WO2010024577A2 - Floating-anode microbial fuel cell with thin-layer horizontal flow - Google Patents

Floating-anode microbial fuel cell with thin-layer horizontal flow Download PDF

Info

Publication number
WO2010024577A2
WO2010024577A2 PCT/KR2009/004737 KR2009004737W WO2010024577A2 WO 2010024577 A2 WO2010024577 A2 WO 2010024577A2 KR 2009004737 W KR2009004737 W KR 2009004737W WO 2010024577 A2 WO2010024577 A2 WO 2010024577A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
anode
microbial fuel
layer
cathode
Prior art date
Application number
PCT/KR2009/004737
Other languages
French (fr)
Korean (ko)
Other versions
WO2010024577A3 (en
Inventor
송영채
유규선
이송근
Original Assignee
한국해양대학교 산학협력단
전주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양대학교 산학협력단, 전주대학교 산학협력단 filed Critical 한국해양대학교 산학협력단
Publication of WO2010024577A2 publication Critical patent/WO2010024577A2/en
Publication of WO2010024577A3 publication Critical patent/WO2010024577A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention is to stabilize the liquid substances containing organic matter, such as sewage, wastewater, etc., and at the same time to obtain a high yield of continuous power therefrom, the anode, water surface immersed in the anaerobic part, wastewater flowing horizontally thin in the anaerobic state
  • It relates to a surface portion positive electrode microbial fuel cell having a horizontal flow of a positive electrode floating in the, the electrode portion consisting of a separation layer of the negative electrode and the positive electrode, and the outlet portion.
  • a microbial fuel cell is a device that directly converts chemical energy contained in organic matter into electrical energy using microorganisms.
  • a microbial fuel cell has an anaerobic cathode reaction tank carrying a cathode and an anode and anode reactor carrying an electron acceptor or oxidant such as oxygen, an electrolyte and a separation layer between the anode and the cathode, and an external circuit connecting the cathode and the anode. It consists of a load connected to a circuit.
  • the anode uses carbon materials such as graphite, which have good electrical conductivity and are not oxidized.
  • the anode uses graphite loaded with a catalyst such as platinum or the like to grow microorganisms in graphite felt without catalyst. It has also been reported to use bioanodes that allow microorganisms to act as catalysts.
  • expensive proton exchange membranes have been used in the separation layer to minimize oxygen diffusion from the anode to the cathode and to selectively transfer only protons from the cathode to the anode.
  • liquid materials such as wastewater containing organic matter are usually injected into an anaerobic cathodic reactor, where microorganisms decompose organic matter to produce electrons and protons.
  • microorganisms in the cathode reaction tank are electrochemically active, and transfer the produced electrons to the cathode.
  • the electrons transferred to the cathode move to the anode through a circuit connected to the cathode, and in this process, electrical energy can be recovered from a load directly connected to an external circuit.
  • protons generated by the decomposition of organic matter by microorganisms move directly to the anode through the electrolyte and separation layer between the anode and the cathode, and react with electron acceptors such as oxygen, iron, and iron cyanide, which are transferred through the circuit at the anode. Water is produced to complete the reaction.
  • the injected wastewater becomes an electrolyte.
  • an example of a reaction occurring in a conventional microbial fuel cell using oxygen as an electron acceptor is an example of a reaction occurring in a conventional microbial fuel cell using oxygen as an electron acceptor.
  • the performance of microbial fuel cells is typically i) decomposition of organics by microorganisms at the negative electrode and generation of electrons and protons, ii) transfer of electrons generated at the negative electrode, iii) transfer of protons to the positive electrode through the electrolyte and proton exchange membranes. And iv) water production by the reaction of protons, electrons and oxygen at the anode and the shape of the microbial fuel cell that directly affects these factors.
  • the efficiency of the microbial fuel cell has been steadily improved by improving the material of the parts constituting the microbial fuel cell, such as a positive electrode and a negative electrode.
  • the preferred shape of the microbial fuel cell should not only be able to continuously maintain high performance for a long time in power generation and stabilization of organic matter, but also should be easy to maintain and scale up and easily applicable to large-scale wastewater treatment sites.
  • the air cathode single reactor microbial fuel cell which has been mainly studied, is a tubular or plate-shaped vertical type, in which a cathode is used as a structure filled with electrode material, and a tubular or plate-shaped vertical wall structure exposed to air is used as an anode.
  • a cathode is used as a structure filled with electrode material
  • a tubular or plate-shaped vertical wall structure exposed to air is used as an anode.
  • the present invention is to solve the problems of the prior art as described above, in the present invention, flexible, vertical air to easily apply the results of research on the various influence factors and materials on the performance of the microbial fuel cell It is easy to maintain and improve efficiency by controlling the shortcomings such as leakage phenomenon and crystal formation that occur in air anode of positive electrode microbial fuel cell, and it can maximize the efficiency by controlling oxygen diffused from air cathode to cathode, and easily scale up wastewater It is an object of the present invention to provide a microbial fuel cell capable of producing a high yield of electric power while being able to efficiently and continuously process organic-containing liquid materials in a continuous and semi-continuous manner.
  • the negative electrode is maintained in the anaerobic state, the negative electrode is horizontally immersed in the lower end of the negative electrode reaction tank, the negative electrode is formed on the upper end of the negative electrode A separation layer formed of a water layer so as to be spaced apart from the, and is formed on the upper end of the separation layer and an electrode portion including one side of the electrode comprising an anode forming a floating state in the horizontal direction in contact with the air layer.
  • the sleep-floating positive electrode microbial fuel cell of the present invention (hereinafter referred to as "microbial fuel cell”) will be described in detail with reference to the drawings.
  • the microbial fuel cell 1 of the present invention includes an anaerobic part 10 and an electrode. It consists of a part 20 and the outlet part 30.
  • 1 to 3 is a longitudinal cross-sectional view of the microbial fuel cell of the present invention, the name of each part is as follows.
  • the anaerobic part 10 is positioned at the front end of the electrode part 20 and serves to reduce dissolved oxygen and oxides such as sewage, wastewater, and liquid waste flowing into the electrode part 20, and the outlet part 30. Is located at the rear end of the electrode unit 20 is a passage through which the effluent flowing out of the electrode unit 20 is discharged.
  • liquid substances containing organic substances such as sewage, wastewater and liquid waste
  • the anaerobic section 10 aims to reduce the dissolved oxygen contained in the influent wastewater as much as possible.
  • the anaerobic biofilter or air allows the microorganisms to grow on the surface of the media without supplying air after filling the media.
  • a biological method of removing dissolved oxygen contained in the influent wastewater by growing suspended microorganisms without supply is advantageous in terms of cost.
  • the dissolved oxygen of the influent wastewater may be a chemical method using a reducing agent or a physical degassing method of blowing inert gas such as nitrogen.
  • the anaerobic portion 10 may be omitted when the temperature of the liquid substance containing the organic material is 30 degrees Celsius (° C.) or more or the concentration of dissolved oxygen is lower than 2 mg / L.
  • the electrode portion the influent nitrate ion (NO 3 -) when the oxides such as sulfate ion (SO 4 -2), ferric (Fe +3) contained because it may degrade the performance of a microbial fuel cell an anaerobic It is advantageous to remove these substances from the anaerobic section 10 which are operated in the state.
  • the outflow water of the anaerobic part 10 is equally distributed and introduced into the cathode reaction tank 23 through the distributor 26 installed at the inlet of the cathode reaction tank 23 of the electrode part 20.
  • the electrode unit 20 includes a cathode reaction tank 23 in which a thin plate-shaped cathode 22 is horizontally installed on the bottom of the sealed electrode unit 20 so as not to be exposed to air, and immersed in a liquid material containing an anaerobic organic substance.
  • the cathode 21 and the cathode 22 includes a separation layer (W) to be spaced apart at a predetermined distance on the cathode, the separation layer (W) is such that the protons generated in the cathode 22 is transferred to the anode 21
  • the electrolyte is usually composed of a water layer.
  • An anode 23 is formed on the upper surface of the separation layer W.
  • the anode 21 is configured to float on the surface in the horizontal direction so that one side thereof is directly exposed to air.
  • the inlet of the cathode reactor 23 includes a distributor 26 for evenly distributing the effluent of the anaerobic portion 10 to the cathode reactor (23).
  • the outlet 30 has a structure for evenly discharging the effluent passing through the cathode reaction tank 23 of the electrode 20, such as a wear.
  • the negative electrode 22 of the microbial fuel cell according to the present invention should be a thin film within several centimeters (cm), which should be small in resistance, resistant to oxidation, and capable of providing a large specific surface area.
  • Preferred cathodes 22 have a thickness of 0.01 to 5 millimeters (mm). This is for efficient electron transfer generated by decomposition of organic materials.
  • graphite or carbon materials having a large specific surface area such as graphite felt and porous carbon fibers, may be used.
  • graphite or other carbon material carrying a catalyst material such as tungsten may be used to promote electron transfer by microorganisms.
  • Separation layer (W) on the upper side of the cathode 22 is to prevent the short circuit by separating the cathode 22 and the anode 21, and should not interfere with the transfer of protons from the cathode 22 to the anode 21 as much as possible, It should be possible to minimize the diffusion of oxygen from the anode 21 to the cathode 22.
  • the separation layer (W) is usually composed of a water layer, and may be additionally inserted into the separation plate 24 as necessary.
  • a nonwoven fabric made of a polymer material such as polypropylene, polyethylene, polyvinyl alcohol, etc. may be used in addition to the expensive cation exchange membrane commonly used.
  • the separation plate 24 in the separation layer W may be omitted.
  • the anode 21 provided on the water surface above the separation layer W may use a carbon material such as graphite fabric, graphite paper, graphite felt, or RVC at the cathode.
  • a carbon material such as graphite fabric, graphite paper, graphite felt, or RVC at the cathode.
  • one side of the anode 21 is in contact with the water surface and the other side is installed to float in the horizontal direction to be in direct contact with the air.
  • a catalyst such as platinum on the surface of the anode 21 in contact with the water surface, and the surface directly in contact with a gaseous phase such as air from the air 21 in the air.
  • the electrode made of a carbon material such as porous graphite is used as the anode on the water layer and the contact surface of the anode is maintained in a wet state, and the microbial membrane layer is attached to the microorganism attached and grown, the reaction of the anode 21 to the microorganism It serves as a microbial anode 25 promoted by, and also has the effect of blocking oxygen diffused from the anode to the cathode.
  • the microbial anode 25 made of a porous carbon material and the platinum-supported anode 21 which are kept in a wet state are installed at the same time in order on the separation layer.
  • the negative electrode reaction tank 23 carrying the negative electrode 22 is preferably to have a rectangular shape longer in the longitudinal direction than the wide direction, the liquid material containing organic matter, such as waste water is a thin layer of the negative electrode reaction tank (23) The nature of the flow during passage has a strong plug flow mode.
  • the inflow liquid material introduced into the cathode reaction tank 23 is decomposed by the microorganisms attached to the anode 22 while horizontally flowing through the thin layered anode reaction vessel 23 to generate electrons and protons.
  • the electrons move to the anode 21 through a circuit in which a load such as a resistor is connected in series, and the protons move to the upper anode 21 through the separation layer W.
  • a load such as a resistor is connected in series
  • the protons move to the upper anode 21 through the separation layer W.
  • electrons, protons, and oxygen diffused from the air react to form water. Power is then recovered from the load connected to the circuit.
  • the wastewater that has passed through the anaerobic part 10 for removing dissolved oxygen contained in the inflow wastewater and the distributor 26 for uniformly supplying the inflow wastewater to the electrode portion 20 is a cathode of the thin layer. Passes horizontally through the cathode reaction tank of the electrode portion 20 consisting of the reaction vessel 23 and the cathode 22, and the separation layer (W) and the surface-floating air anode 21, consisting of the outlet portion 30 of the weir structure It provides a method for producing electricity from the chemical energy inherent in organic materials using a microbial fuel cell system characterized in that the stabilization treatment of the liquid containing organic materials.
  • the organic matter content of the organic matter-containing liquid substance that can be treated by the sleep-rich bipolar microbial fuel cell according to the present invention is not limited, but when the organic matter content is higher than 10,000 mg / L based on the chemical oxygen demand, the power yield is generated due to excessive hydrogen generation. This may decrease. In this case, special operating methods such as effluent recirculation are necessary.
  • the hydraulic residence time of the influent wastewater to the cathode reactor 23 is a function of the organic matter content contained in the influent wastewater, typically 0.1 to 48 hours. If the chemical oxygen demand of the influent wastewater is about 150 mg / L, it is preferably 0.2 to 6.0 hours.
  • the surface-floating air cathode microbial fuel cell having a thin horizontal flow according to the present invention can be stacked in order to connect a plurality of cells in series and in parallel in order to achieve large power production and water quality of treated water meeting the effluent standard.
  • the wastewater is treated by using the surface floating anode anode microbial fuel cell system having a horizontal flow of thin layers, it is possible to achieve high organic matter treatment efficiency and high power yield.
  • the surface floating bipolar microbial fuel cell system having a thin horizontal flow according to the present invention is capable of continuous or semi-continuous operation without reducing power yield for a long time, and is easy to maintain and maintain without a problem such as leakage during operation. Do.
  • the surface-floating positive electrode microbial fuel cell having a thin layer horizontal flow according to the present invention can achieve a high yield of power and the quality of treated water meeting effluent standards by connecting a plurality of stacked and connected in series.
  • 1 to 3 are longitudinal cross-sectional views of the surface-floating anode microbial fuel cell having a horizontal flow of the present invention.
  • the surface-floating air cathode microbial fuel cell having a thin layer horizontal flow used in the embodiment of the present invention was composed of an anaerobic part, an electrode part, and an outlet part.
  • the anaerobic section was filled with porous ceramics and operated in the form of a biofiltration phase.
  • the electrode section was a reactor with a width of 14 cm and a length of 47 cm and 0.5 cm, and was used as a cathode by installing a 0.2 cm thick graphite felt plate at the bottom thereof.
  • the prepared graphite cloth was used as an anode.
  • a polypropylene nonwoven fabric having a thin plate of chitosan and zeolite mixture was installed as a separator between the anode and the cathode.
  • the anaerobic sludge was planted in the microbial fuel cell, and artificial wastewater prepared using glucose was continuously injected at a hydraulic residence time of 1 hour and operated at room temperature of 20 to 22 degrees Celsius.
  • the COD of the artificial wastewater was about 172 mg / L, with a salinity of 13% and a pH of 7.81.
  • the COD removal rate was about 43.2%
  • the maximum voltage and current were 0.287V and 49mA
  • the power yield per unit surface area of the negative electrode was 213mW / m2 2, and 42.8W / m 3 per unit volume.
  • the membrane was used as a polypropylene nonwoven fabric, and the outer surface of the anode was thinly coated with Teflon to form an air diffusion layer.
  • the same artificial wastewater as in Example 1 was operated under the same conditions. At this time, the COD removal rate was about 42.5%, which was not significantly different from that of Example 1, but the maximum voltage and current were 0.324V and 64.5mA. Compared with Example 1, the yield was higher.
  • a polypropylene nonwoven fabric was used as a separator, and a graphite felt having a thickness of about 2 millimeters (mm) was placed on the separator layer. It was installed and kept in a wet state and used as a microbial anode.
  • the platinum coated part of the platinum coated carbon fabric anode was installed on the upper side so as to be in contact with the microbial anode and the other side was in contact with the atmosphere.
  • the prepared microbial fuel cell was operated under the same conditions with the same artificial wastewater as in Example 1. At this time, the COD removal rate was about 45%, which was slightly increased from Examples 1 to 2.
  • the maximum voltage and current were 0.36V and 68mA, and the power yield per unit surface area of the cathode was 372 mW / m 2, and 74.4 W / m 3 per unit volume, which was higher than those in Examples 1 to 2.

Abstract

The present invention relates to a floating-anode microbial fuel cell. More specifically, the present invention relates to a microbial fuel cell having an anaerobic unit, an electrode unit and an outflow unit. In this microbial fuel cell, the electrode unit includes an anode disposed to float horizontally on surface water and a cathode provided horizontally at the bottom of a cathode-reaction tank, and a separating layer for separating the cathode and the anode. The microbial fuel cell is characterised in that the cathode is immersed in, by way of example, a liquid substance containing organic matter and sewage or waste water flowing in a thin fashion horizontally in an anaerobic state, and the anode is formed in such a way that it floats horizontally on the water surface with one of its surfaces in contact with an air layer, while the other surface is in contact with the water layer on the water surface. The microbial fuel cell according to the present invention is advantageous in that it can continuously produce electric power with a high yield from the liquid substance containing organic matter such as sewage or waste water, and it allows the organic matter to be stabilised.

Description

박층의 수평흐름을 가진 수면부유양극 미생물연료전지Sleep Floating Anode Microbial Fuel Cell with Thin Horizontal Flow
본 발명은 하수, 폐수 등과 같이 유기물을 함유한 액상물질을 안정화시키는 동시에 이로부터 연속적으로 높은 수율의 전력을 얻을 수 있도록 한 것으로, 혐기부, 혐기성상태에서 수평으로 얇게 흐르는 폐수 등에 침지된 음극, 수면에 부유한 양극, 상기 음극과 양극의 분리층 등으로 이루어진 전극부, 및 유출부를 포함하여 구성되는 박층의 수평흐름을 가진 수면부유양극 미생물연료전지에 관한 것이다.The present invention is to stabilize the liquid substances containing organic matter, such as sewage, wastewater, etc., and at the same time to obtain a high yield of continuous power therefrom, the anode, water surface immersed in the anaerobic part, wastewater flowing horizontally thin in the anaerobic state It relates to a surface portion positive electrode microbial fuel cell having a horizontal flow of a positive electrode floating in the, the electrode portion consisting of a separation layer of the negative electrode and the positive electrode, and the outlet portion.
미생물연료전지는 유기물에 함유된 화학에너지를 미생물을 이용하여 전기에너지로 직접 전환하는 장치이다. 통상 미생물연료전지는 음극을 담지하고 있는 혐기성상태의 음극반응조와 산소 등의 전자수용체 또는 산화제를 담지하고 있는 양극 및 양극반응조, 양극과 음극 사이의 전해질 및 분리층, 음극과 양극을 연결한 외부회로, 회로에 연결된 부하로 구성된다. A microbial fuel cell is a device that directly converts chemical energy contained in organic matter into electrical energy using microorganisms. In general, a microbial fuel cell has an anaerobic cathode reaction tank carrying a cathode and an anode and anode reactor carrying an electron acceptor or oxidant such as oxygen, an electrolyte and a separation layer between the anode and the cathode, and an external circuit connecting the cathode and the anode. It consists of a load connected to a circuit.
통상 음극으로는 전기전도도가 좋고 산화되지 않는 흑연 등의 탄소물질을 사용하고 있으며, 양극은 산화력을 개선하기 위하여 백금 등의 촉매가 담지된 흑연을 사용하거나, 촉매가 없는 흑연펠트 등에 미생물을 성장하도록 하고 미생물이 촉매역할을 하도록 하는 생물양극을 사용하는 방법도 보고되고 있다. 또한, 분리층에는 양극에서 음극으로의 산소확산을 최소화하고 음극에서 양극으로 양성자만 선택적으로 전달하기 위한 고가의 양성자 교환막을 사용하여 왔다.In general, the anode uses carbon materials such as graphite, which have good electrical conductivity and are not oxidized. The anode uses graphite loaded with a catalyst such as platinum or the like to grow microorganisms in graphite felt without catalyst. It has also been reported to use bioanodes that allow microorganisms to act as catalysts. In addition, expensive proton exchange membranes have been used in the separation layer to minimize oxygen diffusion from the anode to the cathode and to selectively transfer only protons from the cathode to the anode.
미생물연료전지에서 통상 유기물을 함유한 폐수 등의 액상물질을 혐기성상태의 음극반응조로 주입하면 미생물이 유기물을 분해하여 전자와 양성자를 생산한다. 이때 음극반응조의 미생물은 대부분 전기화학적으로 활성을 가지고 있으며, 생산된 전자를 음극으로 전달한다. 음극에 전달된 전자는 음극에 접속된 회로를 통하여 양극으로 이동하며, 이 과정에 외부회로에 직결된 부하에서 전기에너지를 회수할 수 있다. 한편, 미생물에 의한 유기물 분해에 의해 생성된 양성자는 양극과 음극사이의 전해질 및 분리층을 통하여 양극으로 직접 이동하며, 양극에서 회로를 통하여 전달되어온 전자와 산소, 6시안화철 등의 전자수용체와 반응하여 물을 생성하여 반응이 완결된다. In microbial fuel cells, liquid materials such as wastewater containing organic matter are usually injected into an anaerobic cathodic reactor, where microorganisms decompose organic matter to produce electrons and protons. At this time, most of the microorganisms in the cathode reaction tank are electrochemically active, and transfer the produced electrons to the cathode. The electrons transferred to the cathode move to the anode through a circuit connected to the cathode, and in this process, electrical energy can be recovered from a load directly connected to an external circuit. On the other hand, protons generated by the decomposition of organic matter by microorganisms move directly to the anode through the electrolyte and separation layer between the anode and the cathode, and react with electron acceptors such as oxygen, iron, and iron cyanide, which are transferred through the circuit at the anode. Water is produced to complete the reaction.
폐수처리를 위한 미생물연료전지에서는 주입한 폐수가 전해질이 된다. 아래는 산소를 전자수용체로 사용하는 통상의 미생물연료전지에서 일어나는 반응의 예이다. In a microbial fuel cell for wastewater treatment, the injected wastewater becomes an electrolyte. Below is an example of a reaction occurring in a conventional microbial fuel cell using oxygen as an electron acceptor.
음극반응 : 유기물 --> 전자(e-) + 양성자(H+) + 이산화탄소(CO2)Cathode reaction: organic matter -> E (e -) + proton (H +) + carbon dioxide (CO 2)
양극반응 : 전자(e-) + 양성자(H+) + 산소(O2) --> 물(H2O)Anode reaction: electron (e -) + proton (H +) + oxygen (O 2) -> water (H 2 O)
통상 미생물연료전지의 성능은 i) 음극에서 미생물에 의한 유기물의 분해 및 전자와 양성자의 생성, ii) 음극으로 생성된 전자의 전달, iii) 전해질 및 양성자교환막을 통과하여 양극으로 전달되는 양성자의 이동, 그리고 iv) 양극에서의 양성자와 전자 그리고 산소의 반응에 의한 물생성 반응과 이러한 인자들에 직접영향을 미치는 미생물연료전지의 형상에 의해 결정된다. The performance of microbial fuel cells is typically i) decomposition of organics by microorganisms at the negative electrode and generation of electrons and protons, ii) transfer of electrons generated at the negative electrode, iii) transfer of protons to the positive electrode through the electrolyte and proton exchange membranes. And iv) water production by the reaction of protons, electrons and oxygen at the anode and the shape of the microbial fuel cell that directly affects these factors.
따라서, 그동안 미생물연료전지의 성능을 향상시키기 위하여 성능에 미치는 상기 영향인자들에 대한 연구와 더불어 미생물연료전지의 형상설계에 대한 연구들이 진행되어 왔다. Therefore, researches on the shape design of the microbial fuel cell have been conducted along with the study of the above factors affecting the performance in order to improve the performance of the microbial fuel cell.
과거에는 산소, 6시안화철 등의 전자수용체를 담지하고 있는 액상반응조를 사용하는 양극반응조에 대한 연구가 주로 많았으나, Liu 등(2004)은 양극을 공기에 직접 노출시키는 공기양극을 사용함으로서 미생물연료전지의 성능을 개선할 수 있다고 보고하였다. 공기양극을 사용하면 양극반응조를 생략할 수 있어 단위부피당 전력수율을 증가시킬 수 있는 장점이 있다. Jang 등(2004)은 음극에서 양극으로 양성자의 이송을 원활하게 하기 위하여 양성자교환막이 필요 없는 미생물 연료전지를 제안하였다. 또한, Cheng 등(2006)은 양성자 교환막을 사용하지 않는 미생물연료전지에서 음극과 양극 사이의 가격을 조절함으로서 음극으로 확산되는 산소를 최소화시키고 음극에서 양극으로 양성자의 이송을 원활하게 하여 미생물연료저지의 효율을 개선할 수 있다고 보고하였다. In the past, much research has been conducted on the anode reactor using a liquid phase reaction tank carrying an electron acceptor such as oxygen and iron hexacyanide.However, Liu et al. (2004) used microbial fuels by using an air anode that directly exposes the anode to air. It is reported that the performance of the battery can be improved. The use of an air anode allows the anode reactor to be omitted, thereby increasing the power yield per unit volume. Jang et al. (2004) proposed a microbial fuel cell that does not require a proton exchange membrane to facilitate the transfer of protons from the cathode to the anode. In addition, Cheng et al. (2006) control the price between the anode and the anode in a microbial fuel cell that does not use a proton exchange membrane to minimize the oxygen diffused to the cathode and facilitate the transfer of protons from the cathode to the anode to facilitate the It is reported that the efficiency can be improved.
그러나, 미생물연료전지의 효율은 양극과 음극 등 미생물연료전지를 구성하는 부분들의 재료를 개선함에 의하여 꾸준히 향상되고 있다. However, the efficiency of the microbial fuel cell has been steadily improved by improving the material of the parts constituting the microbial fuel cell, such as a positive electrode and a negative electrode.
바람직한 미생물연료전지의 형상은 전력생산 및 유기물안정화에 있어서 높은 성능을 연속적으로 장시간 유지할 수 있어야 할 뿐만 아니라 유지관리가 쉽고 규모를 확대하여 대규모 폐수처리 현장에 쉽게 적용할 수 있어야 한다. The preferred shape of the microbial fuel cell should not only be able to continuously maintain high performance for a long time in power generation and stabilization of organic matter, but also should be easy to maintain and scale up and easily applicable to large-scale wastewater treatment sites.
미생물연료전지의 형상설계연구는 전통적으로 양극반응조와 음극반응조로 구성된 이중반응조(dual chamber) 미생물연료전지를 중심으로 회분식 실험에 의해 진행되어 왔으나 최근 공기양극에 대한 연구가 본격화되면서 음극반응조만 사용하는 단일반응조 미생물연료전지에 대한 연구가 활발히 진행되고 있다. 이것은 공기양극을 사용하는 단일반응조 미생물연료전지가 폐수의 연속주입 및 운전이 용이하며, 상기한 이중반응조 미생물연료전지에 비해 상대적으로 실용화하기 쉬운 특징을 가지기 때문이다. The shape design studies of microbial fuel cells have been traditionally conducted by batch experiments centered on dual chamber microbial fuel cells, which consist of a cathode reactor and a cathode reactor. Research on single reactor microbial fuel cells is being actively conducted. This is because a single reactor microbial fuel cell using an air anode is easy to continuously inject and operate wastewater, and has a relatively easy to practical use compared to the above double reactor microbial fuel cell.
한편, 그동안 주로 연구된 공기양극 단일반응조 미생물연료전지는 관상 또는 판상의 수직형으로서 내부가 전극재료로 채워진 구조를 음극을 사용하며, 공기에 노출된 관상 또는 판상의 수직벽면 구조를 양극으로 사용하는 형태였다(Cheng 등 2006; You 등, 2007). 상기의 경우 음극반응조 내의 폐수 등의 액상물질(전해질)의 정수압력이 양극에 그대로 전달되기 때문에 공기에 노출된 양극으로 액상물질이 스며 나오는 누수현상이 발생하였다. 또한, Kim 등(2007)은 양성자 이외의 양이온이 양극으로 확산되어 양극 표면에서 탄산염 등과 결합하여 결정을 형성하기 때문에 장시간 운전시 양극의 효율이 점차 감소하는 문제가 있음을 보고하였다. 따라서, 공기양극을 사용하는 수직형 단일반응조 미생물연료전지는 누수를 막기 위하여 양극표면을 방수처리하거나 양이온교환막을 양극에 접합하는 등의 방법을 사용하여 왔다(Cheng 등, 2006; Pham 등, 2005). Meanwhile, the air cathode single reactor microbial fuel cell, which has been mainly studied, is a tubular or plate-shaped vertical type, in which a cathode is used as a structure filled with electrode material, and a tubular or plate-shaped vertical wall structure exposed to air is used as an anode. Form (Cheng et al. 2006; You et al., 2007). In the above case, since the hydrostatic pressure of the liquid material (electrolyte) such as wastewater in the cathode reaction tank is transmitted to the anode as it is, a leakage phenomenon occurs in which the liquid material leaks into the anode exposed to air. In addition, Kim et al. (2007) report that there is a problem that the efficiency of the anode gradually decreases during long time operation because cations other than protons diffuse into the anode and form crystals by combining with carbonates on the surface of the anode. Therefore, vertical single reactor microbial fuel cells using air anodes have been used to waterproof the anode surface or bond a cation exchange membrane to the anode to prevent leakage (Cheng et al., 2006; Pham et al., 2005). .
그러나, 상기한 수직형 공기양극 단일반응조 미생물연료전지에서는 누수현상 및 양극표면에 형성되는 결정으로 인한 양극의 효율저하를 근본적으로 해결할 수 없었으며, 장시간 운전하거나 수리, 청소 등을 위하여 해체하는 경우 어려움이 많았다. 또한, 기존에 연구되어온 공기양극 단일반응조 미생물연료전지의 다른 문제점은 양극으로부터 음극으로 확산되는 산소를 제어하기 어려워 전력수율 향상에 한계가 있다는 것이다. However, in the vertical air cathode single reactor microbial fuel cell, the efficiency of the anode due to leakage and crystals formed on the surface of the anode could not be fundamentally solved, and it was difficult to dismantle for long time operation, repair, or cleaning. There were a lot. In addition, another problem of the air anode single reactor microbial fuel cell that has been studied in the past is that it is difficult to control the oxygen diffusion from the anode to the cathode has a limit in improving the power yield.
이에 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하고자 한 것으로서, 본 발명에서는 미생물연료전지의 성능에 대한 각종 영향인자 및 재료에 대한 연구결과들을 쉽게 적용할 수 있도록, 유연하고, 수직형 공기양극 미생물연료전지의 공기양극에서 발생하는 누수현상이나 결정생성 등의 단점들을 개선하여 유지관리가 쉽고, 공기양극으로부터 음극으로 확산되는 산소를 제어하여 효율을 극대화할 수 있으며, 쉽게 규모를 확대하여 폐수처리 현장에서 사용할 수 있으므로, 효율적으로 유기물함유 액상물질을 연속식 및 반연속식으로 처리하는 동시에 높은 수율의 전력을 생산할 수 있는 미생물연료전지를 제공하고자 함에 그 목적이 있다.Accordingly, the present invention is to solve the problems of the prior art as described above, in the present invention, flexible, vertical air to easily apply the results of research on the various influence factors and materials on the performance of the microbial fuel cell It is easy to maintain and improve efficiency by controlling the shortcomings such as leakage phenomenon and crystal formation that occur in air anode of positive electrode microbial fuel cell, and it can maximize the efficiency by controlling oxygen diffused from air cathode to cathode, and easily scale up wastewater It is an object of the present invention to provide a microbial fuel cell capable of producing a high yield of electric power while being able to efficiently and continuously process organic-containing liquid materials in a continuous and semi-continuous manner.
상기한 목적을 달성하기 위한 일례로서, 본 발명의 미생물연료전지는, 혐기성 상태로 유지되는 음극반응조와, 상기 음극반응조의 하단부에 수평방향으로 침지된 음극, 상기 음극의 상단에 형성되며 음극이 양극과 이격되도록 물층으로 형성된 분리층, 및 상기 분리층의 상단부에 형성되며 그 일측면이 공기층과 접하여 수면에 수평방향으로 부유상태를 이루는 양극을 포함하여 구성되는 전극부를 포함하여 이루어지는 것을 특징으로 한다.As an example for achieving the above object, the microbial fuel cell of the present invention, the negative electrode is maintained in the anaerobic state, the negative electrode is horizontally immersed in the lower end of the negative electrode reaction tank, the negative electrode is formed on the upper end of the negative electrode A separation layer formed of a water layer so as to be spaced apart from the, and is formed on the upper end of the separation layer and an electrode portion including one side of the electrode comprising an anode forming a floating state in the horizontal direction in contact with the air layer.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the configuration shown in the drawings are only the most preferred embodiment of the present invention, and do not represent all of the technical idea of the present invention, these can be replaced at the time of the present application It should be understood that there may be various equivalents and variations.
이하 본 발명의 수면부유양극 미생물연료전지(이하,“미생물연료전지”이라 함)를 도면에 의거하여 구체적으로 설명하고자 하는 바, 본 발명의 미생물연료전지(1)는 혐기부(10)와 전극부(20) 그리고 유출부(30)로 구성된다. 도 1 내지 3은 본 발명의 미생물연료전지의 종단면도이며, 각부의 명칭은 다음과 같다.Hereinafter, the sleep-floating positive electrode microbial fuel cell of the present invention (hereinafter referred to as "microbial fuel cell") will be described in detail with reference to the drawings. The microbial fuel cell 1 of the present invention includes an anaerobic part 10 and an electrode. It consists of a part 20 and the outlet part 30. 1 to 3 is a longitudinal cross-sectional view of the microbial fuel cell of the present invention, the name of each part is as follows.
(10) 혐기부; (20) 전극부; (30) 유출부; (22) 음극; (23) 음극반응조; (21) 양극; (25) 미생물양극; (W) 분리층; (24) 분리판; (26) 분배기 및 그 외 웨어, 부하, 회로(10) anaerobic department; (20) electrode portions; 30 outlet; (22) a cathode; (23) a cathode reactor; (21) an anode; (25) microbial anodes; (W) separation layer; (24) separators; (26) Dividers and other weirs, loads, and circuits
혐기부(10)는 전극부(20)의 전단에 위치하여 전극부(20)로 유입되는 하수, 폐수 및 액상 폐기물 등의 용존산소와 산화물질을 저감시키는 역할을 수행하며, 유출부(30)는 전극부(20)의 후단에 위치하며 전극부(20)에서 유출되는 유출수가 배출되는 통로이다.The anaerobic part 10 is positioned at the front end of the electrode part 20 and serves to reduce dissolved oxygen and oxides such as sewage, wastewater, and liquid waste flowing into the electrode part 20, and the outlet part 30. Is located at the rear end of the electrode unit 20 is a passage through which the effluent flowing out of the electrode unit 20 is discharged.
즉, 하수, 폐수 및 액상폐기물 등과 같이 유기물을 포함하고 있는 액상물질은 혐기부(10)로 유입되어 유입 폐수에 함유된 용존산소가 제거된다. 혐기부(10)는 유입 폐수에 함유된 용존산소를 최대한 감소시킴을 목적으로 하며, 여재를 충진한 뒤 공기를 공급하지 않고 여재표면에 미생물이 성장하도록 하는 혐기성바이오필터(Anoxic biofilter)나 공기를 공급하지 않고 부유미생물을 성장시킴으로서 유입 폐수에 함유된 용존산소를 제거하는 생물학적 방법이 비용적인 측면에서 유리하다.That is, liquid substances containing organic substances, such as sewage, wastewater and liquid waste, are introduced into the anaerobic unit 10 to remove dissolved oxygen contained in the inflow wastewater. The anaerobic section 10 aims to reduce the dissolved oxygen contained in the influent wastewater as much as possible. The anaerobic biofilter or air allows the microorganisms to grow on the surface of the media without supplying air after filling the media. A biological method of removing dissolved oxygen contained in the influent wastewater by growing suspended microorganisms without supply is advantageous in terms of cost.
한편, 유입 폐수의 용존산소는 환원제를 사용하는 화학적방법이나 질소 등의 불활성기체를 불어넣는 물리적 탈기법이 사용될 수도 있다. On the other hand, the dissolved oxygen of the influent wastewater may be a chemical method using a reducing agent or a physical degassing method of blowing inert gas such as nitrogen.
또한, 유기물을 함유한 액상물질의 온도가 섭씨 30도(℃) 이상이거나 용존산소의 농도가 2mg/L 이하로 낮을 경우 혐기부(10)를 생략할 수 있다. 그러나, 전극부 유입수에 질산이온(NO3 -), 황산이온(SO4 -2), 제2철(Fe+3) 등의 산화물이 함유된 경우 미생물연료전지의 성능을 저하시킬 우려가 있으므로 혐기성 상태로 운전되는 혐기부(10)에서 이들 물질을 제거하는 것이 유리하다. 혐기부(10)의 유출수는 전극부(20)의 음극반응조(23) 입구에 설치된 분배기(26)를 통하여 음극반응조(23)로 균등하게 분배 유입된다. In addition, the anaerobic portion 10 may be omitted when the temperature of the liquid substance containing the organic material is 30 degrees Celsius (° C.) or more or the concentration of dissolved oxygen is lower than 2 mg / L. However, in the electrode portion the influent nitrate ion (NO 3 -) when the oxides such as sulfate ion (SO 4 -2), ferric (Fe +3) contained because it may degrade the performance of a microbial fuel cell an anaerobic It is advantageous to remove these substances from the anaerobic section 10 which are operated in the state. The outflow water of the anaerobic part 10 is equally distributed and introduced into the cathode reaction tank 23 through the distributor 26 installed at the inlet of the cathode reaction tank 23 of the electrode part 20.
전극부(20)는 얇은 판상의 음극(22)을 공기에 노출되지 않도록 밀폐된 전극부(20) 바닥에 수평으로 설치하여 혐기성상태의 유기물을 함유한 액상물질에 침지시킨 음극반응조(23)와 음극 상부에 양극(21)과 음극(22)이 일정거리로 이격되게 하는 분리층(W)을 포함하는데, 분리층(W)은 음극(22)에서 생성된 양성자가 양극(21)으로 전달되게하는 전해질로서 통상 물층을 구성한다. 분리층(W)의 위쪽 수면에는 양극(23)이 형성되는데, 양극(21)은 수면에 수평방향으로 부유하면서 그 일측면이 공기에 직접 노출되도록 구성된다. 음극반응조(23)의 입구에는 혐기부(10)의 유출수를 음극반응조(23)에 균등히 분배하기 위한 분배기(26)를 포함한다. The electrode unit 20 includes a cathode reaction tank 23 in which a thin plate-shaped cathode 22 is horizontally installed on the bottom of the sealed electrode unit 20 so as not to be exposed to air, and immersed in a liquid material containing an anaerobic organic substance. The cathode 21 and the cathode 22 includes a separation layer (W) to be spaced apart at a predetermined distance on the cathode, the separation layer (W) is such that the protons generated in the cathode 22 is transferred to the anode 21 The electrolyte is usually composed of a water layer. An anode 23 is formed on the upper surface of the separation layer W. The anode 21 is configured to float on the surface in the horizontal direction so that one side thereof is directly exposed to air. The inlet of the cathode reactor 23 includes a distributor 26 for evenly distributing the effluent of the anaerobic portion 10 to the cathode reactor (23).
유출부(30)는 웨어 등과 같이 전극부(20)의 음극반응조(23)를 통과한 유출수를 균등히 배출하기 위한 구조로 구성된다. The outlet 30 has a structure for evenly discharging the effluent passing through the cathode reaction tank 23 of the electrode 20, such as a wear.
본 발명에 따른 미생물연료전지의 음극(22)은 수 센티미터(cm) 이내의 얇은 막으로서 저항이 작고 산화에 강하여야하고, 넓은 비표면적을 제공할 수 있어야 한다. 바람직한 음극(22)의 두께는 0.01 내지 5 밀리미터(mm)이다. 이것은 유기물의 분해에 의해 생성된 전자전달이 효율적으로 이루어지도록 하기 위함이며, 바람직하게는 흑연펠트, 다공성탄소섬유 등 넓은 비표면적을 가진 흑연물질 또는 탄소물질을 사용할 수 있다. 음극(22)의 재료로서 미생물에 의한 전자전달을 촉진하기 위하여 텅스텐 등의 촉매물질을 담지한 흑연 또는 기타 탄소물질을 사용할 수도 있다. 음극(22) 상부의 분리층(W)은 음극(22)과 양극(21)을 분리하여 단락을 방지하기 위한 것으로서 음극(22)으로부터 양극(21)으로 양성자의 전달을 가능한 방해하지 말아야 하며, 양극(21)에서 음극(22)으로의 산소 확산을 최소화할 수 있어야 한다. The negative electrode 22 of the microbial fuel cell according to the present invention should be a thin film within several centimeters (cm), which should be small in resistance, resistant to oxidation, and capable of providing a large specific surface area. Preferred cathodes 22 have a thickness of 0.01 to 5 millimeters (mm). This is for efficient electron transfer generated by decomposition of organic materials. Preferably, graphite or carbon materials having a large specific surface area, such as graphite felt and porous carbon fibers, may be used. As the material of the cathode 22, graphite or other carbon material carrying a catalyst material such as tungsten may be used to promote electron transfer by microorganisms. Separation layer (W) on the upper side of the cathode 22 is to prevent the short circuit by separating the cathode 22 and the anode 21, and should not interfere with the transfer of protons from the cathode 22 to the anode 21 as much as possible, It should be possible to minimize the diffusion of oxygen from the anode 21 to the cathode 22.
상기 분리층(W)은 통상 물층으로 구성되며, 필요에 따라 분리판(24)을 추가적으로 삽입할 수 있다. 분리판(24)으로는 통상 사용되는 고가의 양이온교환막 외에 폴리프로필렌, 폴리에틸렌, 폴리비닐알콜 등의 고분자물질로 이루어진 부직포도 가능하다. 그러나, 음극(22)과 양극(21) 사이의 간격을 1 센티미터(cm) 이상으로 하는 경우 분리층(W) 내의 분리판(24)의 생략도 가능하다. The separation layer (W) is usually composed of a water layer, and may be additionally inserted into the separation plate 24 as necessary. As the separator 24, a nonwoven fabric made of a polymer material such as polypropylene, polyethylene, polyvinyl alcohol, etc. may be used in addition to the expensive cation exchange membrane commonly used. However, when the distance between the cathode 22 and the anode 21 is 1 centimeter (cm) or more, the separation plate 24 in the separation layer W may be omitted.
분리층(W) 상부의 수면에 설치되는 양극(21)은 음극에서 흑연직물, 흑연종이, 흑연 펠트, RVC 등과 같은 탄소물질을 사용할 수 있다. 이때 양극(21)의 일측면은 수면과 접하고 다른 면은 공기와 직접 접촉하도록 수평방향으로 부유하도록 설치한다. 이때 수면과 접하는 부분의 양극(21)의 표면에는 상기한 양극반응을 촉진하기 위하여 백금 등의 촉매를 담지하는 것이 바람직하며, 공기 등의 기체상과 직접 접한 면은 대기 중의 공기로부터 양극(21)에 공급되는 산소량을 조절하기 위한 테프론 또는 이와 유사한 기능을 가진 물질을 이용하여 만든 공기확산층을 둘 수 있다. The anode 21 provided on the water surface above the separation layer W may use a carbon material such as graphite fabric, graphite paper, graphite felt, or RVC at the cathode. At this time, one side of the anode 21 is in contact with the water surface and the other side is installed to float in the horizontal direction to be in direct contact with the air. At this time, it is preferable to carry a catalyst such as platinum on the surface of the anode 21 in contact with the water surface, and the surface directly in contact with a gaseous phase such as air from the air 21 in the air. There may be an air diffusion layer made of Teflon or similar material to control the amount of oxygen supplied to the system.
분리층(W) 상부에 설치하는 양극(21)으로서 백금을 담지하지 않은 다공성 탄소물질을 사용하는 경우에는 양극을 습윤상태로 유지하도록 함이 바람직하다. 이 때 상기 양극의 물층과 접촉면에는 양극으로 사용하는 다공성 흑연 등의 탄소물질로 이루어진 전극이 습윤상태로 유지되며 미생물이 부착성장된 다공성 미생물양극막층이 부가되어, 양극(21)의 반응이 미생물에 의해 촉진되는 미생물양극(25)으로서의 기능을 수행하며, 양극으로부터 음극으로 확산되는 산소를 차단하는 효과도 있다. 바람직하게는 습윤상태로 유지하는 다공성 탄소재질의 미생물양극(25)과 백금을 담지한 양극(21)를 분리층 위에 차례로 동시에 설치하는 것이다. When using a porous carbon material that does not support platinum as the anode 21 provided on the separation layer (W), it is preferable to keep the anode in a wet state. At this time, the electrode made of a carbon material such as porous graphite is used as the anode on the water layer and the contact surface of the anode is maintained in a wet state, and the microbial membrane layer is attached to the microorganism attached and grown, the reaction of the anode 21 to the microorganism It serves as a microbial anode 25 promoted by, and also has the effect of blocking oxygen diffused from the anode to the cathode. Preferably, the microbial anode 25 made of a porous carbon material and the platinum-supported anode 21 which are kept in a wet state are installed at the same time in order on the separation layer.
한편, 음극(22)을 담지하고 있는 음극반응조(23)는 길이방향이 넓이방향 보다 긴 직사각형 모양을 가지게 함이 바람직하며, 폐수 등의 유기물을 함유한 액상물질이 박층의 음극반응조(23)를 통과하는 동안 흐름의 특성은 강한 압출류(plug flow mode) 성향을 가진다. On the other hand, the negative electrode reaction tank 23 carrying the negative electrode 22 is preferably to have a rectangular shape longer in the longitudinal direction than the wide direction, the liquid material containing organic matter, such as waste water is a thin layer of the negative electrode reaction tank (23) The nature of the flow during passage has a strong plug flow mode.
음극반응조(23)로 유입된 유입 액상물질이 얇은 박층으로 이루어진 음극반응조(23)를 수평으로 흐르는 동안 음극(22)에 부착된 미생물에 의해 분해되어 전자와 양성자가 생성된다. 전자는 저항 등의 부하가 직렬로 연결된 회로를 통하여 양극(21)으로 이동하며, 양성자는 분리층(W)을 거쳐 상부의 양극(21)으로 이동한다. 양극(21)에서는 전자와 양성자 그리고 공기 중으로 부터 확산된 산소가 반응하여 물을 형성한다. 이때 전력은 회로에 연결된 부하로부터 회수한다. The inflow liquid material introduced into the cathode reaction tank 23 is decomposed by the microorganisms attached to the anode 22 while horizontally flowing through the thin layered anode reaction vessel 23 to generate electrons and protons. The electrons move to the anode 21 through a circuit in which a load such as a resistor is connected in series, and the protons move to the upper anode 21 through the separation layer W. In the anode 21, electrons, protons, and oxygen diffused from the air react to form water. Power is then recovered from the load connected to the circuit.
본 발명의 상기한 바와 같이 유입폐수에 함유된 용존산소를 제거하기 위한 혐기부(10)와 전극부(20)에 균일하게 유입 폐수를 공급하기 위한 분배기(26)를 통과한 폐수가 박층의 음극반응조(23)와 음극(22), 그리고 분리층(W) 및 수면부유 공기양극(21)으로 구성된 전극부(20)의 음극반응조를 수평으로 통과하며, 웨어구조의 유출부(30)로 구성된 것을 특징으로 하는 미생물연료전지 시스템을 이용하여 유기물에 내재된 화학에너지로부터 전기를 생산하고 동시에 유기물 함유 액상물질을 안정화처리 하는 방법을 제공한다.As described above of the present invention, the wastewater that has passed through the anaerobic part 10 for removing dissolved oxygen contained in the inflow wastewater and the distributor 26 for uniformly supplying the inflow wastewater to the electrode portion 20 is a cathode of the thin layer. Passes horizontally through the cathode reaction tank of the electrode portion 20 consisting of the reaction vessel 23 and the cathode 22, and the separation layer (W) and the surface-floating air anode 21, consisting of the outlet portion 30 of the weir structure It provides a method for producing electricity from the chemical energy inherent in organic materials using a microbial fuel cell system characterized in that the stabilization treatment of the liquid containing organic materials.
본 발명에 의한 수면부유양극 미생물연료전지에 의해 처리 가능한 유기물 함유 액상물질의 유기물함량은 제한이 없으나, 유기물 함량이 화학적 산소요구량 기준으로 10,000 mg/L 이상으로 높을 경우 과대한 수소의 발생으로 전력수율이 감소할 우려가 있다. 이 경우 유출수 재순환과 같은 특별한 운전방법이 필요하다. 음극반응조(23)에 대한 유입 폐수의 수리학적 체류시간은 유입폐수에 함유된 유기물함량의 함수이며, 통상 0.1 시간 내지 48시간이다. 유입폐수의 화학적산소요구량이 약 150 mg/L 인 경우 바람직하게는 0.2 내지 6.0 시간이다. The organic matter content of the organic matter-containing liquid substance that can be treated by the sleep-rich bipolar microbial fuel cell according to the present invention is not limited, but when the organic matter content is higher than 10,000 mg / L based on the chemical oxygen demand, the power yield is generated due to excessive hydrogen generation. This may decrease. In this case, special operating methods such as effluent recirculation are necessary. The hydraulic residence time of the influent wastewater to the cathode reactor 23 is a function of the organic matter content contained in the influent wastewater, typically 0.1 to 48 hours. If the chemical oxygen demand of the influent wastewater is about 150 mg / L, it is preferably 0.2 to 6.0 hours.
본 발명에 의한 박층의 수평흐름을 가진 수면부유 공기양극 미생물연료전지는 큰 전력생산과 방류수 기준에 맞는 처리수의 수질을 달성하기 위하여 다수의 전지를 직렬 및 병렬로 연결하기 위하여 적층할 수 있다. The surface-floating air cathode microbial fuel cell having a thin horizontal flow according to the present invention can be stacked in order to connect a plurality of cells in series and in parallel in order to achieve large power production and water quality of treated water meeting the effluent standard.
상기에서 설명한 바와 같이, 본 발명에 따르면, 박층의 수평흐름을 가진 수면부유양극 미생물연료전지 시스템을 이용하여 폐수를 처리하면 높은 유기물 처리효율과 높은 전력수율을 달성할 수 있다. As described above, according to the present invention, when the wastewater is treated by using the surface floating anode anode microbial fuel cell system having a horizontal flow of thin layers, it is possible to achieve high organic matter treatment efficiency and high power yield.
또한, 본 발명에 의한 박층의 수평흐름을 가진 수면부유양극 미생물연료전지 시스템은 장시간 전력수율의 감소 없이 연속 또는 반연속 운전이 가능하며, 운전하는 동안 누수 등의 문제가 발생하지 않고 유지관리가 용이하다. In addition, the surface floating bipolar microbial fuel cell system having a thin horizontal flow according to the present invention is capable of continuous or semi-continuous operation without reducing power yield for a long time, and is easy to maintain and maintain without a problem such as leakage during operation. Do.
또한, 본 발명에 의한 박층의 수평흐름을 가진 수면부유양극 미생물연료전지는 다수를 적층하여 직렬 및 병렬로 연결함으로서 높은 수율의 전력과 방류수 기준에 맞는 처리수의 수질을 달성할 수 있다. In addition, the surface-floating positive electrode microbial fuel cell having a thin layer horizontal flow according to the present invention can achieve a high yield of power and the quality of treated water meeting effluent standards by connecting a plurality of stacked and connected in series.
도 1 내지 3은 본 발명의 수평흐름을 가진 표면부유양극 미생물연료전지의 종단면도이다.1 to 3 are longitudinal cross-sectional views of the surface-floating anode microbial fuel cell having a horizontal flow of the present invention.
[도면의 주요 부분의 명칭][Name of main parts of drawing]
(10) 혐기부; (20) 전극부; (30) 유출부; (22) 음극; (23) 음극반응조; (21) 양극; (25) 미생물양극; (W) 분리층; (24) 분리판; (26) 분배기(10) anaerobic department; (20) electrode portions; 30 outlet; (22) a cathode; (23) a cathode reactor; (21) an anode; (25) microbial anodes; (W) separation layer; (24) separators; 26 dispensers
이하, 실시예를 통하여 본 발명을 구체적으로 설명하고자 하나, 이들 실시예에 의하여 본 발명의 범위가 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited by these Examples.
실시예 1Example 1
본 발명에 실시예에서 사용한 박층의 수평흐름을 가진 수면부유 공기양극 미생물연료전지는 혐기부와 전극부 및 유출부로 구성하였다. The surface-floating air cathode microbial fuel cell having a thin layer horizontal flow used in the embodiment of the present invention was composed of an anaerobic part, an electrode part, and an outlet part.
혐기부는 다공성 세라믹을 충진하여 생물여과상 형식으로 운전하였으며, 전극부는 폭 14cm, 길이 47cm 두께 0.5cm의 반응조로서 하단에 0.2cm 두께의 흑연펠트판을 설치하여 음극으로 사용하였으며, 수면에 백금이 코팅된 흑연헝겁을 설치하여 양극으로 사용하였다. 또한, 양극과 음극사이에는 분리판으로 키토산과 제올라이트 혼합물을 얇게 결합시킨 폴리프로필렌 부직포를 설치하였다. 이때 미생물연료전지에 혐기성슬러지를 식종하고 포도당을 이용하여 제조한 인공폐수를 수리학적 체류시간 1시간으로 연속주입하여 섭씨 20 내지 22 도(℃)의 실온에서 운전하였다. 인공폐수의 COD는 약 172mg/L였으며, 염도는 13% 그리고 pH는 7.81이었다. The anaerobic section was filled with porous ceramics and operated in the form of a biofiltration phase. The electrode section was a reactor with a width of 14 cm and a length of 47 cm and 0.5 cm, and was used as a cathode by installing a 0.2 cm thick graphite felt plate at the bottom thereof. The prepared graphite cloth was used as an anode. In addition, a polypropylene nonwoven fabric having a thin plate of chitosan and zeolite mixture was installed as a separator between the anode and the cathode. At this time, the anaerobic sludge was planted in the microbial fuel cell, and artificial wastewater prepared using glucose was continuously injected at a hydraulic residence time of 1 hour and operated at room temperature of 20 to 22 degrees Celsius. The COD of the artificial wastewater was about 172 mg / L, with a salinity of 13% and a pH of 7.81.
본 발명에 의한 미생물연료전지에서의 COD제거율은 약 43.2% 이었으며, 최대전압과 전류는 0.287V 및 49mA이었으며, 음극의 단위표면적당 전력수율은 213mW/㎡2이었으며, 단위부피당 42.8W/㎥이었다.In the microbial fuel cell according to the present invention, the COD removal rate was about 43.2%, the maximum voltage and current were 0.287V and 49mA, and the power yield per unit surface area of the negative electrode was 213mW / ㎡ 2, and 42.8W / m 3 per unit volume.
실시예 2Example 2
상기 실시예 1에서와 동일한 규격을 가진 본 발명의 박층의 수평흐름을 가진 부유양극 미생물연료전지에서 분리막을 폴리프로필렌 부직포를 사용하였으며, 양극의 외부표면을 테프론으로 얇게 코팅하여 공기확산층을 형성한 뒤 실시예 1과 동일한 인공폐수로 동일한 조건에서 운전하였다. 이때 COD 제거율은 약 42.5%로서 실시예 1과 큰 차이가 없었으나 최대전압과 전류는 0.324V 및 64.5mA였으며, 음극의 단위표면적당 전력수율은 317.6mW/㎡이었으며, 단위부피당 63.5W/㎥로서 실시예 1에 비해 높은 전력수율을 보였다. In the floating anode microbial fuel cell having a thin layer horizontal flow of the present invention having the same specifications as in Example 1, the membrane was used as a polypropylene nonwoven fabric, and the outer surface of the anode was thinly coated with Teflon to form an air diffusion layer. The same artificial wastewater as in Example 1 was operated under the same conditions. At this time, the COD removal rate was about 42.5%, which was not significantly different from that of Example 1, but the maximum voltage and current were 0.324V and 64.5mA. Compared with Example 1, the yield was higher.
실시예 3Example 3
상기 실시예 1에서와 동일한 규격을 가진 본 발명의 박층의 수평흐름을 가진 부유양극 미생물연료전지에서 분리판으로 폴리프로필렌 부직포를 사용하였으며, 약 2 밀리미터 두께(mm)의 흑연펠트를 분리층 상부에 설치하고 습윤상태로 유지하여 미생물양극으로 사용하였으며, 백금이 코팅된 탄소직물 양극의 백금코팅부분이 미생물양극과 접하고 다른 면은 대기와 접하도록 그 상부에 설치하였다. 준비된 미생물연료전지를 상기 실시예 1과 동일한 인공폐수로 동일한 조건에서 운전하였다. 이때 COD 제거율은 약 45%로서 실시예 1 내지 실시예 2 보다 약간 증가하였다. 최대전압과 전류는 0.36V 및 68mA였으며, 음극의 단위표면적당 전력수율은 372mW/㎡이었으며, 단위부피당 74.4W/㎥로서 실시예 1 내지 실시예 2에 비해 높은 전력수율을 보였다. In the floating anode microbial fuel cell having a thin layer horizontal flow of the present invention having the same specifications as in Example 1, a polypropylene nonwoven fabric was used as a separator, and a graphite felt having a thickness of about 2 millimeters (mm) was placed on the separator layer. It was installed and kept in a wet state and used as a microbial anode. The platinum coated part of the platinum coated carbon fabric anode was installed on the upper side so as to be in contact with the microbial anode and the other side was in contact with the atmosphere. The prepared microbial fuel cell was operated under the same conditions with the same artificial wastewater as in Example 1. At this time, the COD removal rate was about 45%, which was slightly increased from Examples 1 to 2. The maximum voltage and current were 0.36V and 68mA, and the power yield per unit surface area of the cathode was 372 mW / m 2, and 74.4 W / m 3 per unit volume, which was higher than those in Examples 1 to 2.
[참고문헌][references]
Liu, H. and B.E. Logan, "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane", Environ. Sci. Technol., 38(14), 4040-4046 (2004).Liu, H. and B.E. Logan, "Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane", Environ. Sci. Technol., 38 (14), 4040-4046 (2004).
Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho and B. H. Kim, "Construction and operation of a novel mediator- and membrane-less microbial fuel cell", Process Biochem, 39, 1007-1012 (2004). Jang, JK, TH Pham, IS Chang, KH Kang, H. Moon, KS Cho and BH Kim, "Construction and operation of a novel mediator- and membrane-less microbial fuel cell", Process Biochem, 39, 1007-1012 ( 2004).
Cheng, S., H. Liu, B.E. Logan, "Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode, Spacing", Environ. Sci. Technol. 40, 2426-2432 (2006).Cheng, S., H. Liu, B.E. Logan, "Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode, Spacing", Environ. Sci. Technol. 40, 2426-2432 (2006).
Kim, B.H., I. S. Chang and G. M. Gadd, “Challenges in microbial fuel cell development and operation”, Appl. Microbiol. Biotechnol, 76, 485-494 (2007). Kim, B.H., I. S. Chang and G. M. Gadd, “Challenges in microbial fuel cell development and operation”, Appl. Microbiol. Biotechnol, 76, 485-494 (2007).
Pham, T. H. , J. K. Jang, H. Moon I. S. Chang, B. H. Kim, “Improved performance of a microbial fuel cell using a membrane-electrode assembly”, J. Microbiol. Biotechnol. 15, 438-441 (2005).Pham, T. H., J. K. Jang, H. Moon I. S. Chang, B. H. Kim, “Improved performance of a microbial fuel cell using a membrane-electrode assembly”, J. Microbiol. Biotechnol. 15, 438-441 (2005).
You, S., Q. Zhao, J. Zhang, J. Jiang, C. Wan, M. Du, and S. Zhao, “A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions (Short Communication)”, J. Power Sources, 173, 172-177 (2007).You, S., Q. Zhao, J. Zhang, J. Jiang, C. Wan, M. Du, and S. Zhao, “A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions (Short Communication) ”, J. Power Sources, 173, 172-177 (2007).

Claims (7)

  1. 혐기성 상태로 유지되는 음극반응조와, 상기 음극반응조의 하단부에 수평방향으로 침지된 음극, 상기 음극의 상단에 형성되며 음극이 양극과 이격되도록 물층으로 형성된 분리층, 및 상기 분리층의 상단부에 형성되며 그 일측면이 공기층과 접하여 수면에 수평방향으로 부유상태를 이루는 양극을 포함하여 구성되는 전극부를 포함하여 이루어지는 것을 특징으로 하는 미생물연료전지. A negative electrode reactor maintained in an anaerobic state, a negative electrode immersed in a horizontal direction at a lower end of the negative electrode reactor, a separation layer formed at an upper end of the negative electrode and separated from the anode by a water layer, and formed at an upper end of the separation layer; One side of the microbial fuel cell comprising an electrode portion comprising an anode in contact with the air layer to form a floating state in the horizontal direction on the water surface.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 전극부의 전단에 위치하여 전극부로 유입되는 하수, 폐수 및 액상 폐기물의 용존산소와 산화물질을 저감시키는 혐기부와, 전극부의 후단에 위치하며 전극부에서 유출되는 유출수가 배출되는 유출부를 포함하는 것을 특징으로 하는 미생물연료전지.Located in the front of the electrode portion includes an anaerobic portion to reduce the dissolved oxygen and oxides of sewage, wastewater and liquid waste flowing into the electrode portion, and an outlet portion located in the rear end of the electrode portion discharged from the electrode portion is discharged Microbial fuel cell characterized in that.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 양극은 공기층과 접촉면에는 공기확산층이 형성되고, 물층과 접촉면은 촉매가 담지된 것임을 특징으로 하는 미생물연료전지.The anode is a microbial fuel cell, characterized in that the air diffusion layer is formed on the contact surface with the air layer, the catalyst layer is supported on the water layer and the contact surface.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 양극의 물층과 접촉면에는 습윤상태로 유지되며 미생물이 부착성장된 다공성 미생물양극막층이 부가된 것임을 특징으로 하는 미생물연료전지.The microbial fuel cell, characterized in that the porous layer of the microbial anode membrane is attached to the water layer and the contact surface of the positive electrode is kept wet and attached to the microorganism.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 분리층에는 양극과 음극의 층간에 양이온 교환막이 부가된 것임을 특징으로 하는 미생물연료전지The separation layer is a microbial fuel cell, characterized in that the cation exchange membrane is added between the layer of the positive electrode and the negative electrode
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 전극부로 유입되는 유입수는 음극반응조를 수평방향으로 흐르도록 조절되는 것임을 특징으로 하는 미생물연료전지.Inflow water flowing into the electrode unit is characterized in that the microbial fuel cell is characterized in that it is controlled to flow in the horizontal reaction vessel.
  7. 청구항 1 내지 6 중 어느 한 항에 따른 미생물연료전지를 이용하여 하수, 폐수 및 유기물질을 함유한 액상물질을 안정화시키고 전기를 생산하는 방법.A method for stabilizing liquid materials containing sewage, waste water and organic materials and producing electricity using the microbial fuel cell according to any one of claims 1 to 6.
PCT/KR2009/004737 2008-08-28 2009-08-25 Floating-anode microbial fuel cell with thin-layer horizontal flow WO2010024577A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080084548A KR101020788B1 (en) 2008-08-28 2008-08-28 Surface floating cathode microbial fuel cell with horizontal thin film flow
KR10-2008-0084548 2008-08-28

Publications (2)

Publication Number Publication Date
WO2010024577A2 true WO2010024577A2 (en) 2010-03-04
WO2010024577A3 WO2010024577A3 (en) 2010-06-24

Family

ID=41722101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004737 WO2010024577A2 (en) 2008-08-28 2009-08-25 Floating-anode microbial fuel cell with thin-layer horizontal flow

Country Status (2)

Country Link
KR (1) KR101020788B1 (en)
WO (1) WO2010024577A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390716A (en) * 2015-10-28 2016-03-09 同济大学 Overlapped microbial fuel cell in-situ test system and application thereof
CN106290527A (en) * 2015-05-21 2017-01-04 北京化工大学 A kind of water quality toxicity monitoring method based on anaerobic pretreatment Yu air cathode MFC

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314936B1 (en) 2010-04-14 2013-10-04 한국해양대학교 산학협력단 Arraratus for a batch microbial fuel cell with water surface air cathode
KR101378086B1 (en) * 2011-06-15 2014-03-28 주식회사 한화건설 Anaerobic treatment of waste water using electro-chemical process
KR101444000B1 (en) * 2012-12-07 2014-09-23 한국해양대학교 산학협력단 Air cathode bioelectrochemical cell changing water level and operation method thereof
KR101692064B1 (en) 2014-12-03 2017-01-18 한국수자원공사 Microbial Fuel Cell with air cathode perpendicular to separator
KR101667458B1 (en) 2014-12-24 2016-10-18 경희대학교 산학협력단 Wastewater Treatment Apparatus Using Microbial Fuel Cell Having Algae-Cathod
DE102015011964A1 (en) * 2015-09-18 2017-03-23 MWK Bionik GmbH Biofuel cell and its combination with a microbial emission sink
KR101656657B1 (en) * 2016-01-19 2016-09-12 한밭대학교 산학협력단 Electrochemical Organic material processing device
KR102509681B1 (en) 2020-12-31 2023-03-14 단국대학교 산학협력단 Transparent flexible photosynthetic microbial flow fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072798A (en) * 1977-07-26 1978-02-07 The United States Of America As Represented By The Secretary Of The Interior Bioelectric neutralization of acid waters
KR20030088263A (en) * 2002-05-14 2003-11-19 한국과학기술연구원 A Membraneless And Mediatorless Microbial Fuel Cell
KR100657868B1 (en) * 2005-12-12 2006-12-15 건국대학교 산학협력단 Biofuel cell using photosynthetic microorganisms and sediment sludge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072798A (en) * 1977-07-26 1978-02-07 The United States Of America As Represented By The Secretary Of The Interior Bioelectric neutralization of acid waters
KR20030088263A (en) * 2002-05-14 2003-11-19 한국과학기술연구원 A Membraneless And Mediatorless Microbial Fuel Cell
KR100657868B1 (en) * 2005-12-12 2006-12-15 건국대학교 산학협력단 Biofuel cell using photosynthetic microorganisms and sediment sludge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG, YOUNG CHAE ET AL. PROCEEDINGS OF THE 2007 AUTUMN CONFERENCE OF THE KOREA SOCIETY OF WASTE MANAGEMENT 2007, pages 90 - 93 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290527A (en) * 2015-05-21 2017-01-04 北京化工大学 A kind of water quality toxicity monitoring method based on anaerobic pretreatment Yu air cathode MFC
CN105390716A (en) * 2015-10-28 2016-03-09 同济大学 Overlapped microbial fuel cell in-situ test system and application thereof

Also Published As

Publication number Publication date
KR20100025831A (en) 2010-03-10
KR101020788B1 (en) 2011-03-09
WO2010024577A3 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2010024577A2 (en) Floating-anode microbial fuel cell with thin-layer horizontal flow
US7709113B2 (en) Bio-electrochemically assisted microbial reactor that generates hydrogen gas and methods of generating hydrogen gas
JP5164511B2 (en) Microbial fuel cell, diaphragm cassette for microbial fuel cell and waste water treatment apparatus
US7544429B2 (en) Membraneless and mediatorless microbial fuel cell
US20080220292A1 (en) Microbial Fuel Cells for Oxidation of Electron Donors
WO2009134035A2 (en) Floating-type microbial fuel cell
US20120003504A1 (en) Microbial fuel cell and membrane cassette for microbial fuel cells
Li et al. Voltage reversal causes bioanode corrosion in microbial fuel cell stacks
WO2008109911A1 (en) Microbial fuel cell
Yousefi et al. Effect of separator electrode assembly (SEA) design and mode of operation on the performance of continuous tubular microbial fuel cells (MFCs)
Song et al. Surface floating, air cathode, microbial fuel cell with horizontal flow for continuous power production from wastewater
JP2011527817A (en) Improved cathode design
Bagchi et al. Evaluation of the effect of anolyte recirculation and anolyte pH on the performance of a microbial fuel cell employing ceramic separator
KR20180081578A (en) Method and apparatus for converting chemical energy stored in wastewater
RU2496187C1 (en) Bioelectrochemical reactor
JP2011049068A (en) Bio-fuel cell
KR101359777B1 (en) Both ends opened vertical structure and bioelectrochemical cell with it
CN110228845A (en) It is a kind of to hand over every pulling flow type bioelectrochemical system
KR20160067235A (en) Microbial Fuel Cell with air cathode perpendicular to separator
KR20100109096A (en) Microbial fuel cell unit equipped with functional electrodes and microbial fuel cell prepared therewith
KR101024823B1 (en) Microbial fuel cell structure having a plurality of unit cells consisting of sides of each pilar, and Microbial fuel cell having the sturcture
WO2011074892A2 (en) Biological electricity creating device
JP7218648B2 (en) Microbial power generation method and apparatus
KR101417610B1 (en) Bioelectrochemical cell with 3 dimensional air cathode perpendicular to separator
KR101444000B1 (en) Air cathode bioelectrochemical cell changing water level and operation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810182

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09810182

Country of ref document: EP

Kind code of ref document: A2