WO2014014228A1 - Fuel supplying apparatus and system for direct carbon fuel cell - Google Patents

Fuel supplying apparatus and system for direct carbon fuel cell Download PDF

Info

Publication number
WO2014014228A1
WO2014014228A1 PCT/KR2013/006097 KR2013006097W WO2014014228A1 WO 2014014228 A1 WO2014014228 A1 WO 2014014228A1 KR 2013006097 W KR2013006097 W KR 2013006097W WO 2014014228 A1 WO2014014228 A1 WO 2014014228A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
pipe
fuel cell
supply device
fuel
Prior art date
Application number
PCT/KR2013/006097
Other languages
French (fr)
Korean (ko)
Inventor
황준영
강희석
강경태
이상호
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to CN201380037717.7A priority Critical patent/CN104471770B/en
Priority to US14/414,890 priority patent/US9837675B2/en
Publication of WO2014014228A1 publication Critical patent/WO2014014228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/225Fuel cells in which the fuel is based on materials comprising particulate active material in the form of a suspension, a dispersion, a fluidised bed or a paste
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a direct carbon fuel cell, and more particularly, to a fuel supply device and system for a direct carbon fuel cell having improved output density by securing fluidity of an anode medium.
  • DCFC direct carbon fuel cell
  • oxygen ions generated by the reduction reaction of oxygen in the cathode move to the anode through the electrolyte, and in the anode, carbon dioxide is generated by the reaction of oxygen ions and carbon, and the carbon dioxide is oxygen again. It reacts with ions to produce carbonate ions, and the generated carbonate ions oxidize carbon to generate carbon dioxide and electrons.
  • FIG. 1 A schematic diagram of the power generation of the direct carbon fuel cell is shown in FIG. 1.
  • a carbon fuel and an anode medium should be mixed well to improve the power density by reducing the concentration polarization of the anode. There is a need to force the battery.
  • liquid pumps have difficulty in flowing molten carbonate efficiently and practically due to the nature of the molten carbonate having high temperature (700 ° C to 1000 ° C) and high corrosion resistance.
  • An object of the present invention is to provide a fuel supply apparatus and system for a direct carbon fuel cell which improves the power density by forcibly flowing molten carbonate, which is an anode medium, to reduce concentration polarization of the anode.
  • Another object of the present invention is to provide a fuel supply apparatus and system for a direct carbon fuel cell capable of supplying a fuel cell while forcibly mixing a fuel medium consisting of carbon fuel and molten carbonate.
  • a fuel supply device and system are provided.
  • Another object of the present invention is to form a flow pipe around the tubular cell to ensure the fluidity of the anode medium to form a separation pipe in the flow path pipe to vertically flow the anode medium on the outer flow path between the flow pipe and the separation pipe inside the separation pipe
  • a fuel supply apparatus and system for a direct carbon fuel cell for flowing the anode medium on the inner passage of the To provide a fuel supply apparatus and system for a direct carbon fuel cell for flowing the anode medium on the inner passage of the.
  • Still another object of the present invention is to provide a fuel supply device and system for a direct carbon fuel cell which forms a flow pipe around a tubular cell and forms a separation pipe inside the flow pipe to prevent gas from flowing into the outside from the separation pipe. In providing.
  • a fuel supply apparatus for a direct carbon fuel cell includes: a separation tube having a cylindrical inner flow path formed in a vertical direction around a tubular cell contained in a fuel medium mixed with carbon fuel and having a through hole through which the fuel medium can enter and exit; A flow path tube forming a cylindrical outer flow path in a vertical direction around the separation pipe; And bubbling means for supplying gas to the outer flow path between the flow path pipe and the separation pipe, wherein the anode medium on the outer flow path primarily flows as the gas supplied to the outer flow path moves vertically. And the anode medium on the inner flow path connected to the outer flow path and the through hole is secondarily flown.
  • the flow path tube is formed by the collecting portion of the lower shape is wide, the gas supplied to the lower can be guided to the outer flow path by the collecting portion.
  • the bubbling means includes a supply pipe for supplying the gas and the end of the supply pipe may be configured to supply the gas to the outer flow path between the flow path pipe and the separation pipe.
  • the supply pipe of the bubbling means may be configured to extend from the top to the bottom along the outer wall of the flow pipe.
  • the supply pipe may be formed spirally along the outer wall of the flow path pipe.
  • the dispersing member may further include a dispersing member configured to disperse the gas supplied from the bubbling means and to supply the upper portion to the outer flow passage between the flow passage tube and the separation tube.
  • the dispersion member may be configured as a ring-shaped plate having a plurality of through holes.
  • the dispersion member may include a porous layer.
  • the bubbling means independently generates and provides the gas.
  • the bubbling means may recycle and supply the gas generated by the electrochemical reaction of the carbon fuel and then discharged to the outside of the anode medium.
  • the through hole of the separation pipe may be formed to have an incline rising outward.
  • the separation pipe may be formed in contact with the through hole is a guide for guiding the flow of the fluid to the outside on the inner wall.
  • the separation tube may form the inner flow path around a plurality of tubular cells.
  • the direct carbon fuel cell system according to the present invention, at least one tubular cell having a structure in which the cathode is formed inside, the anode is formed on the outer surface and the electrolyte is formed of a solid oxide between the cathode and the anode; And the fuel supply device for supplying an anode medium forcedly flowing to the tubular cell.
  • the anode medium can be forcibly supplied to the direct carbon fuel cell while the fluidity of the anode medium in the flow path is ensured and the carbon fuel and the anode medium are mixed.
  • a separation pipe is formed in the flow path pipe, and the flow of the fuel medium in the inner flow path in the separation pipe may occur due to the flow of the anode medium on the external flow path between the flow path pipe and the separation pipe.
  • the output density is improved by reducing the concentration polarization of the anode of the tubular cell of the direct carbon fuel cell.
  • 1 is a schematic diagram of power generation of a general direct carbon fuel cell.
  • Figure 2 is a block diagram showing a preferred embodiment of a fuel supply device for a direct carbon fuel cell according to the present invention.
  • 3 and 4 are diagrams showing other embodiments according to the method of supplying carbon dioxide in the embodiment of FIG.
  • FIGS. 2 to 4 correspond to FIGS. 2 to 4 and show other embodiments in which a plurality of tubular cells are configured.
  • FIG. 8 is a configuration diagram showing another embodiment in which the configuration of the separation pipe is changed corresponding to FIG. 3.
  • FIG. 9 is a configuration diagram showing another embodiment in which the dispersion member is configured in the embodiment of FIG. 2.
  • the present invention discloses a fuel supply apparatus for a direct carbon fuel cell having a structure in which a tubular cell is generated by being immersed in a mixture of an anode medium and a carbon fuel in a liquid state.
  • the tubular cell has a structure in which an air electrode is formed inside, a fuel electrode is formed outside, and a solid oxide electrolyte is formed between the air electrode and the fuel electrode.
  • the cathode may be composed of lanthanum-strontium-manganese oxide (LSM), the electrolyte may be composed of yttria stabilized zirconia (YSZ), and the anode may be composed of carbon fuel particles mixed with circulating molten salt.
  • LSM lanthanum-strontium-manganese oxide
  • YSZ yttria stabilized zirconia
  • the anode may be composed of carbon fuel particles mixed with circulating molten salt.
  • molten carbonate may be used as the anode medium
  • carbon powder, coal powder, coke, biomass fuel, organic waste, and the like may be used as the carbon fuel.
  • the tubular cell 12 is configured to be contained in at least one molten carbonate, which is the anode medium 14 contained in a bath 10.
  • the embodiment according to the present invention comprises a flow passage tube 16 forming a cylindrical flow path in a vertical direction around the tubular cell 12 immersed in the anode medium 14 accommodated in the bath 10.
  • the flow path tube 16 has a configuration in which an upper portion has a cylindrical shape and a lower portion has a collecting portion 18 having a shape gradually widening downward.
  • the separation pipe 30 is configured in the flow path pipe 16.
  • An external flow path is formed between the flow path tube 16 and the separation pipe 30, and the internal flow path is formed while the tubular cell 12 is included in the separation pipe 30.
  • the separation pipe 30 has a plurality of through holes 32 through which the anode medium 14 can enter and exit, and each through hole 32 is preferably formed to have an inclination rising from the inside to the outside.
  • the plurality of through holes 32 may be formed in various arrangements and shapes with respect to the wall of the separation pipe 30 according to the intention of the manufacturer, and specific examples thereof will be omitted.
  • the separation pipe 30 prevents the carbon dioxide moving through the outer flow path from entering the inner flow path by the structure of the through hole 32 having an inclination rising from the inner side to the outer side, and moves through the inner flow path. ) To the outside.
  • the flow path tube 16 and the separation tube 30 are arranged to be completely immersed in the anode medium 14 to have a configuration in which the anode medium 14 can flow on the upper side and the lower side.
  • Embodiments according to the present invention include bubbling means for supplying gas to the lower portion of the flow path tube (16).
  • the gas is preferably carbon dioxide (CO 2 ) generated as a result of the electrochemical reaction of Figure 1, the gas is described as carbon dioxide for the description of the following embodiments.
  • the bubbling means comprises a supply pipe 20 extending to the lower portion of the flow path tube 16 to supply carbon dioxide as shown in FIG. 2, or from the top along the outer wall of the flow path tube 16 as shown in FIGS. 3 and 4. It may be configured to include a supply pipe 22 extending downward.
  • the bubbling means includes a supply pipe 20 extending below the flow path pipe 16 as shown in FIG. 2, the end of the supply pipe 20 is connected to an external flow path between the flow path pipe 16 and the separation pipe 30. It is preferred that the carbon dioxide is supplied directly and formed to rise.
  • the bubbling means includes a supply pipe 22 extending from the top to the bottom along the flow pipe 16, an end of the supply pipe 22 is formed inside the bottom of the flow pipe 16. This is preferred. More preferably, the end of the supply pipe 22 is configured to supply carbon dioxide to the external flow path between the flow path pipe 16 and the separation pipe 30 through the collecting portion 18 at the bottom of the flow path pipe 16. Do.
  • the bubbling means including the supply pipes 20 and 22 may include a pumping device 24 that independently generates and provides carbon dioxide.
  • the bubbling means may recycle and supply carbon dioxide generated by the electrochemical reaction in the bath 10.
  • the bubbling means may include a circulation device 26 for recycling a portion of the carbon dioxide generated by the electrochemical reaction in the bath 10 to the outside while recirculating a portion and supplying it through the supply pipe 22.
  • the circulation device 26 may have a configuration in which carbon dioxide collected into the upper portion of the bath 10 is discharged to the outside through the exhaust pipe 28 and a part of the circulation is supplied to the supply pipe 22.
  • supply pipes 20 and 22 for supplying carbon dioxide in the embodiment according to the present invention of FIGS. 2 to 4 may have a configuration extending while spirally wound to the outside of the flow path tube (16).
  • carbon dioxide may be supplied to an external flow path between the flow path pipe 16 and the separation pipe 30.
  • the anode medium 14 on the outer flow path may be pushed by the vertically moving carbon dioxide to flow.
  • the entire anode medium 14 inside the bath 10 can be circulated through the flow path tube 16.
  • the anode medium 14 of the outer flow path between the flow path tube 16 and the separation pipe 30 flows as the carbon dioxide moves
  • the anode medium 14 on the inner flow path inside the separation pipe 30 is also the outer flow path. It flows upward according to the flow of the anode medium 14 on the bed.
  • the mixing of the carbon fuel and the anode medium 14 may be promoted.
  • the carbon fuel and the anode medium 14 promoted by mixing are circulated while contacting the tubular cell 12 through an internal flow path in the separation pipe 30. Therefore, the anode of the tubular cell 12 can be accelerated by the fuel circulated and the anode medium 14.
  • a portion of the anode medium 14 flowing upward along the inner flow path inside the separation pipe 30 may move to the outer flow path through the through hole 32.
  • a plurality of tubular cells 12 may be configured in the flow passage 16 as shown in FIGS. 5 to 7.
  • the embodiment according to the invention illustrates that two tubular cells 12 are configured in FIGS. 5 to 7 to illustrate the arrangement of a plurality of tubular cells 12.
  • FIG. 5 illustrates that two tubular cells 12 are formed in the flow path tube 16 in correspondence with FIG. 2
  • FIG. 6 illustrates that two tubular cells 12 in the flow path tube 16 correspond to FIG. 3.
  • FIG. 7 illustrates that two tubular cells 12 are configured in the flow path tube 16 corresponding to FIG. 4.
  • 5 to 7 are different in that a plurality of (two) tubular cells 12 are configured in the flow path tube 16 as compared to FIGS. 2 to 4 and the remaining parts may be configured in the same way. Overlapping configuration and operation description thereof will be omitted.
  • the number of tubular cells 12 disposed in the flow path tube 16 may be variously modified in consideration of the flow efficiency of the anode medium according to the manufacturer's intention.
  • the carbon dioxide supplied from the end of the supply pipe (20, 22) included in the bubbling means is supplied to the external flow path between the flow path pipe 16 and the separation pipe 30, the carbon dioxide is moved vertically As a result, the flow of the anode medium 14 on the inner flow path occurs as described with reference to FIGS. 2 to 4.
  • the embodiment according to the present invention may be a separation pipe 40 having a configuration as shown in FIG.
  • the separation pipe 40 has a through hole 42 formed therein and a guide 44 corresponding to the through hole 42.
  • the separation pipe 40 has a configuration including a guide 44 for guiding the flow of the fluid in the inner flow path to the outside.
  • the guide 44 is configured to be inclined toward the inner bottom while continuing to the upper part of the inlet of the through hole 42.
  • the guide 44 guides the discharge of the fluid (fuel electrode medium 14 or carbon dioxide) flowing downward from the inner passage through the through hole 42 to the outer passage.
  • the separation pipe 40 of FIG. 8 may be configured in place of the separation pipe 30 of FIGS. 2 to 4, and the effects and effects thereof are the same as those of the embodiments of FIGS. 2 to 4. Omit.
  • a dispersion member for dispersing the gas supplied from the supply pipe 20 of the bubbling means to the upper flow path in the flow path tube 16 and the separation pipe 30 as shown in FIG. 50) may be further included.
  • the dispersion member 50 may be configured as a ring-shaped plate having a plurality of through holes 52 as shown in FIG. According to the manufacturer's intention, the dispersion member 50 may be configured in various shapes, for example, a structure including a porous layer may be illustrated.
  • the anode medium can be forcibly supplied to the direct carbon fuel cell while ensuring the fluidity of the anode medium and mixing the carbon fuel and the anode medium.
  • a separation pipe may be configured in the flow path pipe, and the flow of the anode medium of the internal flow path in the separation pipe may occur due to the movement of carbon dioxide on the external flow path between the flow path pipe and the separation pipe.
  • the output density can be improved by reducing the concentration polarization of the anode of the tubular cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a fuel supplying apparatus, for a direct carbon fuel cell, which has improved output density by ensuring the flow properties of an anode medium. The fuel supplying apparatus for a direct carbon fuel cell comprises: a flow pipe which forms a cylindrical flow path in the vertical direction around a tube-shaped cell contained in an anode medium in which a carbon fuel is mixed; and a bubbling means which provides a gas from below the flow pipe to the inside of the anode medium and thus enables the anode medium to flow by the vertical flow of the gas. Consequently, the anode medium is provided to the anode of the tube-shaped cell by the flow.

Description

직접탄소 연료전지의 연료 공급 장치 및 시스템Fuel supply system and system of direct carbon fuel cell
본 발명은 직접탄소 연료전지에 관한 것으로서, 보다 상세하게는 연료극 매개체의 유동성을 확보하여 출력 밀도를 개선한 직접탄소 연료전지의 연료 공급 장치 및 시스템에 관한 것이다.The present invention relates to a direct carbon fuel cell, and more particularly, to a fuel supply device and system for a direct carbon fuel cell having improved output density by securing fluidity of an anode medium.
기존 선진국들이 탄소배출량을 줄이기 위해 노력하는 동안 중국, 인도와 같은 신흥국가들의 에너지 요구량은 OECD 국가들을 넘어설 것으로 예상되고 있다. 한편, 석탄은 광범위한 양이 전 세계적으로 매장되어 있으며 앞으로 미국, 중국 등과 같은 세계 에너지 시장에서 중요한 에너지원이 될 것으로 개대되고 있다.While traditional developed countries are working to reduce carbon emissions, the energy needs of emerging economies such as China and India are expected to surpass OECD countries. On the other hand, coal is buried globally in a large amount and is expected to become an important energy source in the global energy market such as the US and China.
전 세계 이산화탄소 배출량은 지속적으로 증가하고 있으며 효율적인 탄소전환법의 개발이 필요한 실정이며, 최근 이산화탄소가 분리된 청정석탄을 얻어내는 기술과 석탄을 직접연료로 이용하는 기술적 접근이 시도되고 있다. 이산화탄소 분리기술은 일반적으로 매장지역에 따른 지역 토질이 서로 달라서 보편적으로 적용하기 어려운 단점이 있으며 효율성 측면과 비용적 문제가 따르기 때문에 기술적 접근이 어려운 실정이다.Globally, carbon dioxide emissions are continuously increasing, and the development of an efficient carbon conversion method is needed. Recently, technologies for obtaining clean coal from which carbon dioxide is separated and a technical approach using coal as a direct fuel have been attempted. CO2 separation technology is generally difficult to apply universally due to different regional soils depending on the burial area, and the technical approach is difficult because of efficiency and cost problems.
그러나, 직접탄소 연료전지(Direct Carbon Fuel Cell; DCFC)는 석탄 시스템으로 기가와트 급의 대규모 발전과 폐열을 이용할 수 있는 장점들이 있어 분산발전의 개념에 있어 매우 중요한 기술로 떠오르고 있다.However, the direct carbon fuel cell (DCFC) is a coal system, which has the advantage of utilizing gigawatt-scale large-scale power generation and waste heat, and has emerged as a very important technology in the concept of distributed generation.
직접탄소 연료전지는 수소기체를 연료 기체로 사용하지 않고, 경제적이며 방대한 매장량을 가진 탄소 및 석탄을 직접 연료로 사용하고, 환원 기체로는 다른 연료전지와 마찬가지로 공기를 사용하여 작동되는 신개념의 연료전지이다. The direct carbon fuel cell does not use hydrogen gas as a fuel gas, but uses a fuel and carbon dioxide with economical and large reserves as a direct fuel, and as a reducing gas, a new concept fuel cell operated using air like other fuel cells. to be.
직접탄소 연료전지를 이용한 발전 시스템은 기존의 화력발전에 비해 높은 에너지변환 효율을 가지며, 이론상으로 80% 이상의 높은 효율을 가지며, 이는 현존하는 연료전지 중 수치상으로 가장 높은 수준에 해당한다. 또한 세계적으로 풍부한 매장량을 가지며 경제적인 석탄을 연료로 이용하기에 발전을 위한 다양한 석탄소스를 이용할 수 있으며, 연소할 때 생기는 SOx, NOx, PM 등과 같은 환경오염물질의 방출을 근본적으로 저감할 수 있다는 장점이 있을 뿐만 아니라, 탄소를 직접 이용한 화학반응에 의한 전력생산이기 때문에 소음이 없고, 무공해의 장점이 있으며, 기존 화력발전 대비 CO2의 방출량을 90% 이상 저감시킬 수 있다.Power generation systems using direct carbon fuel cells have higher energy conversion efficiencies than conventional thermal power plants, and in theory have a high efficiency of over 80%, which is the highest level in the existing fuel cells. In addition, since there are abundant reserves in the world and economical coal is used as fuel, various coal sources for power generation are available, and it is possible to fundamentally reduce the emission of environmental pollutants such as SOx, NOx and PM generated during combustion. In addition to the advantages, there is no noise, pollution-free, because the power is produced by the chemical reaction using carbon directly, it can reduce the emission of CO 2 more than 90% compared to the existing thermal power plant.
직접탄소 연료전지는 공기극(Cathode)에서 산소의 환원 반응에 의해 생성된 산소 이온은 전해질을 통해 연료극(Anode)으로 이동하며, 연료극에서는 산소 이온과 탄소가 반응하여 이산화탄소가 생기고, 이 이산화탄소가 다시 산소 이온과 반응하여 카보네이트 이온을 생셩하며, 생성된 카보네이트 이온이 탄소를 산화시켜 이산화탄소와 전자를 생성하면서 발전이 진행된다.In the direct carbon fuel cell, oxygen ions generated by the reduction reaction of oxygen in the cathode move to the anode through the electrolyte, and in the anode, carbon dioxide is generated by the reaction of oxygen ions and carbon, and the carbon dioxide is oxygen again. It reacts with ions to produce carbonate ions, and the generated carbonate ions oxidize carbon to generate carbon dioxide and electrons.
직접탄소 연료전지의 상기한 발전의 모식도는 도 1과 같다.A schematic diagram of the power generation of the direct carbon fuel cell is shown in FIG. 1.
용융탄산염을 연료극 매개체로 사용하는 공기극 지지체형 고체산화물 전해질 직접탄소 연료전지는 연료극의 농도분극을 감소시켜서 출력밀도를 개선하기 위해서 첫째, 탄소 연료와 연료극 매개체를 잘 혼합해야하고 둘째, 연료극 매개체를 연료전지에 강제로 공급할 필요성이 있다.In the cathode support type solid oxide electrolyte direct carbon fuel cell using molten carbonate as an anode medium, first, a carbon fuel and an anode medium should be mixed well to improve the power density by reducing the concentration polarization of the anode. There is a need to force the battery.
이를 위하여 연료극 매개체인 용융탄산염을 강제로 유동시키는 방법이 요구된다.To this end, a method of forcibly flowing molten carbonate, which is an anode medium, is required.
연료극 매개체인 용융탄산염을 강제로 유동시키기 위해서 종래에는 액체 펌프를 이용하는 방법이 제시된 바 있다. In order to forcibly flow the molten carbonate, which is the anode medium, a method using a liquid pump has been conventionally proposed.
그러나, 액체 펌프로는 고온(700℃ 내지 1000℃)과 고부식성을 갖는 용융탄산염의 특성상 용융탄산염을 효율적이고 실용적으로 유동시키는데 어려움이 있다.However, liquid pumps have difficulty in flowing molten carbonate efficiently and practically due to the nature of the molten carbonate having high temperature (700 ° C to 1000 ° C) and high corrosion resistance.
본 발명의 목적은 연료극 매개체인 용융탄산염을 강제로 유동시켜서 연료극의 농도분극을 감소시킴으로써 출력밀도를 개선하는 직접탄소 연료전지의 연료 공급 장치 및 시스템을 제공함에 있다.An object of the present invention is to provide a fuel supply apparatus and system for a direct carbon fuel cell which improves the power density by forcibly flowing molten carbonate, which is an anode medium, to reduce concentration polarization of the anode.
본 발명의 다른 목적은 탄소 연료와 용융탄산염으로 이루어지는 연료극 매개체를 강제로 혼합하면서 연료전지에 공급할 수 있는 직접탄소 연료전지의 연료 공급 장치 및 시스템을 제공함에 있다.Another object of the present invention is to provide a fuel supply apparatus and system for a direct carbon fuel cell capable of supplying a fuel cell while forcibly mixing a fuel medium consisting of carbon fuel and molten carbonate.
본 발명의 또다른 목적은 공기극 지지체와 고체산화물 전해질을 포함하여 구성되는 하나 이상의 튜브형 셀 둘레에 유로관을 형성하고 이산화탄소 유동에 의하여 유로관 내의 연료극 매개체의 유동성을 확보할 수 있는 직접탄소 연료전지의 연료 공급 장치 및 시스템을 제공함에 있다.It is another object of the present invention to form a flow path tube around at least one tubular cell including a cathode support and a solid oxide electrolyte, and to provide fluidity of the anode medium in the flow path by carbon dioxide flow. A fuel supply device and system are provided.
본 발명의 또다른 목적은 상기 튜브형 셀 둘레에 유로관을 형성하여 연료극 매개체의 유동성을 확보하면서 유로관 내에 분리관을 구성하여서 유로관과 분리관 사이 외부 유로 상의 연료극 매개체를 수직 유동시켜서 분리관 내부의 내부 유로 상의 연료극 매개체를 유동시키는 직접탄소 연료전지의 연료 공급 장치 및 시스템을 제공함에 있다.Another object of the present invention is to form a flow pipe around the tubular cell to ensure the fluidity of the anode medium to form a separation pipe in the flow path pipe to vertically flow the anode medium on the outer flow path between the flow pipe and the separation pipe inside the separation pipe To provide a fuel supply apparatus and system for a direct carbon fuel cell for flowing the anode medium on the inner passage of the.
본 발명의 또다른 목적은 튜브형 셀 둘레에 유로관을 형성하면서 유로관 내부에 분리관을 형성하여서 기체가 분리관의 외부에서 내부로 유입되는 것을 방지하는 직접탄소 연료전지의 연료 공급 장치 및 시스템을 제공함에 있다. Still another object of the present invention is to provide a fuel supply device and system for a direct carbon fuel cell which forms a flow pipe around a tubular cell and forms a separation pipe inside the flow pipe to prevent gas from flowing into the outside from the separation pipe. In providing.
본 발명에 따른 직접탄소 연료전지의 연료 공급 장치는, 탄소 연료가 혼합된 연료극 매개체에 담긴 튜브형 셀 둘레에 수직 방향의 원통형 내부 유로를 형성하며 상기 연료극 매개체의 출입이 가능한 관통구가 형성된 분리관; 상기 분리관의 둘레에 수직 방향의 원통형 외부 유로를 형성하는 유로관; 및 상기 유로관과 상기 분리관 사이의 상기 외부 유로에 기체를 공급하는 버블링 수단;을 포함하며, 상기 외부 유로에 공급되는 상기 기체가 수직 이동함에 따라서 상기 외부 유로 상의 상기 연료극 매개체가 일차적으로 유동되고 상기 외부 유로와 상기 관통구로 연결된 상기 내부 유로 상의 상기 연료극 매개체가 이차적으로 유동됨을 특징으로 한다.A fuel supply apparatus for a direct carbon fuel cell according to the present invention includes: a separation tube having a cylindrical inner flow path formed in a vertical direction around a tubular cell contained in a fuel medium mixed with carbon fuel and having a through hole through which the fuel medium can enter and exit; A flow path tube forming a cylindrical outer flow path in a vertical direction around the separation pipe; And bubbling means for supplying gas to the outer flow path between the flow path pipe and the separation pipe, wherein the anode medium on the outer flow path primarily flows as the gas supplied to the outer flow path moves vertically. And the anode medium on the inner flow path connected to the outer flow path and the through hole is secondarily flown.
여기에서, 상기 유로관은 하부가 넓어지는 형상의 포집부가 형성됨으로써 하부에 공급되는 상기 기체가 상기 포집부에 의하여 상기 외부 유로로 유도될 수 있다.Here, the flow path tube is formed by the collecting portion of the lower shape is wide, the gas supplied to the lower can be guided to the outer flow path by the collecting portion.
그리고, 상기 버블링 수단에 상기 기체를 공급하는 공급관이 포함되고 상기 공급관의 단부는 상기 유로관과 상기 분리관 사이의 상기 외부 유로에 상기 기체를 공급하도록 구성될 수 있다.And, the bubbling means includes a supply pipe for supplying the gas and the end of the supply pipe may be configured to supply the gas to the outer flow path between the flow path pipe and the separation pipe.
그리고, 상기 버블링 수단의 상기 공급관은 상기 유로관의 외벽을 따라 상부에서 하부로 연장되게 구성될 수 있다.In addition, the supply pipe of the bubbling means may be configured to extend from the top to the bottom along the outer wall of the flow pipe.
그리고, 상기 공급관은 상기 유로관의 외벽을 따라 나선형으로 형성될 수 있다.The supply pipe may be formed spirally along the outer wall of the flow path pipe.
그리고, 상기 유로관과 상기 분리관 사이의 상기 외부 유로에 상기 버블링 수단으로부터 공급받은 상기 기체를 분산하여 상부로 공급하는 분산 부재가 더 포함될 수 있다.The dispersing member may further include a dispersing member configured to disperse the gas supplied from the bubbling means and to supply the upper portion to the outer flow passage between the flow passage tube and the separation tube.
그리고, 상기 분산 부재는 다수의 관통공을 갖는 링형 판으로 구성될 수 있다.The dispersion member may be configured as a ring-shaped plate having a plurality of through holes.
그리고, 상기 분산 부재는 다공층을 포함할 수 있다.In addition, the dispersion member may include a porous layer.
그리고, 상기 버블링 수단은 독립적으로 상기 기체를 생성하여 제공하는 직접탄소 연료전지의 연료 공급 장치.And the bubbling means independently generates and provides the gas.
그리고, 상기 버블링 수단은 상기 탄소 연료의 전기화학 반응에 의하여 생성된 후 상기 연료극 매개체 외부로 배출되는 상기 기체를 재순환하여 공급할 수 있다.The bubbling means may recycle and supply the gas generated by the electrochemical reaction of the carbon fuel and then discharged to the outside of the anode medium.
그리고, 상기 분리관의 관통구는 외측으로 상승하는 경사를 갖도록 형성될 수 있다.In addition, the through hole of the separation pipe may be formed to have an incline rising outward.
그리고, 상기 분리관은 내벽에 내부의 유체의 흐름을 외측으로 안내하는 가이드가 상기 관통구에 접하게 형성될 수 있다.In addition, the separation pipe may be formed in contact with the through hole is a guide for guiding the flow of the fluid to the outside on the inner wall.
그리고, 상기 분리관은 복수의 튜브형 셀의 둘레에 상기 내부 유로를 형성할 수 있다.In addition, the separation tube may form the inner flow path around a plurality of tubular cells.
한편, 본 발명에 따른 직접탄소 연료전지 시스템은, 공기극이 내측에 형성되고 연료극이 외면에 형성되며 상기 공기극과 상기 연료극 사이에 고체산화물로 전해질이 형성되는 구조를 갖는 하나 이상의 튜브형 셀; 및 상기 튜브형 셀에 강제 유동되는 연료극 매개체를 공급하는 상기 연료 공급 장치;를 포함함을 특징으로 한다.On the other hand, the direct carbon fuel cell system according to the present invention, at least one tubular cell having a structure in which the cathode is formed inside, the anode is formed on the outer surface and the electrolyte is formed of a solid oxide between the cathode and the anode; And the fuel supply device for supplying an anode medium forcedly flowing to the tubular cell.
따라서, 본 발명에 의하면 유로관 내의 연료극 매개체의 유동성을 확보하여서 탄소 연료와 연료극 매개체를 혼합하면서 직접탄소 연료 전지에 연료극 매개체가 강제로 공급될 수 있다.Therefore, according to the present invention, the anode medium can be forcibly supplied to the direct carbon fuel cell while the fluidity of the anode medium in the flow path is ensured and the carbon fuel and the anode medium are mixed.
또한, 본 발명에 의하면 유로관 내에 분리관이 구성되고, 유로관과 분리관 사이의 외부 유로 상의 연료극 매개체의 유동에 의하여 분리관 내의 내부 유로의 연료극 매개체의 유동이 발생할 수 있다. In addition, according to the present invention, a separation pipe is formed in the flow path pipe, and the flow of the fuel medium in the inner flow path in the separation pipe may occur due to the flow of the anode medium on the external flow path between the flow path pipe and the separation pipe.
그에 따라서 직접탄소 연료 전지에 구성되는 튜브형 셀의 연료극의 농도 분극을 감소시킴으로써 출력밀도가 개선되는 효과가 있다.Thereby, the output density is improved by reducing the concentration polarization of the anode of the tubular cell of the direct carbon fuel cell.
또한, 상기한 분리관의 작용에 따라서 외부 유로의 기체가 분리관 외부에서 내부로 유입되는 것이 방지될 수 있어서 튜브형 셀의 출력밀도를 개선할 수 있는 효과가 있다.In addition, according to the action of the separation tube it can be prevented that the gas of the external flow path from the outside of the separation tube to the inside to improve the output density of the tubular cell.
도 1은 일반적인 직접탄소 연료전지의 발전의 모식도.1 is a schematic diagram of power generation of a general direct carbon fuel cell.
도 2은 본 발명에 따른 직접탄소 연료전지의 연료 공급 장치의 바람직한 실시예를 나타내는 구성도.Figure 2 is a block diagram showing a preferred embodiment of a fuel supply device for a direct carbon fuel cell according to the present invention.
도 3 및 도 4은 도 2의 실시예에서 이산화탄소를 공급하는 방법에 따른 다른 실시예들을 나타내는 구성도.3 and 4 are diagrams showing other embodiments according to the method of supplying carbon dioxide in the embodiment of FIG.
도 5 내지 도 7은 도 2 내지 도 4에 대응하며 복수의 튜브형 셀이 구성된 다른 실시예들을 나타내는 구성도.5 to 7 correspond to FIGS. 2 to 4 and show other embodiments in which a plurality of tubular cells are configured.
도 8은 도 3에 대응하여 분리관의 구성이 변경된 다른 실시예를 나타내는 구성도.8 is a configuration diagram showing another embodiment in which the configuration of the separation pipe is changed corresponding to FIG. 3.
도 9는 도 2의 실시예에서 분산 부재가 구성된 다른 실시예를 나타내는 구성도.9 is a configuration diagram showing another embodiment in which the dispersion member is configured in the embodiment of FIG. 2.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 명세서 및 특허청구범위에 사용된 용어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. The terms used in the present specification and claims are not to be construed as being limited to ordinary or dictionary meanings, but should be interpreted as meanings and concepts corresponding to the technical matters of the present invention.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있다.The embodiments described in the specification and the configuration shown in the drawings are preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, various equivalents and modifications that can replace them at the time of the present application are There may be.
본 발명은 튜브형 셀이 액체 상태의 연료극 매개체와 탄소 연료의 혼합물에 잠겨서 발전하는 구조를 갖는 직접탄소 연료전지의 연료 공급 장치를 개시한다.The present invention discloses a fuel supply apparatus for a direct carbon fuel cell having a structure in which a tubular cell is generated by being immersed in a mixture of an anode medium and a carbon fuel in a liquid state.
여기에서 튜브형 셀은 내측에 공기극이 형성되고 외측에 연료극이 형성되며 공기극과 연료극 사이에 고체 산화물 전해질이 형성된 구조를 갖는다.Here, the tubular cell has a structure in which an air electrode is formed inside, a fuel electrode is formed outside, and a solid oxide electrolyte is formed between the air electrode and the fuel electrode.
공기극은 란타늄-스트론튬-망간 산화물(LSM)으로 구성될 수 있으며, 전해질은 이트리아 안정화 지르코니아(YSZ)로 구성될 수 있고, 연료극은 순환형 용융염이 혼합된 탄소 연료 입자로 구성될 수 있다. The cathode may be composed of lanthanum-strontium-manganese oxide (LSM), the electrolyte may be composed of yttria stabilized zirconia (YSZ), and the anode may be composed of carbon fuel particles mixed with circulating molten salt.
그리고, 연료극 매개체는 용융탄산염이 이용될 수 있고, 탄소 연료는 탄소가루, 석탄 가루, 코크, 바이오매스 연료, 유기 폐기물 등이 이용될 수 있다.In addition, molten carbonate may be used as the anode medium, and carbon powder, coal powder, coke, biomass fuel, organic waste, and the like may be used as the carbon fuel.
도 2를 참조하면, 본 발명에 따른 튜브형 셀(12)은 배쓰(Bath)(10)에 담긴 연료극 매개체(14)인 용융탄산염에 하나 이상 담기도록 구성된다.Referring to FIG. 2, the tubular cell 12 according to the present invention is configured to be contained in at least one molten carbonate, which is the anode medium 14 contained in a bath 10.
또한, 본 발명에 따른 실시예는 배쓰(10)에 수용된 연료극 매개체(14)에 잠긴 튜브형 셀(12)의 둘레에 수직 방향의 원통형 유로를 형성하는 유로관(16)이 구성된다.In addition, the embodiment according to the present invention comprises a flow passage tube 16 forming a cylindrical flow path in a vertical direction around the tubular cell 12 immersed in the anode medium 14 accommodated in the bath 10.
유로관(16)은 상부가 실린더 형상을 가지고 하부는 하측으로 점차 넓어지는 형상의 포집부(18)가 형성된 구성을 갖는다. The flow path tube 16 has a configuration in which an upper portion has a cylindrical shape and a lower portion has a collecting portion 18 having a shape gradually widening downward.
그리고, 본 발명에 따른 실시예는 유로관(16) 내에 분리관(30)이 구성된다. 유로관(16)과 분리관(30) 사이에는 외부 유로가 형성되고, 분리관(30) 내에는 튜브형 셀(12)이 포함되면서 내부 유로가 형성된다.In the embodiment according to the present invention, the separation pipe 30 is configured in the flow path pipe 16. An external flow path is formed between the flow path tube 16 and the separation pipe 30, and the internal flow path is formed while the tubular cell 12 is included in the separation pipe 30.
분리관(30)은 연료극 매개체(14)의 출입이 가능한 다수의 관통구(32)를 가지며, 각 관통구(32)는 내측에서 외측으로 상승하는 경사를 갖도록 형성됨이 바람직하다.The separation pipe 30 has a plurality of through holes 32 through which the anode medium 14 can enter and exit, and each through hole 32 is preferably formed to have an inclination rising from the inside to the outside.
다수의 관통구(32)는 제작자의 의도에 따라서 분리관(30)의 벽체에 대하여 다양한 배치 및 형상으로 형성될 수 있으며, 이에 대한 구체적인 예시는 생략한다.The plurality of through holes 32 may be formed in various arrangements and shapes with respect to the wall of the separation pipe 30 according to the intention of the manufacturer, and specific examples thereof will be omitted.
분리관(30)은 내측에서 외측으로 상승하는 경사를 갖는 관통구(32)의 구조에 의하여 외부 유로를 통하여 이동하는 이산화탄소가 내부 유로로 유입하는 것을 방지하고 내부 유로를 통하여 이동하는 연료극 매개체(14)를 외부로 순환하는 역할을 한다.The separation pipe 30 prevents the carbon dioxide moving through the outer flow path from entering the inner flow path by the structure of the through hole 32 having an inclination rising from the inner side to the outer side, and moves through the inner flow path. ) To the outside.
유로관(16)과 분리관(30)은 연료극 매개체(14)에 완전히 잠기도록 배치됨으로써 상측과 하측에 연료극 매개체(14)의 흐름이 가능한 구성을 갖는다.The flow path tube 16 and the separation tube 30 are arranged to be completely immersed in the anode medium 14 to have a configuration in which the anode medium 14 can flow on the upper side and the lower side.
본 발명에 따른 실시예는 유로관(16)의 하부에 기체를 공급하는 버블링 수단을 포함한다. 여기에서, 기체는 도 1의 전기화학 반응 결과 생성되는 이산화탄소(CO2)가 이용됨이 바람직하며, 이하 실시예의 설명을 위하여 기체는 이산화탄소로 설명한다.Embodiments according to the present invention include bubbling means for supplying gas to the lower portion of the flow path tube (16). Here, the gas is preferably carbon dioxide (CO 2 ) generated as a result of the electrochemical reaction of Figure 1, the gas is described as carbon dioxide for the description of the following embodiments.
버블링 수단은 도 2과 같이 유로관(16)의 하부로 연장되어서 이산화탄소를 공급하는 공급관(20)을 포함하여 구성되거나, 도 3 및 도 4와 같이 유로관(16)의 외벽을 따라 상부에서 하부로 연장된 공급관(22)을 포함하여 구성될 수 있다.The bubbling means comprises a supply pipe 20 extending to the lower portion of the flow path tube 16 to supply carbon dioxide as shown in FIG. 2, or from the top along the outer wall of the flow path tube 16 as shown in FIGS. 3 and 4. It may be configured to include a supply pipe 22 extending downward.
도 2와 같이 버블링 수단이 유로관(16)의 하부로 연장된 공급관(20)을 포함하는 경우, 공급관(20)의 단부는 유로관(16)과 분리관(30) 사이의 외부 유로에 이산화탄소가 직접 공급되어서 상승되도록 형성됨이 바람직하다.When the bubbling means includes a supply pipe 20 extending below the flow path pipe 16 as shown in FIG. 2, the end of the supply pipe 20 is connected to an external flow path between the flow path pipe 16 and the separation pipe 30. It is preferred that the carbon dioxide is supplied directly and formed to rise.
도 3 및 도 4와 같이 버블링 수단이 유로관(16)을 따라 상부에서 하부로 연장된 공급관(22)을 포함하는 경우, 공급관(22)의 단부가 유로관(16)의 하부 내측에 형성됨이 바람직하다. 더욱 바람직하게는 공급관(22)의 단부가 유로관(16)의 하부의 포집부(18)를 관통하여 유로관(16)과 분리관(30) 사이의 외부 유로로 이산화탄소를 공급하도록 구성됨이 바람직하다. 3 and 4, when the bubbling means includes a supply pipe 22 extending from the top to the bottom along the flow pipe 16, an end of the supply pipe 22 is formed inside the bottom of the flow pipe 16. This is preferred. More preferably, the end of the supply pipe 22 is configured to supply carbon dioxide to the external flow path between the flow path pipe 16 and the separation pipe 30 through the collecting portion 18 at the bottom of the flow path pipe 16. Do.
도 2 및 도 3과 같은 공급관(20, 22)을 포함하는 버블링 수단은 독립적으로 이산화탄소를 생성하여 제공하는 펌핑 장치(24)를 포함할 수 있다.2 and 3, the bubbling means including the supply pipes 20 and 22 may include a pumping device 24 that independently generates and provides carbon dioxide.
이와 달리, 도 4와 같이 버블링 수단은 배쓰(10) 내의 전기화학적 반응에 의하여 생성되는 이산화탄소를 재순환하여 공급할 수 있다. 이를 위하여 버블링 수단은 배쓰(10) 내에서 전기화학적 반응에 의하여 생성되는 이산화탄소를 외부로 포집하면서 일부를 재순환하여 공급관(22)을 통하여 공급하는 순환 장치(26)를 포함하여 구성될 수 있다.On the contrary, as shown in FIG. 4, the bubbling means may recycle and supply carbon dioxide generated by the electrochemical reaction in the bath 10. To this end, the bubbling means may include a circulation device 26 for recycling a portion of the carbon dioxide generated by the electrochemical reaction in the bath 10 to the outside while recirculating a portion and supplying it through the supply pipe 22.
도 4을 참조하면, 순환 장치(26)는 배쓰(10)의 상부로 포집되는 이산화탄소를 배기관(28)을 통하여 외부로 배출하고 일부를 공급관(22)으로 순환하여 공급하는 구성을 가질 수 있다.Referring to FIG. 4, the circulation device 26 may have a configuration in which carbon dioxide collected into the upper portion of the bath 10 is discharged to the outside through the exhaust pipe 28 and a part of the circulation is supplied to the supply pipe 22.
또한, 도 2 내지 도 4의 본 발명에 따른 실시예에서 이산화탄소를 공급하는 공급관(20, 22)은 유로관(16)의 외측에 나선형으로 감기면서 연장되는 구성을 가질 수 있다.In addition, the supply pipes 20 and 22 for supplying carbon dioxide in the embodiment according to the present invention of FIGS. 2 to 4 may have a configuration extending while spirally wound to the outside of the flow path tube (16).
본 발명은 상술한 바와 같이 도 2 내지 도 4와 같이 구성되는 실시예에 의하여 이산화탄소를 유로관(16)과 분리관(30) 사이의 외부 유로로 공급할 수 있다.As described above, according to the exemplary embodiment configured as shown in FIGS. 2 to 4, carbon dioxide may be supplied to an external flow path between the flow path pipe 16 and the separation pipe 30.
버블링 수단에 포함되는 공급관(20)의 단부에서 공급되는 이산화탄소가 유로관(16)과 분리관(30) 사이의 외부 유로 상으로 공급하면, 이산화탄소는 외부 유로를 통하여 수직 이동한다.When carbon dioxide supplied from the end of the supply pipe 20 included in the bubbling means is supplied onto the outer flow path between the flow path pipe 16 and the separation pipe 30, the carbon dioxide moves vertically through the outer flow path.
이산화탄소가 유로관(16)과 분리관(30) 사이의 외부 유로를 따라 수직 이동하면, 외부 유로 상의 연료극 매개체(14)가 수직 이동하는 이산화탄소에 밀려서 유동될 수 있다. When the carbon dioxide moves vertically along the outer flow path between the flow path tube 16 and the separation pipe 30, the anode medium 14 on the outer flow path may be pushed by the vertically moving carbon dioxide to flow.
이때 분리관(30)의 관통구(32)의 구조에 의하여 상승하는 이산화탄소가 내부 유로로 유입되는 것이 방지된다. At this time, the carbon dioxide rising by the structure of the through hole 32 of the separation pipe 30 is prevented from flowing into the inner flow path.
유로관(16)과 분리관(30) 사이의 외부 유로로 이산화탄소가 지속적으로 공급되어서 외부 유로 내의 연료극 매개체(14)가 유동되면, 유로관(16)과 분리관(30) 사이의 외부 유로의 하부에는 수직 이동되는 이산화탄소의 공간을 채우기 위하여 유로관(16) 외부의 연료극 매개체(14)가 외부 유로 내로 유입되고, 유로관(16)과 분리관(30) 사이의 외부 유로의 상부에는 수직 이동되는 이산화탄소에 의하여 내부의 연료극 매개체(14)가 외부로 오버플로우(Overflow)되는 현상이 발생한다.When carbon dioxide is continuously supplied to the external flow path between the flow path pipe 16 and the separation pipe 30 and the anode medium 14 in the external flow path flows, the external flow path between the flow path pipe 16 and the separation pipe 30 In order to fill the space of the vertically moved carbon dioxide in the lower portion, the anode medium 14 outside the flow path tube 16 is introduced into the outer flow path, and the vertical movement is performed at the top of the outer flow path between the flow path tube 16 and the separation pipe 30. Due to the carbon dioxide, the phenomenon in which the anode medium 14 overflows to the outside occurs.
따라서, 배쓰(10) 내부의 전체 연료극 매개체(14)가 유로관(16)을 통하도록 순환될 수 있다.Thus, the entire anode medium 14 inside the bath 10 can be circulated through the flow path tube 16.
이때, 유로관(16)과 분리관(30) 사이의 외부 유로의 연료극 매개체(14)가 이산화탄소의 이동에 따라 유동되면, 분리관(30) 내부의 내부 유로 상의 연료극 매개체(14)도 외부 유로 상의 연료극 매개체(14)의 유동에 따라 상부로 유동된다.At this time, when the anode medium 14 of the outer flow path between the flow path tube 16 and the separation pipe 30 flows as the carbon dioxide moves, the anode medium 14 on the inner flow path inside the separation pipe 30 is also the outer flow path. It flows upward according to the flow of the anode medium 14 on the bed.
상술한 바와 같이 외부 유로와 내부 유로 상의 연료극 매개체(14)가 유동되면서 순환됨에 따라서 탄소 연료와 연료극 매개체(14)의 혼합이 촉진될 수 있다.As described above, as the anode medium 14 on the outer flow path and the inner flow path is circulated, the mixing of the carbon fuel and the anode medium 14 may be promoted.
또한, 혼합이 촉진된 탄소 연료와 연료극 매개체(14)가 분리관(30) 내의 내부 유로를 통하여 튜브형 셀(12)에 접하면서 순환된다. 그러므로 튜브형 셀(12)의 연료극은 순환되는 연료와 연료극 매개체(14)에 의하여 반응이 촉진될 수 있다.In addition, the carbon fuel and the anode medium 14 promoted by mixing are circulated while contacting the tubular cell 12 through an internal flow path in the separation pipe 30. Therefore, the anode of the tubular cell 12 can be accelerated by the fuel circulated and the anode medium 14.
그리고, 분리관(30) 내부의 내부 유로를 따라 상부로 유동되는 연료극 매개체(14)의 일부는 관통구(32)를 통하여 외부 유로로 이동할 수 있다.In addition, a portion of the anode medium 14 flowing upward along the inner flow path inside the separation pipe 30 may move to the outer flow path through the through hole 32.
그리고, 내부 유로 상의 연료극 매개체(14)가 유동되므로 반응에 의하여 생성되는 이산화탄소가 튜브형 셀(12)의 외벽에 붙지않고 연료극 매개체(14)의 유동에 따라 이동될 수 있다. 그러므로, 튜브형 셀(12) 외벽은 이산화탄소에 의하여 반응이 차단되는 현상이 방지될 수 있다. In addition, since the anode medium 14 on the inner flow path flows, carbon dioxide generated by the reaction may move along the flow of the anode medium 14 without being attached to the outer wall of the tubular cell 12. Therefore, the phenomenon that the reaction is blocked by the carbon dioxide outer wall 12 can be prevented.
도 2를 참조하여 설명된 이산화탄소에 의한 연료극 매개체(14)의 순환은 도 3 및 도 4에도 동일하게 적용되며, 그에 따른 효과도 동일하게 기대될 수 있으므로 이에 대한 중복된 설명은 생략한다.The circulation of the anode medium 14 by the carbon dioxide described with reference to FIG. 2 is equally applied to FIGS. 3 and 4, and the effects thereof may be equally expected, and thus redundant description thereof will be omitted.
한편, 본 발명에 따른 실시예는 도 5 내지 도 7와 같이 유로관(16) 내에 복수의 튜브형 셀(12)이 구성될 수 있다. 본 발명에 따른 실시예는 복수의 튜브형 셀(12)이 배치된 것을 설명하기 위하여 도 5 내지 도 7에 두 개의 튜브형 셀(12)이 구성된 것으로 예시한다. Meanwhile, in the exemplary embodiment of the present invention, a plurality of tubular cells 12 may be configured in the flow passage 16 as shown in FIGS. 5 to 7. The embodiment according to the invention illustrates that two tubular cells 12 are configured in FIGS. 5 to 7 to illustrate the arrangement of a plurality of tubular cells 12.
도 5는 도 2에 대응하여 유로관(16) 내에 두 개의 튜브형 셀(12)이 구성된 것을 예시한 것이고, 도 6은 도 3에 대응하여 유로관(16) 내에 두 개의 튜브형 셀(12)이 구성된 것을 예시한 것이며, 도 7은 도 4에 대응하여 유로관(16) 내에 두 개의 튜브형 셀(12)이 구성된 것을 예시한 것이다.FIG. 5 illustrates that two tubular cells 12 are formed in the flow path tube 16 in correspondence with FIG. 2, and FIG. 6 illustrates that two tubular cells 12 in the flow path tube 16 correspond to FIG. 3. FIG. 7 illustrates that two tubular cells 12 are configured in the flow path tube 16 corresponding to FIG. 4.
도 5 내지 도 7은 도 2 내지 도 4와 비교하여 유로관(16) 내에 복수 개(두 개)의 튜브형 셀(12)이 구성되는 점에 차이가 있고 나머지 부품은 동일하게 구성될 수 있으므로, 이에 대한 중복되는 구성 및 동작 설명은 생략한다.5 to 7 are different in that a plurality of (two) tubular cells 12 are configured in the flow path tube 16 as compared to FIGS. 2 to 4 and the remaining parts may be configured in the same way. Overlapping configuration and operation description thereof will be omitted.
유로관(16) 내에 배치되는 튜브형 셀(12)의 개수는 제작자의 의도에 따라서 연료극 매개체의 유동 효율을 고려하여 다양하게 변형 실시될 수 있다.The number of tubular cells 12 disposed in the flow path tube 16 may be variously modified in consideration of the flow efficiency of the anode medium according to the manufacturer's intention.
도 5 내지 도 7의 실시예도 버블링 수단에 포함되는 공급관(20, 22)의 단부에서 공급되는 이산화탄소가 유로관(16)과 분리관(30) 사이의 외부 유로로 공급되면, 이산화탄소가 수직 이동함에 따라서 도 2 내지 도 4의 설명과 같이 내부 유로 상의 연료극 매개체(14)의 유동이 발생한다.5 to 7, the carbon dioxide supplied from the end of the supply pipe (20, 22) included in the bubbling means is supplied to the external flow path between the flow path pipe 16 and the separation pipe 30, the carbon dioxide is moved vertically As a result, the flow of the anode medium 14 on the inner flow path occurs as described with reference to FIGS. 2 to 4.
한편, 본 발명에 따른 실시예는 도 8과 같은 구성을 갖는 분리관(40)이 구성될 수 있다. On the other hand, in the embodiment according to the present invention may be a separation pipe 40 having a configuration as shown in FIG.
도 8에서 분리관(40)은 관통구(42)가 형성되며 관통구(42)에 대응하여 가이드(44)가 구성된다.In FIG. 8, the separation pipe 40 has a through hole 42 formed therein and a guide 44 corresponding to the through hole 42.
즉, 분리관(40)은 내부 유로의 유체의 흐름을 외측으로 안내하는 가이드(44)가 포함된 구성을 갖는다.That is, the separation pipe 40 has a configuration including a guide 44 for guiding the flow of the fluid in the inner flow path to the outside.
가이드(44)는 관통구(42)의 입구 상부에 이어지면서 내측 하부로 경사지게 구성된다.The guide 44 is configured to be inclined toward the inner bottom while continuing to the upper part of the inlet of the through hole 42.
그러므로, 가이드(44)는 하부로 유입되는 유체(연료극 매개체(14) 또는 이산화탄소)를 내부 유로에서 관통구(42)를 통하여 외부 유로로 배출하는 것을 가이드한다.Therefore, the guide 44 guides the discharge of the fluid (fuel electrode medium 14 or carbon dioxide) flowing downward from the inner passage through the through hole 42 to the outer passage.
도 8의 분리관(40)은 도 2 내지 도 4의 분리관(30)에 대체하여 구성될 수 있으며, 그에 따른 작용 및 효과는 도 2 내지 도 4의 실시예와 동일하므로 이에 대한 중복 설명은 생략한다.The separation pipe 40 of FIG. 8 may be configured in place of the separation pipe 30 of FIGS. 2 to 4, and the effects and effects thereof are the same as those of the embodiments of FIGS. 2 to 4. Omit.
한편, 본 발명에 따른 실시예는 도 9와 같이 유로관(16)과 분리관(30) 내의 외부 유로에 버블링 수단의 공급관(20)으로부터 공급받은 기체를 분산하여 상부로 공급하는 분산 부재(50)를 더 포함하여 구성될 수 있다.On the other hand, according to the embodiment of the present invention is a dispersion member for dispersing the gas supplied from the supply pipe 20 of the bubbling means to the upper flow path in the flow path tube 16 and the separation pipe 30 as shown in FIG. 50) may be further included.
분산 부재(50)는 도 8과 같이 다수의 관통공(52)을 갖는 링형 판으로 구성될 수 있다. 제작자의 의도에 따라서 분산 부재(50)는 다양한 형상으로 구성될 수 있으며 일예로 다공층을 포함하는 구조가 예시될 수 있다.The dispersion member 50 may be configured as a ring-shaped plate having a plurality of through holes 52 as shown in FIG. According to the manufacturer's intention, the dispersion member 50 may be configured in various shapes, for example, a structure including a porous layer may be illustrated.
따라서, 본 발명에 의하면 연료극 매개체의 유동성을 확보하여서 탄소 연료와 연료극 매개체를 혼합하면서 직접탄소 연료 전지에 연료극 매개체가 강제로 공급될 수 있다.Therefore, according to the present invention, the anode medium can be forcibly supplied to the direct carbon fuel cell while ensuring the fluidity of the anode medium and mixing the carbon fuel and the anode medium.
또한, 본 발명에 의하면 유로관 내에 분리관이 구성될 수 있으며, 유로관과 분리관 사이의 외부 유로 상의 이산화탄소의 이동에 의하여 분리관 내의 내부 유로의 연료극 매개체의 유동이 발생할 수 있다. In addition, according to the present invention, a separation pipe may be configured in the flow path pipe, and the flow of the anode medium of the internal flow path in the separation pipe may occur due to the movement of carbon dioxide on the external flow path between the flow path pipe and the separation pipe.
그에 따라서 튜브형 셀의 연료극의 농도 분극을 감소시킴으로써 출력밀도가 개선될 수 있다.Accordingly, the output density can be improved by reducing the concentration polarization of the anode of the tubular cell.
또한, 본 발명에 의하면, 분리관의 작용에 따라서 외부 유로의 기체가 분리관 외부에서 내부로 유입되는 것이 방지되어서 출력밀도를 개선할 수 있다. In addition, according to the present invention, it is possible to prevent the gas of the external flow path from flowing in from the outside of the separation pipe to the inside according to the action of the separation pipe to improve the output density.

Claims (16)

  1. 탄소 연료가 혼합된 연료극 매개체에 담긴 튜브형 셀 둘레에 수직 방향의 원통형 내부 유로를 형성하며 상기 연료극 매개체의 출입이 가능한 관통구가 형성된 분리관;A separator tube forming a cylindrical inner flow path in a vertical direction around the tubular cell contained in the anode medium mixed with carbon fuel and having a through hole through which the anode medium can enter and exit;
    상기 분리관의 둘레에 수직 방향의 원통형 외부 유로를 형성하는 유로관; 및 A flow path tube forming a cylindrical outer flow path in a vertical direction around the separation pipe; And
    상기 유로관과 상기 분리관 사이의 상기 외부 유로에 기체를 공급하는 버블링 수단;을 포함하며,And bubbling means for supplying gas to the external flow path between the flow path pipe and the separation pipe.
    상기 외부 유로에 공급되는 상기 기체가 수직 이동함에 따라서 상기 외부 유로 상의 상기 연료극 매개체가 일차적으로 유동되고 상기 외부 유로와 상기 관통구로 연결된 상기 내부 유로 상의 상기 연료극 매개체가 이차적으로 유동됨을 특징으로 하는 직접탄소 연료전지의 연료 공급 장치.Direct carbon is characterized in that the anode medium on the outer flow path is primarily flown as the gas supplied to the outer flow path is moved vertically and the anode medium on the inner flow path connected to the outer flow path and the through hole is secondary flow. Fuel supply device of fuel cell.
  2. 제1 항에 있어서, The method of claim 1,
    상기 유로관은 하부가 넓어지는 형상의 포집부가 형성됨으로써 하부에 공급되는 상기 기체가 상기 포집부에 의하여 상기 외부 유로로 유도되는 직접탄소 연료전지의 연료 공급 장치.The flow path tube is a fuel supply device for a direct carbon fuel cell in which the gas is supplied to the lower portion is guided to the external flow path by the collecting portion is formed by the collecting portion of the lower shape is widened.
  3. 제1 항에 있어서,The method of claim 1,
    상기 버블링 수단에 상기 기체를 공급하는 공급관이 포함되고 상기 공급관의 단부는 상기 유로관과 상기 분리관 사이의 상기 외부 유로에 상기 기체를 공급하도록 구성되는 직접탄소 연료전지의 연료 공급 장치.And a supply pipe for supplying the gas to the bubbling means, and an end portion of the supply pipe is configured to supply the gas to the external flow path between the flow path pipe and the separation pipe.
  4. 제3 항에 있어서,The method of claim 3, wherein
    상기 버블링 수단의 상기 공급관은 상기 유로관의 외벽을 따라 상부에서 하부로 연장되게 구성되는 직접탄소 연료전지의 연료 공급 장치.And the supply pipe of the bubbling means is configured to extend from the top to the bottom along the outer wall of the flow path pipe.
  5. 제4 항에 있어서,The method of claim 4, wherein
    상기 공급관은 상기 유로관의 외벽을 따라 나선형으로 형성되는 직접 탄소 연료전지의 연료 공급 장치.The supply pipe is a fuel supply device for a direct carbon fuel cell is formed spirally along the outer wall of the flow pipe.
  6. 제1 항에 있어서,The method of claim 1,
    상기 유로관과 상기 분리관 사이의 상기 외부 유로에 상기 버블링 수단으로부터 공급받은 상기 기체를 분산하여 상부로 공급하는 분산 부재가 더 포함되는 직접탄소 연료전지의 연료 공급 장치.And a dispersing member configured to disperse the gas supplied from the bubbling means to the upper flow path between the flow path pipe and the separation pipe to supply the gas to the upper flow path.
  7. 제6 항에 있어서,The method of claim 6,
    상기 분산 부재는 다수의 관통공을 갖는 링형 판으로 구성되는 직접탄소 연료전지의 연료 공급 장치.The dispersion member is a fuel supply device for a direct carbon fuel cell composed of a ring-shaped plate having a plurality of through holes.
  8. 제6 항에 있어서,The method of claim 6,
    상기 분산 부재는 다공층을 포함하는 직접탄소 연료전지의 연료 공급 장치.The dispersion member is a fuel supply device for a direct carbon fuel cell comprising a porous layer.
  9. 제1 항에 있어서,The method of claim 1,
    상기 버블링 수단은 독립적으로 상기 기체를 생성하여 제공하는 직접탄소 연료전지의 연료 공급 장치.The bubbling means is a fuel supply device for a direct carbon fuel cell to independently generate and provide the gas.
  10. 제1 항에 있어서,The method of claim 1,
    상기 버블링 수단은 상기 탄소 연료의 전기화학 반응에 의하여 생성된 후 상기 연료극 매개체 외부로 배출되는 상기 기체를 재순환하여 공급하는 직접탄소 연료전지의 연료 공급 장치.The bubbling means is a fuel supply device of a direct carbon fuel cell for supplying by recycling the gas generated by the electrochemical reaction of the carbon fuel and discharged to the outside of the anode medium.
  11. 제1 항에 있어서,The method of claim 1,
    상기 분리관의 관통구는 외측으로 상승하는 경사를 갖도록 형성되는 직접탄소 연료전지의 연료 공급 장치.The through hole of the separation pipe is a fuel supply device of a direct carbon fuel cell is formed to have a slope rising to the outside.
  12. 제1 항에 있어서,The method of claim 1,
    상기 분리관은 내벽에 내부의 유체의 흐름을 외측으로 안내하는 가이드가 상기 관통구에 접하게 형성되는 직접탄소 연료전지의 연료 공급 장치.The separator pipe is a fuel supply device for a direct carbon fuel cell is formed in the inner wall of the guide to guide the flow of the fluid to the outside in contact with the through hole.
  13. 제1 항에 있어서,The method of claim 1,
    상기 기체는 이산화탄소를 포함하는 직접탄소 연료전지의 연료 공급 장치.The gas is a fuel supply device for a direct carbon fuel cell containing carbon dioxide.
  14. 제1 항에 있어서,The method of claim 1,
    상기 연료극 매개체는 용융 탄산염을 포함하는 직접탄소 연료전지의 연료 공급 장치.The anode medium is a fuel supply device for a direct carbon fuel cell containing molten carbonate.
  15. 제1 항에 있어서,The method of claim 1,
    상기 분리관은 복수의 튜브형 셀의 둘레에 상기 내부 유로를 형성하는 직접탄소 연료전지의 연료 공급 장치.The separator pipe is a fuel supply device for a direct carbon fuel cell to form the inner passage around a plurality of tubular cells.
  16. 공기극이 내측에 형성되고 연료극이 외면에 형성되며 상기 공기극과 상기 연료극 사이에 고체산화물로 전해질이 형성되는 구조를 갖는 하나 이상의 튜브형 셀; 및At least one tubular cell having a structure in which a cathode is formed inside, a fuel electrode is formed at an outer surface, and an electrolyte is formed of a solid oxide between the cathode and the anode; And
    상기 튜브형 셀에 강제 유동되는 연료극 매개체를 공급하는 상기 제1 항 내지 상기 제15 항 중 어느 하나의 연료 공급 장치;를 포함함을 특징으로 하는 직접탄소 연료전지 시스템. And a fuel supply device according to any one of claims 1 to 15, for supplying a fuel cell medium forced to the tubular cell.
PCT/KR2013/006097 2012-07-16 2013-07-09 Fuel supplying apparatus and system for direct carbon fuel cell WO2014014228A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380037717.7A CN104471770B (en) 2012-07-16 2013-07-09 The fuel supply device of Direct Carbon Fuel Cells and system
US14/414,890 US9837675B2 (en) 2012-07-16 2013-07-09 Fuel supplying apparatus and system for direct carbon fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0077143 2012-07-16
KR1020120077143A KR101341512B1 (en) 2012-07-16 2012-07-16 Fuel supplying apparatus for dcfc and system including the same

Publications (1)

Publication Number Publication Date
WO2014014228A1 true WO2014014228A1 (en) 2014-01-23

Family

ID=49949017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006097 WO2014014228A1 (en) 2012-07-16 2013-07-09 Fuel supplying apparatus and system for direct carbon fuel cell

Country Status (4)

Country Link
US (1) US9837675B2 (en)
KR (1) KR101341512B1 (en)
CN (1) CN104471770B (en)
WO (1) WO2014014228A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128343A (en) * 1975-12-30 1978-12-05 Union Carbide Corporation Apparatus for blending granular materials
US4944598A (en) * 1989-05-10 1990-07-31 Dynamic Air Inc. Continuous flow air blender for dry granular materials
JPH06238146A (en) * 1993-02-17 1994-08-30 Toshiba Corp Agitating device
JPH0724286A (en) * 1993-07-06 1995-01-27 Kyowa Hakko Kogyo Co Ltd Agitating device
US20060234098A1 (en) * 2005-04-18 2006-10-19 Clean Coal Energy, Llc Direct carbon fuel cell with molten anode
JP2007130510A (en) * 2002-03-12 2007-05-31 Toshiro Sekine Stirring method for methane fermentation tank and methane fermentation apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090117429A1 (en) * 2007-11-06 2009-05-07 Zillmer Andrew J Direct carbon fuel cell having a separation device
CN101540411A (en) * 2009-04-15 2009-09-23 中国科学院上海硅酸盐研究所 Solid electrolyte direct carbon fuel cell
CN102290589B (en) * 2011-07-19 2013-10-30 中国科学院上海硅酸盐研究所 Cathode-supported direct carbon fuel cell
WO2013019958A1 (en) * 2011-08-02 2013-02-07 Calo Joseph M Direct carbon fuel cell system with circulating electrolyte slurry and methods of using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128343A (en) * 1975-12-30 1978-12-05 Union Carbide Corporation Apparatus for blending granular materials
US4944598A (en) * 1989-05-10 1990-07-31 Dynamic Air Inc. Continuous flow air blender for dry granular materials
JPH06238146A (en) * 1993-02-17 1994-08-30 Toshiba Corp Agitating device
JPH0724286A (en) * 1993-07-06 1995-01-27 Kyowa Hakko Kogyo Co Ltd Agitating device
JP2007130510A (en) * 2002-03-12 2007-05-31 Toshiro Sekine Stirring method for methane fermentation tank and methane fermentation apparatus
US20060234098A1 (en) * 2005-04-18 2006-10-19 Clean Coal Energy, Llc Direct carbon fuel cell with molten anode

Also Published As

Publication number Publication date
CN104471770B (en) 2017-03-15
CN104471770A (en) 2015-03-25
KR101341512B1 (en) 2013-12-13
US20150188166A1 (en) 2015-07-02
US9837675B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
CN1215592C (en) Fuel cell power generation method and system
TWI301158B (en) Hydrogen production system
WO2013154367A1 (en) Desalination and power generation method using hybrid forward osmosis and fuel cell technology, and desalination and power generation system using forward osmosis and fuel cell hybrid technology implementing the method
WO2010024577A2 (en) Floating-anode microbial fuel cell with thin-layer horizontal flow
WO2014014228A1 (en) Fuel supplying apparatus and system for direct carbon fuel cell
WO2019132606A1 (en) Fuel cell membrane humidifier capable of controlling flow direction of fluid
WO2022010104A1 (en) Water electrolysis apparatus and water electrolysis method
WO2014014174A1 (en) Fuel supplying apparatus and system for direct carbon fuel cell
TW200404381A (en) Hydrogen generating apparatus
WO2011122803A2 (en) Oxygen generating apparatus and air conditioner
WO2024005269A1 (en) Combustion system using ammonia as raw material
WO2014104732A1 (en) Separator for fuel cell, and fuel cell comprising same
WO2012015113A1 (en) Flat tubular solid oxide cell stack
WO2018088701A1 (en) Separation plate for fuel cell and fuel cell using same
WO2015093702A1 (en) Pure oxygen direct combustion system using liquid metal
WO2022097870A1 (en) Cartridge of humidifier for fuel cell and humidifier for fuel cell
WO2014181933A1 (en) Electric power generation apparatus for water tank and underflow structure system for water tank
WO2013191402A1 (en) Method for generating hydrogen and sulfuric acid from sulfur dioxide gas by using diluted gas
WO2022055125A1 (en) Purification and recirculation system and method for improving recovery efficiency of methane in biogas
WO2014061865A1 (en) Lithium air battery system
CN110255699B (en) Method for recovering hydrogen from high ammonia nitrogen waste liquid at normal temperature without external voltage
WO2016003011A1 (en) Direct carbon fuel cell system having excellent fuel efficiency
WO2020251132A1 (en) Biochar manufacturing device using combustion and heat dissipation plate
WO2019156415A1 (en) Aqueous secondary battery using carbon dioxide and complex system having same
WO2023136684A1 (en) Method for producing dry hydrogen from sludge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414890

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820422

Country of ref document: EP

Kind code of ref document: A1