micro base station may be classified into two types according to access restriction of the terminal.
  • the first type is an open access subscriber group (OSG) or non-closed access subscriber group (non-CSG) base station, and is a cell that allows access of a micro-terminal of an existing macro-terminal or another micro base station. Existing macro end terminals can be handed over to an OSG type base station.
  • OSG open access subscriber group
  • non-CSG non-closed access subscriber group
  • the second type is a CSG base station, which does not allow access of existing macro-terminals or micro-terminals of other micro base stations, and thus no handover to the CSG base station.
  • CoMP transmission / reception techniques (co-MIMO, collaborative MIMO or network MIM0, etc.) have been proposed.
  • CoMP technology can increase the performance of the terminal located in the cell-edge (eel ⁇ edge) and increase the average sector throughput (throughput).
  • CoMP schemes applicable to downlink can be classified into joint processing (JP) techniques and coordinated scheduling / beamforming (CS / CB) techniques.
  • the JP scheme may use data at each transmission point (base station) of the CoMP cooperative unit.
  • CoMP cooperative unit means a set of base stations used in a cooperative transmission scheme.
  • the JP technique can be classified into a joint transmission technique and a dynamic cell selection technique.
  • a joint transmission scheme refers to a scheme in which a PDSCH is transmitted from a plurality of transmission points (part or all of CoMP cooperative units) at a time. That is, data transmitted to a single terminal may be simultaneously transmitted from a plurality of transmission points. According to the joint transmission technique, the quality of a received signal may be improved coherently or non-coherently, and may also actively cancel interference with other terminals.
  • the dynamic cell selection scheme refers to a scheme in which PDSCH is transmitted from one transmission point (of CoMP cooperative unit) at a time. That is, data transmitted to a single terminal at a specific time point is transmitted from one transmission point, and at that point, other transmission points in the cooperative unit do not transmit data to the corresponding terminal, and the transmission point for transmitting data to the corresponding terminal is Can be selected dynamically.
  • CoMP cooperative units may cooperatively perform a broadforming of data transmission for a single terminal.
  • data is transmitted only in the serving cell, but user scaling / beamforming may be determined by adjusting cells of a corresponding CoMP cooperative unit.
  • coordinated multi-transmission point reception means receiving a signal transmitted by coordination of a plurality of geographically separated transmission points.
  • CoMP schemes applicable to uplink may be classified into joint reception (JR) and coordinated scheduling / beamforming (CS / CB).
  • the JR scheme means that a signal transmitted through a PUSCH is received at a plurality of reception transmission points.
  • a PUSCH is received only at one transmission point, but user scaling / beamforming is a CoMP cooperative unit. It is determined by the adjustment of the cells of.
  • the terminal may be jointly supported with data from a multi-cell base station.
  • each base station is the same The performance of the system can be improved by simultaneously supporting one or more terminals using a Same Radio Frequency Resource.
  • the base station may perform a space division multiple access (SDMA) method based on channel state information between the base station and the terminal.
  • SDMA space division multiple access
  • the serving base station and one or more cooperative base stations are connected to a scheduler through a backbone network.
  • the scheduler may operate by receiving feedback of channel information about channel states between respective terminals and the cooperative base stations measured by each base station through the backbone network.
  • the scheduler may schedule information for cooperative MIMO operation for the serving base station and one or more cooperative base stations. That is, the scheduler may directly give an indication of the cooperative MIMO operation to each base station.
  • the CoMP system may be referred to as operating as a virtual MIMO system by combining a plurality of cells into one group, and basically, a communication technique of a MIMO system using multiple antennas may be applied.
  • FIG. 9 illustrates a CoMP cluster.
  • the CoMP cluster is the aforementioned CoMP cooperative unit.
  • cells in the CoMP cluster use different physical cell IlXphysical cell IDs (PCIDs).
  • PCIDs physical cell IlXphysical cell IDs
  • FIG. 9 (b) uses a different PCID, and in a single cluster.
  • Cells may be configured in the form of distributed antenna or RRH of a single base station by sharing the same PCID.
  • some of the cells in a single cluster may share the same PCID.
  • a common signal such as a primary synchronization signal (PSS) / secondary synchronization signal (SSS), a CRS, a PBCH, a CRS-based PDCCH / PDSCH, and the like have all the cells having the same PCID at the same time.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CRS CRS
  • PBCH PBCH
  • CRS-based PDCCH / PDSCH and the like
  • CSI-RS In the case of unicast data transmission through the UE-specific RS and the UE-specific RS-based PDSCH, individual transmission is possible in each cell and may have cell splitting gain.
  • QC quasi co-located
  • QC of two antenna ports means that the broad characteristics of the wireless channel from one antenna port are the same as those of the wireless channel from the other antenna port.
  • the broad characteristics of the radio channel from one type of antenna port are different from that of the other type of antenna port. It may be replaced by a wide range of properties.
  • the UE may not assume the same broad characteristics between the radio channels from the corresponding antenna ports for NQC antenna ports. That is, in this case, the terminal should perform independent processing for each set NQC antenna port for timing acquisition and tracking, frequency offset estimation and compensation, delay estimation, and Doppler estimation.
  • the terminal For delay spreading and Doppler spreading, the terminal is responsible for power-delay profile, delay spreading and Doppler spectrum, Doppler spread estimation results for a wireless channel from one antenna port, for a wireless channel from another antenna port. The same applies to the Wiener filter used for channel estimation.
  • the terminal may perform time and frequency synchronization for one antenna port and then apply the same synchronization to demodulation of another antenna port.
  • the UE For the average received power, the UE for two or more antenna ports
  • RSRP Reference Signal Received Power
  • the terminal When the terminal receives a specific DMRS-based DL ⁇ related DCI format through a control channel (PDCCH or ePDCCH), the terminal performs data demodulation after performing channel estimation for the corresponding PDSCH through the DMRS sequence. For example, if the configuration of the antenna ports (hereinafter, referred to as "DMRS port") for the transmission of the DMRS received from the DL scheduling grant (grant) by the UE CRS of its own DL serving cell or another cell If QC assumption can be made with antenna ports (hereinafter, referred to as "CRS port" ') for transmitting the UE, the UE has broad characteristics of the radio channel estimated from the CRS port when estimating a channel through the corresponding DMRS port. We can improve the performance of the DMRS-based receiver's processor by applying the estimate of.
  • DMRS port the configuration of the antenna ports for the transmission of the DMRS received from the DL scheduling grant (grant) by the UE CRS of its own DL
  • the CRS is a reference signal broadcast at a relatively high density over every subframe and over the entire band, as described above, an estimate of the wider characteristic is generally more stably obtained from the CRS. Because it is possible.
  • the DMRS is UE-specifically transmitted for a specific scheduled RB, and since the precoding matrix used by the eNB for transmission may be changed in units of PRG, the effective channel received by the UE is changed in units of PRG. Therefore, even when multiple PRGs are scheduled, performance degradation may occur when DMRS is used to estimate a wide range of characteristics of a wireless channel over a wide band.
  • the CSI-RS also has a low density as an IRE per antenna port (received in 2RE units when CDM is applied) on an average per RB, since its transmission period may be several to several tens of ms. Performance degradation may occur when used for estimation of a wide range of characteristics.
  • the terminal configures the first CSI-RS (hereinafter referred to as "CSI-RS 1”) and the second CSI-RS CSI-RS 1 is QC and CSI-RS 2 is NQC with configuration (hereinafter referred to as "CSI-RS 2") set QC / with CRS port (s) from a specific cell (eg DL serving cell) If the NQC hypothesis or relationship is set, the UE determines the CSI for a specific CSI-RS configuration (that is, CSI-RS 1) capable of QC hypothesis with the corresponding cell (eg, DL serving cell).
  • CQI which is capable of receiving 10% FER in demodulating data under QC assumption of receiving a base PDSCH and a corresponding CRS port (s) from that cell (e.g., a DL serving cell).
  • RI and PMI at this time can be calculated and reported.
  • the CQI may be calculated by applying a specific scaling value to the ratio Pc of the PDSCH EPRE (energy per resource element) included in the CSI-RS configuration and the CSI-RS EPRE.
  • the CSI-RS 2 is set to NQC
  • the CRS port (s) from the corresponding cell eg, the DL serving cell
  • the CSI may be calculated and reported with a lower value than when the QC assumption is possible.
  • a signaling method capable of assuming QC between CSI-RS ports having the same identifier information by including some identifier information for each CSI-RS configuration is possible. That is, it may mean that the CSI-RS ports in which the identifier information of the N-bit width is set to the same value may make QC assumptions with each other. For example, CSI-RS having such a QC relationship by indicating that the L * M panel antenna for 3-D beamforming is a QC between a plurality of CSI-RS configurations set on the same eNB side when the eNB is used. Ports may share some of the above-mentioned estimates of the broad characteristics, thereby reducing the load or complexity of the processing of the terminal receiver. On the other hand, QC assumption can be excluded with respect to the average gain among the above-mentioned wide characteristics in the characteristic of 3-D beamforming gain.
  • At least one CSI-RS configuration When set, a specific flag bit is added to each CSI-RS configuration, so that it is applicable to recognize another QC assumption as a group of possible CSI-RS configurations whenever the flag bit is toggled. That is, when the terminal has received a total of five CSI-RS configurations (eg, CSI-RS 1, CSI-RS 2,..., CSI-RS 5), the flag bits are CSI-RS 1 and CSI.
  • an X value (eg, a physical cell identifier, a virtual cell identifier, or the CSI-RS sequence scrambling seed included in each CSI-RS configuration), or QC / NQC assumption may be indicated depending on whether the scrambling identifier or initial value) is the same X value between CSI-RS configurations. If QC assumption is possible between CSI-RS port (s) corresponding to CSI-RS configurations including the same X value, it may be implicitly indicated. On the contrary, it will be obvious that NQC is assumed between CSI-RS port (s) corresponding to CSI-RS configurations having different X values.
  • the X value may be individually assigned to each CSI-RS port included in each CSI-RS configuration.
  • the QC or NQC hypothesis may be implicitly indicated depending on whether each X value is the same.
  • Indication may be included in the CSI-RS configuration for QC / NQC between the CSI-RS port (s) and the DMRS port (s).
  • whether or not to assume QC / NQC with specific DMRS port (s) for each CSI-RS configuration may be designated as RRC. If the terminal receives CSI-RS 1 configured to allow QC assumptions with all DMRS port (s), the terminal applies the same estimates of specific broad characteristics assumed in CSI-RS 1 when receiving DMRS-based PDSCH. Can be reflected in receive processing. This may mean that, unless there is a re-configuration, the eNB transmits the PDSCH to the UE from the TP transmitting the CSI-RS 1 for a while. have.
  • CSI-RS port (s) and QC assumptions are set on DMRS port (s) Information may be utilized to improve DMRS-based receive processing performance.
  • CSI-RS 1 is a CRS port (eg, a DL serving cell) of a specific cell (eg, a DL serving cell).
  • CSI-RS 2 is configured to perform NQC hypothesis with the CRS port (s) of a specific cell (eg DL serving cell), the UE is the DMRS port (s) is CSI-RS 1 and It can be determined that both the CRS port (s) of the corresponding cell (eg, the DL serving cell) and the QC can be assumed.
  • the terminal may have a higher MCS as described above in the CSI-based feedback based on the CSI-RS 1.
  • CSI such as level and CQI may be calculated and reported. Therefore, unless the eNB reconfigures the CSI-RS port (s) in the CSI-RS 1 and the CRS port (s) and QC assumptions of the cell (eg, the DL serving cell) in the future, the UE does not reconfigure in the future.
  • the TP transmitting the CSI-RS 1 is interpreted as a kind of promise that the DMRS-based PDSCH will be transmitted, and the UE calculates and reports the CSI based on the CSI, which is assumed to be QC, and receives the actual PDSCH reception QC. This is because performance improvement can be expected by performing this assumed reception processing.
  • any of the one or more CSI-RS configuration (s) in the CoMP measurement set has a CSI-RS configuration allowed to allow QC assumption with the CRS port (s) of a particular cell (eg, DL serving cell)
  • the UE is capable of QC assumption between the corresponding DMRS port (s) and the CRS port (s) (and corresponding QC assumed CSI-RS port (s)) of the corresponding cell (eg, the DL serving cell) during DMRS-based PDSCH demodulation. You can judge. This is allowed to perform the reception processing by this QC hypothesis, and also report the CSI in the case of assuming the reception processing by this QC hypothesis in the corresponding CSI reporting.
  • the UE may perform corresponding DMRS upon DMRS-based PDSCH demodulation. Implicit and semi-static as having to make an NQC assumption between the port (s) and the CRS port (s) of the cell (eg DL serving cell) Can be determined to be instructed. This should not perform the operation considering the QC hypothesis with any other RS port (s) during the reception processing, and also report the CSI when the reception processing by the NQC hypothesis is assumed in the corresponding CSI reporting.
  • the specific subframe index (s) information is included in each CSI-RS configuration, if the DMRS-based DL scheduling is received in the corresponding subframe index (s)
  • DMRS port (s) it is possible to specify in RRC whether QC / NQC assumptions can be made with the CSI-RS port (s) indicated by each CSI-RS configuration.
  • the DMRS port (s) may comprise map to be "the CRS port (s) and QC / NQC assumption of a particular cell (e.g., DL serving cell).
  • the UE may receive CSI-RS 1 (and / or corresponding) when receiving DMRS ⁇ based PDSCH in a subframe of even index. All or part of the estimates of the broad characteristics assumed in the CRS port (s) of the cell (e.g., the DL serving cell) may be applied equally to reflect in the receive processing.
  • the CSI considering the QC / NQC assumption eg, the UE receives a DMRS-based PDSCH in the future and the corresponding DMRS port (s) and CSI-RS 1 ( And / or MCS level, CQI, RI and PMI at this time, which can achieve 10% FER in data demodulation under QC / NQC assumption with the CRS port (s) of that cell (eg, DL serving cell)).
  • Such information may be provided in the form of a specific subframe bitmap or subframe index set.
  • subframe set # 1 allows QC assumptions between DMRS port (s) and CRS port (s) of a particular cell (eg, DL serving cell).
  • Subframe set # 2 is specific to DMRS port (s). QC assumption between CSI-RS port (s) may be set to enable, and as another embodiment, subframe set # 1 may be a DMRS port (s) and a CRS port (s) of a specific cell (eg, DL serving cell). QC assumption is possible.
  • Subframe set # 2 may be configured to assume NQC between DMRS port (s) and specific CSI-RS port (s).
  • CSI described above QC assumption and / or QC indication method between RS and each reference signal QC between the CSI-RS and the CRS of a particular cell may be indicated, either in combination together or independently.
  • the QC between the CSI-RS and the CRS may be included in the CSI-RS configuration and delivered to the UE as in the aforementioned methods, or may be separate from the CSI-RS configuration (for example, information for a QC assumption). , As described below).
  • the information for the QC hypothesis may indicate a physical cell ID (PCID) of a cell capable of QC hypothesis with respect to each of a plurality of CSI-RS configurations configured for the UE.
  • PCID physical cell ID
  • three CSI-RS configurations 1-1 1, CSI-RS 2, and CSI-RS 3) are configured for the UE, and QC assumptions are made for each CSI-RS configuration.
  • a possible cell / CRS exists as Cell 1 / CRS 1, Cell 2 / CRS 2, and Cell 3 / CRS 3
  • information for QC hypothesis may be made as shown in Table 5 below.
  • the CSI-RS configuration may be excluded as shown in Table 7 below. That is, the information for QC hypothesis may indicate a PCID capable of QC hypothesis with respect to a CSI-RS configuration in which a cell capable of QC hypothesis exists among a plurality of CSI-RS configurations.
  • the information for the illustrated QC hypothesis may further include information related to whether the serving cell CRS and the QC hypothesis are possible (serving cell rate matching flag), as illustrated in Table 8 below. From this information, the UE can determine whether to consider the CRS overhead from the serving cell together.
  • CRS and QC / NQC of a serving cell may be designated for each CSI-RS configuration, and CRS overhead to be considered in CSI calculation may be specified.
  • CRS and QC / NQC of a serving cell may be designated for each CSI-RS configuration, and CRS overhead to be considered in CSI calculation may be specified.
  • the serving cell CRS may be considered as the CRS overhead for the CSI-RS configuration designated as the serving cell CRS and the QC.
  • a CRS pattern to be considered in CSI calculation may be specified.
  • the information for the QC hypothesis is that when the UE receives a plurality of CSI-RS configurations (a plurality of CSI-RS configurations may be included in a CoMP measurement set) through RRC, CSI—It may indicate whether QC assumption with a CRS port from a specific cell is possible for each RS configuration, and if possible, a PCID transmitting the corresponding CRS.
  • the information for the QC hypothesis may indicate whether PDSCH data symbols are not mapped from a specific cell to the CRS port, which may be used when calculating the CQI of the UE. [14]
  • the CSI reporting method including the CQI calculation and the CQI will be described in detail when the UE receives the information for the QC assumption as described above.
  • step S1101 the UE receives a CSI 'RS corresponding to any one of the CSI-RS configurations among a plurality of CSI configurations set therein, and uses a corresponding CSI-RS to determine a channel state. state or effective SINR.
  • step S1102 the terminal derives the size and modulation scheme of the transport block based on the channel measurement result and the information for the QC assumption.
  • the UE while the UE basically satisfies the assumption given for the CQI calculation, the UE selects an MCS that is close to the modulation scheme and spectral efficiency of the CQI index of Table 10 and the corresponding MCS. It determines whether the transmission meets the 10% BLER (BLock Error Rate) 10% and reports the largest CQI index among the CQI indexes expected to be lower than the last 10% BLER.
  • 10% BLER Battery Error Rate
  • the selected MCS may satisfy 10% BLER when receiving data under the CRS and QC assumption of the corresponding cell.
  • information for the QC hypothesis may be used. That is, the UE considers the number of CRS ports of the PCID designated for each CSI-RS configuration when calculating how many REs the reference resource is configured. In other words, the UE may exclude the RE corresponding to the CSI (port) assumed for the CSI-RS and the QC from the CSI reference resource RE count calculation.
  • the CRS RE of the serving cell may also be excluded from the CSI reference resource RE count calculation.
  • the UE can know the number of CRS ports of the PCID through the neighbor cell CRS configuration delivered with the neighbor cell list through higher layer signaling.
  • the UE may consider the assumption given for the CQI calculation. For example, 0 first 3 OFDM symbols in the CSI reference resource are used for the control signal. Ii) PBCH, PSS / SSS There is no RE used by iii) non-MBSFN subframe length, iv) if CSI-RS is used for channel measurement, PDSCH EPRE vs. CSI-RS EPRE may be given for higher layer signaling, etc. And other details may be referred to by TS 36.213 (7.2.3 Channel quality indicator (CQI) definition).
  • CQI Channel quality indicator
  • the UE may report a CQI index related to the determined MCS. That is, the CSI including the CQI index may be reported to the base station. have.
  • CRSs to be dynamically applied through specific fields of a DCI format the UE considers any one of the following three CRS overheads as the CRS overhead required for determining the CSI reference resource when calculating the CSI to report on all CSI-RS configurations.
  • FIG. 12 is a diagram illustrating the configuration of a base station apparatus and a terminal apparatus according to an embodiment of the present invention.
  • the base station apparatus 1210 includes a reception module 1211, a transmission module 1212, a processor 1213, a memory 1214, and a plurality of antennas 1215. It may include.
  • the plurality of antennas 1215 refers to a base station apparatus that supports MIMO transmission and reception.
  • the receiving modules 1211 may receive various signals, data, and information on uplink from the terminal.
  • the transmission modules 1212 may transmit various signals, data, and information on downlink to the terminal.
  • the processor 1213 may control the overall operation of the base station apparatus 1210.
  • the processor 1213 of the base station apparatus 1210 may process items necessary for implementing the above-described embodiments.
  • the processor 1213 of the base station apparatus 1210 may further include a base station apparatus 1210. It performs a function of arithmetic processing the received information, information to be transmitted to the outside, etc., the memory 1214 may store the arithmetic processing information, etc. for a predetermined time, and may be replaced by a component such as a buffer (not shown). .
  • the terminal device 1220 includes a reception module 1221, a transmission module 1212, a processor 1223, a memory 1224, and a plurality of antennas 1225. ) May be included.
  • the plurality of antennas 1225 may mean a terminal device that supports MIMO transmission and reception.
  • Receive modules 1221 may receive various signals, data, and information on downlink from the base station.
  • the transmission module 1212 may transmit various signals, data, and information on the uplink to the base station.
  • the processor 1223 may control operations of the entire terminal device 1220.
  • the processor 1223 of the terminal device 1220 may process items necessary for implementing the above-described embodiments.
  • the processor 1223 of the terminal device 1220 performs a function of processing information received by the terminal device 1220, information to be transmitted to the outside, and the memory 1224 performs arithmetic processing on information. It may be stored for a predetermined time, and may be replaced by a component such as a buffer (not shown).
  • the description of the base station apparatus 1210 may be equally applied to the relay apparatus and the downlink transmission subject or the uplink receiving subject, and the description of the terminal apparatus 1220 will be described. The same can be applied to a relay apparatus as a downlink receiving entity or an uplink transmitting entity.
  • embodiments of the present invention can be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to the embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs) and digital signals (DSPs).
  • ASICs Application Specific Integrated Circuits
  • DSPs digital signals
  • DSPs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of modules, procedures, or functions for performing the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 실시예는, 무선통신시스템에서 복수의 CSI(Channel State Information)-RS(Reference Resource) 구성(configuration)이 설정된 단말의 CSI 보고방법에 있어서, QC(Quasi Co-located) 가정을 위한 정보를 수신하는 단계; CSI-RS를 이용하여 채널 상태를 측정하는 단계; 상기 측정 결과 및 상기 QC 가정을 위한 정보에 기초하여 MCS(Modulation and Coding Scheme)를 유도하는 단계; 및 상기 MCS에 관련된 CQI 인덱스를 포함하는 CSI를 보고하는 단계를 포함하며, 상기 QC 가정을 위한 정보에서 상기 CSI-RS에 해당하는 물리 셀 ID가 존재하는 경우, 상기 MSC는 상기 물리 셀 ID의 셀에서 전송된 셀-특정 참조신호(Cell-specific RS, CRS)와 QC 가정 하에 데이터 수신 시, 소정 에러율 이하로 데이터 수신이 가능한 값인, CSI 보고 방법이다.

Description

【명세서】
【발명의 명칭】
무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
【기술분야】
[1] 이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 채널상태정보의 보고 방법 및 장치에 대한 것이다.
【배경기술】
[2] 무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMACorthogonal frequency division multiple access) 시스템, SC— FDMA(single carrier frequency division multiple access) 시스템, MC— FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
[3] 본 발명에서는 특정 셀의 셀 -특정 참조신호와 QC(quasi co-located) 가정이 가능한 경우 채널상태정보의 보고 방법을 기술적 과제로 한다.
[4] 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【기술적 해결방법】
[5] 본 발명의 제 1 기술적인 측면은 무선통신시스템에서 복수의 CSKChannel State Information)-RS(Reference Resource) 구성 (configuration)이 설정된 단말의 CSI 보고방법에 있어서, QC(Quasi Co-located) 가정을 위한 정보를 수신하는 단계; CSI-RS를 이용하여 채널 .상태를 측정하는 단계; 상기 측정 결과 및 상기 QC 가정을 위한 정보에 기초하여 MCS(Modulation and Coding Scheme)를 유도하는 단계; 및 상기 MCS에 관련된 CQI 인덱스를 포함하는 CSI를 보고하는 단계를 포함하며, 상기 QC 가정을 위한 정보에서 상기 CSI-RS에 해당하는 물리 셀 ID가 존재하는 경우, 상기 MSC는 상기 물리 셀 ID의 샐에서 전송된 셀 -특정 참조신호 (Cellᅳ specific RS, CRS)와 QC 가정 하에 데이터 수신 시, 소정 에러율 이하로 데이터 수신이 가능한 값인, CSI보고 방법이다.
[6] 본 발명의 제 2 기술적인 측면은, 무선통신시스템에서 복수의 CSKCharmel State Information)— RS(Reference Resource) 구성 (configuration)이 설정된 단말 장치에 있어서, 수신 모들; 및 프로세서를 포함하고, 상기 프로세서는, QC(Quasi Co-located) 가정을 위한 정보를 수신하고, CSI-RS를 이용하여 채널 상태를 측정하며, 상기 측정 결과 및 상기 QC 가정을 위한 정보에 기초하여 MCSCModulation and Coding Scheme)를 유도하고, 상기 MCS에 관련된 CQI 인텍스를 포함하는 CSI를 보고하며, 상기 QC 가정을 위한 정보에서 상기 CSI-RS에 해당하는 물리 샐 ID가 존재하는 경우, 상기 MSC는 상기 물리 샐 ID의 샐에서 전송된 ¾ -특정 참조신호 (Cell-specific RS, CRS)와 QC 가정 하에 데이터 수신 시, 소정 에러율 이하로 데이터 수신이 가능한 값인, 단말 장치이다.
[7] 본 발명의 제 1 내지 제 2 기술적인 측면은 다음 사항들을 포함할수 있다.
[8] 상기 QC 가정을 위한 정보는, 상기 복수의 CSI-RS 구성 각각에 대해 QC 가정이 가능한 물리 샐 ID를 지시하는 것일 수 있다.
[9] 상기 QC 가정을 위한 정보는, 상기 복수의 CSI-RS 구성 중 QC 가정이 가능한 셀이 존재하는 CSI-RS 구성에 대해 QC 가정이 가능한 물리 셀 ID를 지시하는 것일 수 있다.
[10] 상기 단말은 상기 MCS 유도를 위한, CSI 참조 자원의 데이터 자원 요소의 개수 계산시, 상기 CRS의 포트 개수를 고려할 수 있다.
[11] 상기 CRS의 포트에 해당되는 자원 요소는 상기 데이터 자원 요소의 개수 계산시 제외될 수 있다.
[12] 상기 QC 가정을 위한 정보는 서빙 셀 CRS 레이트 매칭 플래그를 더 포함할 수 있다.
[13] 상기 서빙 샐 CRS 레이트 매칭 플래그는, 상기 MSC 유도를 위한, CSI 참조 자원의 데이터 자원 요소의 개수 계산시 서빙 셀의 CRS 포트에 해당되는 자원 요소를 제외할 것을 지시하는 것일 수 있다. [14] 상기 MCS는 상기 소정 에러율 이하로 데이터 수신이 가능한 MCS 중 가장 큰 것일 수 있다.
[15] 상기 소정 에러율은 10% 이하의 BLER(BLock Error rate)일 수 있다.
[16] 상기 복수의 CSI 구성 각각은 CoM Coordinated Multi-Point) 측정 세트에 포함될 수 있다. '
[17] 상기 CRS와 QC 가정하에서의 데이터 수신은, 상기 데이터를 위한 채널 추정 시 상기 CRS 포트로부터 추정한 광범위 특성을 사용하는 것을 의미할 수 있다.
[18] 상기 광범위 특성은, 지연 확산 도플러 확산, 주파수 이동, 평균 수신 전력 및 수신 타이밍을 포함할 수 있다.
【유리한 효과】
[19] 본 발명에 따르면 셀 -특정 참조신호와의 QC 가정을 통해 보다 수신기 성능을 향상시키면서, 채널상태정보의 보고에서도 상기 QC 가정을 반영함으로써 정확한 보고가 가능하다.
[20] 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
[21] 본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드 (resource grid)를 나타내는 도면이다. 도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 참조신호를 설명하기 위한 도면이다.
도 6은 채널상태정보 참조신호를 설명하기 위한 도면이다.
도 7은 복조참조신호를 설명하기 위한 도면이다.
도 8은 이종 네트워크 환경을 설명하기 위한 도면이다.
도 9는 본 발명의 실시예가 적용될 수 있는 협력멀티포인트 클러스터의 예시를 나타내는 도면이다. 도 10 내지 도 11은 본 발명의 실시예에 의한 QC 가정 및 채널상태보고를 설명하기 위한 도면이다.
도 12는 송수신 장치의 구성을 도시한 도면이다.
【발명의 실시를 위한 최선의 형태】
[22] 이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다.
[23] 본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드 (terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다.
[24] 즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국 (BS: Base Station)'은 고정국 (fixed station), Node B, eNode B(eNB), 액세스 포인트 (AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말 (Terminal)'은 UE Jser Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SSCSubscriber Station) 등의 용어로 대체될 수 있다. 이하에서 기술되는 셀의 명칭은 기지국 (base station, eNB), 섹트 (sector), 리모트라디오헤드 (remote radio head, RRH), 릴레이 (relay)등의 송수신 포인트에 적용되며, 또한 특정 송수신 포인트에서 구성 반송파 (component carrier)를 구분하기 위한 포괄적인 용어로 사용되는 것일 수 있다.
[25] 이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형 태로 변경될 수 있다.
[26] 몇몇 경우, 본 발명 의 개념 이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치 의 핵심 기능을 증심으로 한 블록도 형식으로 도시 될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명 한다.
[27] 본 발명 의 실시 예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명 의 실시 예들 중 본 발명 의 기술적 사상을 명 확히 드러내기 위해 설명 하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명 될 수 있다.
[28] 이하의 기술은 CDMACCode Division Multiple Access), FDMACFrequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMACOrthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRACUniversal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS Jniversal Mobile Telecommunications System)의 일부이 다. 3GPP(3rd Generation Partnership Project) LTEdong term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써 , 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTEᅳ A(Advanced)는 3GPP LTE의 진화이 다. WiMAX는 IEEE 802.16e 규격 (WirelessMAN— OFDMA Reference System) 및 발전된 IEEE 802.16m 규격 (WirelessMAN-OFDMA Advanced system)에 의 하여 설명 될 수 있다. 명 확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명 의 기술적 사상이 이에 제한되는 것은 아니다. [29] LTE/LTE-A자원 구조 /채널
[30] 도 1를 참조하여 무선 프레임의 구조에 대하여 설명한다.
[31] 셀를라 OFDM 무선 패킷 통신 시스템에서, 상 /하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임 (radio frame) 구조와 TDD Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
[32] 도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임 (radio frame)은 10개의 서브프레임 (subframe)으로 구성되고, 하나의 서브프레임은 시간 영역 (time domain)에서 2개의 슬롯 (slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTKtransmission time interval)이라 하고 예를 들어 하나의 서브프레임의 길이는 1ms이고 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록 (Resource Block; RB)을 포함한다. 3GPP LTE/LTE-A 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록 (Resource Block; RB)은 자원 할당 단위이고, 하나의 블록에서 복수개의 연속적인 부반송파 (subcarrier)를 포함할 수 있다.
[33] 하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성 (configuration)에 따라 달라질 수 있다. CP에는 확장된 CHextended CP)와 일반 CPnormal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가사용될 수 있다.
[34] 일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심불은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
[35] 도 Kb)는 타입 2 무선 프레임의 구초를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간 (Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되몌 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 샐 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
[36] 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
[37] 도 2는 하향링크 슬롯에서의 자원 그리드 (resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록 (RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심불을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소 (resource element)라 한다. 하나의 자원블록은 12X7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 개수 (NDL)는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
[38] 도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널 (Physical Downlink Shared Channel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널 (Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널 (Physical Downlink Control Channel; PDCCH), 물리 HARQ지시자채널 (Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 웅답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보 (Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케들링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널 (DL-SCH)의 자원 할당 및 전송 포맷 상향링크공유채널 (UL-SCH)의 자원 할당 정보, 페이징채널 (PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속웅답 (Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소 (Control Channel Element; CCE)의 조합 (aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 이용 가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다. 기지국은 단말에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사 (Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자 (Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 eel卜 RNTKC-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자 (Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보 (보다 구체적으로, 시스템 정보 블록 (SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTKSI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속 -RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
[39] 도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널 (Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널 (Physical Uplink Shared Channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블특 쌍 (RB pair)에 할당된다. 자원블톡 쌍에 속하는 자원블톡들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수—호핑 (frequency-hopped)된다고 한다.
[40] 참조신호 (Reference Signal; RS)
[41] 무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신축과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호 (Pilot Signal) 또는 참조신호 (Reference Signal)라고 한다.
[42] 다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로, 좀더 자세하게는 안테나 포트 (port)별로 별도의 참조신호가 존재하여야 한다.
[43] 참조신호는 상향링크 참조신호와 하향링크 참조신호로 구분될 수 있다. 현재 LTE/LTE-A 시스템에는 상향링크 참조신호로써, i) PUSCH 및 PUCCH를 통해 전송된 정보의 코히런트 (coherent)한 복조를 위한 채널 추정을 위한 복조 참조신호 (DeModulation-Reierence Signal, DM-RS) ii) 기지국이, 네트워크가 다른 주파수에서의 상향링크 채널 품질을 측정하기 위한사운딩 참조신호 (Sounding Reference Signal, SRS)가 있다.
한편, 하향링크 참조신호에는,
i) 셀 내의 모든 단말이 공유하는 셀 -특정 참조신호 (Cell-specific Reference Signal, CRS)
ii) 특정 단말만을 위한 단말 -특정 참조신호 (UE-specific Reference Signal) iii) PDSCH가 전송되는 경우 코히런트한 복조를 위해 전송되는 (DeModulation-Reference Signal, DM-RS)
iv) 하향링크 DMRS가 전송되는 경우 채널 상태 정보 (Channel State Information; CSI)를 전달하기 위한 채널상태정보 참조신호 (Channel State Information- Reference Signal, CSI-RS)
v) MBSFNCMultimedia Broadcast Single Frequency Network) 모드로 전송되는 신호에 대한 코히런트한 복조를 위해 전송되는 MBSFN 참조신호 (MBSFN
Reference Signal)
vi) 단말의 지리적 위치 정보를 추정하는데 사용되는 위치 참조신호 (Positioning Reference Signal)가 있다.
[44] 참조신호는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 참조신호와 데이터 복조를 위해 사용되는 참조신호가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득하는데 그 목적이 있으므로 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 단말이라도 그 참조신호를 수신하여야 한다. 또한 이는 핸드오버 등의 상황에서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 참조신호로서, 단말은 해당 참조신호를 수신함으로써 채널 측정을 하여 데이터를 복조할 수 있게 된다. 이 참조신호는 데이터가 전송되는 영역에 전송되어야 한다.
[45] CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 사용되며, 단말 특정 참조신호는 데이터 복조용으로만 사용된다. CRS는 광대역에 대해서 매 서브 프레임마다 전송되며, 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 참조신호가 전송된다.
[46] 예를 들어 기지국의 송신 안테나의 개수가 2개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 4개인 경우 0~3번 안테나 포트에 대한 CRS가 각각 전송된다.
[47] 도 5는 기존의 3GPP LTE/LTE-A 시스템 (예를 들어, 릴리즈 -8)에서 정의하는 CRS 및 DRS가 하향링크 자원블록 쌍 (RB pair) 상에 매핑되는 패턴을 나타내는 도면이다. 참조신호가 매핑되는 단위로서의 하향링크 자원블록 쌍은 시간 상으로 하나의 서브프레임 X주파수 상으로 12 부반송파의 단위로 표현될 수 있다. 즉, 하나의 자원블록 쌍은 시간 상으로 일반 CP의 경우 (도 5(a))에는 14 개의 OFDM 심볼 길이, 확장된 CP의 경우 (도 5(b))에는 12 개의 OFDM 심볼 길이를 가진다.
[48] 도 5는 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 참조신호의 자원블록 쌍 상에서의 위치를 나타낸다. 도 5에서 Ό1, 'Γ, '2' 및 '3'으로 표시된 자원 요소 (RE)는, 각각 안테나 포트 인덱스 0, 1, 2 및 3에 대한 CRS의 위치를 나타낸다. 한편, 도 5에서 'D'로 표시된 자원 요소는 DMRS의 위치를 나타낸다.
[49] 채널상태정보 참조신호 (Channel State Information-RS, CSI-RS)
[50] CSI-RS는 하향링크에서 최대 8개의 안테나 포트를 지원하는 LTE-A 시스템을 위한 것으로, 채널 측정 목적의 참조신호이다. 이점은 CRS가 채널 측정 및 데이터 복조를 위한 것과 상이하며, 따라서 CSI-RS는 CRS처럼 매 서브프레임마다 전송될 필요는 없다. CSI-RS는 전송모드 9에서 사용되며, 데이터 복조를 위해서는 DMRS가 전송된다.
[51] CSI-RS에 대해 보다 상세히 알아보면, CSI-RS는 1, 2, 4, 8개의 안테나 포트를 통해 전송될 수 있으며, 1개의 안테나 포트의 경우 15, 2개의 안테나 포트의 경우 15, 16, 4개의 안테나 포트의 경우 15~18, 8개의 안테나 포트의 경우 15-22번 안테나 포트가 사용될 수 있다.
[52] CSIᅳ RS는 다음 수학식 1을 이용하여 생성될 수 있다.
[53] 【수학식 1】
Figure imgf000014_0001
[54] 여기서, r/'"s( )은 생성되는 CSI-RS, ^^)는 의사랜덤시뭔
Figure imgf000014_0002
rmax,DL
넘버, 1 은 OFDM 심볼, VRB 은 하향링크 대역폭의 최대 RB 개수를 각각 의미한다.
[55] 상기 수학식 1을 통해 생 m m성되는 CSI-RS는 다음 수학식 2를 사용하여 각 안테나 포트별 RE에 매핑될 수 있다.
[56] 【수학식 2】 a
-0 for p e {15,16j, normal cyclic prefix
-6 for p e {l 7,18}, normal cyclic prefix
-1 for p e {l 9,20}, normal cyclic prefix
-7 {21,22}, normal cyclic prefix
k = k'+\2m +
ᅳ 0 for p e {l 5,16}, extended cyclic prefix
ᅳ 3 {l 7,18}, extended cyclic prefix
-6 for p G {l 9,20}, extended cyclic prefix
-9 for p e {21,22}, extended cyclic prefix
nal configurations 0-19, normal cyclic prefix nal configurations 20-31, normal cyclic prefix nal configurations 0 - 27, extended cyclic prefix
Figure imgf000014_0003
[57] 상기 수학식 2에서 , ,1ᅳ 는 다음 표 1과 같은 CSI-RS 설정 (configuration)에 따라 결정될 수 있다.
【표 1】
Figure imgf000015_0001
Figure imgf000016_0001
[58] 상기 수학식 2 및 표 1에 의해 특정 CSI-RS 설정에 있어서 각 안테나 포트별로 RE에 매핑된다. 도 6에서는 상기 내용에 따라 안테나 포트별로 CSI-RS가 매핑된 것을 나타낸다. 도 6에서 R0 내지 R3는 각 안테나 포트에 대한 CRS가 매핑된 것을 나타내며, 슷자 표시는 각 안테나 포트에 대한 CSI-RS가 매핑된 것을 나타낸다. 예를 들어, 숫자 0, 1로 표시된 RE들은 안테나 포트 0또는 1에 해당하는 CSIᅳ RS가 매핑된 것이다. 이러한 경우 동일 RE에 두 개의 안테나 포트에 해당하는 CSIᅳ RS가 매핑되는데 이들은 서로 다른 직교 코드로 구분될 수 있다.
[59] 계속해서, 앞서 언급된 바와 같이 CSI-RS는 매 서브프레임이 아닌 특정 서브프레임에서 전송될 수 있다. 구체적으로 CSI-RS는 다음 표 2와 같은 CSI-RS 서브프레임 설정 (subframe configuration)을 참조하되, 다음 수학식 3을 만족하는 서브프레임에서 전송될 수 있다.
[60] 【표 2】
Figure imgf000017_0002
[61 ] 【수학식 31
(l( f +L"s/2. CSI-RS modrCSI_RS
Figure imgf000017_0001
[62] 상기 표 2에서 CSI-RS 는 CSI-RS가 전송되는 주기 , CSI-RS 는 오프셋 값ᅳ "f 는 시스템 프레 임 넘버 , 는 술롯 넘 버를 각각 의미 한다.
[63] 상술한 CSI-RS는 다음 표 3과 같은 CSI-RS 구성 (configuration) 요소 (CSI-RS— Configᅳ rlO)로써 단말에 게 시그널링 될 수 있다.
[64] 【표 3】
CSI-RS-Config-rlO:: = SEQUENCE {
csi-RS-rl0 CHOICE {
release NULL,
setup SEQUENCE {
antennaPortsCount-rlO ENUMERATED {anl , an2, an4, an8}
resourceConfig-rlO INTEGER (0..31), subframeConfig-rlO INTEGER (0..154) p-C-rl0 INTEGER
(-8..15)
}
}
OPTIONAL, ― Need ON
zeroTxPowerCSI-RS-rlO CHOICE {
release NULL,
setup SEQUENCE {
zeroTxPowerResourceConfigList-rlO BIT STRING (SIZE zeroTxPowerSubframeConfig-rlO INTEGER (0..154)
}
}
OPTIONAL ― Need ON
}
[65] 상기 표 3에서 'antennaPortsCount'은 CSI-RS가 전송되는 안테나의 개수가 몇 개인지 (1, 2, 4, 8개 중 선택), 'resourceConfig'는 시 간 -자원 주파수 상에서 하나의 RB내에 어 떤 RE에 위치하는지 , 'subframeConfig'는 어 떤 서브 프레임에서 전송되는지와 더블어 PDSCH EPRE에 대한 CSI-RS EPRE 값이 전송된다. 추가적으로 eNB가 제로 파워 (zero power) CSI-RS에 대한 정보도 함께 전달해 준다.
[66] CSI-RS Config에서의 'resourceConfig 은 CSI— RS가 전송되는 위치를 나타낸다. 이는 0~31까지 의 슷자로서 표현되는 표 1의 CSI-RS 설정 번호에 따라서,' 한 RB내에서의 정 확한 심볼 및 반송파 위 치를 지시 한다.
[67] 채널상태정보 (Channel State Information, CSI) 피드백
[68] MIMO 방식은 개 -루프 (open-loop) 방식과 폐—루프 (closed-loop) 방식으로 구분될 수 있다. 개ᅳ루프 MIMO 방식은 MIMO 수신단으로부터 의 CSI의 피드백이 없이 송신단에서 MIMO 전송을 수행하는 것을 의 미 한다. 폐 -루프 MIMO 방식은 MIMO 수신단으로부터 의 CSI를 피드백 받아 송신단에서 MIMO 전송을 수행하는 것을 의미 한다. 폐 -루프 MIMO 방식에서는 MIMO 송신 안테나의 다중화 이득 (multiplexing gain)올 얻기 위해서 송신단과 수신단의 각각이 채 널 상태정보를 바탕으로 범포밍을 수행할 수 있다. 수신단 (예를 들어, 단말)이 CSI를 피드백할 수 있도록 송신단 (예를 들어, 기지국)은 수신단 (예를 들어, 단말)에 게 상향링크 제어 채널 또는 상향링크 공유 채 널을 할당할 수 있다.
[69] 피드백되는 CSI는 탱크 지시자 (Rank Indicator, RI), 프리코딩 행 렬 인텍스 (Precoding Matrix Indicator, PMI) 및 채 널품질지시자 (Channel Quality Indicator, CQI)를 포함할 수 있다.
[70] RI는 채 널 탱크에 대한 정보이다. 채 널의 탱크는 동일한 시간-주파수 자원을 통해서 서로 다른 정보를 보낼 수 있는 레 이 어 (또는 스트림 )의 최 대 개수를
16 의미한다. 탱크 값은 채널의 장기간 (long term) 페이딩에 의해서 주로 결정되므로, PMI 및 CQI 에 비하여 일반적으로 더 긴 주기에 따라 피드백될 수 있다.
[71] PMI는 송신단으로부터의 전송에 이용되는 프리코딩 행렬에 대한 정보이며, 채널의 공간 특성을 반영하는 값이다. 프리코딩이란 전송 레이어를 송신 안테나에 매핑시키는 것을 의미하며, 프리코딩 행렬에 의해 레이어-안테나 매핑 관계가 결정될 수 있다. PMI 는 신호대잡음및간섭비 (Signa卜 to-Interference plus Noise Ratio; SINR) 등의 측정값 (metric)을 기준으로 단말이 선호하는 (preferred) 기지국의 프리코딩 행렬 인덱스에 해당한다. 프리코딩 정보의 피드백 오버헤드를 줄이기 위해서, 송신단과 수신단이 여러 가지 프리코딩 행렬을 포함하는 코드북을 미리 공유하고 있고, 해당 코드북에서 특정 프리코딩 행렬을 지시하는 인덱스만을 피드백하는 방식이 사용될 수 있다.
[72] 확장된 안테나 구성을 지원하는 시스템 (예를 들어, LTE-A 시스템)에서는 다중사용자ᅳ MIMO (Multi User-Multi Input Multi Output, MU-MIMO) 방식을 이용하여 추가적인 다중사용자 다이버시티를 획득하는 것을 고려하고 있다. MU-MIMO 방식에서는 안테나 영역 (domain)에서 다중화되는 단말들 간의 간섭 채널이 존재하므로, 다중사용자 중 하나의 단말이 피드백하는 CSI를 기지국에서 이용하여 하향링크 전송을 수행하는 경우에 다른 단말에 대해서 간섭이 발생하지 않도록 하는 것이 필요하다. 따라서 , MU-MIMO 동작이 을바르게 수행되기 위해서는 단일사용자 -MIMO (SU-MIMO) 방식에 비하여 보다 높은 정확도의 CSI가 피드백되어야 한다.
[73] 이와 같이 보다 정확한 CSI를 측정 및 보고할 수 있도록, 기존의 RI, PMI 및 CQI 로 구성되는 CSI 를 개선한 새로운 CSI 피드백 방안이 적용될 수 있다. 예를 들어, 수신단이 피드백하는 프리코딩 정보가 2 개의 PMI 의 조합에 의해서 지시될 수 있다.2 개의 PMI 중 하나 (제 1 PMI)는, 장기간 및 /또는 광대역 Gong term and/or wideband)의 속성을 가지고, Wl으로 지칭될 수 있다.2 개의 PMI 중 다른 하나 (제 2 PMI)는, 단기간 및 /또는 서브대역 (short term and/or subband)의 속성을 가지고, W2으로 지칭될 수 있다. W1 및 W2의 조합 (또는 함수)에 의해서 최종적인 PMI가 결정될 수 있다. 예를 들어, 최종 PMI 를 W 라 하면, W=W1*W2 또는 W=W2*W1 과 같이 정의될 수 있다.
[74] CQI는 채널 품질 또는 채널 세기를 나타내는 정보이다. CQI는 미리 결정된 MCS 조합에 해당하는 인덱스로 표현될 수 있다. 즉, 피드백되는 CQI 인덱스는 해당하는 변조기법 (modulation scheme) 및 코드 레이트 (code rate)를 나타낸다. 일반적으로, CQI 는 기지국이 PMI 를 이용하여 공간 채널을 구성하는 경우에 얻을 수 있는 수신 SINR을 반영하는 값이 된다,
[75] CSI 피드백 방식은 상향링크 제어 채널인 PUCCH를 통한 주기적 보고 (periodic reporting)와, 기지국의 요청에 의해서 상향링크 데이터 채널 PUSCH를 통한 비주기적 보고 (aperiodic reporting)로 나눠진다.
[76] CSI 참조 자원 (CSI reference resource)
[77] 현재 LTE/LTE-A에서는 상술한 바와 같은 CSI 피드백 /보고를 위한 채널 측정에 관련된 CSI 참조 자원 (CSI Reference Resource)를 정의하고 있다. CSI 참조 자원은, 주파수 영역에서는 산출된 CQI가 연관된 주파수 대역에 해당하는 물리 RB의 그룹으로 정의된다. 그리고, 시간 영역에서는 n-nCQLref 정의되는데, 여기서 n은 CSI를 전송 /보고할 서브프레임이며 nCQ ef 는 i) 주기적 CSI 보고의 경우 유효한 서브프레임에 대웅되기 위한, 4 이상의 값들 중 가장 작은 값, ii) 비주기적 CSI 보고의 경우 상향링크 DCI 포맷 내 CSI 요청 (request)이 전송된 서브프레임에 대웅되는 유효한 서브프레임, iii) 비주기적 CSI 보고에서 랜덤 액세스 웅답 승인 내 CSI 요청의 경우 4이다. 여기서, 유효한 서브프레임은, 해당 단말을 위한 하향링크 서브프레임일 것, 전송 모드 9 이외의 경우에는 MBSFN 서브프레임이 아닐 것, TDD에서 DwPTS의 길이가 일정 크기 이상일 것, 해당 단말을 위해 설정된 측정 갭 (gap)에 포함되지 않을 것, 주기적 CSI 보고에서 단말이 CSI 서브프레임 세트 (CSI subframe set)로 설정된 경우 CSI 서브프레임 세트의 요소에 해당될 것의 조건을 만족시키는 것을 의미한다. CSI 서브프레임 세트 ( CCSI, ^^는 상위 계층에 의해 해당 단말에 설정될 수 있으며, 현재 표준에서 CSI 참조 자원은 두 개의 서브프레임 세트 ( CCSI^ CCS[>1) 중 어느 하나에 포함되되, 두 세트 모두에는 포함될 수 없도록 정의되어 있다.
[78] 복조참조신호 (DeModulation Reference Signal, DMRS)
[79] DMRS는 단말이 PDSCH를 위한 채널 추정을 위한 용도로 정의된 참조신호이다. DMRS는 전송 모드 7, 8, 9에서 사용될 수 있다. 초기에 DMRS는 안테나 포트 5번의 단일 레이어 (single layer) 전송을 위한 것으로 정의되었으나, 이후 최대 8개의 레이어의 공간 다중화를 위한 것으로 확장되었다. DMRS는 그 다른 이름인 단말 특정 참조신호에서 알 수 있듯이, 특정한 하나의 단말을 위해서만 전송되는 것이며, 따라서, 그 특정 단말을 위한 PDSCH가 전송되는 RB에서만 전송될 수 있다.
[80] 최대 8개의 레이어를 위한 DMRS의 생성에 대해 살펴보면 다음과 같다. DMRS은 다음 수학식 4에 따라 생성된 참조신호 시뭔스 (reference-signal sequence r(m) )가 다음 수학식 5에 따라 복소값 변조 심블 (complex-valued
a(p)
modulation symbols k )에 매핑되어 전송될 수 있다. 도 7은 수학식 2에 따라 DMRS가 일반 CP의 경우, 서브프레임상의 자원 그리드에 매핑된 것으로써, 안테나 포트 7~10에 관한 것을 도시하였다.
[81] 【수학식 4】 - 2 · c(2m + 1)),
Figure imgf000021_0001
c(i) iV,
[82] 여기서, rO)은 참조신호 시뭔스, 、 는 의사랜덤시퀀스 RB 하향링크 대역폭의 최대 RB 개수를 각각 의미한다.
[83] 【수학식 5】 = wp (/') . . r-N^DL + 3. "簡 4— ')
Figure imgf000022_0001
스페셜서브프레임설정 3, 4,8,9의경우
스페셜서브프레임설정 1,2,6,7의경우
Figure imgf000022_0002
스페셜서브프레임이아닌경우¬경우
Figure imgf000022_0003
경우 m = 0,1,2
[84] 상기 수학식 5에서 알 수 있듯이, 참조신호 시퀀스는 복소변조심볼에 매핑시 안테나 포트에 따라 다음 표 4과 같은 직교시퀀스
Figure imgf000022_0004
적용된다.
[85] 【표 4】
Figure imgf000022_0005
[86] DMRS는 확산인자 (spreading factor, 2 또는 4)에 따라 각각 서로 다른 방법으로 채널 추정을 수행할 수 있다. 표 4를 참조하면, 안테나 포트 7~10에서는 직교 시퀀스가 [a b a b]의 형태로 반복되므로 확산인자가 2이고 안테나 포트 11~14에서의 확산인자는 4이다. 확산인자가 2일 경우, 단말은 첫 번째 슬롯의 DMRS와 두 번째 슬롯의 DMRS를 각각 확산인자 2로 역 확산한 후 시간 보간 (time interpolation)을 통하여 채 널 추정을 수행할 수 있다. 확산인자가 4일 경우에는 전체 서브프레 임에서 DMRS를 확산인자 4로 한번에 역 확산하여 채 널 추정을 수행할 수 있다.
[87] 상술한 확산인자에 따른 채 널 추정은, 확산인자 2의 경우 높은 이동성 에서 시간 보간을 적용함에 의한 이득 및 첫 번째 슬롯의 DMRS로 역 확산이 가능함으로 인한 복호 시 간상의 이득을 얻을 수 있고, 확산인자 4를 사용할 경우 더 많은 단말 또는 탱크 (rank)를 지원할 수 있다는 장점 이 있다. [88] 이종 네트워크 환경 (Heterogeneous deployments)
[89] 도 8은 메크로 (macro) 기지국 (MeNB)과 마이크로 (micro) 기지국 (PeNB or FeNB)을 포함하는 이종 네트워크 무선 통신 시스템을 나타내는 도면이다. 본 문서에서 이종 네트워크 (heterogeneous network, HetNet)라는 용어는, 동일한 RAT(Radio Access Technology)를 사용하더 라도 매크로 기지국 (MeNB)과 마이크로 기지국 (PeNB or FeNB)이 공존하는 네트워크를 의 미 한다.
[90] 매크로 기지국 (MeNB)은 넓은 커 버 리지 및 높은 전송 전력을 가지고, 무선 통신 시스템의 일반적 인 기지국을 의미 한다. 매크로 기지국 (MeNB)은 매크로 셀로 칭할 수도 있다.
[91 ] 마이크로 기지국 (PeNB or FeNB)은, 예를 들어, 마이크로 셀 (cell), 피코 셀 (pico cell), 펨토 셀 (femto cell), 홈 (home) eNB(HeNB), 중계기 (relay) 등으로 칭하여 질 수도 있다 (예시된 마이크로 기지국 및 매크로 기지국은 전송 포인트 (transmission point)로 통칭될 수도 있다). 마이크로 기지국 (PeNB or FeNB)은 매크로 기지국 (MeNB)의 소형 버 전으로 매크로 기지국의 기능을 대부분 수행하면서 독립 적으로 작동할 수 있으며 , 매크로 기지국이 커 버하는 영 역 내에 설치 (overlay)되거나 매크로 기지국이 커 버하지 못하는 음영 지 역에 설치 될 수 있는 (non-overlay) 유형의 기지국이다. 마이크로 기지국 (PeNB or FeNB)은 매크로 기지국 (MeNB)에 비하여 좁은 커 버 리지 및 낮은 전송 전력을 가지고 보다 적은 개수의 단말을 수용할 수 있다.
[92] 단말은 매크로 기지국 (MeNB)으로부터 직 접 서 빙 받을 수도 있고 (이하 매크로-단말이라 함), 단말은 마이크로 기지국 (PeNB or FeNB)로부터 서 빙 받을 수도 있다 (이하, 마이크로-단말이라 함). 어떤 경우에는, 마이크로 기지국 (MeNB)의 커버리지 내에 존재하는 단말 (PUE)이 매크로 기지국 (MeNB)으로부터 서빙받을 수도 있다.
[93] 마이크로 기지국은 단말의 액세스 제한 여부에 따라 두 가지 타입으로 분류될 수 있다.
[94] 첫 번째 타입은 OSG(Open access Subscriber Group) 또는 non-CSG(Closed access subscriber Group) 기지국으로써, 기존 매크로 -단말 또는 다른 마이크로 기지국의 마이크로-단말의 액세스를 허용하는 셀이다. 기존 매크로ᅳ단말 등은 OSG 타입의 기지국으로 핸드오버가 가능하다.
[95] 두 번째 타입은 CSG 기지국으로써 기존 매크로—단말 또는 다른 마이크로 기지국의 마이크로—단말의 액세스를 허용하지 않으며, 따라서 CSG 기지국으로의 핸드오버도 불가하다.
[96] 협력 멀티 포인트 (Coordinated Multi-Point: CoMP) .
[97] 3GPP LTE-A 시스템의 개선된 시스템 성능 요구조건에 따라서, CoMP 송수신 기술 (co-MIMO, 공동 (collaborative) MIMO 또는 네트워크 MIM0 등으로 표현되기도 함)이 제안되고 있다. CoMP 기술은 셀 -경계 (eel卜 edge)에 위치한 단말의 성능을 증가시키고 평균 섹터 수율 (throughput)을 증가시킬 수 있다.
[98] 일반적으로, 주파수 재사용 인자 (frequency reuse factor)가 1 인 다중-셀 환경에서, 셀-간 간섭 (Inter— Cell Interference; ICI)으로 인하여 셀-경계에 위치한 단말의 성능과 평균 섹터 수율이 감소될 수 있다. 이러한 ICI를 저감하기 위하여, 기존의 LTE/LTEᅳ A 시스템에서는 단말 특정 전력 제어를 통한 부분 주파수 재사용 (fractional frequency reuse; FFR)과 같은 단순한 수동적인 기법을 이용하여 간섭에 의해 제한을 받은 환경에서 셀-경계에 위치한 단말이 적절한 수율 성능을 가지도록 하는 방법이 적용되었다. 그러나, 샐 당 주파수 자원 사용을 낮추기보다는, ICI를 저감하거나 ICI를 단말이 원하는 신호로 재사용하는 것이 보다 바람직할 수 있다. 위와 같은 목적을 달성하기 위하여, CoMP 전송 기법이 적용될 수 있다.
[99] 하향링크의 경우에 적용될 수 있는 CoMP 기법은 크게 조인트-프로세싱 (joint processing; JP) 기법 및 조정 스케들링 /빔포밍 (coordinated scheduling/beamforming; CS/CB) 기법으로 분류할 수 있다. [100] JP 기법은 CoMP 협력 단위의 각각의 전송포인트 (기지국)에서 데이터를 이용할 수 있다. CoMP 협력 단위는 협력 전송 기법에 이용되는 기지국들의 집합을 의미한다. JP 기법은 조인트 전송 (Joint Transmission) 기법과 동적 셀 선택 (Dynamic cell selection) 기법으로 분류할 수 있다.
[101]조인트 전송 기법은, PDSCH 가 한번에 복수개의 전송포인트 (CoMP 협력 단위의 일부 또는 전부)로부터 전송되는 기법을 말한다. 즉, 단일 단말로 전송되는 데이터는 복수개의 전송포인트로부터 동시에 전송될 수 있다. 조인트 전송 기법에 의하면, 코히어런트하게 (coherently) 또는 넌-코히어런트하게 (non-coherently) 수신 신호의 품질이 향상될 수 있고, 또한, 다른 단말에 대한 간섭을 능동적으로 소거할 수도 있다.
[102]동적 셀 선택 기법은., PDSCH가 한번에 (CoMP 협력 단위의) 하나의 전송포인트로부터 전송되는 기법을 말한다. 즉, 특정 시점에서 단일 단말로 전송되는 데이터는 하나의 전송포인트로부터 전송되고, 그 시점에 협력 단위 내의 다른 전송포인트는 해당 단말에 대하여 데이터 전송을 하지 않으며, 해당 단말로 데이터를 전송하는 전송포인트는 동적으로 선택될 수 있다.
[103]한편, CS/CB 기법에 의하면 CoMP 협력 단위들이 단일 단말에 대한 데이터 전송의 범포밍을 협력적으로 수행할 수 있다. 여기서, 데이터는 서빙 셀에서만 전송되지만, 사용자 스케들링 /빔포밍은 해당 CoMP 협력 단위의 셀들의 조정에 의하여 결정될 수 있다.
[104]한편, 상향링크의 경우에, 조정 (coordinated) 다중 -전송포인트 수신은 지리적으로 떨어진 복수개의 전송포인트들의 조정에 의해서 전송된 신호를 수신하는 것을 의미한다. 상향링크의 경우에 적용될 수 있는 CoMP 기법은 조인트 수신 (Joint Reception; JR) 및 조정 스케들링 /빔포밍 (coordinated scheduling/beamforming; CS/CB)으로 분류할 수 있다.
[105] JR 기법은 PUSCH를 통해 전송된 신호가 복수개의 수신 전송포인트에서 수신되는 것을 의미하고, CS/CB 기법은 PUSCH 가 하나의 전송포인트에서만 수신되지만 사용자 스케들링 /빔포밍은 CoMP 협력 단위의 셀들의 조정에 의해 결정되는 것을 의미한다.
[106]이러한 CoMP 시스템을 이용하면, 단말은 다중-셀 기지국 (Multi-cell base station)으로부터 공동으로 데이터를 지원받을 수 있다. 또한, 각 기지국은 동일한 무선 주파수 자원 (Same Radio Frequency Resource)을 이용하여 하나 이상의 단말에 동시에 지원함으로써 시스템의 성능을 향상시킬 수 있다. 또한, 기지국은 기지국과 단말 간의 채널상태정보에 기초하여 공간 분할 다중접속 (Space Division Multiple Access: SDMA) 방법을 수행할 수도 있다.
[107] CoMP 시스템에서 서빙 기지국 및 하나 이상의 협력 기지국들은 백본망 (Backbone Network)을 통해 스케줄러 (scheduler)에 연결된다. 스케줄러는 백본망을 통하여 각 기지국이 측정한 각 단말 및 협력 기지국 간의 채널 상태에 관한 채널 정보를 피드백 받아 동작할 수 있다. 예를 들어, 스케줄러는 서빙 기지국 및 하나 이상의 협력 기지국에 대하여 협력적 MIMO 동작을 위한 정보를 스케들링할 수 있다. 즉, 스케줄러에서 각 기지국으로 협력적 MIMO 동작에 대한 지시를 직접 내릴 수 있다.
[108]상술한 바와 같이 CoMP 시스템은 복수개의 셀들을 하나의 그룹으로 묶어 가상 MIMO 시스템으로 동작하는 것이라 할 수 있으며, 기본적으로는 다중 안테나를 사용하는 MIMO 시스템의 통신 기법이 적용될 수 있다.
[109]도 9는 CoMP 클러스터 (CoMP cluster)를 예시하고 있다. 여기서 CoMP 클러스터란 앞서 언급된 CoMP 협력 단위로써, 도 9(a)에서는 CoMP 클러스터 내 셀들이 서로 다른 물리 셀 IlXphysical cell ID, PCID)를 사용하는 경우를, 도 9(b)에서는 CoMP 클러스터 내 셀들이 동일한 PCID를 사용하는 경우를 도시하고 있다/ CoMP 클러스터 내 셀들이 동일한 PCID를 사용하더라도, 각각의 CoMP 클러스터 (도 9(b)에서 CoMP cluster A, B)는 서로 다른 PCID를 사용하며, 단일 클러스터내의 셀들이 동일한 PCID를 공유하여 단일 기지국의 분산 안테나 또는 RRH의 형태로 구성될 수도 있다. 또한 이들의 변형된 형태로 단일 클러스터내의 셀들 중 일부 셀들끼리 동일한 PCID를 공유할 수 있다.
[110]셀들이 동일한 PCID를 공유하는 경우에, PSS(Primary synchronization signal)/ Secondary synchronization signal(SSS), CRS, PBCH, CRS 기반 PDCCH/PDSCH등의 공통 신호는 동일 PCID를 갖는 모든 셀들이 동일 시점에 함께 전송하여 수신 신호 품질 향상 및 음영 지역을 해소 할 수 있다. 또는, 동일 PCID를 갖는 셀들 중에서 높은 전송 파워를 갖는 일부 셀들이 공통 신호들을 전송하고, 나머지 셀들은 공통 신호를 전송하지 않을 수도 있다. 하지만 CSI-RS, 단말 -특정 RS 그리고 단말 -특정 RS 기반 PDSCH를 통한 유니캐스트 데이터 전송의 경우에는, 각 셀들에서 개별적 전송이 가능하며, 셀 분산 이득 (cell splitting gain)을 가질 수 있다. [111] QC(quasi co-located)
[112]본 발명의 실시예들을 설명하기에 앞서 모든 실시예들에 적용되는 새로운 개념에 대해 정의하고자 한다. 본 명세서에서는 "QC(quasi co-located)라는 표현을 언급하며, 이 표현은 다음을 의미한다. 두 개의 안테나 포트간에 대해서 예를 들면, 만약 하나의 안테나 포트를 통해 일 심볼이 전달되는 무선 채널의 광범위 특성 (large-scale property)이 다른 하나의 안테나 포트를 통해 일 심볼이 전달되는 무선 채널로부터 암시 (infer)될 수 있다면, 상기 두 개의 안테나 포트들은 QC된다고 말할 수 있다. 여기서, 상기 광범위 특성은 지연 확산 (delay spread), 도플러 확산 (Doppler spread), 도플러 쉬프트 (Doppler shift), 평균 이득 (average gain) 및 평균 지연 (average delay) 중 하나 이상을 포함한다.
[113]즉, 두 개의 안테나 포트들이 QC되었다 함은, 하나의 안테나 포트로부터의 무선 채널의 광범위 특성이 나머지 하나의 안테나 포트로부터의 무선 채널의 광범위 특성과 같음을 의미한다. RS가 전송돠는 복수의 안테나 포트를 고려하면, 서로 다른 두 종류의 RS가 전송되는 안테나 포트들이 QC되면 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성을 다른 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성으로 대체할 수 있을 것이다.
[114]상기 QC의 개념에 따라, 단말은 NQC(None QC) 안테나 포트들에 대해서는 해당 안테나 포트들로부터의 무선 채널 간에 동일한 상기 광범위 특성을 가정할 수 없다. 즉, 이 경우 단말은 타이밍 획득 및 트랙킹 (tracking), 주파수 오프셋 추정 및 보상, 지연 추정 및 도플러 추정 등에 대하여 각각의 설정된 NQC 안테나 포트 별로 독립적인 프로세싱을 수행하여야 한다.
[115] QC을 가정할 수 있는 안테나 포트들간에 대해세 단말은 다음과 같은 동작을 수행할 수 있다는 장점이 있다:
- 지연 확산 및 도플러 확산에 대하여, 단말은 어떤 하나의 안테나 포트로부터의 무선 채널에 대한 전력 -지연 -프로파일, 지연 확산 및 도플러 스펙트럼, 도플러 확산 추정 결과를, 다른 안테나 포트로부터의 무선 채널에 대한 채널 추정 시 사용되는 위너 필터 (Wiener filter) 등에 동일하게 적용할 수 있다. ᅳ 주파수 쉬프트 (shift) 및 수신된 타이밍에 대하여, 단말은 어떤 하나의 안테나 포트에 대한 시간 및 주파수 동기화 수행한 후, 동일한 동기화를 다른 안테나 포트의 복조에 적용할 수 있다.
- 평균 수신 전력에 대하여, 단말은 둘 이상의 안테나 포트들에 대하여
RSRP(Reference Signal Received Power) 측정을 평균할 수 있다.
[116]단말이 제어 채널 (PDCCH 또는 ePDCCH)를 통해 특정 DMRS-기반 DLᅳ관련 DCI 포맷을 수신하면, 단말은 DMRS 시퀀스를 통해 해당 PDSCH에 대한 채널 추정올 수행한 후 데이터 복조를 수행한다. 예를 들어, 만일 단말이 이러한 DL 스케줄링 그랜트 (grant)로부터 받은 DMRS의 전송을 위한 안테나 포트들 (이하, "DMRS 포트"로 지칭함)의 구성 (configuration)이 자신의 DL 서빙 셀 또는 다른 셀의 CRS를 전송하기 위한 안테나 포트들 (이하, "CRS 포트' '로 지칭함)과의 QC 가정 (assumption)을 할 수 있다면, 단말은 해당 DMRS 포트를 통한 채널 추정시 CRS 포트로부터 추정했던 무선 채널의 광범위 특성의 추정치를 그대로 적용하여 DMRS-기반 수신기의 프로세서의 성능을 향상시킬 수가 있다.
[11기왜냐하면, CRS는 앞서 설명한 것처럼 매 서브프레임 그리고 전체 대역에 걸쳐 상대적으로 높은 밀도 (density)로 브로드캐스팅되는 참조신호이기 때문에, 통상적으로 상기 광범위 특성에 관한 추정치는 CRS로부터 보다 안정적으로 획득이 가능하기 때문이다. 반면에, DMRS는 특정 스케줄링된 RB에 대해서는 단말-특정하게 전송되며, 또한 PRG단위로 eNB가 송신에 사용한 프리코딩 행렬 (precoding matrix)이 변할 수 있기 때문에 단말에게 수신되는 유효 채널은 PRG단위로 달라질 수 있어 다수의 PRG를 스케줄링 받은 경우라 하더라도 넓은 대역에 걸쳐 DMRS를 무선 채널의 광범위 특성 추정용으로 사용 시에 성능 열화가 발생할 수 있다. CSI-RS도 그 전송 주기가 수 내지 수십 ms가 될 수 있고 RB당 평균적으로 안테나 포트당 IRE (CDM이 적용되면 2RE 단위로 수신됨)로서 낮은 밀도를 가지므로, CSI-RS도 마찬가지로 상기 무선 채널의 광범위 특성 추정용으로 사용할 경우 성능 열화가 발생할 수 있다.
[118] CSI-RS와서빙 샐 CRS간의 QC
[119]단말이 제 1 CSI-RS 구성 (이하에서 "CSI-RS 1"로 지칭함) 및 제 2 CSI-RS 구성 (이하에서 "CSI-RS 2"로 지칭함)을 설정 받으면서 CSI-RS 1은 QC로, CSI-RS 2는 NQC로 특정 셀 (예컨대, DL서빙 셀)로부터의 CRS 포트 (들)와의 QC/NQC 가정 또는 관계를 설정 받았다면, 상기 단말은 해당 셀 (예컨대, DL 서빙 샐)과의 QC 가정이 가능한 특정 CSI-RS 구성 (즉, CSI-RS 1)에 대한 CSI 계산 시, 자신이 향후 DMRS-기반 PDSCH를 수신하여 해당 DMRS 포트 (들)와 해당 셀 (예컨대, DL 서빙 셀)로부터의 CRS 포트 (들)와의 QC가정 하에 데이터 복조 시에 10% FER을 성취할 수 있는 MCS 레벨, CQI, RI 및 이 때의 PMI 등을 계산하여 보고 할 수 있다. 또한, CSI-RS 구성에 포함된 PDSCH EPRE(energy per resource element)과 CSI-RS EPRE의 비율 (Pc)에 특정 스케일링 값을 적용하여 상기 CQI 등을 계산할 수 있다. 상기 CSI-RS 2의 경우 NQC로 설정 받았으므로, 이후 상기 제 2 CSI-RS를 전송한 샐로부터 DMRSᅳ기반 PDSCH를 수신하는 경우에, 해당 셀 (예컨대, DL 서빙 셀)로부터의 CRS 포트 (들)와의 QC 가정을 할 수 없으므로, QC 가정 없이 데이터 복조시에 10% FER을 성취할 수 있는 MCS 레벨, CQI, RI 및 이 때의 PMI 등을 계산하여 보고할 수 있다. 일례로, QC 가정이 가능했을 때의 경우 대비 좀더 낮은 값으로 CSI를 계산하여 보고할 수 있다.
[120] CSI-RS와또 다른 CSI-RS간의 QC
[121] CSI-RS 구성과 다른 CSI-RS 구성의 CSI-RS 포트 (들)와의 QC/NQC 여부가 포함되는 것이 가능하다.
[122]예를 들어, 각 CSI-RS 구성 별로 어떠한 식별자 정보를 포함시켜, 같은 식별자 정보를 가지는 CSI-RS 포트들 간에는 서로 QC을 가정할 수 있는 시그널링 방법이 가능하다. 즉, N-비트 폭의 상기 식별자 정보가 동일한 값으로 설정된 CSI-RS 포트들끼리는 서로간에 QC 가정을 할 수 있음을 의미할 수 있다. 일 예로써, 3-D 범포밍 (beamforming)을 위한 L*M 패널 안테나를 eNB가 사용시에 같은 eNB 측에서 설정되는 복수의 CSI-RS 구성간에는 QC임을 알려줌으로써, 이러한 QC 관계가 있는 CSI-RS 포트들간에는 상기 광범위 특성의 추정치 모두 흑은 일부를 공유할 수 있도록 함으로써 단말 수신기의 프로세싱의 부하 또는 복잡성을 줄여주는 효과를 얻을 수 있다. 한편, 상가 3-D 빔포밍 이득 특성상 상기 광범위 특성 중에서 평균 이득에 대해서는 QC 가정이 제외될 수 있다.
[123]본 발명의 다른 일 실시예에 따라, 하나 이상의 CSI-RS 구성 (들)을 단말이 설정 받을 때, 각 CSI-RS 구성마다 특정 플래그 비트 (flag bit)를 부가하여, 상기 플래그 비트가 토글 (toggle)될 때마다 또 다른 QC 가정이 가능한 CSI-RS 구성 그룹으로 인식하도록 적용가능하다. 즉, 상기 단말이 총 5개의 CSI-RS 구성들 (예컨대, CSI-RS 1, CSI-RS 2, .·., CSI-RS 5)을 설정 받은 경우, 상기 플래그 비트가 CSI-RS 1과 CSI-RS 2에 대해서는 0이었고, CSI-RS 3 및 CSI-RS 4에 대해서는 1이었고, 다시 CSI-RS 5에 대해서는 0으로 토글된 경우라면, {CSI-RS 1, CSI-RS 2}간에 QC 가정이 가능하고, 또 다른 {CSI-RS 3, CSI-RS 4}간에 QC가정이 가능하며, {CSI-RS 5}는 단독으로 QC가정이 가능함을 지시하므로 CSI-RS 5는 사실상 어떠한 다른 CSI-RS 구성과도 QC가정이 불가한 NQC를 지시할 수 있다.
[124]또한, 본 발명의 다른 일 실시예에 따라, 각 CSI-RS 구성에 포함된 CSI-RS 시퀀스 스크램블링 시드 (seed) 인 X값 (예컨대, 물리 셀 식별자, 가상 (virtual) 셀 식별자, 또는 스크램블링 식별자 또는 초기값)이 CSI-RS 구성간의 동일한 X값인지 여부에 따라, QC/NQC 가정이 지시될 수 있다. 만약 서로 동일한 X값이 포함된 CSI-RS 구성들에 해당하는 CSI-RS 포트 (들)간에 QC 가정이 가능한 것으로 암묵적으로 지시될 수 있다. 이와 반대로, 서로 다른 X값이 포함된 CSI-RS 구성들에 해당하는 CSI-RS 포트 (들)간에는 NQC이 가정됨은 당연할 것이다.
[125]아을러, 상기 X값은 각 CSI-RS 구성에 포함된 각 CSI-RS 포트마다 개별적으로 할당될 수 있다. 이 경우, 각각의 X값이 동일한지 여부에 따라 상기 QC 또는 NQC 가정이 암묵적으로 지시될 수 있다.
[126] CSI-RS와 DMRS간의 QC
[127] CSI-RS 구성 내에 CSI-RS 포트 (들)와 DMRS 포트 (들)과의 QC/NQC 여부에 대한 지시 정보가 포함될 수 있다.
[128]예를 들어, 각 CSI-RS 구성 별로 특정 DMRS 포트 (들)와의 QC/NQC의 가정 여부를 RRC로 지정해 놓을 수 있다. 만일 단말이 모든 DMRS 포트 (들)와의 QC 가정이 가능하도록 설정된 CSI-RS 1을 수신하면, 상기 단말은 앞으로 DMRS-기반 PDSCH 수신 시 CSI-RS 1에서 가정한 특정 광범위 특성의 추정치를 동일하게 적용하여 수신 프로세싱에 반영할 수 있다. 이는, 재-구성이 없는 한 eNB가 한동안 CSI-RS 1을 전송한 TP로부터 해당 단말에게 PDSCH를 전송하겠다는 의미일 수 있다. 특히, CoMP 시나리오 4와 같이 CRS가 다수의 TP에서 동시에 전송되는 상황에서는 이러한 CRS를 통한 TPᅳ특정 QC 가정을 하기가 어려우므로 CSI-RS 포트 (들)와 QC가정이 설정된 DMRS 포트 (들)에 대한 정보를 알려주어 DMRS-기반 수신 프로세싱 성능을 향상시키는데 활용될 수 있다.
[129]예를 들어, 단말이 CSI-RS 1과 CSI-RS 2에 해당하는 두 개의 CSI-RS 구성을 수신한 경우, CSI-RS 1은 특정 샐 (예컨대, DL 서빙 셀)의 CRS 포트 (들)와 QC 가정 가능, CSI-RS 2은 특정 셀 (예컨대, DL 서빙 셀)의 CRS 포트 (들)와 NQC 가정을 하도록 설정 받았다면, 상기 단말은 DMRS 포트 (들)는 CSI-RS 1 및 해당 셀 (예컨대, DL서빙 셀)의 CRS 포트 (들)와 모두 QC 가정 가능한 것으로 판단할 수 있다. 왜냐하면 CSI-RS 1이 해당 샐 (예컨대, DL 서빙 셀)의 CRS 포트 (들)와 QC 가정이 가능한 것으로 설정 받았기 때문에, 상기 단말은 CSI-RS 1을 기반한 CSI 피드백 시에 앞에서 설명한 것처럼 더 높은 MCS level, CQI 등의 CSI를 계산하여 보고했을 수 있다. 따라서 eNB가 CSI-RS 1에서 해당 CSI-RS 포트 (들)와 해당 셀 (예컨대 DL 서빙 셀)의 CRS 포트 (들)와 QC 가정 가능한 것으로 설정한 이상 앞으로 재-구성이 있지 않는한, 해당 단말에게 스케줄링할 때는 CSI-RS 1을 전송한 TP가 DMRS-기반 PDSCH를 전송할 것이라는 일종의 약속으로 해석되어, 상기 단말은 QC이 가정된 CSI-RS 1 기반의 CSI를 계산하여 보고하고 실제 PDSCH 수신도 QC이 가정된 수신 프로세싱을 수행함으로써 성능 향상을 기대할 수 있기 때문이다. 즉, CoMP 측정 집합 내의 하나 이상의 CSI-RS 구성 (들) 중 하나라도 특정 셀 (예컨대, DL 서빙 셀)의 CRS 포트 (들)와의 QC 가정이 가능하도톡 허용된 CSI-RS 구성이 있는 경우, 단말은 DMRS-기반 PDSCH 복조 시 해당 DMRS 포트 (들)와 해당 셀 (예컨대, DL 서빙 셀)의 CRS 포트 (들) (및 해당 QC 가정된 CSI-RS 포트 (들) )와의 QC 가정이 가능한 것으로 판단할 수 있다. 이는 이러한 QC 가정에 의한 수신 프로세싱을 수행하는 것이 허용되는 것이고, 또한 해당 CSI 보고시에도 이와 같은 QC 가정에 의한 수신 프로세싱을 가정한 경우의 CSI를 보고하도록 한다.
[130]반대로, CoMP 측정 집합 내의 하나 이상의 CSI-RS 구성이 모두 특정 셀 (예컨대, DL 서빙 -셀)의 CRS 포트 (들)와의 NQC 가정으로 설정된 경우, 단말은 DMRS-기반 PDSCH 복조 시 해당 DMRS 포트 (들)와 해당 셀 (예컨대, DL 서빙 셀)의 CRS 포트 (들)와의 NQC 가정을 해야하는 것으로 암묵적이고 반-정적인 방식으로 지시받은 것으로 판단할 수 있다. 이는 수신 프로세싱 시 어떠한 다른 RS 포트 (들)와도 QC 가정을 고려한 동작을 수행하면 안되고, 또한 해당 CSI 보고시에도 NQC 가정에 의한 수신 프로세싱을 가정한 경우의 CSI를 보고하도록 한다.
[131]또한, 본 발명의 다른 일 실시예에 따라, 각 CSI-RS 구성에 특정 서브프레임 인덱스 (들) 정보를 포함시켜, 해당 서브프레임 인덱스 (들)에 DMRS-기반 DL 스케줄링을 받는 경우 해당 DMRS 포트 (들)의 경우 각 CSI-RS 구성이 지시하는 CSI-RS포트 (들)와 QC/NQC 가정을 할 수 있는지의 여부를 RRC로 지정해 놓을 수 있다. 또한, 상기 DMRS 포트 (들)이 특정 셀 (예컨대, DL서빙 셀)의 CRS 포트 (들)와 QC/NQC 가정을' 할 수 있는지도 포함할 수 있다. 일례로 CSI-RS 1은 짝수 인덱스의 서브프레임에 DMRS 포트 (들)와의 QC 가정이 가능하다고 지정된다면, 단말은 짝수 인텍스의 서브프레임에서 DMRSᅳ기반 PDSCH 수신 시 CSI-RS 1(및 /또는 해당 셀 (예컨대, DL서빙 셀)의 CRS 포트 (들) )에서 가정한 광범위 특성의 추정치의 전부 또는 일부를 동일하게 적용하여 수신 프로세싱에 반영할 수 있다. 만일 CSI 보고시에도 이 정보가 반영되도록 한다면, 상기 단말이 상기 QC/NQC 가정 여부를 고려한 CSI (예컨대, 상기 단말이 향후 DMRSᅳ기반 PDSCH를 수신하여 해당 DMRS 포트 (들)와 CSI-RS 1(및 /또는 해당 셀 (예컨대, DL 서빙 셀)의 CRS 포트 (들) )와의 QC/NQC 가정 하에 데이터 복조 시에 10% FER을 성취할 수 있는 MCS level, CQI, RI 및 이 때의 PMI 등)를 계산하여 QC 가정일 때의 CSI, 및 /또는 NQC 가정일 때의 CSI를 각각 보고할 수도 있다. 이러한 정보는 특정 서브프레임 비트 맵 혹은 서브프레임 인덱스 집합 형태로 제공될 수 있다. 예를 들어, 서브프레임 집합 #1은 DMRS 포트 (들)와 특정 셀 (예컨대, DL 서빙 셀)의 CRS 포트 (들)간의 QC 가정이 가능, 서브프레임 집합 #2는 DMRS 포트 (들)와 특정 CSI-RS 포트 (들) 간의 QC 가정이 가능하도록 설정될 수 있고, 또 다른 실시예로서, 서브프레임 집합 #1은 DMRS 포트 (들)와 특정 셀 (예컨대, DL 서빙 셀)의 CRS 포트 (들)간의 QC 가정이 가능, 서브프레임 집합 #2는 DMRS 포트 (들)와 특정 CSI-RS 포트 (들) 간의 NQC을 가정하도록 설정될 수 있다.
[132] CSI-RS와특정 셀의 CRS간의 QC 및 CSI보고
[133]상술한 CSI— RS와 각 참조신호간의 QC 가정 및 /또는 QC 지시 방법 등과 함께 결합된 형태로써 또는 독립적으로, CSI-RS와 특정 샐의 CRS간의 QC가 지시될 수 있다.
[134] CSI-RS와 CRS 간의 QC는 앞서 언급된 방법들처럼, CSI-RS 구성에 포함되어 단말에게 전달될 수도 있으며, 또는 CSI-RS 구성과는 별도로 (예를 들어, QC 가정을 위한 정보, 이하에서 상술함)써 단말에게 전달될 수도 있다.
[135] QC 가정을 위한 정보는 단말에게 설정된 복수개의 CSI-RS 구성 각각에 대해 QC 가정이 가능한 셀의 물리 셀 ID(PCID)를 지시하는 것일 수 있다. 예를 들어, 도 10에 도시된 바와 같이 단말에 대해 세 개의 CSI-RS 구성 1-1 1, CSI-RS 2, CSI-RS 3)가 설정되어 있고, 각 CSI-RS 구성 각각에 대해 QC 가정할 수 있는 셀 /CRS가 셀 1/CRS 1, 셀 2/CRS 2, 셀 3/CRS 3와 같이 존재하는 경우, QC 가정을 위한 정보는 다음 표 5와 같이 이루어질 수 있다.
[136] 【표 5】
Figure imgf000033_0001
[139]표 6과 달리, QC 가정이 가능한 PCID가 존재하지 않는 CSI-RS 구성 (CSI-RS 3)이 있는 경우, 해당 CSI-RS 구성은 다음 표 7과 같이 제외될 수 있다. 즉, QC 가정을 위한 정보는 복수의 CSI-RS 구성 중 QC 가정이 가능한 셀이 존재하는 CSI-RS 구성에 대해, QC 가정이 가능한 PCID를 지시할 수 있다.
[140] 【표 7】
Figure imgf000034_0001
[141]상기 예시된 QC 가정을 위한 정보는, 다음 표 8의 예시와 같이, 서빙 셀 CRS과 QC 가정이 가능한지 여부에 관련된 정보 (서빙 셀 레이트 매칭 플래그)를 더 포함할 수 있다. 단말은 이 정보로부터, 서빙 셀로부터의 CRS 오버헤드를 함께 고려할 지 여부를 결정할 수 있다.
[142] 【표 8】
Figure imgf000034_0002
[143]또 다른 예시로써, 다음 표 9와 같이, CSI-RS 구성 별로 서빙 셀의 CRS와 QC/NQC 여부와 CSI 계산 시에 고려할 CRS 오버헤드를 지정 받을 수 있다. 여기서, 서빙 셀 CRS와 QC로 지정된 CSI-RS 구성에 대해서는 CRS 오버헤드로 서빙 셀 CRS만 고려할 수 있다. 그리고, CRS 오버헤드로 CRS 포트 개수를 지정 받는 대신, CSI 계산시에 고려할 CRS 패턴을 지정 받을 수도 있다.
[144] 【표 9】
Figure imgf000034_0003
[145]상술한 바와 같이, QC 가정을 위한 정보는, 단말이 복수의 CSI-RS 구성 (복수의 CSI-RS 구성은 CoMP 측정 세트에 포함되는 것일 수 있음)을 RRC를 통해 설정 받는 경우, 각 CSI—RS 구성 별로 특정 셀로부터의 CRS 포트와의 QC 가정이 가능한지 여부, 가능하다면 해당 CRS를 전송하는 PCID를 지시할 수 있다. [146] 또한 QC 가정을 위 한 정보는 특정 셀로부터 CRS 포트에는 PDSCH 데이터 심볼이 매핑 되지 않는지 여부를 지시해 줄 수 있으며 , 이는 단말의 CQI 계산시 이용될 수 있다. [14기 이하, 단말이 상술한 바와 같은 QC 가정을 위 한 정보를 수신한 경우 CQI 계산 및 CQI를 포함하는 CSI 보고 방법에 대해 상세히 설명한다.
[148] 도 11에는 본 발명의 실시 예에 관련된 CSI 보고 방법 이 예시되 어 있다. 도 11을 참조하면, 단계 S1101에서, 단말은 자신에 게 설정된 복수의 CSI 구성 중 어느 하나의 CSI-RS 구성에 해당하는 CSIᅳ RS를 수신하고, 해당 CSI-RS를 이용하여 채 널 상태 (channel state) 또는 유효 SINR(effective SINR)을 계산한다.
[149] 단계 S1102에서 단말은 채 널 측정 결과 및 QC 가정을 위 한 정보에 기초하여 MCS(Transport Block의 size와 modulation scheme)를 유도한다.
[150] 보다 상세히, 단말은 기본적으로 CQI 계산을 위해 주어진 가정 (assumption)을 만족하면서, 다음 표 10의 CQI 인덱스의 변조 (modulation) 스킴과 스펙트럼 효율성 (spectral efficiency)에 가까운 MCS를 선택하고 해당 MCS의 전송이 10% BLER(BLock Error rate) 10%을 만족하는지 판단하며, 최 종 10% BLER보다 낮을 것으로 예상되는 CQI 인덱스 중에서 가장 큰 CQI 인덱스를 보고한다.
[151] 【표 10】
Figure imgf000035_0001
Figure imgf000036_0001
경우, 즉, 수신된 CSI-RS에 대해 QC 가정할 수 있는 셀 /CRS가 있는 경우, 선택된 MCS는 해당 샐의 CRS와 QC 가정하에 데이터 수신 시 10% BLER을 만족하는 것일 수 있다. 또한, 상기 MCS의 선택 과정에서 스펙트럼 효율성을 계산하는데 중요한 파라미터인, CSI 참조 자원이 몇 개의 RE로 구성되었는지 여부를 결정할 때, QC 가정을 위한 정보가 이용될 수 있다. 즉, 단말은 참조 자원이 몇 개의 RE로 구성되었는지 계산할 때, CSI— RS 구성 별로 지정된 PCID의 CRS 포트 개수를 고려한다. 다시 말해, 단말은 CSI-RS와 QC 가정된 CRS (포트)에 해당되는 RE를 CSI 참조 자원 RE 개수 계산에서 제외시킬 수 있다. 만약, QC 가정을 위한 정보가 서빙 셀 CRS 레이트 매칭 플래그를 포함하는 경우, 해당 서빙 셀의 CRS RE도 CSI 참조 자원 RE 개수 계산에서 제외될 수 있다. 단말은 PCID의 CRS 포트 개수를, 상위계층 시그널링을 통해 이웃 셀 리스트와 함께 전달된 이웃 셀 CRS 설정을 통해 알 수 있다. 상술한 QC 가정을 위한 정보 외에도, 단말은 CQI 계산을 위해 주어진 가정을 함께 고려할 수 있는데, 예를 들어, CSI 참조 자원에서 0 처음 3개의 OFDM 심볼은 제어 신호에 사용됨, ii) PBCH, PSS/SSS 에 의해 사용되는 RE은 없음, iii) non-MBSFN 서브프레임 길이를 갖음, iv) 채널 측정을 위해 CSI-RS가 사용된다면, PDSCH EPRE 대 CSI-RS EPRE는 상위계층 시그널링으로 주어짐 등이 있을 수 있으며, 그 외 상세한 사항들은 TS 36.213(7.2.3 Channel quality indicator (CQI) definition)에 의해 참조될 수 있다.
[153]계속해서, 단계 S1103에서, 단말은 결정된 MCS에 관련된 CQI 인덱스를 보고할 수 있다. 즉 상기 CQI 인덱스를 포함하는 CSI를 기지국으로 보고할 수 있다.
[154]한편, 다른 예시로써, PDSCH 수신 시 데이터 심볼이 매핑될 수 없는 CRS 전송 RE 패턴으로 상위계층 시그널링을 통해 다수 개의 CRS 패턴을 지정 받은 후, DCI 포맷의 특정 필드를 통해 다이나믹하게 적용할 CRS 패턴을 지정 받는 경우, 단말은 모든 CSI-RS 구성에 대해 보고할 CSI 계산 시, CSI 참조 자원 결정에 필요한 CRS 오버헤드로 다음 세 가지 예시 중 어느 하나의 CRS 오버헤드를 고려한다.
- 모든 CSI-RS 구성에 대해 CSI 참조 자원 내에 CRS 오버헤드는 없다고 가정하고, CSI 참조 자원을 정의하고 CSI를 계산
- 모든 CSI-RS 구성에 대해 CSI 참조 자원 내에 4 포트 CRS가 있다고 가정하고, CSI 참조 자원올 정의하고 CSI를 계산
- 상위 계층 시그널링을 통해 지정 받은 다수 개의 CRS 패턴 중에서 최대 CRS 오버헤드를 갖는 패턴을 선택하고, 해당 CRS 패턴에 의한 CRS 오버헤드가 있다고 가정하고, 모든 CSI-RS 설정에 대한 CSI 참조 자원을 정의하고 CSI를 계산
[155]도 12는 본 발명의 실시 형태에 따른 기지국 장치 및 단말 장치의 구성을 도시한 도면이다.
[156]도 12를 참조하여 본 발명에 따른 기지국 장치 (1210)는, 수신모들 (1211), 전송모들 (1212), 프로세서 (1213), 메모리 (1214) 및 복수개의 안테나 (1215)를 포함할 수 있다. 복수개의 안테나 (1215)는 MIMO 송수신을 지원하는 기지국 장치를 의미한다. 수신모들 (1211)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모들 (1212)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서 (1213)는 기지국 장치 (1210) 전반의 동작을 제어할 수 있다.
[15기본 발명의 일 실시예에 따른 기지국 장치 (1210)의 프로세서 (1213)는, 앞서 설명된 실시예들의 구현에 필요한 사항들을 처리할 수 있다.
[158]기지국 장치 (1210)의 프로세서 (1213)는 그 외에도 기지국 장치 (1210)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리 (1214)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼 (미도시) 등의 구성요소로 대체될 수 있다.
[159]계속해서 도 12를 참조하면 본 발명에 따른 단말 장치 (1220)는, 수신모들 (1221), 전송모들 (1212), 프로세서 (1223), 메모리 (1224) 및 복수개의 안테나 (1225)를 포함할 수 있다. 복수개의 안테나 (1225)는 MIMO 송수신올 지원하는 단말 장치를 의미한다. 수신모들 (1221)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈 (1212)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서 (1223)는 단말 장치 (1220) 전반의 동작을 제어할 수 있다.
[160]본 발명의 일 실시예에 따른 단말 장치 (1220)의 프로세서 (1223)는 앞서 설명된 실시예들의 구현에 필요한 사항들을 처리할 수 있다.
[161]단말 장치 (1220)의 프로세서 (1223)는 그 외에도 단말 장치 (1220)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리 (1224)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼 (미도시) 등의 구성요소로 대체될 수 있다.
[162]위와 같은 기지국 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
[163]또한, 도 12에 대한 설명에 있어서 기지국 장치 (1210)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서와 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치 (1220)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
[164]상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어 (firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
[165]하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따론 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트를러, 마이크로 컨트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
[166]펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[16기상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
[168]본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
【산업상 이용가능성】
[169]상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims

【청구의 범위】
【청구항 1】
무선통신시스템에서 복수의 CSKChannel State Information)-RS(Reference Resource) 구성 (configuration)이 설정된 단말의 CSI 보고방법에 있어서,
QC Quasi Co-located) 가정을 위한 정보를 수신하는 단계;
CSI-RS를 이용하여 채널 상태를 측정하는 단계;
상기 측정 결과 및 상기 QC 가정을 위한 정보에 기초하여 MCS(Modulation and Coding Scheme)를 유도하는 단계; 및
상기 MCS에 관련된 CQI 인덱스를 포함하는 CSI를 보고하는 단계;
를 포함하며,
상기 QC 가정을 위한 정보에서 상기 CSI-RS에 해당하는 물리 셀 ID가 존재하는 경우, 상기 MSC는 상기 물리 샐 ID의 셀에서 전송된 셀 -특정 참조신호 (CeU-specific RS, CRS)와 QC 가정 하에 데이터 수신 시, 소정 에러율 이하로 데이터 수신이 가능한 값인, CSI 보고 방법.
【청구항 2】
제 1항에 있어서,
상기 QC 가정을 위한 정보는, 상기 복수의 CSI-RS 구성 각각에 대해 QC 가정이 가능한 물리 셀 ID를 지시하는 것인, CSI 보고 방법.
【청구항 3】
제 1항에 있어서,
상기 QC 가정을 위한 정보는, 상기 복수의 CSI-RS 구성 중 QC 가정이 가능한 셀이 존재하는 CSI-RS 구성에 대해 QC 가정이 가능한 물리 셀 ID를 지시하는 것인, CSI 보고방법.
【청구항 4】
제 1항에 있어서,
상기 단말은 상기 MCS 유도를 위한, CSI 참조 자원의 데이터 자원 요소의 개수 계산시, 상기 CRS의 포트 개수를 고려하는, CSI 보고방법.
【청구항 5】
제 4항에 있어서,
상기 CRS의 포트에 해당되는 자원 요소는 상기 데이터 자원 요소의 개수 계산시 제외되는, CSI보고방법.
【청구항 6】
제 1항에 있어서,
상기 QC 가정을 위한 정보는 서빙 셀 CRS 레이트 메칭 플래그를 더 포함하는, CSI 보고 방법.
【청구항 7】
제 6항에 있어서,
상기 서빙 셀 CRS 레이트 매칭 플래그는, 상기 MSC 유도를 위한, CSI 참조 자원의 데이터 자원 요소의 개수 계산시 서빙 셀의 CRS 포트에 해당되는 자원 요소를 제외할 것을 지시하는 것인, CSI 보고 방법 .
【청구항 8】
제 1항에 있어서,
상기 MCS는 상기 소정 에러율 이하로 데이터 수신이 가능한 MCS 중 가장 큰 것인 , CSI보고 방법.
【청구항 9】
제 1항에 있어서,
상기 소정 에러율은 10% 이하의 BLER(BLock Error rate)인, CSI 보고방법.
【청구항 10】
저 U에 있어서,
상기 복수의 CSI 구성 각각은 CoMP Coordinated Multi-Point) 측정 세트에 포함되는, CSI 보고방법 .
【청구항 11】
제 1항에 있어서,
상기 CRS와 QC 가정하에서의 데이터 수신은, 상기 데이터를 위한 채널 추정 시 상기 CRS 포트로부터 추정한 광범위 특성을 사용하는 것을 의미하는, CSI 보고방법.
【청구항 12】
제 11항에 있어서,
상기 광범위 특성은, 지연 확산, 도플러 확산, 주파수 이동, 평균 수신 전력 및 수신 타이밍을 포함하는, CSI보고 방법. 【청구항 13]
무선통신시스템에서 복수의 CSKChannel State Information)-RS(Reference Resource) 구성 (configuration)이 설정된 단말 장치에 있어서 ,
수신 모들; 및
프로세서를 포함하고,
상기 프로세서는, QC(Quasi Co-located) 가정을 위 한 정보를 수신하고, CSI-RS를 이용하여 채널 상태를 측정하며, 상기 측정 결과 및 상기 QC 가정을 위 한 정보에 기초하여 MCS(Modulation and Coding Scheme)를 유도하고, 상기 MCS에 관련된 CQI 인덱스를 포함하는 CSI를 보고하며 ,
상기 QC 가정을 위 한 정보에서 상기 CSI-RS에 해당하는 물리 셀 ID가 존재하는 경우, 상기 MSC는 상기 물리 셀 ID의 셀에서 전송된 샐 -특정 참조신호 (Cell-specific RS, CRS)와 QC 가정 하에 데이터 수신 시 , 소정 에 러율 이하로 데이 터 수신이 가능한 값인, 단말 장치 .
PCT/KR2013/006345 2012-07-16 2013-07-16 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치 WO2014014253A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20147033370A KR20150035556A (ko) 2012-07-16 2013-07-16 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
EP13819354.5A EP2874335B1 (en) 2012-07-16 2013-07-16 Method and device for reporting channel state information in wireless communication system
US14/414,864 US9554371B2 (en) 2012-07-16 2013-07-16 Method and device for reporting channel state information in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261672253P 2012-07-16 2012-07-16
US61/672,253 2012-07-16

Publications (1)

Publication Number Publication Date
WO2014014253A1 true WO2014014253A1 (ko) 2014-01-23

Family

ID=49949028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006345 WO2014014253A1 (ko) 2012-07-16 2013-07-16 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치

Country Status (4)

Country Link
US (1) US9554371B2 (ko)
EP (1) EP2874335B1 (ko)
KR (1) KR20150035556A (ko)
WO (1) WO2014014253A1 (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8797966B2 (en) 2011-09-23 2014-08-05 Ofinno Technologies, Llc Channel state information transmission
US8879496B2 (en) 2011-12-19 2014-11-04 Ofinno Technologies, Llc Beamforming codeword exchange between base stations
WO2013169042A1 (en) * 2012-05-10 2013-11-14 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
US9839009B2 (en) 2012-08-03 2017-12-05 Qualcomm Incorporated Methods and apparatus for processing control and/or shared channels in long term evolution (LTE)
US9203576B2 (en) * 2012-08-03 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Quasi co-located antenna ports for channel estimation
US10057030B2 (en) * 2013-01-04 2018-08-21 Telefonaktiebolaget L M Ericsson (Publ) Method for estimating frequency offset using quasi-co-located reference signals
US10193665B2 (en) * 2013-03-21 2019-01-29 Texas Instruments Incorporated Reference signal for 3D MIMO in wireless communication systems
KR20140120002A (ko) * 2013-04-01 2014-10-13 삼성전자주식회사 채널 관련 정보 송수신 방법 및 장치
WO2014205699A1 (zh) * 2013-06-26 2014-12-31 华为技术有限公司 参考信号的传输方法及装置
WO2015042870A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Csi reporting for lte-tdd eimta
US9713075B2 (en) * 2014-01-10 2017-07-18 Kt Corporation Method and apparatus for measuring channel for small cell discovery
US10631181B2 (en) * 2014-01-31 2020-04-21 Nokia Technologies Oy BLER measurements for MBMS
CN114629614B (zh) 2015-10-22 2024-11-01 瑞典爱立信有限公司 与无线电信号的选择性增强有关的方法和设备
US10159087B2 (en) * 2015-12-11 2018-12-18 Qualcomm Incorporated Channel state information framework for advanced receivers
US11038557B2 (en) * 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
CN107370559B (zh) * 2016-05-13 2022-04-29 中兴通讯股份有限公司 信道状态信息的反馈方法及装置
KR102456268B1 (ko) * 2016-08-10 2022-10-18 아이디에이씨 홀딩스, 인크. 대규모 안테나 시스템에서의 채널 상태 정보 보고를 위한 방법
KR102114940B1 (ko) 2016-10-31 2020-05-26 주식회사 케이티 차세대 무선 액세스망을 위한 데이터 채널 자원 할당 방법 및 장치
ES2955133T3 (es) 2016-10-31 2023-11-28 Kt Corp Método y dispositivo para asignar un recurso de canal de datos para una red de acceso inalámbrico de próxima generación
CN110140300B (zh) 2016-11-04 2022-07-15 瑞典爱立信有限公司 用于波束跟踪过程管理和索引的方法和系统
KR101921710B1 (ko) 2017-01-06 2019-02-13 엘지전자 주식회사 무선 통신 시스템에서의 참조 신호 수신 방법 및 이를 위한 장치
JP7246303B2 (ja) * 2017-03-17 2023-03-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 通信装置、通信方法及び集積回路
US10425208B2 (en) 2017-09-08 2019-09-24 At&T Intellectual Property I, L.P. Unified indexing framework for reference signals
CN110061769A (zh) * 2018-01-18 2019-07-26 华为技术有限公司 发送数据的方法和装置
CN110061804B (zh) 2018-01-19 2021-01-29 华为技术有限公司 一种通信、mcs的接收、通知方法及设备
US10848228B2 (en) * 2018-02-16 2020-11-24 Qualcomm Incorporated Modulation and coding scheme and channel quality indicator for high reliability
CN110943943B (zh) * 2018-09-21 2022-07-26 大唐移动通信设备有限公司 一种信道状态信息的确定方法及装置
US11374638B2 (en) * 2018-10-05 2022-06-28 Qualcomm Incorporated Channel quality indicator report based on demodulation reference signal
WO2022041290A1 (zh) * 2020-08-31 2022-03-03 华为技术有限公司 一种信息传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084594A (ko) * 2010-01-18 2011-07-26 주식회사 팬택 채널상태정보-기준신호 할당 방법 및 장치
US20110287792A1 (en) * 2009-11-24 2011-11-24 Qualcomm Incorporated Method and apparatus for facilitating a layered cell search for long term evolution systems
US20110305179A1 (en) * 2010-06-10 2011-12-15 Qualcomm Incorporated Peer-to-peer communication with symmetric waveform for downlink and uplink
KR20110138742A (ko) * 2010-06-21 2011-12-28 주식회사 팬택 장치의 채널정보 전송방법, 그 장치, 기지국, 그 기지국의 전송방법
US20120113844A1 (en) * 2010-11-08 2012-05-10 Motorola Mobility, Inc. Interference measurements in enhanced inter-cell interference coordination capable wireless terminals

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2007157B1 (en) * 2006-04-06 2014-11-05 Hitachi, Ltd. Wireless communication system, radio base station apparatus and radio terminal apparatus
CN101877887B (zh) 2009-04-30 2012-12-05 中国移动通信集团公司 协作多点传输系统的下行传输控制方法和装置
US8730861B2 (en) * 2010-06-21 2014-05-20 Qualcomm Incorporated Rate matching for data and control channels in wireless communication systems
KR101653858B1 (ko) * 2010-12-02 2016-09-02 인터디지탈 패튼 홀딩스, 인크 간섭 예측을 사용하여 무선 통신에서 채널 품질 표시 피드백 정확도를 향상시키는 시스템 및 방법
US9591492B2 (en) * 2011-11-08 2017-03-07 Qualcomm Incorporated User equipment, base stations, and methods allowing for handling of colliding channel state information reports
KR102099637B1 (ko) * 2012-04-19 2020-04-10 삼성전자 주식회사 협력 멀티-포인트 통신 시스템들에 대한 기준 심볼 포트들의 준 공존 식별을 위한 방법 및 장치
US8982693B2 (en) * 2012-05-14 2015-03-17 Google Technology Holdings LLC Radio link monitoring in a wireless communication device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110287792A1 (en) * 2009-11-24 2011-11-24 Qualcomm Incorporated Method and apparatus for facilitating a layered cell search for long term evolution systems
KR20110084594A (ko) * 2010-01-18 2011-07-26 주식회사 팬택 채널상태정보-기준신호 할당 방법 및 장치
US20110305179A1 (en) * 2010-06-10 2011-12-15 Qualcomm Incorporated Peer-to-peer communication with symmetric waveform for downlink and uplink
KR20110138742A (ko) * 2010-06-21 2011-12-28 주식회사 팬택 장치의 채널정보 전송방법, 그 장치, 기지국, 그 기지국의 전송방법
US20120113844A1 (en) * 2010-11-08 2012-05-10 Motorola Mobility, Inc. Interference measurements in enhanced inter-cell interference coordination capable wireless terminals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874335A4 *

Also Published As

Publication number Publication date
EP2874335A4 (en) 2016-03-02
US20150173064A1 (en) 2015-06-18
KR20150035556A (ko) 2015-04-06
EP2874335B1 (en) 2020-02-19
EP2874335A1 (en) 2015-05-20
US9554371B2 (en) 2017-01-24

Similar Documents

Publication Publication Date Title
JP6263578B2 (ja) 無線通信システムにおいてチャネル状態情報(csi)送信方法及び装置
JP6208309B2 (ja) 無線通信システムにおいてチャネルを推定する方法および装置
EP2874335B1 (en) Method and device for reporting channel state information in wireless communication system
KR102086515B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR102086516B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR102169958B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR102157651B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR102067062B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR101741554B1 (ko) 협력적 송신을 지원하는 무선 통신 시스템에서 채널 상태 정보 송수신 방법및 장치
KR102257623B1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
KR101835328B1 (ko) 다중 안테나를 지원하는 무선 통신 시스템에서 채널상태정보-참조신호의 설정 정보를 제공하는 방법 및 장치
KR101611328B1 (ko) 무선 통신 시스템에서 채널상태정보 전송 방법 및 장치
KR101979852B1 (ko) 무선 통신 시스템에서 채널상태정보 전송 방법 및 장치
US9602183B2 (en) Method and apparatus for reporting channel state information in wireless communication system
KR101868629B1 (ko) 무선 통신 시스템에서 간섭 신호를 제거하는 방법 및 장치
WO2013133597A1 (ko) 무선 통신 시스템에서 보고를 위한 정보 전송 방법 및 장치
WO2013154383A1 (ko) 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치
WO2014073901A1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147033370

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14414864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013819354

Country of ref document: EP