WO2014013716A1 - Energy ray-curable resin composition and cured product thereof - Google Patents

Energy ray-curable resin composition and cured product thereof Download PDF

Info

Publication number
WO2014013716A1
WO2014013716A1 PCT/JP2013/004331 JP2013004331W WO2014013716A1 WO 2014013716 A1 WO2014013716 A1 WO 2014013716A1 JP 2013004331 W JP2013004331 W JP 2013004331W WO 2014013716 A1 WO2014013716 A1 WO 2014013716A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
organic
compound
curable resin
meth
Prior art date
Application number
PCT/JP2013/004331
Other languages
French (fr)
Japanese (ja)
Inventor
伸彦 内藤
雄一朗 松尾
淳子 市川
貴文 水口
裕貴 堤
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020157000929A priority Critical patent/KR101980560B1/en
Priority to CN201380038436.3A priority patent/CN104470971B/en
Publication of WO2014013716A1 publication Critical patent/WO2014013716A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • Energy beam curable resin is generally excellent in workability because it can be processed without solvent. Further, since the curing speed is fast and the energy requirement is low, the energy beam curing technique is an important technique in various industries including display peripheral materials.
  • thin displays called flat panel displays (FPD), in particular, plasma displays (PDP) and liquid crystal displays (LCD) have been put on the market and are widely used.
  • organic EL displays OLEDs are expected as next-generation self-luminous thin film displays, and some products have already been put into practical use.
  • An organic EL element of an organic EL display has a structure in which an element body composed of a thin film laminate including a light emitting layer sandwiched between a cathode and an anode is formed on a glass substrate on which a driving circuit such as a TFT is formed.
  • a layer such as a light emitting layer or an electrode of the element portion is easily deteriorated by moisture or oxygen, and the deterioration of brightness, life, and discoloration occurs due to the deterioration. Therefore, the organic EL element is sealed so as to block moisture or impurities from entering from the outside.
  • a higher-performance sealing material is desired, and various sealing techniques have been studied.
  • a method of fixing a metal or glass sealing cap in which a desiccant is inserted in advance to a substrate of an organic EL element using a sealing adhesive has been studied. Yes.
  • an adhesive is applied to the outer peripheral portion of the substrate of the organic EL element, a sealing cap is placed thereon, and then the adhesive is solidified to fix the substrate and the sealing cap. It is sealed.
  • sealing with a glass sealing cap is the mainstream.
  • a glass sealing cap is produced by processing a digging for inserting a desiccant into a flat glass substrate, and thus tends to be expensive.
  • the sealing with the sealing cap cannot extract light from the sealing cap side.
  • the light emitted from the light source is extracted from the substrate side of the element, and is limited to the bottom emission type element.
  • a bottom emission type element there are problems of a decrease in aperture ratio due to the drive circuit portion formed on the substrate and a decrease in extraction efficiency due to light being partially blocked by the drive circuit portion. Therefore, development of a sealing method applicable to a top emission type element that extracts light from the opposite side of the substrate of the organic EL element is desired.
  • the thin film sealing method is a method in which a thin film made of an inorganic or organic material is laminated on an organic EL element to form a passivation film.
  • a thin film made of an inorganic or organic material is laminated on an organic EL element to form a passivation film.
  • it is necessary to sequentially stack a number of thin films on the device. Therefore, in the thin film sealing method, the film forming process is long and expensive, and the initial investment tends to be high due to the introduction of a large vacuum system required for film formation.
  • the solid sealing method is a method in which a passivation film is provided so as to cover the entire element portion of the organic EL element, and a sealing transparent substrate is provided thereon via a sealing material.
  • a passivation film is formed by vapor deposition or sputtering of an inorganic material, and it is often an incomplete film having pinholes or a film having low mechanical strength. Therefore, in the solid sealing method, after providing a passivation film on the element, a sealing transparent substrate such as a glass substrate is provided through a sealing adhesive to improve sealing reliability.
  • a sealing method is attracting attention as a method capable of sealing a top emission type element simply and at low cost.
  • the sealing adhesive used for these has high transmittance in the visible light region, light resistance that can withstand light emission, stable moldability, low curing shrinkage for suppressing residual stress, and light emitting elements in moisture. For example, a low water vapor transmission rate for protecting from water is required.
  • a sealing adhesive that can be suitably used in the solid sealing method is desired.
  • curable resin compositions containing an oxetane compound are known (for example, Patent Documents 1 to 5).
  • a cured resin composition used for organic EL in which at least two compounds having at least two oxetane rings are used in combination is not known.
  • a resin composition suitable for an organic EL device sealing material has a low curing shrinkage rate, and a cured product obtained from the resin composition has excellent visible light transmittance, light resistance and curability, and a high Tg.
  • the water vapor permeability is required to be low.
  • the objective of this invention is providing the resin composition suitable for the sealing material of an organic EL element which satisfy
  • an energy beam curable resin composition containing at least two kinds of compounds (A) having two or more oxetane rings in the molecule and a cured product thereof.
  • the inventors have found that the above problems can be solved and completed the present invention.
  • the present invention relates to the following (1) to (23).
  • the energy ray curable resin composition does not contain an organic compound component that does not have a reactive group having a weight average molecular weight of 10,000 g / mol or more, or if included, its content is the resin composition.
  • the energy ray-curable resin composition for an organic EL device sealing material according to (1) which is less than 1.5% by weight based on the total amount of the product.
  • each R 1 independently represents a direct bond or a linear or branched hydrocarbon group having 1 to 6 carbon atoms
  • R 2 represents a linear or branched carbon group having 1 to 15 carbon atoms.
  • the cationic photopolymerization initiator (C) is at least one selected from the group consisting of a sulfonium salt, an iodonium salt, a phosphonium salt, an ammonium salt, and an antimonate.
  • (21) A cured product obtained by curing the energy ray-curable resin composition for an organic EL device sealing material according to any one of (1) to (20).
  • (22) The cured product according to (21), wherein the water vapor transmission rate at a thickness of 100 ⁇ m is 200 g / m 2 ⁇ day / 60 ° C. or less.
  • (23) An organic EL display having the cured product according to (21) or (22).
  • the energy ray-curable resin composition for organic EL device sealing material of the present invention (hereinafter also simply referred to as the resin composition of the present invention) has a low curing shrinkage, and the cured product of the resin composition has a visible light transmittance, Since it has excellent light resistance, high heat resistance, and low water vapor permeability, it is particularly suitable as a sealing material for organic EL elements.
  • the term “for organic EL element sealing material” in the present invention is a solid sealing agent filled between a sealing substrate such as glass and an organic EL element in sealing of an organic EL element, particularly in solid sealing. Means use.
  • the resin composition of the present invention is characterized by containing two or more compounds (A) having two or more oxetane rings in the molecule.
  • any compound having at least two oxetane rings in the molecule can be used.
  • the compound (A) having at least two oxetane rings in the molecule include 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene (commercially available as a main component thereof) Aron oxetane RTM OXT-121) (contains 80% or more) (Toagosei Co., Ltd.); xylylene bisoxetane), 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane , Di [2- (3-oxetanyl) butyl] ether, 1,4-bis [(3-ethyloxetane-3-y
  • Examples of the oxetane compound having at least two oxetane rings used in the present invention include oxetane compounds in which at least two oxetane rings are connected by a bridging group containing at least one ether bond.
  • at least two kinds of the oxetane compounds are used.
  • two different types are used.
  • two types of the oxetane compound in which the above-described crosslinking group containing an ether bond is a chain-like crosslinking group not containing a ring structure and the oxetane compound being a chain-like crosslinking group containing a ring structure are used in combination.
  • the “crosslinking group” in the present invention means a divalent group that bonds between two atoms.
  • a combination of the compound of the general formula (1) and the compound of the general formula (2) is preferable.
  • the combination of xylylene bisoxetane and 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane is particularly preferable because it is easily available from the market.
  • One preferred compound used as the bifunctional oxetane compound in the present invention is represented by the general formula (1) (Wherein R 1 independently represents a direct bond or a linear or branched hydrocarbon group having 1 to 6 carbon atoms (hydrocarbon bond), and R 2 represents a linear or branched group having 1 to 15 carbon atoms.
  • a chain hydrocarbon group (hydrocarbon bond) or a hydrocarbon group containing an alicyclic ring, an aromatic ring, a heterocyclic ring or a condensed ring, wherein R 3 is each independently a straight chain or branched chain having 1 to 6 carbon atoms Represents a chain hydrocarbon group, and n represents an integer of 1 to 5 on average.
  • R 1 and R 2 in the above formula (1) are divalent hydrocarbon groups as is clear from the above structural formula, and R 3 is a monovalent hydrocarbon group.
  • R 1 is preferably a linear or branched hydrocarbon group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and particularly preferably an alkylene group having 1 to 3 carbon atoms.
  • R 2 is preferably an alkylene group having a linear alkylene group having 1 to 12 carbon atoms, a branched alkylene group having 1 to 12 carbon atoms, a phenylene group having 3 to 12 carbon atoms or a cycloalkylene group, and having 6 carbon atoms.
  • An alkylene group having -12 phenylene groups (preferably an alkylene group having 1 to 4 carbon atoms) is particularly preferred.
  • R 3 is preferably an alkyl group having 1 to 3 carbon atoms.
  • n is preferably 1 to 3.
  • R 2 has an oxetane having a ring structure such as an alicyclic ring, an aromatic ring, a heterocyclic ring or a condensed ring (for example, a phenylene group, a naphthalene group or a cycloalkylene group having 3 to 8 carbon atoms).
  • Use of a compound is preferable because the curing shrinkage ratio is reduced and the Tg (glass transition point), rigidity, and refractive index of the cured product are improved.
  • the compound of the above formula (1) as a particularly preferred specific example, the following general formula (3)
  • R 3 represents the same meaning as in the formula (1) and may be the same or different.
  • Z represents a cyclic group having 3 to 12 carbon atoms, and the ring is an alicyclic ring (aliphatic ring); (Aromatic ring, heterocyclic ring or condensed ring may be used, and n represents an integer of 1 to 5 on average.) It is a compound represented by these.
  • a divalent aliphatic ring group or an aromatic ring group is preferable, and a phenylene group is particularly preferable.
  • the oxetane compound represented by the following general formula (2) is as follows.
  • each R 4 is independently a linear or branched hydrocarbon group having 1 to 6 carbon atoms
  • R 5 is each independently a linear or branched hydrocarbon group having 1 to 6 carbon atoms.
  • R 4 is a divalent hydrocarbon group having 1 to 6 carbon atoms
  • R 5 is a monovalent hydrocarbon group.
  • R 4 is a straight-chain hydrocarbon group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
  • R 5 a straight-chain hydrocarbon group having 1 to 3 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is particularly preferable.
  • one of the components is an oxetane compound having a ring structure such as an alicyclic ring, an aromatic ring, a heterocyclic ring, or a condensed ring (for example, a phenylene group, a naphthalene group, or a cycloalkylene group having 3 to 8 carbon atoms),
  • a ring structure such as an alicyclic ring, an aromatic ring, a heterocyclic ring, or a condensed ring (for example, a phenylene group, a naphthalene group, or a cycloalkylene group having 3 to 8 carbon atoms).
  • Tg glass transition point
  • rigidity rigidity
  • refractive index are improved.
  • it is an oxetane compound whose ring structure is an alicyclic ring or an aromatic ring.
  • it is a compound represented by the general formula (3).
  • the content of the component (A) of the present invention is 30 to 100 parts by weight, more preferably 30 to 90 parts by weight, based on 100 parts by weight of the total amount of the component (A) + component (B) as the reactive compound. Particularly preferred is 40 to 90 parts by mass. In some cases, the content of the component (A) is preferably 30 to 80 parts by mass, more preferably 50 to 75 parts by mass.
  • the balance is component (B). Further, the content ratio of the component (A) to 100 parts by mass of the total amount of the resin composition of the present invention (excluding the solvent when a solvent is included) is usually 30 to 99.9 parts by mass, more preferably 40 to 99.
  • the functional group equivalent of component (A) is preferably 10 to 500 g / eq, more preferably 50 to 250 g / eq.
  • the oxetane compound having a functional group equivalent of 50 to 150 g / eq (preferably a compound represented by the formula (2)) and an oxetane compound having an aromatic ring having a functional group equivalent of 100 to 200 g / eq (preferably A resin composition having a high refractive index while having a high Tg (glass transition point) by combining a compound represented by formula (3), more preferably a compound in which Z is a phenylene group in formula (3) Can be obtained.
  • the ratio of both is the formula (2) with respect to 1 part by mass of the compound of the formula (1).
  • the range is usually 0.6 to 1.5 parts by weight, preferably 0.7 to 1.3 parts by weight, more preferably 0.8 to 1.2 parts by weight, most preferably 0.8.
  • the range is 9 to 1.1 parts by mass.
  • the compound (B) having an epoxy group contained in the resin composition of the present invention may be any of a monofunctional epoxy compound and a polyfunctional epoxy compound.
  • any of an epoxy compound containing an aromatic ring (aromatic epoxy compound) and an aliphatic epoxy compound not containing an aromatic ring may be used.
  • an aromatic epoxy compound or an epoxy compound containing an aliphatic ring (aliphatic ring-containing epoxy compound) is preferred.
  • an alicyclic epoxy in which an epoxy group is formed on an aliphatic ring is preferable.
  • Examples of the monofunctional epoxy compound include phenyl glycidyl ether, p-tert-butylphenyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, 1,2-butylene oxide, and 1,3-butadiene monooxide.
  • 1,2-epoxydodecane epichlorohydrin, 1,2-epoxydecane, styrene oxide, cyclohexene oxide, 3-methacryloyloxymethylcyclohexene oxide, 3-acryloyloxymethylcyclohexene oxide, 3-vinylcyclohexene oxide, etc. It is done.
  • polyfunctional epoxy compounds include, for example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S di Glycidyl ether, epoxy novolac resin, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-methane-dioxane, bis (3,4-epoxy Hexylmethyl) adipate, vinylcyclohexene oxide, 4-vinylepoxycyclohexane,
  • any compound containing cyclohexene oxide or cyclopentene oxide can be used.
  • Specific examples of the alicyclic epoxy include compounds having the following structure.
  • n is an average value and represents a positive number of 1 to 5.
  • the epoxy compound (B) used in the present invention is not limited to those exemplified above as long as it is a commonly used epoxy resin.
  • aromatic epoxy compounds and alicyclic epoxy compounds are preferable from the viewpoint of excellent curing speed, and alicyclic epoxy compounds are particularly preferable.
  • alicyclic epoxy compounds bifunctional alicyclic epoxy compounds are preferable, and 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate is particularly preferable.
  • the said epoxy compound (B) may be used independently and may use 2 or more types.
  • the content of the component (B) of the present invention is usually 0 to 70 parts by weight, preferably 10 to 70 parts by weight, based on 100 parts by weight of the total amount of the component (A) + component (B) as the reactive compound. More preferably, it is 20 to 70 parts by mass, and particularly preferably 25 to 50 parts by mass. In some cases, 10 to 60 parts by mass is more preferable.
  • the epoxy equivalent of the epoxy compound (B) used in the present invention is preferably 50 to 500 g / eq, more preferably 100 to 300 g / eq.
  • Examples of the photocationic polymerization initiator (C) contained in the resin composition of the present invention include aromatic iodonium complex salts and aromatic sulfonium complex salts.
  • aromatic iodonium complex salt examples include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and the like.
  • aromatic sulfonium complex salt examples include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [diphenylsulfonio] diphenyl sulfide— Bishexafluorophosphate, 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenylsulfide-bishexafluoroantimonate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoro Phosphate, 7- [Di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluor
  • aromatic sulfonium complex salts thiophenyldiphenylsulfonium hexafluoroantimonate, 4- ⁇ 4- (2-chlorobenzoyl) phenylthio ⁇ phenylbis (4-fluorophenyl) sulfonium hexafluoro, which is highly sensitive and easily available from the market Antimonate, diphenyl [4- (phenylthio) phenyl] sulfonium trifluorotrispentafluoroethyl phosphate, tris [4- (4-acetylphenylsulfanyl) phenyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide and the like are preferable.
  • phenylsulfanyl) phenyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide is used.
  • the content of the component (C) of the present invention is 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight with respect to 100 parts by weight as a total of component (A) + component (B). .
  • the ratio of the component (C) with respect to 100 parts by mass of the total amount of the resin composition (excluding the solvent when the solvent is included) is also preferably in the same range as described above.
  • the content ratio of the component (C) with respect to 100 parts by mass of the component (A) is preferably in the same range as above.
  • a photocationic polymerization initiator (C) may be used independently, and multiple types may be mixed and used for it.
  • a radical type photoinitiator can be used together. Any photopolymerization initiator may be used as long as it is a radical photopolymerization initiator, and examples thereof include 2-hydroxy-2-methyl-phenylpropan-1-one or 1-hydroxycyclohexyl-phenylketone.
  • the fine particles (D) used in the present invention include organic fine particles and inorganic fine particles.
  • the fine particles (D) may be used alone or as a mixture of a plurality of types as required in consideration of the required light transmittance, hardness, scratch resistance, curing shrinkage rate, and refractive index. it can.
  • the curing shrinkage rate of the resin composition of the present invention and the moisture permeability of the cured product of the resin composition can be reduced, and the liquid refractive index can be increased.
  • the resin composition of the present invention should not contain the fine particles (D). preferable.
  • the organic fine particles used in the present invention include polystyrene resin beads, acrylic resin beads, urethane resin beads, polycarbonate resin beads and other organic polymer beads, porous polystyrene resin beads, porous acrylic resin beads, and porous urethane resin.
  • Porous organic polymer beads such as beads, porous polycarbonate resin beads, resin powder of benzoguanamine-formalin condensate, resin powder of benzoguanamine-melamine-formalin condensate, resin powder of urea-formalin condensate, powder of aspartate derivative , Zinc stearate powder, stearamide powder, epoxy resin powder, polyethylene powder, etc.
  • Crosslinked polymethyl methacrylate resin beads and crosslinked polymethyl methacrylate / styrene resin beads Etc. are preferred. These organic fine particles can be easily obtained as a commercial product, and can also be prepared with reference to known literature.
  • inorganic fine particles examples include conductive metal oxides, transparent metal oxides, and other inorganic fillers.
  • Examples of the conductive metal oxide used in the present invention include zinc antimonate, tin oxide-doped indium oxide (ITO), antimony-doped tin oxide (ATO), antimony pentoxide, tin oxide, aluminum-doped zinc oxide, and gallium-doped oxide.
  • Examples include zinc and fluorine-doped tin oxide.
  • Examples of the transparent metal oxide used in the present invention include silica, titanium oxide, zirconium oxide, cerium oxide, zinc oxide, iron oxide, titanium oxide / zirconium oxide / tin oxide / antimony pentoxide composite, and zirconium oxide / oxidation. Examples thereof include a tin / antimony pentoxide composite and a titanium oxide / zirconium oxide / tin oxide composite.
  • inorganic fillers used in the present invention include calcium oxide, calcium chloride, zeolite, silica gel and the like.
  • the fine particles used in the present invention are preferably fine particles having excellent hardness and scratch resistance and a high refractive index. Titanium oxide, zirconium oxide, cerium oxide, zinc oxide, iron oxide, titanium oxide / zirconium oxide / tin oxide / five Metal oxide fine particles such as antimony oxide composite, zirconium oxide / tin oxide / antimony pentoxide composite, and titanium oxide / zirconium oxide / tin oxide composite are preferably used.
  • the primary particle diameter of the fine particles is preferably 100 nm or less. The blending ratio of these is usually 0 to 30 parts by mass with respect to 100 parts by mass of the total amount of component (A) + component (B), and is usually 1 to 30 parts by mass, preferably 5 ⁇ 20 parts by mass.
  • a fine particle dispersant a polycarboxylic acid dispersant, a silane coupling agent, a titanate coupling agent, a silicone dispersant such as a modified silicone oil, or an organic copolymer dispersant may be used in combination. Is possible.
  • the blending ratio thereof is about 0 to 30% by mass, preferably about 0.05 to 5% by mass with respect to the total mass of the resin composition of the present invention (total amount of the resin composition excluding the solvent).
  • the primary particle size means the smallest particle size of the particles when the aggregation is broken. That is, in the case of elliptical fine particles, the minor axis is the primary particle diameter.
  • the primary particle size can be measured by a dynamic light scattering method, observation with an electron microscope, or the like. Specifically, the primary particle size can be measured under the condition of an acceleration voltage of 30 kV using a JSM-7700F field emission scanning electron microscope manufactured by JEOL Ltd.
  • the primary particle size is preferably 100 nm or less. Fine particles having a size of 5 to 100 nm can be preferably used. By being 100 nm or less, it becomes possible to provide a cured product having a low curing shrinkage rate and moisture permeability and a relatively high light transmittance of the resin composition.
  • fine particles can be used by being dispersed in a solvent.
  • inorganic fine particles can be obtained commercially in a form dispersed in water or an organic solvent.
  • organic solvent used for dispersing the inorganic fine particles include hydrocarbon solvents, ester solvents, ether solvents, and ketone solvents.
  • hydrocarbon solvents include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene, and tetramethylbenzene, aliphatic hydrocarbon solvents such as hexane, octane, and decane, and mixtures of petroleum ether, white gasoline, Solvent naphtha etc. are mentioned.
  • ester solvents include alkyl acetates such as ethyl acetate, propyl acetate, and butyl acetate, cyclic esters such as ⁇ -butyrolactone, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, triethylene (Mono or poly) alkylene glycol monoalkyl ether monoacetates such as glycol monoethyl ether monoacetate, diethylene glycol monobutyl ether monoacetate, propylene glycol monomethyl ether monoacetate, butylene glycol monomethyl ether monoacetate, dialkyl glutarate, dialkyl succinate, Polycarboxylic acid alkyl ester such as dialkyl adipatekind, and the like.
  • alkyl acetates such as ethyl acetate, propyl acetate, and butyl acetate
  • cyclic esters such as
  • ether solvents include alkyl ethers such as diethyl ether and ethyl butyl ether, glycols such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether.
  • alkyl ethers such as diethyl ether and ethyl butyl ether
  • glycols such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether.
  • examples include ethers and cyclic ethers such as tetrahydrofuran.
  • the ketone solvent include acetone, methyl ethyl ketone, cyclohexan
  • the resin composition of the present invention uses a reactive compound in addition to the component (A) and the component (B) in consideration of the viscosity, refractive index, adhesion and the like of the resin composition of the present invention to be obtained. May be.
  • Specific examples include (meth) acrylate compounds.
  • As the (meth) acrylate compound monofunctional (meth) acrylate, bifunctional (meth) acrylate, polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in the molecule, urethane (meth) acrylate, Polyester (meth) acrylate, epoxy (meth) acrylate, and the like can be used.
  • these (meth) acrylate compounds are not included, or if included, to the extent that the curing shrinkage rate is not increased, for example, the resin composition excluding the solvent
  • the total amount is usually less than 15 parts by mass, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and most preferably 2 parts by mass or less with respect to 100 parts by mass.
  • an embodiment not containing the (meth) acrylate compound is most preferable.
  • Examples of monofunctional (meth) acrylates include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and cyclohexyl (meth) acrylate.
  • Alicyclic (meth) acrylates such as: tetrahydrofurfuryl (meth) acrylate, caprolactone-modified tetrahydrofurfuryl (meth) acrylate, (meth) acrylate having a heterocycle such as morpholine (meth) acrylate; benzyl (meth) acrylate, Ethoxy-modified cresol (meth) acrylate, propoxy-modified cresol (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, o-phenylphenol (meth) acrylate O-phenylphenol monoethoxy (meth) acrylate, o-phenylphenol polyethoxy (meth) acrylate, p-phenylphenol (meth) acrylate, p-phenylphenol monoethoxy (meth) acrylate, p-phenylphenol polyethoxy (Meth) acrylates having aromatic rings such as (
  • Examples of the (meth) acrylate monomer having two functional groups include (meth) acrylate having a heterocycle such as hydropivalaldehyde-modified trimethylolpropane di (meth) acrylate; (poly) ethoxy-modified bisphenol A di (meth) acrylate , (Poly) propoxy modified bisphenol A di (meth) acrylate, (poly) ethoxy modified bisphenol F di (meth) acrylate, (poly) propoxy modified bisphenol F di (meth) acrylate, (poly) ethoxy modified bisphenol S di (meta) ) Acrylate, (poly) propoxy-modified bisphenol S di (meth) acrylate, hexahydrophthalic acid di (meth) acrylate, bisphenoxy (poly) ethoxyfluorene, biphenyldimethanol di (meth) acrylate (Meth) acrylate having an aromatic ring such as binapht
  • (Meth) acrylates having the following condensed rings polycyclic rings such as bisphenol full orange (meth) acrylate, bisphenoxymethanol full orange (meth) acrylate, bisphenoxyethanol full orange (meth) acrylate, and bisphenoxycaprolactone full orange (meth) acrylate (Meth) acrylate having an aromatic; acrylated isocyanate such as diacrylated isocyanurate; 1,4-butanediol di (meth) acrylate, 1,6 (Meth) acrylate having a linear methylene structure such as hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate; tricyclodecane dimethanol (meth) Di (meth) acrylate of polyhydric alcohol such as alicyclic (meth) acrylate such as acrylate, ethylene glycol di (meth)
  • polyfunctional (meth) acrylate monomer polyfunctional (meth) acrylate having an isocyanurate ring such as tris (acryloxyethyl) isocyanurate, (poly) caprolactone-modified tris (acryloxyethyl) isocyanurate; pentaerythritol tri ( (Meth) acrylate, pentaerythritol tetra (meth) acrylate, (poly) ethoxy modified pentaerythritol tetra (meth) acrylate, (poly) propoxy modified pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, (poly) Caprolactone-modified dipentaerythritol penta (meth) acrylate, (poly) ethoxy-modified dipentaerythritol penta (meth) acrylate;
  • Examples of the urethane (meth) acrylate include a reaction product obtained by reacting a diol compound (including the following polyester diol) with an organic polyisocyanate and then adding a hydroxyl group-containing (meth) acrylate.
  • Examples of the diol compound include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, and 1,8-octane.
  • Properly its anhydride e.g., succinic acid, adipic acid, azelaic acid, dimer acid, isophthalic acid, terephthalic acid, phthalic acid or anhydrides thereof
  • reactant polyester diol and the like is the.
  • organic polyisocyanate examples include chain saturated hydrocarbon isocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, Cyclic saturated hydrocarbon isocyanates such as norbornane diisocyanate, dicyclohexylmethane diisocyanate, methylenebis (4-cyclohexylisocyanate), hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, hydrogenated toluene diisocyanate, 2,4-tolylene diisocyanate, 1,3-xylylene Range isocyanate, p-phenylene diisocyanate, 3,3'-dimethyl-4,4'-diiso Aneto, 6-isopropyl-1,3-phenyl diisocyan
  • Epoxy (meth) acrylates include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl type phenol aralkyl resin, terminal glycidyl ether of bisphenol A propylene oxide adduct, fluorene epoxy resin, bisphenol S. And a reaction product of epoxy resin such as epoxy resin and (meth) acrylic acid.
  • polyester (meth) acrylate examples include a polyester diol which is a reaction product of a diol compound and a dibasic acid or an anhydride thereof, and a reaction product of (meth) acrylic acid.
  • (meth) acrylate that can be used for the resin composition of the present invention, a material having a low curing shrinkage rate is suitably used.
  • (meth) acrylate having a ring structure is preferable, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, Cyclohexyl (meth) acrylate, p-cumylphenol (poly) ethoxy (meth) acrylate, naphthol (poly) ethoxy (meth) acrylate, naphthol (poly) propoxy (meth) acrylate, phenylphenol (poly) ethoxy (meth) acrylate , Phenylphenol (poly) propoxy (meth) acrylate, benzyl (meth) acrylate, tricyclode
  • phenylphenol (poly) ethoxy (meth) acrylate Particularly preferred are phenylphenol (poly) ethoxy (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, hydropivalaldehyde-modified trimethylolpropane di (meth) acrylate having a high Tg of the cured product and a low cure shrinkage rate.
  • Biphenyldimethanol di (meth) acrylate in the resin composition of this invention, the (meth) acrylate which is another component may be added as needed, may be used independently, and may be used in mixture of multiple types.
  • the blending ratio of the (meth) acrylate compound is usually 0 to 200 parts by mass, and in some cases 10 to 200 parts by mass. Yes, and may be 50 to 100 parts by mass, but if possible, it is not included in the resin composition of the present invention, or the minimum use is preferable.
  • photoinitiators other than the said photocationic polymerization initiator when using a (meth) acrylate compound, it is preferable to use photoinitiators other than the said photocationic polymerization initiator.
  • benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-1- [4- (methylthio) phenyl]- Acetophenones such as 2-morpholinopropan-1-one and oligo [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone];
  • acetophenones Preferred are acetophenones, and more preferred are 2-hydroxy-2-methyl-phenylpropan-1-one and 1-hydroxycyclohexyl-phenyl ketone.
  • a photoinitiator may be used independently and may be used in mixture of multiple types.
  • the content ratio of the photopolymerization initiator is usually 0 to 10 parts by mass with respect to 100 parts by mass of the resin composition. When used, it is usually 0.001 to 10 parts by mass, preferably 0.01 to 8 parts by mass.
  • each component of the resin composition of the present invention is determined in consideration of a desired refractive index, durability, viscosity, adhesion, etc., but the component (A) + component (B) is 100 parts by mass.
  • the content of component (A) is usually 30 to 100 parts by mass, preferably 30 to 80 parts by mass, more preferably 40 to 70 parts by mass, or 50 to 75 parts by mass.
  • the content of component (B) is usually 0 to 70 parts by weight, preferably 20 to 70 parts by weight, more preferably 25 to 50 parts by weight, or 30 to 60 parts by weight.
  • the content of the component (C) is 0.1 to 10 parts by mass, preferably 0.5 to 3 parts by mass.
  • the component (D) is an optional component and may be omitted, but may be included as necessary. When included, the component (D) is included in an amount of 1 to 30 masses per 100 parts by mass of the total amount of the component (A) + component (B). Part, preferably 5 to 20 parts by weight.
  • the content of the compound (A) in (i) is usually 30 to 99.9 parts by mass, preferably 40 parts by mass. To 99.5 parts by mass, more preferably 50 to 99.5 parts by mass. In some cases, 40 to 90 parts by mass are preferable, and 50 to 80 parts by mass are more preferable.
  • the content of component (B) and / or component (C) in (ii) above is the total amount, usually 0.1 to 70 with respect to 100 parts by mass of the total amount of the resin composition excluding the solvent. Part by mass, preferably 0.5 to 60 parts by mass, and in some cases, 10 to 60 parts by mass is preferable, and 20 to 50 parts by mass is more preferable.
  • the resin composition of the present invention may include a release agent, an antifoaming agent, a leveling agent, a light stabilizer, an antioxidant, a polymerization agent, as necessary, in order to improve convenience during handling.
  • Additives such as inhibitors, plasticizers and antistatic agents can be used in combination depending on the situation.
  • the content of various additives is usually 0 to 10 parts by mass with respect to 100 parts by mass of the resin composition. When used, it is usually 0.001 to 10 parts by mass, preferably 0.01 to 8 parts by mass.
  • plasticizers are used to obtain durability and flexibility.
  • the plasticizer used is selected depending on the desired viscosity, durability, transparency, flexibility and the like.
  • olefinic polymers such as polyethylene and polypropylene, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, bis (2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate, diisononyl phthalate, dicyclohexyl phthalate, ethyl phthalyl ethyl glycolate Phthalates such as butyl phthalyl butyl glycolate, trimellitic esters such as tris (2-ethylhexyl) trimellitate, dibutyl adipate, diisobutyl adipate, bis (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl a
  • softening agents such as polymers such as acrylic polymer, polyester elastomer, urethane polymer and nitrile rubber can be added.
  • the content of the plasticizer or softening agent is usually 0 to 90 parts by mass with respect to 100 parts by mass of the resin composition, and when used, it is 1 to 90 parts by mass, preferably 2 to 80 parts by mass. .
  • the organic compound component having no reactive group in the present invention includes an organic compound not containing an ion reactive or radical reactive group such as an oxetanyl group, an epoxy group, or a radical reactive unsaturated bond-containing group.
  • the organic compound having no reactive group having a weight average molecular weight of 10,000 g / mol or more is not included in the resin composition of the present invention, or when it is included, the content thereof is an organic solvent.
  • It is preferably 1.5% by weight or less, more preferably 1.0% by weight or less, and particularly preferably 0.5% by weight or less, based on the total amount of the resin composition excluding.
  • amount By setting the amount to 1.5% by weight or less, it is possible to prevent the component having no reactive group from being incompatible and remaining as an insoluble component such as a solid or gel, and thus curing. It is preferable because the physical properties can be prevented from being inferior in transparency and heat resistance.
  • An organometallic compound such as alkylaluminum can also be added to reduce the water vapor permeability. Although a solvent can also be added, what does not add a solvent is preferable.
  • the weight average molecular weight of each component of the organic compound used is preferably 10,000 g / mol or less, more preferably 5,000 g / mol or less. Since a component having a large weight average molecular weight is difficult to dissolve, the prepared resin composition becomes a turbid liquid. This is not preferable because the resin composition used for the display must be uniformly transparent.
  • excellent characteristics are also required for the transmittance, and specifically, the light transmittance at each wavelength in the wavelength range of 380 to 780 nm is preferably 80% or more. The light transmittance can be measured with a measuring instrument such as a spectrophotometer U-3900H manufactured by Hitachi High-Technologies Corporation.
  • the resin composition for organic EL element sealing materials of this invention are mentioned below.
  • the total amount of the resin composition when the resin composition contains a solvent, it means the total amount excluding it.
  • the resin composition contains a solvent, it means the total amount excluding it.
  • the energy ray-curable resin composition for organic EL device sealing material containing at least two kinds of compounds (A) having two or more oxetane rings in the molecule, the molecule has two or more oxetane rings.
  • a combination of at least two kinds of the compound (A) is a combination of the compound represented by the general formula (2) and the compound of the general formula (3), and with respect to 1 part by mass of the compound of the general formula (3),
  • any one of the above I to III which further contains an epoxy compound (B) and contains 10 to 70 parts by mass with respect to 100 parts by mass of the total amount of the compound (A) and the epoxy compound (B).
  • Description aspect. V The embodiment according to any one of I to IV above, wherein the content of the compound (A) is 50 parts by mass or more with respect to 100 parts by mass of the total amount of the resin composition.
  • VI The embodiment according to any one of the above items I to V, which contains no (meth) acrylate compound or contains less than 15 parts by mass with respect to 100 parts by mass of the total amount of the resin composition.
  • VII. The embodiment according to any one of the above I to VI, wherein the cure shrinkage is 5.5% or less.
  • VIII The embodiment according to any one of the above I to VI, wherein the cure shrinkage is 5% or less.
  • IX The aspect according to any one of the above I to VI, wherein the organic EL element sealing material is for bonding a transparent substrate for sealing.
  • the resin composition of the present invention can be prepared by mixing and dissolving each component according to a conventional method.
  • each component can be charged into a round bottom flask equipped with a stirrer and a thermometer and stirred at 20 to 80 ° C., preferably 40 to 80 ° C. for 0.5 to 6 hours.
  • the viscosity of the resin composition of the present invention is only required to be able to form a coating film for adhering a solid organic EL sealing material (for example, glass or the like), and may be 10 mPa ⁇ s or more at 25 ° C. It is preferably about 10 to 3000 mPa ⁇ s.
  • the viscosity of the resin composition of the present invention that does not contain fine particles (D) is about 10 to 150 mPa ⁇ s, preferably about 20 to 120 mPa ⁇ s.
  • the viscosity of the resin composition of the present invention containing fine particles (D) is preferably about 300 to 3000 mPa ⁇ s, more preferably about 500 to 2500 Pa ⁇ s.
  • operativity of workability 10 mPa * s or more is preferable at 25 degreeC.
  • the resin composition of the present invention can be easily cured by energy rays.
  • energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X-rays, gamma rays and laser rays, particle rays such as alpha rays, beta rays and electron rays.
  • ultraviolet rays, laser beams, visible rays, or electron beams are preferred in the present invention.
  • the cured product of the present invention can be obtained by irradiating the resin composition of the present invention with the energy beam.
  • the liquid refractive index of the resin composition of the present invention is preferably high, and the liquid refractive index is usually 1.45 to 1.55. It is preferably 1.48 to 1.52.
  • the liquid refractive index can be measured with an Abbe refractometer (model number: DR-M2, manufactured by Atago Co., Ltd.).
  • the curing shrinkage when the resin composition of the present invention is cured is preferably 5.5% or less, preferably 5% or less, more preferably 4.7% or less, and most preferably 4.5% or less. .
  • the lower limit is preferably as small as possible, but is usually about 4% in the present invention.
  • the water vapor transmission rate at 60 ° C. is preferably 200 g / m 2 ⁇ day or less, and preferably 100 g / m 2 ⁇ day or less. More preferably, it is particularly preferably 60 g / m 2 ⁇ day or less.
  • the solid sealing of the organic EL element using the resin composition of the present invention is usually a step of forming a passivation film on the organic EL element formed on the substrate, the resin composition of the present invention on the passivation film. It can be performed by applying a (sealing adhesive), a step of providing a sealing transparent substrate on the coating layer, and a step of curing the coating layer.
  • a transparent substrate for sealing a transparent substrate such as glass that does not transmit moisture is used.
  • An organic EL element to be sealed includes a substrate (supporting substrate) that supports an element body that functions as the element, a lower electrode, an organic EL layer that includes at least a light emitting layer, and an element body that includes an upper electrode.
  • Consists of The substrate is made of an electrically insulating material such as a glass substrate, a transparent organic material made of cycloolefin, polycarbonate, polymethylmethacrylate, or the like, or an organic / inorganic hybrid transparent substrate in which the transparent organic material is made highly rigid with glass fiber or the like.
  • a flat substrate is used.
  • the following are mentioned as a typical structure of an element part main body.
  • a lower electrode made of an Al—Li alloy or the like is deposited on one side of a substrate by resistance heating vapor deposition.
  • an organic EL layer an electron transport layer composed of an oxadiazole derivative or a triazole derivative, a light emitting layer, a hole transport layer composed of TPD (triphenyldiamine), etc., and an upper electrode (anode) can be produced by sequentially laminating them by a thin film forming method such as resistance heating vapor deposition or ion beam sputtering.
  • the layer structure or material of the organic EL element is not particularly limited as long as it functions as a display element.
  • the solid sealing method according to the present invention can be applied to any structure of organic EL elements.
  • the passivation film is formed so as to cover the organic EL element.
  • the passivation film can be formed by a method such as vapor deposition or sputtering of an inorganic material such as silicon nitride or silicon oxide.
  • the passivation film is provided to prevent moisture, ionic impurities, and the like from entering the organic EL element.
  • the thickness of the passivation film is preferably in the range of 10 nm to 100 ⁇ m, and more preferably in the range of 100 nm to 10 ⁇ m.
  • the passivation film is generally an incomplete film having pinholes or a film having low mechanical strength, although it depends on the film forming method. Therefore, in the solid sealing method, the reliability of sealing is improved by further applying an adhesive on the passivation film, press-bonding using a transparent substrate for sealing, and curing the adhesive.
  • An organic EL display having a cured product of the resin composition of the present invention can be obtained by incorporating (mounting) the sealed organic EL element obtained as described above into a display device.
  • the resin composition and cured product of the present invention were obtained with the compositions shown in the following examples (Table 1).
  • Table 1 The evaluation method and evaluation criteria for the resin composition and the cured film were as follows.
  • Example containing an organic solvent it evaluated, after volatilizing an organic solvent fully with an evaporator.
  • Viscosity was measured at 25 ° C. using an E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.).
  • Liquid refractive index The refractive index (25 ° C.) of the blended resin composition was measured with an Abbe refractometer (DR-M2: manufactured by Atago Co., Ltd.).
  • Moisture permeability UV curable resin was sandwiched between glass substrates, the thickness was adjusted using a 100 ⁇ m spacer, and cured at 3000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less) to produce a test piece. .
  • the moisture permeability of the obtained test piece was measured with a Lyssy water vapor permeability meter L80-5000 (manufactured by Systech Illinois), 60 ° C. ⁇ 90% RH.
  • Tg glass transition point: Viscoelasticity measurement system EXSTAR DMS-6000 (manufactured by SII Nanotechnology Co., Ltd.), tension mode, frequency 1 Hz, scan rate rate); measured at 2 ° C./min from room temperature.
  • Light transmittance An ultraviolet curable resin is sandwiched between glass substrates, the thickness is adjusted using a 60 ⁇ m spacer, and cured at 3000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less) to produce a test piece. did.
  • the light transmittance of each wavelength at wavelengths of 380 to 780 nm was measured using a spectrophotometer U-3900H (light source C) manufactured by Hitachi High-Technologies Corporation, and the numerical value at 400 nm was taken as the transmittance.
  • OXT-121 Xylylenebisoxetane OXT-221 manufactured by Toagosei Co., Ltd .: 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane SEJ-01R manufactured by Toagosei Co., Ltd. 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate GSID 26-1 manufactured by Yakuhin Co., Ltd.
  • the resin composition of the present invention having a specific composition has a low cure shrinkage, the cured product has a high Tg, and a water vapor permeability. Low. Therefore, for example, it is suitable as various sealing materials, especially as a sealing material for organic EL elements, and can be used as an adhesive for bonding a transparent substrate for sealing in solid sealing of organic EL elements.
  • the resin composition of the present invention has a low curing shrinkage, and the cured product has excellent visible light transmittance and light resistance, high Tg, and low water vapor permeability. It is suitable as a sealing material and can be used as an adhesive for bonding a transparent substrate for sealing in solid sealing of an organic EL element.

Abstract

The present invention relates to an energy ray-curable resin composition for organic EL element sealing materials, which contains two or more compounds (A), for example, compounds represented by formula (1), said compounds (A) having two or more oxetane rings in each molecule. This resin composition has small curing shrinkage and provides a cured product that has excellent visible light transmittance, excellent light resistance, high Tg and low water vapor transmission rate. Consequently, this resin composition is useful as a solid sealing material for solid sealing of organic EL elements. (In formula (1), each R1 independently represents a direct bond or a linear or branched chain hydrocarbon group having 1-6 carbon atoms; R2 represents a linear or branched chain hydrocarbon group having 1-15 carbon atoms or a hydrocarbon group containing an alicyclic ring, an aromatic ring, a heterocyclic ring or a fused ring; each R3 independently represents a linear or branched chain hydrocarbon group having 1-6 carbon atoms; and n represents 0 (zero) or an integer having an average of 1-5.)

Description

エネルギー線硬化型樹脂組成物及びその硬化物Energy ray curable resin composition and cured product thereof
 エネルギー線硬化樹脂は、一般的に無溶剤で加工ができる為、作業性に優れる。また、硬化速度が早く、エネルギー必要量が低いことからエネルギー線硬化技術はディスプレイ周辺材料を始め、種々の産業において重要な技術である。近年、ディスプレイはフラットパネルディスプレイ(FPD)と称される薄型のディスプレイ、特にプラズマディスプレイ(PDP)、液晶ディスプレイ(LCD)が市場投入され広く普及している。また、次世代の自発光型薄膜ディスプレイとして有機ELディスプレイ(OLED)が期待されており、一部の商品では既に実用化されている。有機ELディスプレイの有機EL素子は、TFT等の駆動回路が形成されたガラス等の基板上に、陰極および陽極によって挟持された発光層を含む薄膜積層体からなる素子部本体が形成された構造を有している。素子部の発光層または電極といった層は、水分または酸素により劣化し易く、劣化によって輝度やライフの低下、変色が発生する。その為、有機EL素子は、外部からの水分または不純物の浸入を遮断するように封止されている。高品質で高信頼性の有機EL素子の実現に向けて、より高性能な封止材料が望まれており、従来から種々封止技術が検討されている。 Energy beam curable resin is generally excellent in workability because it can be processed without solvent. Further, since the curing speed is fast and the energy requirement is low, the energy beam curing technique is an important technique in various industries including display peripheral materials. In recent years, thin displays called flat panel displays (FPD), in particular, plasma displays (PDP) and liquid crystal displays (LCD) have been put on the market and are widely used. In addition, organic EL displays (OLEDs) are expected as next-generation self-luminous thin film displays, and some products have already been put into practical use. An organic EL element of an organic EL display has a structure in which an element body composed of a thin film laminate including a light emitting layer sandwiched between a cathode and an anode is formed on a glass substrate on which a driving circuit such as a TFT is formed. Have. A layer such as a light emitting layer or an electrode of the element portion is easily deteriorated by moisture or oxygen, and the deterioration of brightness, life, and discoloration occurs due to the deterioration. Therefore, the organic EL element is sealed so as to block moisture or impurities from entering from the outside. In order to realize a high-quality and high-reliability organic EL element, a higher-performance sealing material is desired, and various sealing techniques have been studied.
 有機EL素子の代表的な封止方法として、予め乾燥剤を挿入した金属製またはガラス製の封止キャップを、封止用接着剤を用いて有機EL素子の基板に固定する方法が検討されている。この方法は、有機EL素子の基板外周部に接着剤を塗布し、その上に封止キャップを設置、次いで接着剤を固化させることによって、基板と封止キャップとを固定し、有機EL素子を密閉している。このような方法では、ガラス製の封止キャップによる封止が主流となっている。しかし、ガラス製の封止キャップは、平坦なガラス基板に乾燥剤を挿入するための掘り込みを加工することによって作製されるため、高コストとなる傾向がある。また、封止キャップによる封止は、封止キャップの内側に乾燥剤が挿入されることになるため、封止キャップ側から光を取り出すことはできない。即ち、光源から放たれた光は素子の基板側から取り出されることになり、ボトムエミッション型の素子に制限される。ボトムエミッション型の素子の場合、基板に形成された駆動回路部による開口率の低下、および駆動回路部によって光が一部遮られることによる取り出し効率の低下の問題がある。そのため、有機EL素子の基板の反対側から光を取り出すトップエミッション型の素子に適用可能な封止方法の開発が望まれている。 As a typical sealing method of an organic EL element, a method of fixing a metal or glass sealing cap in which a desiccant is inserted in advance to a substrate of an organic EL element using a sealing adhesive has been studied. Yes. In this method, an adhesive is applied to the outer peripheral portion of the substrate of the organic EL element, a sealing cap is placed thereon, and then the adhesive is solidified to fix the substrate and the sealing cap. It is sealed. In such a method, sealing with a glass sealing cap is the mainstream. However, a glass sealing cap is produced by processing a digging for inserting a desiccant into a flat glass substrate, and thus tends to be expensive. Moreover, since the desiccant is inserted inside the sealing cap, the sealing with the sealing cap cannot extract light from the sealing cap side. In other words, the light emitted from the light source is extracted from the substrate side of the element, and is limited to the bottom emission type element. In the case of a bottom emission type element, there are problems of a decrease in aperture ratio due to the drive circuit portion formed on the substrate and a decrease in extraction efficiency due to light being partially blocked by the drive circuit portion. Therefore, development of a sealing method applicable to a top emission type element that extracts light from the opposite side of the substrate of the organic EL element is desired.
 トップエミッション型の素子に適用可能な代表的な封止方法として、薄膜封止法および固体封止法がある。薄膜封止法は、有機EL素子の上に無機または有機材料からなる薄膜を多層積層してパッシベーション膜とする方法である。この方法によって素子に十分な防湿性を付与するには、素子上に何層もの薄膜を順次積層する必要がある。そのため、薄膜封止法では成膜工程が長く高コストとなり、また成膜に必要とされる大型の真空系設備の導入によって初期投資が高くなる傾向がある。 As a typical sealing method applicable to a top emission type element, there are a thin film sealing method and a solid sealing method. The thin film sealing method is a method in which a thin film made of an inorganic or organic material is laminated on an organic EL element to form a passivation film. In order to impart sufficient moisture resistance to the device by this method, it is necessary to sequentially stack a number of thin films on the device. Therefore, in the thin film sealing method, the film forming process is long and expensive, and the initial investment tends to be high due to the introduction of a large vacuum system required for film formation.
 一方、固体封止法は、有機EL素子の素子部全体を覆うようにパッシベーション膜を設け、その上に封止材料を介して封止用透明基板を設ける方法である。一般に、パッシベーション膜は、無機材料を蒸着またはスパッタリングすることによって形成されるが、それはピンホールを有する不完全な膜であるか、機械的強度の弱い膜であることが多い。そのため、固体封止法では、素子上にパッシベーション膜を設けた後に、封止用接着剤を介してガラス基板などの封止用透明基板を設けることによって封止の信頼性を高めている。このような固体封止法は、簡便かつ低コストでトップエミッション型の素子の封止を実施可能な方法として注目を集めている。 On the other hand, the solid sealing method is a method in which a passivation film is provided so as to cover the entire element portion of the organic EL element, and a sealing transparent substrate is provided thereon via a sealing material. In general, a passivation film is formed by vapor deposition or sputtering of an inorganic material, and it is often an incomplete film having pinholes or a film having low mechanical strength. Therefore, in the solid sealing method, after providing a passivation film on the element, a sealing transparent substrate such as a glass substrate is provided through a sealing adhesive to improve sealing reliability. Such a solid sealing method is attracting attention as a method capable of sealing a top emission type element simply and at low cost.
 有機EL素子の固体封止法による封止では、熱または光硬化性樹脂を封止用接着剤として使用することが可能であるが、それらの特性は素子の性能および封止作業の生産性に著しい影響を及ぼす可能性があるため非常に重要である。例えば、封止用接着剤の水蒸気透過率が十分でないとパッシベーション膜のピンホールから素子部に浸入し、素子の劣化を招く可能性がある。また、封止材料の硬化反応が遅ければ、硬化工程に時間がかかり、封止作業の生産性が低下する可能性がある。 In the sealing of organic EL elements by the solid sealing method, it is possible to use a heat or photo-curing resin as an adhesive for sealing. This is very important because it can have a significant impact. For example, if the water vapor transmission rate of the sealing adhesive is not sufficient, it may enter the element portion from the pinhole of the passivation film and cause deterioration of the element. Further, if the curing reaction of the sealing material is slow, the curing process takes time, and the productivity of the sealing work may be reduced.
 これらに用いられる封止用接着剤には、可視光領域での高い透過率の他、発光に耐えうる耐光性、安定した成形性や残留応力抑制のための低硬化収縮性、発光素子を湿気から保護するための低水蒸気透過率などが求められる。有機EL素子の封止用接着剤として周知の接着剤を使用して固体封止法による封止を実施することは可能であるが、信頼性および生産性の双方で満足できる結果を得ることは難しいのが現状であり、固体封止法に好適に使用可能な封止用接着剤の開発が望まれている。
 オキセタン化合物を含む硬化性樹脂組成物は、いくつか知られている(例えば特許文献1~5)。しかしながら、オキセタン環を少なくとも2つ有する化合物を少なくとも2種併用した有機EL用に使用される硬化樹脂組成物は知られていない。
The sealing adhesive used for these has high transmittance in the visible light region, light resistance that can withstand light emission, stable moldability, low curing shrinkage for suppressing residual stress, and light emitting elements in moisture. For example, a low water vapor transmission rate for protecting from water is required. Although it is possible to perform sealing by a solid sealing method using a known adhesive as an organic EL element sealing adhesive, it is possible to obtain satisfactory results in both reliability and productivity. The current situation is difficult, and development of a sealing adhesive that can be suitably used in the solid sealing method is desired.
Several curable resin compositions containing an oxetane compound are known (for example, Patent Documents 1 to 5). However, a cured resin composition used for organic EL in which at least two compounds having at least two oxetane rings are used in combination is not known.
特許第3876630Japanese Patent No. 3876630 特許第2679586Japanese Patent No. 2679586 特許第4421938Japanese Patent No. 442138 特許第4655172Patent No. 4655172 特開2000-169552号公報JP 2000-169552 A
 有機EL素子の封止材に適した樹脂組成物には、硬化収縮率の小さいこと、該樹脂組成物から得られる硬化物は、可視光透過率、耐光性、硬化性に優れ、Tgが高く、水蒸気透過度が低いという特性が要求されている。本発明の目的は、そのような要求を満たす、有機EL素子の封止材に適した樹脂組成物及び該樹脂組成物から得られる硬化物を提供することである。 A resin composition suitable for an organic EL device sealing material has a low curing shrinkage rate, and a cured product obtained from the resin composition has excellent visible light transmittance, light resistance and curability, and a high Tg. The water vapor permeability is required to be low. The objective of this invention is providing the resin composition suitable for the sealing material of an organic EL element which satisfy | fills such a request | requirement, and the hardened | cured material obtained from this resin composition.
 本発明者らは、前記課題を解決するため鋭意研究の結果、分子中に2つ以上のオキセタン環を有する化合物(A)を少なくとも2種類含有するエネルギー線硬化型樹脂組成物及びその硬化物が前記課題を解決することを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that an energy beam curable resin composition containing at least two kinds of compounds (A) having two or more oxetane rings in the molecule and a cured product thereof. The inventors have found that the above problems can be solved and completed the present invention.
 即ち、本発明は、下記(1)~(23)に関する。
(1) 分子中に2つ以上のオキセタン環を有する化合物(A)を2種類以上含有する有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(2) エネルギー線硬化型樹脂組成物が、重量平均分子量10,000g/mol以上である反応性基を有さない有機化合物成分を含まないか、又は、含む場合はその含有量が該樹脂組成物の総量に対して1.5重量%未満であることを特徴とする(1)に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(3) 分子中に2つ以上のオキセタン環を有する化合物(A)が少なくとも下記一般式(1)または下記一般式(2)で表されるオキセタン環を有する化合物、
式(1)
Figure JPOXMLDOC01-appb-I000001

(式中、Rはそれぞれ独立して直接結合または炭素数1~6の直鎖または分岐鎖状の炭化水素基を示し、Rは炭素数1~15の直鎖若しくは分岐鎖状の炭化水素基、または、脂環、芳香環、複素環若しくは縮合環を含む炭化水素基を示し、Rはそれぞれ独立して炭素数1~6の直鎖または分岐鎖状炭化水素基を示し、nは平均値で1~5の整数を表す)、
式(2)
Figure JPOXMLDOC01-appb-I000002

(式中、Rはそれぞれ独立して炭素数1~6の直鎖または分岐鎖状の炭化水素基、及びRはそれぞれ独立して炭素数1~6の直鎖または分岐鎖状炭化水素基を表す)、
である上記(1)または(2)に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
That is, the present invention relates to the following (1) to (23).
(1) An energy ray curable resin composition for an organic EL device sealing material containing two or more compounds (A) having two or more oxetane rings in the molecule.
(2) The energy ray curable resin composition does not contain an organic compound component that does not have a reactive group having a weight average molecular weight of 10,000 g / mol or more, or if included, its content is the resin composition. The energy ray-curable resin composition for an organic EL device sealing material according to (1), which is less than 1.5% by weight based on the total amount of the product.
(3) A compound in which the compound (A) having two or more oxetane rings in the molecule has an oxetane ring represented by at least the following general formula (1) or the following general formula (2):
Formula (1)
Figure JPOXMLDOC01-appb-I000001

(In the formula, each R 1 independently represents a direct bond or a linear or branched hydrocarbon group having 1 to 6 carbon atoms, and R 2 represents a linear or branched carbon group having 1 to 15 carbon atoms. A hydrogen group or a hydrocarbon group containing an alicyclic ring, an aromatic ring, a heterocyclic ring or a condensed ring, and R 3 each independently represents a straight or branched hydrocarbon group having 1 to 6 carbon atoms, n Represents an average value of an integer of 1 to 5),
Formula (2)
Figure JPOXMLDOC01-appb-I000002

(Wherein R 4 is independently a linear or branched hydrocarbon group having 1 to 6 carbon atoms, and R 5 is each independently a linear or branched hydrocarbon group having 1 to 6 carbon atoms. Group),
The energy ray-curable resin composition for an organic EL device sealing material according to the above (1) or (2).
(4) 分子中に2つ以上のオキセタン環を有する化合物(A)が少なくとも分子中に脂環または芳香環を有する化合物である(1)乃至(3)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(5) 分子中に2つ以上のオキセタン環を有する化合物(A)として、上記式(1)の化合物及び上記式(2)の化合物を含有する(1)乃至(4)のいずれか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(6) 式(1)の化合物1質量部に対して、式(2)の化合物の含有割合が0.6~1.5質量部の範囲である上記(5)に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(7) 分子中に2つ以上のオキセタン環を有する化合物(A)を2種類以上含有し、該樹脂組成物中に含まれる全有機化合物成分が重量平均分子量10,000g/mol以下で、且つ、20℃~80℃で相互に可溶な成分から構成された上記(1)乃至(5)のいずれか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(8) (メタ)アクリレート化合物を含まないか、又は含んでも、溶剤を除く樹脂組成物の総量100質量部に対して、15質量部未満である上記(1)乃至(6)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(4) The organic EL according to any one of (1) to (3), wherein the compound (A) having two or more oxetane rings in the molecule is a compound having at least an alicyclic ring or an aromatic ring in the molecule. An energy ray curable resin composition for an element sealing material.
(5) The compound (A) having two or more oxetane rings in the molecule, the compound of the above formula (1) and the compound of the above formula (2), any one of (1) to (4) Energy beam curable resin composition for organic EL device sealing material according to 2.
(6) The organic EL device package according to (5), wherein the content of the compound of the formula (2) is in the range of 0.6 to 1.5 parts by mass with respect to 1 part by mass of the compound of the formula (1) An energy ray curable resin composition for a stopper.
(7) It contains two or more compounds (A) having two or more oxetane rings in the molecule, the total organic compound component contained in the resin composition has a weight average molecular weight of 10,000 g / mol or less, and The energy ray-curable resin composition for an organic EL device sealing material according to any one of the above (1) to (5), which is composed of components mutually soluble at 20 ° C. to 80 ° C.
(8) Any one of (1) to (6) above, which does not contain (meth) acrylate compound or is contained but is less than 15 parts by mass with respect to 100 parts by mass of the total amount of the resin composition excluding the solvent. The energy ray-curable resin composition for organic EL device sealing material according to Item.
(9) 更に、エポキシ化合物(B)及び光カチオン重合開始剤(C)の何れか一方若しくは両者を含み、その含量が、溶剤を除く樹脂組成物の総量100質量部に対して、0.1~70質量部であり、上記化合物(A)を、その合計含量で、溶剤を除く樹脂組成物の総量100質量部に対して、30~99.9質量部含む上記(1)乃至(8)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(10) 更に、エポキシ化合物(B)を含有する上記(1)乃至(8)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(11) エポキシ化合物(B)が脂環式エポキシ化合物である上記(9)又は(10)に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(12) エポキシ化合物(B)が分子中に2個以上のエポキシ基を有する化合物である上記(9)乃至(11)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(13) エポキシ化合物(B)を、上記化合物(A)とエポキシ化合物(B)の総量100質量部に対して、20~70質量部含有する上記(10)乃至(12)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(14) 分子中に2つ以上のオキセタン環を有する化合物(A)を、該化合物(A)およびエポキシ化合物(B)の総量100質量部に対して、30~90質量部含有する上記(10)乃至(13)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(9) Further, either or both of the epoxy compound (B) and the photocationic polymerization initiator (C) are contained, and the content thereof is 0.1% with respect to 100 parts by mass of the total amount of the resin composition excluding the solvent. (1) to (8), wherein the compound (A) is 30 to 99.9 parts by mass with respect to 100 parts by mass of the total amount of the resin composition excluding the solvent. The energy-beam curable resin composition for organic electroluminescent element sealing materials as described in any one of these.
(10) The energy ray-curable resin composition for an organic EL device sealing material according to any one of (1) to (8), further comprising an epoxy compound (B).
(11) The energy ray-curable resin composition for an organic EL device sealing material according to the above (9) or (10), wherein the epoxy compound (B) is an alicyclic epoxy compound.
(12) The energy ray curable type for organic EL device sealing material according to any one of (9) to (11), wherein the epoxy compound (B) is a compound having two or more epoxy groups in the molecule. Resin composition.
(13) Any one of (10) to (12), wherein the epoxy compound (B) is contained in an amount of 20 to 70 parts by mass with respect to 100 parts by mass of the total amount of the compound (A) and the epoxy compound (B). Energy beam curable resin composition for organic EL device sealing material according to 2.
(14) The compound (A) having 30 to 90 parts by mass of the compound (A) having two or more oxetane rings in the molecule with respect to 100 parts by mass in total of the compound (A) and the epoxy compound (B) (10 ) To (13) The energy ray-curable resin composition for an organic EL device sealing material according to any one of the above.
(15) 更に、光カチオン重合開始剤(C)を含有する上記(1)乃至(14)11の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(16) 光カチオン重合開始剤(C)がスルホニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩及びアンチモン酸塩からなる群から選択される少なくとも一つである上記(15)に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(17) 更に、微粒子(D)を含有する上記(1)乃至(16)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(18) 微粒子(D)の一次粒径が100nm以下である上記(17)に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(19) E型粘度計で測定した25℃での粘度が10mPa・s以上である(1)乃至(18)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(20) 該樹脂組成物を硬化したときの硬化収縮率が、5.5%以下である(1)乃至(15)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
(21) 上記(1)乃至(20)の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物を硬化せしめて得られる硬化物。
(22) 厚み100μmでの水蒸気透過率が200g/m・day/60℃以下である上記(21)に記載の硬化物。
(23)上記(21)または(22)に記載の硬化物を有する有機ELディスプレイ。
(15) The energy ray-curable resin composition for an organic EL device sealing material according to any one of (1) to (14) 11, further comprising a cationic photopolymerization initiator (C).
(16) The organic EL device package according to (15), wherein the cationic photopolymerization initiator (C) is at least one selected from the group consisting of a sulfonium salt, an iodonium salt, a phosphonium salt, an ammonium salt, and an antimonate. An energy ray curable resin composition for a stopper.
(17) The energy ray-curable resin composition for an organic EL device sealing material according to any one of (1) to (16), further containing fine particles (D).
(18) The energy ray-curable resin composition for organic EL device sealing material according to (17), wherein the primary particle size of the fine particles (D) is 100 nm or less.
(19) The energy ray-curable resin composition for an organic EL device sealing material according to any one of (1) to (18), wherein the viscosity at 25 ° C. measured with an E-type viscometer is 10 mPa · s or more. object.
(20) The energy shrinkage type for an organic EL device sealing material according to any one of (1) to (15), wherein a curing shrinkage rate when the resin composition is cured is 5.5% or less. Resin composition.
(21) A cured product obtained by curing the energy ray-curable resin composition for an organic EL device sealing material according to any one of (1) to (20).
(22) The cured product according to (21), wherein the water vapor transmission rate at a thickness of 100 μm is 200 g / m 2 · day / 60 ° C. or less.
(23) An organic EL display having the cured product according to (21) or (22).
 本発明の有機EL素子封止材用エネルギー線硬化型樹脂組成物(以下単に本発明の樹脂組成物とも云う)は硬化収縮率が小さく、該樹脂組成物の硬化物は、可視光透過率、耐光性に優れ、耐熱性が高く、水蒸気透過度が低いことから、特に有機EL素子の封止材に適している。 The energy ray-curable resin composition for organic EL device sealing material of the present invention (hereinafter also simply referred to as the resin composition of the present invention) has a low curing shrinkage, and the cured product of the resin composition has a visible light transmittance, Since it has excellent light resistance, high heat resistance, and low water vapor permeability, it is particularly suitable as a sealing material for organic EL elements.
 本発明における「有機EL素子封止材用」の語は、有機EL素子の封止、特に固体封止における、ガラス等の封止基板と有機EL素子の間に充填される固体封止剤としての用途を意味する。
 本発明の樹脂組成物は、分子中に2つ以上のオキセタン環を有する化合物(A)を2種類以上含有することを特徴とする。
 上記の構成により、2種類の2官能のオキセタン化合物が硬化時に相互に硬化系に導入されることとなり、1種類では達成できなかった、耐熱性、剛性、屈折率制御、耐水性、低収縮率の効果を同時に達成することが可能となる。
 即ち、1種類の2官能のオキセタン化合物の使用、又は、単官能オキセタン化合物と1種類の2官能オキセタン化合物の併用では、上記の効果を同時に達成することは難しかった。しかし、2種類の2官能オキセタン化合物を使用することで、硬化時の低収縮率、高い剛性、高い屈折率、高い耐水性を維持しつつ、2種類以上のオキセタン化合物同士が硬化系に複雑に導入されていくため、相乗効果として1種類のみでは達成し得なかった極めて高い耐熱性(高いガラス転位点(Tg))を有する硬化物の提供が可能となる。更に、2種類以上使用することで、耐熱性、剛性、屈折率、収縮率について、制御を行うことが極めて容易になる。
The term “for organic EL element sealing material” in the present invention is a solid sealing agent filled between a sealing substrate such as glass and an organic EL element in sealing of an organic EL element, particularly in solid sealing. Means use.
The resin composition of the present invention is characterized by containing two or more compounds (A) having two or more oxetane rings in the molecule.
With the above configuration, two types of bifunctional oxetane compounds are mutually introduced into the curing system at the time of curing, and heat resistance, rigidity, refractive index control, water resistance, low shrinkage ratio that could not be achieved with one type It is possible to simultaneously achieve the effects.
That is, it was difficult to achieve the above-mentioned effects simultaneously by using one type of bifunctional oxetane compound or using a monofunctional oxetane compound and one type of bifunctional oxetane compound. However, by using two types of bifunctional oxetane compounds, two or more types of oxetane compounds are complicated in the curing system while maintaining low shrinkage, high rigidity, high refractive index, and high water resistance during curing. Since it is introduced, it becomes possible to provide a cured product having extremely high heat resistance (high glass transition point (Tg)) that cannot be achieved by only one kind as a synergistic effect. Furthermore, by using two or more types, it becomes extremely easy to control the heat resistance, rigidity, refractive index, and shrinkage rate.
 本発明の樹脂組成物に含有される分子中に少なくとも2つのオキセタン環を有する化合物(A)としては、分子中に少なくとも2つのオキセタン環を有していれば何れも使用することが可能である。
 分子中に少なくとも2つのオキセタン環を有する化合物(A)としては、例えば、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(市販品としては、これを主成分(80%以上含む)とするアロンオキセタンRTMOXT-121)(東亞合成株式会社);キシリレンビスオキセタン)、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、ジ[2-(3-オキセタニル)ブチル]エーテル、1,4-ビス[(3-エチルオキセタン-3-イル)メトキシ]ベンゼン、1,3-ビス[(3-エチルオキセタン-3-イル)メトキシ]ベンゼン、1,2-ビス[(3-エチルオキセタン-3-イル)メトキシ]ベンゼン、4,4’-ビス[(3-エチルオキセタン-3-イル)メトキシ]ビフェニル、2,2’-ビス[(3-エチル-3-オキセタニル)メトキシ]ビフェニル、3,3’,5,5’-テトラメチル[4,4’-ビス(3-エチルオキセタン-3-イル)メトキシ]ビフェニル、2,7-ビス[(3-エチルオキセタン-3-イル)メトキシ]ナフタレン、1,6-ビス[(3-エチルオキセタン-3-イル)メトキシ]-2,2,3,3,4,4,5,5-オクタフルオロヘキサン、3(4),8(9)-ビス[(1-エチル-3-オキセタニル)メトキシメチル]-トリシクロ[5.2.1.2.6]デカン、1,2-ビス{[2-(1-エチル-3-オキセタニル)メトキシ]エチルチオ}エタン、4,4’-ビス[(1-エチル-3-オキセタニル)メチル]チオジベンゼンチオエーテル、2,3-ビス[(3-エチルオキセタン-3-イル)メトキシメチル]ノルボルナン、2-エチル-2-[(3-エチルオキセタン-3-イル)メトキシメチル]-1,3-O-ビス[(1-エチル-3-オキセタニル)メチル]-プロパン-1,3-ジオール、2,2-ジメチル-1,3-O-ビス[(3-エチルオキセタン-3-イル)メチル]-プロパン-1,3-ジオール、2-ブチル-2-エチル-1,3-O-ビス[(3-エチルオキセタン-3-イル)メチル]-プロパン-1,3-ジオール、1,4-O-ビス[(3-エチルオキセタン-3-イル)メチル]-ブタン-1,4-ジオール、2,4,6-O-トリス[(3-エチルオキセタン-3-イル)メチル]シアヌル酸等があげられる。これらは2種以上を用いることが好ましく、少なくとも1つはアルキレンオキシ基を有するオキセタン化合物が好ましい。
As the compound (A) having at least two oxetane rings in the molecule contained in the resin composition of the present invention, any compound having at least two oxetane rings in the molecule can be used. .
Examples of the compound (A) having at least two oxetane rings in the molecule include 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene (commercially available as a main component thereof) Aron oxetane RTM OXT-121) (contains 80% or more) (Toagosei Co., Ltd.); xylylene bisoxetane), 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane , Di [2- (3-oxetanyl) butyl] ether, 1,4-bis [(3-ethyloxetane-3-yl) methoxy] benzene, 1,3-bis [(3-ethyloxetan-3-yl) Methoxy] benzene, 1,2-bis [(3-ethyloxetane-3-yl) methoxy] benzene, 4,4′-bis [(3-ethyloxetane-3- L) methoxy] biphenyl, 2,2′-bis [(3-ethyl-3-oxetanyl) methoxy] biphenyl, 3,3 ′, 5,5′-tetramethyl [4,4′-bis (3-ethyloxetane) -3-yl) methoxy] biphenyl, 2,7-bis [(3-ethyloxetane-3-yl) methoxy] naphthalene, 1,6-bis [(3-ethyloxetane-3-yl) methoxy] -2, 2,3,3,4,4,5,5-octafluorohexane, 3 (4), 8 (9) -bis [(1-ethyl-3-oxetanyl) methoxymethyl] -tricyclo [5.2.1 .2.6] decane, 1,2-bis {[2- (1-ethyl-3-oxetanyl) methoxy] ethylthio} ethane, 4,4′-bis [(1-ethyl-3-oxetanyl) methyl] thio Dibenzenethioether, 2, -Bis [(3-ethyloxetane-3-yl) methoxymethyl] norbornane, 2-ethyl-2-[(3-ethyloxetane-3-yl) methoxymethyl] -1,3-O-bis [(1- Ethyl-3-oxetanyl) methyl] -propane-1,3-diol, 2,2-dimethyl-1,3-O-bis [(3-ethyloxetane-3-yl) methyl] -propane-1,3- Diol, 2-butyl-2-ethyl-1,3-O-bis [(3-ethyloxetane-3-yl) methyl] -propane-1,3-diol, 1,4-O-bis [(3- And ethyl oxetane-3-yl) methyl] -butane-1,4-diol, 2,4,6-O-tris [(3-ethyloxetane-3-yl) methyl] cyanuric acid. Two or more of these are preferably used, and at least one is preferably an oxetane compound having an alkyleneoxy group.
 本発明で使用される好ましい少なくとも2つのオキセタン環を有するオキセタン化合物としては、少なくとも2つのオキセタン環が、少なくとも一つのエーテル結合を含む架橋基により連結されたオキセタン化合物を挙げることが出来る。本発明においては、好ましくは、該オキセタン化合物を少なくとも2種類使用する。好ましい態様においては、タイプの異なる2種類を使用する。好ましい一つの態様は、上記のエーテル結合を含む架橋基が環構造を含まない鎖状の架橋基であるオキセタン化合物と、環構造を含む鎖状の架橋基であるオキセタン化合物の2種類を併用する態様である。該2種類のオキセタン化合物を併用することにより、上記の効果をよりよく達成することが出来る。
 少なくとも2つのオキセタン環が、少なくとも一つのエーテル結合を含む架橋基により連結されたオキセタン化合物としては、上記一般式(1)または一般式(2)の化合物を挙げることが出来る。なお、本発明における「架橋基」は、2つの原子の間を結合する2価の基を意味する。
 該オキセタン化合物の2種類の組合せとしては、上記一般式(1)の化合物と一般式(2)の化合物の組合せが好ましい。特に、市場から入手しやすい点で、キシリレンビスオキセタン及び3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンの組合せは特に好ましい。
Examples of the oxetane compound having at least two oxetane rings used in the present invention include oxetane compounds in which at least two oxetane rings are connected by a bridging group containing at least one ether bond. In the present invention, preferably, at least two kinds of the oxetane compounds are used. In a preferred embodiment, two different types are used. In a preferred embodiment, two types of the oxetane compound in which the above-described crosslinking group containing an ether bond is a chain-like crosslinking group not containing a ring structure and the oxetane compound being a chain-like crosslinking group containing a ring structure are used in combination. It is an aspect. By using the two kinds of oxetane compounds in combination, the above effects can be achieved better.
Examples of the oxetane compound in which at least two oxetane rings are linked by a bridging group containing at least one ether bond include the compounds of the above general formula (1) or general formula (2). The “crosslinking group” in the present invention means a divalent group that bonds between two atoms.
As the two kinds of combinations of the oxetane compounds, a combination of the compound of the general formula (1) and the compound of the general formula (2) is preferable. In particular, the combination of xylylene bisoxetane and 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane is particularly preferable because it is easily available from the market.
 本発明で2官能オキセタン化合物として使用される好ましい一つの化合物は、一般式(1)
Figure JPOXMLDOC01-appb-I000003

(式中、Rはそれぞれ独立に、直接結合または炭素数1~6の直鎖または分岐鎖状炭化水素基(炭化水素結合)を示し、Rは炭素数1~15の直鎖若しくは分岐鎖状の炭化水素基(炭化水素結合)、または、脂環、芳香環、複素環若しくは縮合環を含む炭化水素基を示し、Rはそれぞれ独立して炭素数1~6の直鎖または分岐鎖状炭化水素基を示し、nは平均値で1~5の整数を表す。)
で表されるオキセタン化合物である。
 なお、上記式(1)におけるR及びRは上記構造式から明らかな通り、2価の炭化水素基であり、Rは1価の炭化水素基である。
 Rとしては、炭素数1~6の直鎖または分岐鎖状炭化水素基が好ましく、炭素数1~6のアルキレン基がより好ましく、炭素数1~3のアルキレン基が特に好ましい。
 Rとしては、炭素数1~12の直鎖アルキレン基、炭素数1~12の分岐鎖状アルキレン基、炭素数3~12のフェニレン基またはシクロアルキレン基を有するアルキレン基が好ましく、炭素数6~12のフェニレン基を有するアルキレン基(好ましくは炭素数1~4のアルキレン基)が特に好ましい。
 Rとしては、炭素数1~3のアルキル基が好ましい。
 nとしては、1~3が好ましい。
 尚、上記式(1)の化合物において、Rに脂環、芳香環、複素環、縮合環といった環構造(例えば、フェニレン基、ナフタレン基、炭素数3~8のシクロアルキレン基)を有するオキセタン化合物を用いると、硬化収縮率が小さくなり、硬化物のTg(ガラス転移点)、剛性、屈折率が向上するため好ましい。
 ここで、上記式(1)の化合物において、特に好ましい具体例としては、下記一般式(3)
One preferred compound used as the bifunctional oxetane compound in the present invention is represented by the general formula (1)
Figure JPOXMLDOC01-appb-I000003

(Wherein R 1 independently represents a direct bond or a linear or branched hydrocarbon group having 1 to 6 carbon atoms (hydrocarbon bond), and R 2 represents a linear or branched group having 1 to 15 carbon atoms. A chain hydrocarbon group (hydrocarbon bond) or a hydrocarbon group containing an alicyclic ring, an aromatic ring, a heterocyclic ring or a condensed ring, wherein R 3 is each independently a straight chain or branched chain having 1 to 6 carbon atoms Represents a chain hydrocarbon group, and n represents an integer of 1 to 5 on average.)
An oxetane compound represented by:
In addition, R 1 and R 2 in the above formula (1) are divalent hydrocarbon groups as is clear from the above structural formula, and R 3 is a monovalent hydrocarbon group.
R 1 is preferably a linear or branched hydrocarbon group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and particularly preferably an alkylene group having 1 to 3 carbon atoms.
R 2 is preferably an alkylene group having a linear alkylene group having 1 to 12 carbon atoms, a branched alkylene group having 1 to 12 carbon atoms, a phenylene group having 3 to 12 carbon atoms or a cycloalkylene group, and having 6 carbon atoms. An alkylene group having -12 phenylene groups (preferably an alkylene group having 1 to 4 carbon atoms) is particularly preferred.
R 3 is preferably an alkyl group having 1 to 3 carbon atoms.
n is preferably 1 to 3.
In the compound of the above formula (1), R 2 has an oxetane having a ring structure such as an alicyclic ring, an aromatic ring, a heterocyclic ring or a condensed ring (for example, a phenylene group, a naphthalene group or a cycloalkylene group having 3 to 8 carbon atoms). Use of a compound is preferable because the curing shrinkage ratio is reduced and the Tg (glass transition point), rigidity, and refractive index of the cured product are improved.
Here, in the compound of the above formula (1), as a particularly preferred specific example, the following general formula (3)
Figure JPOXMLDOC01-appb-I000004

(式中、Rは前記式(1)と同じ意味を表し、同一でも異なっていてもよい。Zは炭素数3~12の環状基を表し、該環は脂環(脂肪族環)、芳香環、複素環又は縮合環の何れでもよい。nは平均値で1~5の整数を表す。)
で表される化合物である。
 Zの炭素数3~12の環状基としては2価の脂肪族環基又は芳香環基が好ましく、フェニレン基が特に好ましい。
 上記式(3)の化合物を用いることで、硬化収縮率をより低く保つことが可能となる。
Figure JPOXMLDOC01-appb-I000004

(Wherein R 3 represents the same meaning as in the formula (1) and may be the same or different. Z represents a cyclic group having 3 to 12 carbon atoms, and the ring is an alicyclic ring (aliphatic ring); (Aromatic ring, heterocyclic ring or condensed ring may be used, and n represents an integer of 1 to 5 on average.)
It is a compound represented by these.
As the cyclic group having 3 to 12 carbon atoms of Z, a divalent aliphatic ring group or an aromatic ring group is preferable, and a phenylene group is particularly preferable.
By using the compound of the above formula (3), the curing shrinkage rate can be kept lower.
 また、下記一般式(2)で表されるオキセタン化合物は下記の通りである。 The oxetane compound represented by the following general formula (2) is as follows.
Figure JPOXMLDOC01-appb-I000005

 式中、Rはそれぞれ独立して炭素数1~6の直鎖または分岐鎖状の炭化水素基、及びRはそれぞれ独立して炭素数1~6の直鎖または分岐鎖状炭化水素基を表す。なお、Rは上記構造式から明らかなとおり、2価の炭素数1~6の炭化水素基であり、Rは1価の炭化水素基である。
 上記式(2)において、Rは炭素数1~6の直鎖炭化水素基、さらに好ましくは炭素数1~3のアルキレン基である。
 Rにおいては、炭素数1~3の直鎖炭化水素基が好ましく、特に好ましくは炭素数1~3のアルキル基である。
Figure JPOXMLDOC01-appb-I000005

In the formula, each R 4 is independently a linear or branched hydrocarbon group having 1 to 6 carbon atoms, and R 5 is each independently a linear or branched hydrocarbon group having 1 to 6 carbon atoms. Represents. As is clear from the above structural formula, R 4 is a divalent hydrocarbon group having 1 to 6 carbon atoms, and R 5 is a monovalent hydrocarbon group.
In the above formula (2), R 4 is a straight-chain hydrocarbon group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
In R 5 , a straight-chain hydrocarbon group having 1 to 3 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is particularly preferable.
 また、成分の1つとして脂環、芳香環、複素環、縮合環といった環構造(例えば、フェニレン基、ナフタレン基、炭素数3~8のシクロアルキレン基)を有するオキセタン化合物を用いると硬化物のTg(ガラス転移点)、剛性、屈折率が向上するため好ましい。さらに好ましくは、環構造が脂環または芳香環であるオキセタン化合物である。具体的には上記一般式(3)で表される化合物である。 本発明の成分(A)の含有量は反応性化合物である成分(A)+成分(B)の総量100質量部に対して、30~100質量部であり、より好ましくは30~90質量部であり、特に好ましくは40~90質量部である。また、場合により、成分(A)の上記含有量は30~80質量部も好ましく、更に好ましくは50~75質量部である。残部が成分(B)である。
 また、本発明の樹脂組成物の総量(溶剤を含む場合は溶剤を除く)100質量部に対する成分(A)の含有割合は、通常30~99.9質量部であり、より好ましくは40~99.5質量部、更に好ましくは、50~99.5質量部である
 成分(A)の官能基当量としては、10~500g/eqが好ましく、50~250g/eqがさらに好ましい。
 また、官能基当量が50~150g/eqの前記オキセタン化合物(好ましくは式(2)で表される化合物)と、官能基当量が100~200g/eqであり芳香環を有するオキセタン化合物(好ましくは式(3)で表される化合物、より好ましくは式(3)でZがフェニレン基である化合物)を組み合せることで、高Tg(ガラス転移点)でありながら高い屈折率を有する樹脂組成物を得ることができる。
 式(1)の化合物(好ましくは式(3)の化合物)と式(2)の化合物を組合わせて用いる場合、両者の比率は式(1)の化合物1質量部に対して、式(2)の化合物を通常0.6~1.5質量部の範囲、好ましくは0.7~1.3質量部の範囲、より好ましくは0.8~1.2質量部、最も好ましくは、0.9~1.1質量部の範囲である。
Further, if one of the components is an oxetane compound having a ring structure such as an alicyclic ring, an aromatic ring, a heterocyclic ring, or a condensed ring (for example, a phenylene group, a naphthalene group, or a cycloalkylene group having 3 to 8 carbon atoms), This is preferable because Tg (glass transition point), rigidity, and refractive index are improved. More preferably, it is an oxetane compound whose ring structure is an alicyclic ring or an aromatic ring. Specifically, it is a compound represented by the general formula (3). The content of the component (A) of the present invention is 30 to 100 parts by weight, more preferably 30 to 90 parts by weight, based on 100 parts by weight of the total amount of the component (A) + component (B) as the reactive compound. Particularly preferred is 40 to 90 parts by mass. In some cases, the content of the component (A) is preferably 30 to 80 parts by mass, more preferably 50 to 75 parts by mass. The balance is component (B).
Further, the content ratio of the component (A) to 100 parts by mass of the total amount of the resin composition of the present invention (excluding the solvent when a solvent is included) is usually 30 to 99.9 parts by mass, more preferably 40 to 99. The functional group equivalent of component (A) is preferably 10 to 500 g / eq, more preferably 50 to 250 g / eq.
The oxetane compound having a functional group equivalent of 50 to 150 g / eq (preferably a compound represented by the formula (2)) and an oxetane compound having an aromatic ring having a functional group equivalent of 100 to 200 g / eq (preferably A resin composition having a high refractive index while having a high Tg (glass transition point) by combining a compound represented by formula (3), more preferably a compound in which Z is a phenylene group in formula (3) Can be obtained.
When the compound of the formula (1) (preferably the compound of the formula (3)) and the compound of the formula (2) are used in combination, the ratio of both is the formula (2) with respect to 1 part by mass of the compound of the formula (1). ) In the range of usually 0.6 to 1.5 parts by weight, preferably 0.7 to 1.3 parts by weight, more preferably 0.8 to 1.2 parts by weight, most preferably 0.8. The range is 9 to 1.1 parts by mass.
 本発明の樹脂組成物に含有されるエポキシ基を有する化合物(B)(以下エポキシ化合物(B)又は成分(B)とも云う)としては、単官能エポキシ化合物及び多官能エポキシ化合物の何れでも良い。また、芳香環を含むエポキシ化合物(芳香族エポキシ化合物)や芳香環を含まない脂肪族エポキシ化合物の何れでも良い。本発明においては、芳香族エポキシ化合物又は脂肪族環を含むエポキシ化合物(脂肪族環含有エポキシ化合物)が好ましい。特に、脂肪族環環上にエポキシ基が形成されている脂環式エポキシが好ましい。 The compound (B) having an epoxy group contained in the resin composition of the present invention (hereinafter also referred to as epoxy compound (B) or component (B)) may be any of a monofunctional epoxy compound and a polyfunctional epoxy compound. Moreover, any of an epoxy compound containing an aromatic ring (aromatic epoxy compound) and an aliphatic epoxy compound not containing an aromatic ring may be used. In the present invention, an aromatic epoxy compound or an epoxy compound containing an aliphatic ring (aliphatic ring-containing epoxy compound) is preferred. In particular, an alicyclic epoxy in which an epoxy group is formed on an aliphatic ring is preferable.
 単官能エポキシ化合物としては、例えば、フェニルグリシジルエーテル、p-tert-ブチルフェニルグリシジルエーテル、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、アリルグリシジルエーテル、1,2-ブチレンオキサイド、1,3-ブタジエンモノオキサイド、1,2-エポキシドデカン、エピクロロヒドリン、1,2-エポキシデカン、スチレンオキサイド、シクロヘキセンオキサイド、3-メタクリロイルオキシメチルシクロヘキセンオキサイド、3-アクリロイルオキシメチルシクロヘキセンオキサイド、3-ビニルシクロヘキセンオキサイド等が挙げられる。 Examples of the monofunctional epoxy compound include phenyl glycidyl ether, p-tert-butylphenyl glycidyl ether, butyl glycidyl ether, 2-ethylhexyl glycidyl ether, allyl glycidyl ether, 1,2-butylene oxide, and 1,3-butadiene monooxide. 1,2-epoxydodecane, epichlorohydrin, 1,2-epoxydecane, styrene oxide, cyclohexene oxide, 3-methacryloyloxymethylcyclohexene oxide, 3-acryloyloxymethylcyclohexene oxide, 3-vinylcyclohexene oxide, etc. It is done.
 多官能エポキシ化合物の例としては、例えば、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、エポキシノボラック樹脂、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールF ジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタン-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンオキサイド、4-ビニルエポキシシクロヘキサン、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3’,4’-エポキシ-6’-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールのジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,1,3-テトラデカジエンジオキサイド、リモネンジオキサイド、1,2,7,8-ジエポキシオクタン、1,2,5,6-ジエポキシシクロオクタン等が挙げられる。 Examples of polyfunctional epoxy compounds include, for example, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, brominated bisphenol S di Glycidyl ether, epoxy novolac resin, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy) cyclohexane-methane-dioxane, bis (3,4-epoxy Hexylmethyl) adipate, vinylcyclohexene oxide, 4-vinylepoxycyclohexane, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, 3,4-epoxy-6-methylcyclohexyl-3 ', 4'-epoxy- 6'-methylcyclohexanecarboxylate, methylenebis (3,4-epoxycyclohexane), dicyclopentadiene diepoxide, di (3,4-epoxycyclohexylmethyl) ether of ethylene glycol, ethylenebis (3,4-epoxycyclohexanecarboxylate) ), Dioctyl epoxyhexahydrophthalate, di-2-ethylhexyl epoxyhexahydrophthalate, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether Ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,1,3-tetradecadiene dioxide, limonene dioxide, 1,2,7,8- Examples include diepoxyoctane and 1,2,5,6-diepoxycyclooctane.
 脂環式エポキシの例としては、シクロヘキセンオキサイド、あるいはシクロペンテンオキサイドを含有する化合物であれば全て用いることができる。該脂環式エポキシとしては具体的には下記構造を持つ化合物が例示される。 As examples of the alicyclic epoxy, any compound containing cyclohexene oxide or cyclopentene oxide can be used. Specific examples of the alicyclic epoxy include compounds having the following structure.
Figure JPOXMLDOC01-appb-I000006

(式中、nは平均値で1~5の正数を表す。)
Figure JPOXMLDOC01-appb-I000006

(In the formula, n is an average value and represents a positive number of 1 to 5.)
 本発明で使用されるエポキシ化合物(B)としては、通常用いられるエポキシ樹脂であれば前記で例示したものに限定されるものではない。
 前記のエポキシ化合物のなかでも、芳香族エポキシ化合物及び脂環式エポキシ化合物が、硬化速度に優れるという点から好ましく、特に脂環式エポキシ化合物が好ましい。脂環式エポキシ化合物の中でも好ましくは2官能の脂環式エポキシ化合物であり、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレートが特に好ましい。
 上記エポキシ化合物(B)は単独で用いてもよく、2種以上を用いてもよい。本発明の成分(B)の含有量は反応性化合物である成分(A)+成分(B)の総量100質量部に対して、通常0~70質量部であり、好ましくは10~70質量部であり、より好ましくは20~70質量部であり、特に好ましくは25~50質量部である。また、場合により、10~60質量部もより好ましい。
 本発明で使用されるエポキシ化合物(B)のエポキシ当量としては、50~500g/eqが好ましく、100~300g/eqがさらに好ましい。
The epoxy compound (B) used in the present invention is not limited to those exemplified above as long as it is a commonly used epoxy resin.
Among the above epoxy compounds, aromatic epoxy compounds and alicyclic epoxy compounds are preferable from the viewpoint of excellent curing speed, and alicyclic epoxy compounds are particularly preferable. Among the alicyclic epoxy compounds, bifunctional alicyclic epoxy compounds are preferable, and 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate is particularly preferable.
The said epoxy compound (B) may be used independently and may use 2 or more types. The content of the component (B) of the present invention is usually 0 to 70 parts by weight, preferably 10 to 70 parts by weight, based on 100 parts by weight of the total amount of the component (A) + component (B) as the reactive compound. More preferably, it is 20 to 70 parts by mass, and particularly preferably 25 to 50 parts by mass. In some cases, 10 to 60 parts by mass is more preferable.
The epoxy equivalent of the epoxy compound (B) used in the present invention is preferably 50 to 500 g / eq, more preferably 100 to 300 g / eq.
 本発明の樹脂組成物に含有される光カチオン重合開始剤(C)としては、例えば芳香族ヨードニウム錯塩や芳香族スルホニウム錯塩等を挙げることができる。 Examples of the photocationic polymerization initiator (C) contained in the resin composition of the present invention include aromatic iodonium complex salts and aromatic sulfonium complex salts.
 芳香族ヨードニウム錯塩の具体例としては、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウムヘキサフルオロホスフェート等が挙げられる。 Specific examples of the aromatic iodonium complex salt include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and the like.
 芳香族スルホニウム錯塩の具体例としては、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス[ジフェニルスルホニオ]ジフェニルスルフィド-ビスヘキサフルオロホスフェート、4,4’-ビス[ジ(β-ヒドロキシエトキシ)フェニルスルホニオ]ジフェニルスルフィド-ビスヘキサフルオロアンチモネート、7-[ジ(p-トルイル)スルホニオ]-2-イソプロピルチオキサントンヘキサフルオロホスフェート、7-[ジ(p-トルイル)スルホニオ]-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-[ジ(p-トルイル)スルホニオ]-2-イソプロピルテトラキス(ペンタフルオロフェニル)ボレート、フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロホスフェート、フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロアンチモネート、4-tert-ブチルフェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロホスフェート、4-tert-ブチルフェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-ヘキサフルオロアンチモネート、4-tert-ブチルフェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド-テトラキス(ペンタフルオロフェニル)ボレート、チオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、チオフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4-{4-(2-クロロベンゾイル)フェニルチオ}フェニルビス(4-フルオロフェニル)スルホニウムヘキサフルオロアンチモネート、チオフェニルジフェニルスルホニウムヘキサフルオロアンチモネートのハロゲン化物、4,4’,4’’-トリ(β-ヒドロキシエトキシフェニル)スルホニウムヘキサフルオロアンチモネート、4,4’-ビス[ジフェニルスルホニオ]ジフェニルスルフィド-ビスヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムトリフルオロトリスペンタフルオロエチルホスファート、トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムトリス[(トリフルオロメチル)スルホニル]メタニド等を挙げることができる。 Specific examples of the aromatic sulfonium complex salt include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [diphenylsulfonio] diphenyl sulfide— Bishexafluorophosphate, 4,4′-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenylsulfide-bishexafluoroantimonate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoro Phosphate, 7- [Di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate, 7- [Di (p-toluyl) sulfonio] -2- Sopropyltetrakis (pentafluorophenyl) borate, phenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide-hexafluorophosphate, phenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide-hexafluoroantimonate, 4-tert-butyl Phenylcarbonyl-4′-diphenylsulfonio-diphenylsulfide-hexafluorophosphate, 4-tert-butylphenylcarbonyl-4′-diphenylsulfonio-diphenylsulfide-hexafluoroantimonate, 4-tert-butylphenylcarbonyl-4 ′ -Diphenylsulfonio-diphenylsulfide-tetrakis (pentafluorophenyl) borate, thiophenyldiphenylsulfonium hex Safluoroantimonate, thiophenyldiphenylsulfonium hexafluorophosphate, 4- {4- (2-chlorobenzoyl) phenylthio} phenylbis (4-fluorophenyl) sulfonium hexafluoroantimonate, halogen of thiophenyldiphenylsulfonium hexafluoroantimonate 4,4 ′, 4 ″ -tri (β-hydroxyethoxyphenyl) sulfonium hexafluoroantimonate, 4,4′-bis [diphenylsulfonio] diphenyl sulfide-bishexafluoroantimonate, diphenyl [4- ( Phenylthio) phenyl] sulfonium trifluorotrispentafluoroethyl phosphate, tris [4- (4-acetylphenylsulfanyl) phenyl] sulfonium tris Can be exemplified (trifluoromethyl) sulfonyl] methanides like.
 芳香族スルホニウム錯塩の中でも、高感度でありかつ市場から入手しやすいチオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、4-{4-(2-クロロベンゾイル)フェニルチオ}フェニルビス(4-フルオロフェニル)スルホニウムヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムトリフルオロトリスペンタフルオロエチルホスファート、トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムトリス[(トリフルオロメチル)スルホニル]メタニド等が好ましい。
 さらに、環境及び人体への有害性、ならびに各国の規制を鑑みると、アンチモン元素を含有しないジフェニル[4-(フェニルチオ)フェニル]スルホニウムトリフルオロトリスペンタフルオロエチルホスファート、トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムトリス[(トリフルオロメチル)スルホニル]メタニドを使用することが最も好ましい。
 本発明の成分(C)の含有量は成分(A)+成分(B)の総量100質量部に対して、0.1~10質量部であり、好ましくは0.5~3質量部である。
 また、樹脂組成物の総量(溶媒を含む場合は溶媒を除く)100質量部に対する、成分(C)の割合も上記と同じ範囲が好ましい。更に、成分(A)100質量部に対する成分(C)の含有割合もほぼ上記と同じ範囲が好ましい。
なお、本発明の樹脂組成物においては、光カチオン重合開始剤(C)は単独で用いてもよいし、複数種を混合して用いてもよい。
 また、ラジカル型光重合開始剤を併用できる。ラジカル型光重合開始剤であれば、どの光重合開始剤でもよいが、例えば、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン又は1-ヒドロキシシクロヘキシル-フェニルケトンが挙げられる。
Among aromatic sulfonium complex salts, thiophenyldiphenylsulfonium hexafluoroantimonate, 4- {4- (2-chlorobenzoyl) phenylthio} phenylbis (4-fluorophenyl) sulfonium hexafluoro, which is highly sensitive and easily available from the market Antimonate, diphenyl [4- (phenylthio) phenyl] sulfonium trifluorotrispentafluoroethyl phosphate, tris [4- (4-acetylphenylsulfanyl) phenyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide and the like are preferable.
Furthermore, in view of the harm to the environment and the human body and the regulations of each country, diphenyl [4- (phenylthio) phenyl] sulfonium trifluorotrispentafluoroethyl phosphate, tris [4- (4-acetyl), which does not contain an antimony element. Most preferably, phenylsulfanyl) phenyl] sulfonium tris [(trifluoromethyl) sulfonyl] methanide is used.
The content of the component (C) of the present invention is 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight with respect to 100 parts by weight as a total of component (A) + component (B). .
Moreover, the ratio of the component (C) with respect to 100 parts by mass of the total amount of the resin composition (excluding the solvent when the solvent is included) is also preferably in the same range as described above. Furthermore, the content ratio of the component (C) with respect to 100 parts by mass of the component (A) is preferably in the same range as above.
In addition, in the resin composition of this invention, a photocationic polymerization initiator (C) may be used independently, and multiple types may be mixed and used for it.
Moreover, a radical type photoinitiator can be used together. Any photopolymerization initiator may be used as long as it is a radical photopolymerization initiator, and examples thereof include 2-hydroxy-2-methyl-phenylpropan-1-one or 1-hydroxycyclohexyl-phenylketone.
 本発明に使用される微粒子(D)としては有機微粒子、無機微粒子が挙げられる。また、該微粒子(D)は、必要とされる光線透過率、硬度、耐擦傷性、硬化収縮率、屈折率を考慮し、必要に応じて、単独、または複数種を混合して用いることができる。該微粒子(D)を使用することで、本発明の樹脂組成物の硬化収縮率及び該樹脂組成物の硬化物の透湿度を低下させ、液屈折率を上げることが出来る。
 一方、該硬化物の光の透過率(特に、380nm~780nmの波長域での光の透過率)を向上させる観点からは、本発明の樹脂組成物は該微粒子(D)を含有しない方が好ましい。
Examples of the fine particles (D) used in the present invention include organic fine particles and inorganic fine particles. In addition, the fine particles (D) may be used alone or as a mixture of a plurality of types as required in consideration of the required light transmittance, hardness, scratch resistance, curing shrinkage rate, and refractive index. it can. By using the fine particles (D), the curing shrinkage rate of the resin composition of the present invention and the moisture permeability of the cured product of the resin composition can be reduced, and the liquid refractive index can be increased.
On the other hand, from the viewpoint of improving the light transmittance of the cured product (particularly the light transmittance in the wavelength range of 380 nm to 780 nm), the resin composition of the present invention should not contain the fine particles (D). preferable.
 本発明に使用される有機微粒子としては、ポリスチレン樹脂ビーズ、アクリル系樹脂ビーズ、ウレタン樹脂ビーズ、ポリカーボネート樹脂ビーズ等の有機ポリマービーズ、多孔質ポリスチレン樹脂ビーズ、多孔質アクリル系樹脂ビーズ、多孔質ウレタン樹脂ビーズ、多孔質ポリカーボネート樹脂ビーズ等の多孔質有機ポリマービーズ、ベンゾグアナミン-ホルマリン縮合物の樹脂粉末、ベンゾグアナミン-メラミン-ホルマリン縮合物の樹脂粉末、尿素-ホルマリン縮合物の樹脂粉末、アスパラギン酸エステル誘導体の粉末、ステアリン酸亜鉛の粉末、ステアリン酸アミドの粉末、エポキシ樹脂パウダー、ポリエチレンパウダー等が挙げられ、架橋ポリメチルメタクリレート樹脂ビーズや架橋ポリメチルメタクリレート・スチレン樹脂ビーズ等が好ましい。これら有機微粒子は市販品として容易に入手することができ、又、公知文献を参考に調製することもできる。 The organic fine particles used in the present invention include polystyrene resin beads, acrylic resin beads, urethane resin beads, polycarbonate resin beads and other organic polymer beads, porous polystyrene resin beads, porous acrylic resin beads, and porous urethane resin. Porous organic polymer beads such as beads, porous polycarbonate resin beads, resin powder of benzoguanamine-formalin condensate, resin powder of benzoguanamine-melamine-formalin condensate, resin powder of urea-formalin condensate, powder of aspartate derivative , Zinc stearate powder, stearamide powder, epoxy resin powder, polyethylene powder, etc. Crosslinked polymethyl methacrylate resin beads and crosslinked polymethyl methacrylate / styrene resin beads Etc. are preferred. These organic fine particles can be easily obtained as a commercial product, and can also be prepared with reference to known literature.
 本発明に使用することができる無機微粒子としては導電性金属酸化物、透明性金属酸化物、その他無機フィラー等が挙げられる。 Examples of inorganic fine particles that can be used in the present invention include conductive metal oxides, transparent metal oxides, and other inorganic fillers.
 本発明に使用される導電性金属酸化物としては、アンチモン酸亜鉛、酸化錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、五酸化アンチモン、酸化錫、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、フッ素ドープ酸化錫等が挙げられる。 Examples of the conductive metal oxide used in the present invention include zinc antimonate, tin oxide-doped indium oxide (ITO), antimony-doped tin oxide (ATO), antimony pentoxide, tin oxide, aluminum-doped zinc oxide, and gallium-doped oxide. Examples include zinc and fluorine-doped tin oxide.
 本発明に使用される透明性金属酸化物としては、シリカ、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、酸化鉄、酸化チタン/酸化ジルコニウム/酸化錫/五酸化アンチモン複合物、酸化ジルコニウム/酸化錫/五酸化アンチモン複合物、酸化チタン/酸化ジルコニウム/酸化錫複合物等が挙げられる。 Examples of the transparent metal oxide used in the present invention include silica, titanium oxide, zirconium oxide, cerium oxide, zinc oxide, iron oxide, titanium oxide / zirconium oxide / tin oxide / antimony pentoxide composite, and zirconium oxide / oxidation. Examples thereof include a tin / antimony pentoxide composite and a titanium oxide / zirconium oxide / tin oxide composite.
 本発明に使用されるその他無機フィラーとしては、酸化カルシウム、塩化カルシウム、ゼオライト、シリカゲル等が挙げられる。 Other inorganic fillers used in the present invention include calcium oxide, calcium chloride, zeolite, silica gel and the like.
 本発明に使用される微粒子としては硬度と耐擦傷性に優れ、屈折率の高い微粒子が好ましく、酸化チタン、酸化ジルコニウム、酸化セリウム、酸化亜鉛、酸化鉄、酸化チタン/酸化ジルコニウム/酸化錫/五酸化アンチモン複合物、酸化ジルコニウム/酸化錫/五酸化アンチモン複合物、酸化チタン/酸化ジルコニウム/酸化錫複合物等の金属酸化物微粒子が好適に用いられる。また、ディスプレイに用いられる光学シートは高い光線透過率が要求される為、微粒子の一次粒径は100nm以下が好ましい。これらの配合割合としては、成分(A)+成分(B)の総量100質量部に対して通常0~30質量部であり、使用する場合は通常、1~30質量部であり、好ましくは5~20質量部である。 The fine particles used in the present invention are preferably fine particles having excellent hardness and scratch resistance and a high refractive index. Titanium oxide, zirconium oxide, cerium oxide, zinc oxide, iron oxide, titanium oxide / zirconium oxide / tin oxide / five Metal oxide fine particles such as antimony oxide composite, zirconium oxide / tin oxide / antimony pentoxide composite, and titanium oxide / zirconium oxide / tin oxide composite are preferably used. Moreover, since the optical sheet used for the display is required to have a high light transmittance, the primary particle diameter of the fine particles is preferably 100 nm or less. The blending ratio of these is usually 0 to 30 parts by mass with respect to 100 parts by mass of the total amount of component (A) + component (B), and is usually 1 to 30 parts by mass, preferably 5 ~ 20 parts by mass.
 さらに、微粒子の分散剤として、ポリカルボン酸系の分散剤やシランカップリング剤、チタネート系カップリング剤、変性シリコーンオイル等のシリコーン系分散剤や有機共重合体系の分散剤等を併用することも可能である。これらの配合割合としては、本発明の樹脂組成物の全質量(溶剤を除く樹脂組成物の総量)に対して0~30質量%程度、好ましくは0.05~5質量%程度である。 In addition, as a fine particle dispersant, a polycarboxylic acid dispersant, a silane coupling agent, a titanate coupling agent, a silicone dispersant such as a modified silicone oil, or an organic copolymer dispersant may be used in combination. Is possible. The blending ratio thereof is about 0 to 30% by mass, preferably about 0.05 to 5% by mass with respect to the total mass of the resin composition of the present invention (total amount of the resin composition excluding the solvent).
 なお、一次粒径とは凝集を崩したときの、その粒子が持つ一番小さい粒径を意味する。即ち、楕円形状の微粒子では短径を一次粒径とする。一次粒径は動的光散乱法や電子顕微鏡観察等により測定することができる。具体的には、日本電子株式会社製JSM-7700F電界放出形走査電子顕微鏡を使用し、加速電圧30kV条件下で一次粒径を測定できる。
 本発明においては、1次粒径が100nm以下であることが好ましい。そして、5~100nmである微粒子が好適に使用できる。100nm以下であることにより、樹脂組成物の硬化収縮率及び透湿度が小さく、光線透過率も比較的高い硬化物を提供することが可能となる。
The primary particle size means the smallest particle size of the particles when the aggregation is broken. That is, in the case of elliptical fine particles, the minor axis is the primary particle diameter. The primary particle size can be measured by a dynamic light scattering method, observation with an electron microscope, or the like. Specifically, the primary particle size can be measured under the condition of an acceleration voltage of 30 kV using a JSM-7700F field emission scanning electron microscope manufactured by JEOL Ltd.
In the present invention, the primary particle size is preferably 100 nm or less. Fine particles having a size of 5 to 100 nm can be preferably used. By being 100 nm or less, it becomes possible to provide a cured product having a low curing shrinkage rate and moisture permeability and a relatively high light transmittance of the resin composition.
 これら微粒子は溶媒に分散し使用することができる。特に無機微粒子は水または有機溶媒に分散された形で市販品を入手することが出来る。無機微粒子を分散するために使用される有機溶媒としては、炭化水素溶剤、エステル系溶剤、エーテル系溶剤又はケトン系溶剤等が挙げられる。
 炭化水素溶剤としては、トルエン、キシレン、エチルベンゼン、テトラメチルベンゼン等の芳香族系炭化水素溶剤、ヘキサン、オクタン、デカン等の脂肪族系炭化水素溶剤、及びそれらの混合物である石油エーテル、ホワイトガソリン、ソルベントナフサ等が挙げられる。
エステル系溶剤としては、酢酸エチル、酢酸プロピル、酢酸ブチル等のアルキルアセテート類、γ-ブチロラクトン等の環状エステル類、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルモノアセテート、ジエチレングリコールモノエチルエーテルモノアセテート、トリエチレングリコールモノエチルエーテルモノアセテート、ジエチレングリコールモノブチルエーテルモノアセテート、プロピレングリコールモノメチルエーテルモノアセテート、ブチレングリコールモノメチルエーテルモノアセテート等の(モノ又はポリ)アルキレングリコールモノアルキルエーテルモノアセテート類、グルタル酸ジアルキル、コハク酸ジアルキル、アジピン酸ジアルキル等のポリカルボン酸アルキルエステル類等が挙げられる。
 エーテル系溶剤としては、ジエチルエーテル、エチルブチルエーテル等のアルキルエーテル類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のグリコールエーテル類、テトラヒドロフラン等の環状エーテル類等が挙げられる。
 ケトン系溶剤としては、アセトン、メチルエチルケトン、シクロヘキサノン、イソホロン等が挙げられる。
These fine particles can be used by being dispersed in a solvent. In particular, inorganic fine particles can be obtained commercially in a form dispersed in water or an organic solvent. Examples of the organic solvent used for dispersing the inorganic fine particles include hydrocarbon solvents, ester solvents, ether solvents, and ketone solvents.
Examples of hydrocarbon solvents include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene, and tetramethylbenzene, aliphatic hydrocarbon solvents such as hexane, octane, and decane, and mixtures of petroleum ether, white gasoline, Solvent naphtha etc. are mentioned.
Examples of ester solvents include alkyl acetates such as ethyl acetate, propyl acetate, and butyl acetate, cyclic esters such as γ-butyrolactone, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether monoacetate, diethylene glycol monoethyl ether monoacetate, triethylene (Mono or poly) alkylene glycol monoalkyl ether monoacetates such as glycol monoethyl ether monoacetate, diethylene glycol monobutyl ether monoacetate, propylene glycol monomethyl ether monoacetate, butylene glycol monomethyl ether monoacetate, dialkyl glutarate, dialkyl succinate, Polycarboxylic acid alkyl ester such as dialkyl adipate Kind, and the like.
Examples of ether solvents include alkyl ethers such as diethyl ether and ethyl butyl ether, glycols such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, and triethylene glycol diethyl ether. Examples include ethers and cyclic ethers such as tetrahydrofuran.
Examples of the ketone solvent include acetone, methyl ethyl ketone, cyclohexanone, and isophorone.
 また本発明の樹脂組成物には、得られる本発明の樹脂組成物の粘度、屈折率、密着性などを考慮して、成分(A)、成分(B)以外に反応性の化合物を使用しても良い。具体的には、(メタ)アクリレート化合物が挙げられる。
 該(メタ)アクリレート化合物としては、単官能(メタ)アクリレート、2官能(メタ)アクリレート、分子内に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等を使用することができる。
 本発明においては、硬化収縮率を小さく保つ観点から、これらの(メタ)アクリレート化合物を含まないか、又は、含む場合には、硬化収縮率を大きくしない程度、例えば、溶剤を除く樹脂組成物の総量100質量部に対して、通常15質量部未満、好ましくは10質量部以下、更に好ましくは5質量部以下であり、最も好ましくは2質量部以下である。本発明においては、硬化収縮率を小さく保つ観点から、該(メタ)アクリレート化合物を含まない態様が最も好ましい。
The resin composition of the present invention uses a reactive compound in addition to the component (A) and the component (B) in consideration of the viscosity, refractive index, adhesion and the like of the resin composition of the present invention to be obtained. May be. Specific examples include (meth) acrylate compounds.
As the (meth) acrylate compound, monofunctional (meth) acrylate, bifunctional (meth) acrylate, polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in the molecule, urethane (meth) acrylate, Polyester (meth) acrylate, epoxy (meth) acrylate, and the like can be used.
In the present invention, from the viewpoint of keeping the curing shrinkage rate small, these (meth) acrylate compounds are not included, or if included, to the extent that the curing shrinkage rate is not increased, for example, the resin composition excluding the solvent The total amount is usually less than 15 parts by mass, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and most preferably 2 parts by mass or less with respect to 100 parts by mass. In the present invention, from the viewpoint of keeping the curing shrinkage rate small, an embodiment not containing the (meth) acrylate compound is most preferable.
 単官能(メタ)アクリレートとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の脂環式(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、モルホリン(メタ)アクリレート等のヘテロ環を有する(メタ)アクリレート;ベンジル(メタ)アクリレート、エトキシ変性クレゾール(メタ)アクリート、プロポキシ変性クレゾール(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、o-フェニルフェノール(メタ)アクリレート、o-フェニルフェノールモノエトキシ(メタ)アクリレート、o-フェニルフェノールポリエトキシ(メタ)アクリレート、p-フェニルフェノール(メタ)アクリレート、p-フェニルフェノールモノエトキシ(メタ)アクリレート、p-フェニルフェノールポリエトキシ(メタ)アクリレート、o-フェニルベンジルアクリレート、p-フェニルベンジルアクリレート等の芳香環を有する(メタ)アクリレート;カルバゾール(ポリ)エトキシ(メタ)アクリレート、カルバゾール(ポリ)プロポキシ(メタ)アクリレート、(ポリ)カプロラクトン変性カルバゾール(メタ)アクリレート等の複素環を有する(メタ)アクリレート;ナフチル(メタ)アクリレート、ナフチル(ポリ)エトキシ(メタ)アクリレート、ナフチル(ポリ)プロポキシ(メタ)アクリレート、(ポリ)カプロラクトン変性ナフチル(メタ)アクリレート、ビナフトール(メタ)アクリレート、ビナフトール(ポリ)エトキシ(メタ)アクリレート、ビナフトール(ポリ)プロポキシ(メタ)アクリレート、(ポリ)カプロラクトン変性ビナフトール(メタ)アクリレート、ナフトール(メタ)アクリレート、ナフトール(ポリ)エトキシ(メタ)アクリレート、ナフトール(ポリ)プロポキシ(メタ)アクリレート、(ポリ)カプロラクトン変性ナフトール(メタ)アクリレート等の縮合環を有する(メタ)アクリレート;イミド環構造を有するイミド(メタ)アクリレート;ブタンジオールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル基を有する(メタ)アクリレート;エトキシジエチレングリコール(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等の多価アルコールの(メタ)アクリレート;等を挙げることができる。 Examples of monofunctional (meth) acrylates include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, and cyclohexyl (meth) acrylate. Alicyclic (meth) acrylates such as: tetrahydrofurfuryl (meth) acrylate, caprolactone-modified tetrahydrofurfuryl (meth) acrylate, (meth) acrylate having a heterocycle such as morpholine (meth) acrylate; benzyl (meth) acrylate, Ethoxy-modified cresol (meth) acrylate, propoxy-modified cresol (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, o-phenylphenol (meth) acrylate O-phenylphenol monoethoxy (meth) acrylate, o-phenylphenol polyethoxy (meth) acrylate, p-phenylphenol (meth) acrylate, p-phenylphenol monoethoxy (meth) acrylate, p-phenylphenol polyethoxy (Meth) acrylates having aromatic rings such as (meth) acrylate, o-phenylbenzyl acrylate, p-phenylbenzyl acrylate; carbazole (poly) ethoxy (meth) acrylate, carbazole (poly) propoxy (meth) acrylate, (poly) (Meth) acrylate having a heterocyclic ring such as caprolactone-modified carbazole (meth) acrylate; naphthyl (meth) acrylate, naphthyl (poly) ethoxy (meth) acrylate, naphthyl ( Re) propoxy (meth) acrylate, (poly) caprolactone modified naphthyl (meth) acrylate, binaphthol (meth) acrylate, binaphthol (poly) ethoxy (meth) acrylate, binaphthol (poly) propoxy (meth) acrylate, (poly) caprolactone modified It has a condensed ring such as binaphthol (meth) acrylate, naphthol (meth) acrylate, naphthol (poly) ethoxy (meth) acrylate, naphthol (poly) propoxy (meth) acrylate, (poly) caprolactone-modified naphthol (meth) acrylate (meta) ) Acrylate; imide (meth) acrylate having an imide ring structure; butanediol mono (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (Meth) acrylates having hydroxyl groups such as (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, dipropylene glycol (meth) acrylate; dimethylaminoethyl (meth) acrylate, butoxyethyl (Meth) acrylate, caprolactone (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, octafluoropentyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate , Isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, isomyristyl (meth) acrylate (Meth) acrylates having alkyl groups such as relate and lauryl (meth) acrylate; ethoxydiethylene glycol (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, etc. And (meth) acrylates of polyhydric alcohols.
 2つの官能基を有する(メタ)アクリレートモノマーとしては、ヒドロピバルアルデヒド変性トリメチロールプロパンジ(メタ)アクリレート等のヘテロ環を有する(メタ)アクリレート;(ポリ)エトキシ変性ビスフェノールAジ(メタ)アクリレート、(ポリ)プロポキシ変性ビスフェノールAジ(メタ)アクリレート、(ポリ)エトキシ変性ビスフェノールFジ(メタ)アクリレート、(ポリ)プロポキシ変性ビスフェノールFジ(メタ)アクリレート、(ポリ)エトキシ変性ビスフェノールSジ(メタ)アクリレート、(ポリ)プロポキシ変性ビスフェノールSジ(メタ)アクリレート、ヘキサヒドロフタル酸ジ(メタ)アクリレート、ビスフェノキシ(ポリ)エトキシフルオレン、ビフェニルジメタノールジ(メタ)アクリレート等の芳香環を有する(メタ)アクリレート;ビナフトールジ(メタ)アクリレート、ビナフトール(ポリ)エトキシジ(メタ)アクリレート、ビナフトール(ポリ)プロポキシジ(メタ)アクリレート、(ポリ)カプロラクトン変性ビナフトールジ(メタ)アクリレート等の縮合環を有する(メタ)アクリレート;ビスフェノールフルオレンジ(メタ)アクリレート、ビスフェノキシメタノールフルオレンジ(メタ)アクリレート、ビスフェノキシエタノールフルオレンジ(メタ)アクリレート、ビスフェノキシカプロラクトンフルオレンジ(メタ)アクリレート等の多環芳香族を有する(メタ)アクリレート;ジアクリル化イソシアヌレート等のイソシアネートのアクリル化物;1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート等の直鎖メチレン構造を有する(メタ)アクリレート;トリシクロデカンジメタノール(メタ)アクリレート等の脂環式(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレンジ(メタ)アクリレート等の多価アルコールのジ(メタ)アクリレート;等を挙げることができる。 Examples of the (meth) acrylate monomer having two functional groups include (meth) acrylate having a heterocycle such as hydropivalaldehyde-modified trimethylolpropane di (meth) acrylate; (poly) ethoxy-modified bisphenol A di (meth) acrylate , (Poly) propoxy modified bisphenol A di (meth) acrylate, (poly) ethoxy modified bisphenol F di (meth) acrylate, (poly) propoxy modified bisphenol F di (meth) acrylate, (poly) ethoxy modified bisphenol S di (meta) ) Acrylate, (poly) propoxy-modified bisphenol S di (meth) acrylate, hexahydrophthalic acid di (meth) acrylate, bisphenoxy (poly) ethoxyfluorene, biphenyldimethanol di (meth) acrylate (Meth) acrylate having an aromatic ring such as binaphthol di (meth) acrylate, binaphthol (poly) ethoxydi (meth) acrylate, binaphthol (poly) propoxy di (meth) acrylate, (poly) caprolactone-modified binaphthol di (meth) acrylate, etc. (Meth) acrylates having the following condensed rings: polycyclic rings such as bisphenol full orange (meth) acrylate, bisphenoxymethanol full orange (meth) acrylate, bisphenoxyethanol full orange (meth) acrylate, and bisphenoxycaprolactone full orange (meth) acrylate (Meth) acrylate having an aromatic; acrylated isocyanate such as diacrylated isocyanurate; 1,4-butanediol di (meth) acrylate, 1,6 (Meth) acrylate having a linear methylene structure such as hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate; tricyclodecane dimethanol (meth) Di (meth) acrylate of polyhydric alcohol such as alicyclic (meth) acrylate such as acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene di (meth) acrylate ) Acrylate;
 多官能(メタ)アクリレートモノマーとしては、トリス(アクリロキシエチル)イソシアヌレート、(ポリ)カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等のイソシアヌレート環を有する多官能(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、(ポリ)エトキシ変性ペンタエリスリトールテトラ(メタ)アクリレート、(ポリ)プロポキシ変性ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、(ポリ)カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、(ポリ)エトキシ変性ジペンタエリスリトールペンタ(メタ)アクリレート、(ポリ)プロポキシ変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、(ポリ)カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、(ポリ)エトキシ変性ジペンタエリスリトールヘキサ(メタ)アクリレート、(ポリ)プロポキシ変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ポリペンタエリスリトールポリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、(ポリ)エトキシ変性トリメチロールプロパントリ(メタ)アクリレート、(ポリ)プロポキシ変性トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート等の多価アルコールの多官能(メタ)アクリレート;リン酸トリ(メタ)アクリレート等の含リンの多官能(メタ)アクリレート;トリメチロールプロパンベンゾエート(メタ)アクリレート等の芳香族を有する多官能(メタ)アクリレート;2,2,2-トリスアクリロイロキシメチルコハク酸等の酸変性された多官能(メタ)アクリレート;シリコーンヘキサ(メタ)アクリレート等のシリコーン骨格を有する多官能(メタ)アクリレート;等を挙げることができる。 As the polyfunctional (meth) acrylate monomer, polyfunctional (meth) acrylate having an isocyanurate ring such as tris (acryloxyethyl) isocyanurate, (poly) caprolactone-modified tris (acryloxyethyl) isocyanurate; pentaerythritol tri ( (Meth) acrylate, pentaerythritol tetra (meth) acrylate, (poly) ethoxy modified pentaerythritol tetra (meth) acrylate, (poly) propoxy modified pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, (poly) Caprolactone-modified dipentaerythritol penta (meth) acrylate, (poly) ethoxy-modified dipentaerythritol penta (meth) acrylate, (poly) propoxy Dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, (poly) caprolactone modified dipentaerythritol hexa (meth) acrylate, (poly) ethoxy modified dipentaerythritol hexa (meth) acrylate, (poly) Propoxy-modified dipentaerythritol hexa (meth) acrylate, polypentaerythritol poly (meth) acrylate, trimethylolpropane tri (meth) acrylate, (poly) ethoxy modified trimethylolpropane tri (meth) acrylate, (poly) propoxy modified trimethylol Of polyhydric alcohols such as propane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate and glycerol tri (meth) acrylate Functional (meth) acrylate; phosphorus-containing polyfunctional (meth) acrylate such as phosphoric acid tri (meth) acrylate; aromatic polyfunctional (meth) acrylate such as trimethylolpropane benzoate (meth) acrylate; Examples include acid-modified polyfunctional (meth) acrylates such as 2-trisacryloyloxymethyl succinic acid; polyfunctional (meth) acrylates having a silicone skeleton such as silicone hexa (meth) acrylate; and the like.
 ウレタン(メタ)アクリレートとしては、例えば、ジオール化合物(下記ポリエステルジオールを含む)と、有機ポリイソシアネートを反応させ、次いで水酸基含有(メタ)アクリレートを付加した反応物等が挙げられる。
 ジオール化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール、ポリエチレングリコール、ポリプロピレングリコール、ビスフェノールAポリエトキシジオール、ビスフェノールAポリプロポキシジオール等、又はこれらジオール化合物と二塩基酸若しくはその無水物(例えば、コハク酸、アジピン酸、アゼライン酸、ダイマー酸、イソフタル酸、テレフタル酸、フタル酸若しくはこれらの無水物)との反応物であるポリエステルジオール等を挙げることが出来る。
 上記有機ポリイソシアネートとしては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の鎖状飽和炭化水素イソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、水添ジフェニルメタンジイソシアネート、水添キシレンジイソシアネート、水添トルエンジイソシアネート等の環状飽和炭化水素イソシアネート、2,4-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、p-フェニレンジイソシアネート、3,3’-ジメチル-4,4’-ジイソシアネート、6-イソプロピル-1,3-フェニルジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ポリイソシアネート等を挙げること出来る。
Examples of the urethane (meth) acrylate include a reaction product obtained by reacting a diol compound (including the following polyester diol) with an organic polyisocyanate and then adding a hydroxyl group-containing (meth) acrylate.
Examples of the diol compound include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, and 1,8-octane. Diol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 2-butyl-2- Ethyl-1,3-propanediol, cyclohexane-1,4-dimethanol, polyethylene glycol, polypropylene glycol, bisphenol A polyethoxydiol, bisphenol A polypropoxydiol, etc., or these diol compounds and dibasic acids Properly its anhydride (e.g., succinic acid, adipic acid, azelaic acid, dimer acid, isophthalic acid, terephthalic acid, phthalic acid or anhydrides thereof) and reactant polyester diol and the like can be mentioned is the.
Examples of the organic polyisocyanate include chain saturated hydrocarbon isocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, Cyclic saturated hydrocarbon isocyanates such as norbornane diisocyanate, dicyclohexylmethane diisocyanate, methylenebis (4-cyclohexylisocyanate), hydrogenated diphenylmethane diisocyanate, hydrogenated xylene diisocyanate, hydrogenated toluene diisocyanate, 2,4-tolylene diisocyanate, 1,3-xylylene Range isocyanate, p-phenylene diisocyanate, 3,3'-dimethyl-4,4'-diiso Aneto, 6-isopropyl-1,3-phenyl diisocyanate, 1,5-naphthalene diisocyanate and aromatic polyisocyanates such as may be exemplified in.
 エポキシ(メタ)アクリレートとしては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型フェノールアラルキル樹脂、ビスフェノールAのプロピレンオキサイド付加物の末端グリシジルエーテル、フルオレンエポキシ樹脂、ビスフェノールS型エポキシ樹脂等のエポキシ樹脂類と(メタ)アクリル酸との反応物等を挙げることができる。 Epoxy (meth) acrylates include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl type phenol aralkyl resin, terminal glycidyl ether of bisphenol A propylene oxide adduct, fluorene epoxy resin, bisphenol S. And a reaction product of epoxy resin such as epoxy resin and (meth) acrylic acid.
 ポリエステル(メタ)アクリレートとしては、ジオール化合物と二塩基酸又はその無水物との反応物であるポリエステルジオールと、(メタ)アクリル酸の反応物等が挙げられる。 Examples of the polyester (meth) acrylate include a polyester diol which is a reaction product of a diol compound and a dibasic acid or an anhydride thereof, and a reaction product of (meth) acrylic acid.
 中でも本発明の樹脂組成物に使用することのできる(メタ)アクリレートとしては、硬化収縮率が低い材料が好適に用いられる。具体的には、環構造を有する(メタ)アクリレートが好ましく、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、p-クミルフェノール(ポリ)エトキシ(メタ)アクリレート、ナフトール(ポリ)エトキシ(メタ)アクリレート、ナフトール(ポリ)プロポキシ(メタ)アクリレート、フェニルフェノール(ポリ)エトキシ(メタ)アクリレート、フェニルフェノール(ポリ)プロポキシ(メタ)アクリレート、ベンジル(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ヒドロピバルアルデヒド変性トリメチロールプロパンジ(メタ)アクリレート、ビフェニルジメタノールジ(メタ)アクリレート等が挙げられる。特に好ましくは、硬化物のTgが高く、硬化収縮率の低いフェニルフェノール(ポリ)エトキシ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ヒドロピバルアルデヒド変性トリメチロールプロパンジ(メタ)アクリレート、ビフェニルジメタノールジ(メタ)アクリレートである。
 なお、本発明の樹脂組成物においては、その他の成分である(メタ)アクリレートは、必要に応じて添加され、単独で用いてもよいし、複数種を混合して用いてもよい。
 本発明では成分(A)+成分(B)を100質量部とした場合に、(メタ)アクリレート化合物の配合割合は、通常、0~200質量部であり、場合により、10~200質量部であり、好ましくは50~100質量部であっても良いが、出来れば、本発明の樹脂組成物に含まれないか、又は、最小限の使用が好ましい。
Among them, as the (meth) acrylate that can be used for the resin composition of the present invention, a material having a low curing shrinkage rate is suitably used. Specifically, (meth) acrylate having a ring structure is preferable, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, Cyclohexyl (meth) acrylate, p-cumylphenol (poly) ethoxy (meth) acrylate, naphthol (poly) ethoxy (meth) acrylate, naphthol (poly) propoxy (meth) acrylate, phenylphenol (poly) ethoxy (meth) acrylate , Phenylphenol (poly) propoxy (meth) acrylate, benzyl (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, hydropivalaldehyde-modified trimethylolpropane di (meth) a Examples include acrylate and biphenyldimethanol di (meth) acrylate. Particularly preferred are phenylphenol (poly) ethoxy (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, hydropivalaldehyde-modified trimethylolpropane di (meth) acrylate having a high Tg of the cured product and a low cure shrinkage rate. Biphenyldimethanol di (meth) acrylate.
In addition, in the resin composition of this invention, the (meth) acrylate which is another component may be added as needed, may be used independently, and may be used in mixture of multiple types.
In the present invention, when the component (A) + component (B) is 100 parts by mass, the blending ratio of the (meth) acrylate compound is usually 0 to 200 parts by mass, and in some cases 10 to 200 parts by mass. Yes, and may be 50 to 100 parts by mass, but if possible, it is not included in the resin composition of the present invention, or the minimum use is preferable.
 また、(メタ)アクリレート化合物を使用する場合には前記光カチオン重合開始剤以外の光重合開始剤を用いることが好ましい。具体的には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン]等のアセトフェノン類;2-エチルアントラキノン、2-tert-ブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノン等のアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-ベンゾイル-4'-メチルジフェニルサルファイド、4,4'-ビスメチルアミノベンゾフェノン等のベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ジフェニル-(2,4,6-トリメチルベンゾイル)フォスフィンオキシド等のホスフィンオキサイド類等を挙げることができる。好ましくは、アセトフェノン類であり、さらに好ましくは2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシル-フェニルケトンを挙げることができる。なお、本発明の樹脂組成物においては、光重合開始剤は単独で用いてもよいし、複数種を混合して用いてもよい。
 光重合開始剤の含有割合は通常、樹脂組成物100質量部に対して0~10質量部である。使用する場合は、通常0.001~10質量部であり、0.01~8質量部が好ましい。
Moreover, when using a (meth) acrylate compound, it is preferable to use photoinitiators other than the said photocationic polymerization initiator. Specifically, benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-1- [4- (methylthio) phenyl]- Acetophenones such as 2-morpholinopropan-1-one and oligo [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone]; 2-ethylanthraquinone, 2-tert-butylant Anthraquinones such as quinone, 2-chloroanthraquinone and 2-amylanthraquinone; thioxanthones such as 2,4-diethylthioxanthone, 2-isopropylthioxanthone and 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; benzophenone Benzophenones such as 4-benzoyl-4'-methyldiphenyl sulfide and 4,4'-bismethylaminobenzophenone; 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl)- Examples thereof include phosphine oxides such as phenylphosphine oxide and diphenyl- (2,4,6-trimethylbenzoyl) phosphine oxide. Preferred are acetophenones, and more preferred are 2-hydroxy-2-methyl-phenylpropan-1-one and 1-hydroxycyclohexyl-phenyl ketone. In addition, in the resin composition of this invention, a photoinitiator may be used independently and may be used in mixture of multiple types.
The content ratio of the photopolymerization initiator is usually 0 to 10 parts by mass with respect to 100 parts by mass of the resin composition. When used, it is usually 0.001 to 10 parts by mass, preferably 0.01 to 8 parts by mass.
 本発明の樹脂組成物の各成分の使用割合は、所望の屈折率や耐久性や粘度や密着性等を考慮して決められるが、成分(A)+成分(B)を100質量部とした場合に、成分(A)の含有量は、通常30~100質量部であり、好ましくは30~80質量部であり、より好ましくは40~70質量部、又は、50~75質量部である。成分(B)の含有量は通常0~70質量部、好ましくは20~70質量部であり、より好ましくは25~50質量部、又は、30~60質量部である。本発明の樹脂組成物においては通常成分(C)を含むのが好ましく、成分(C)の含有量は0.1~10質量部であり、好ましくは0.5~3質量部である。成分(D)は任意成分であり、含まなくても良いが、必要に応じて含んでも良く、含む場合、成分(A)+成分(B)の総量100質量部に対して、1~30質量部であり、好ましくは5~20質量部である。
 本発明の好ましい態様の一つとして、(i)上記化合物(A)及び(ii)エポキシ化合物(B)及び光カチオン重合開始剤(C)の何れか一方若しくは両者を含む態様を挙げることが出来る。その場合、溶剤を除く樹脂組成物の総量100質量部に対して、(i)の上記化合物(A)の含有量は、その合計量で、通常30~99.9質量部、好ましくは、40~99.5質量部、より好ましくは、50~99.5質量部であり、また、場合により、40~90質量部が好ましく、50~80質量部がより好ましい。また、上記(ii)の、成分(B)及び/又は成分(C)の含有量は、その合計量で、溶剤を除く樹脂組成物の総量100質量部に対して、通常0.1~70質量部、好ましくは、0.5~60質量部であり、場合により、10~60質量部が好ましく、20~50質量部がより好ましい。
The use ratio of each component of the resin composition of the present invention is determined in consideration of a desired refractive index, durability, viscosity, adhesion, etc., but the component (A) + component (B) is 100 parts by mass. In this case, the content of component (A) is usually 30 to 100 parts by mass, preferably 30 to 80 parts by mass, more preferably 40 to 70 parts by mass, or 50 to 75 parts by mass. The content of component (B) is usually 0 to 70 parts by weight, preferably 20 to 70 parts by weight, more preferably 25 to 50 parts by weight, or 30 to 60 parts by weight. In the resin composition of the present invention, it is usually preferable to include the component (C), and the content of the component (C) is 0.1 to 10 parts by mass, preferably 0.5 to 3 parts by mass. The component (D) is an optional component and may be omitted, but may be included as necessary. When included, the component (D) is included in an amount of 1 to 30 masses per 100 parts by mass of the total amount of the component (A) + component (B). Part, preferably 5 to 20 parts by weight.
As one of the preferable embodiments of the present invention, there can be mentioned an embodiment containing either or both of (i) the compounds (A) and (ii) the epoxy compound (B) and the cationic photopolymerization initiator (C). . In that case, with respect to 100 parts by mass of the total amount of the resin composition excluding the solvent, the content of the compound (A) in (i) is usually 30 to 99.9 parts by mass, preferably 40 parts by mass. To 99.5 parts by mass, more preferably 50 to 99.5 parts by mass. In some cases, 40 to 90 parts by mass are preferable, and 50 to 80 parts by mass are more preferable. In addition, the content of component (B) and / or component (C) in (ii) above is the total amount, usually 0.1 to 70 with respect to 100 parts by mass of the total amount of the resin composition excluding the solvent. Part by mass, preferably 0.5 to 60 parts by mass, and in some cases, 10 to 60 parts by mass is preferable, and 20 to 50 parts by mass is more preferable.
 本発明の樹脂組成物には、前記成分以外に取り扱い時の利便性等を改善するために、必要に応じて、離型剤、消泡剤、レベリング剤、光安定剤、酸化防止剤、重合禁止剤、可塑剤、帯電防止剤等の添加剤を状況に応じて併用して含有することができる。
 各種添加剤の含有量は、樹脂組成物100質量部に対して、通常0~10質量部である。使用する場合は、通常0.001~10質量部であり、0.01~8質量部が好ましい。
In addition to the above components, the resin composition of the present invention may include a release agent, an antifoaming agent, a leveling agent, a light stabilizer, an antioxidant, a polymerization agent, as necessary, in order to improve convenience during handling. Additives such as inhibitors, plasticizers and antistatic agents can be used in combination depending on the situation.
The content of various additives is usually 0 to 10 parts by mass with respect to 100 parts by mass of the resin composition. When used, it is usually 0.001 to 10 parts by mass, preferably 0.01 to 8 parts by mass.
 また、耐久性や可撓性を得るために可塑剤が使用される例も多い。使用される可塑剤としては、所望の粘度、耐久性、透明性や可撓性等により選択される。具体的には、ポリエチレン、ポリプロピレン等のオレフィン系ポリマー、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ビス(2-エチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレート、ジイソノニルフタレート、ジシクロヘキシルフタレート、エチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等のフタル酸エステル、トリス(2-エチルヘキシル)トリメリテート等のトリメリット酸エステル、ジブチルアジペート、ジイソブチルアジペート、ビス(2-エチルヘキシル)アジペート、ジイソノニルアジペート、ジイソデシルアジペート、ビス(2-(2-ブトキシエトキシ)エチル)アジペート、ビス(2-エチルヘキシル)アゼレート、ジブチルセバケート、ビス(2-エチルヘキシル)セバケート、ジエチルサクシネート等の脂肪族二塩基酸エステル、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリス(2-エチルヘキシル)ホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート等の正リン酸エステル、メチルアセチルリシノレート等のリシノール酸エステル、ポリ(1,3-ブタンジオールアジペート)等のポリエステル、グリセリルトリアセテート等の酢酸エステル、N-ブチルベンゼンスルホンアミド等のスルホンアミド、ポリエチレングリコールベンゾエート、ポリエチレングリコールジベンゾエート、ポリプロピレングリコールベンゾエート、ポリプロピレングリコールジベンゾエート、ポリテトラメチレングリコールベンゾエート、ポリテトラメチレングリコールベンゾエート等のポリアルキレンオキサイド(ジ)ベンゾエート、ポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール等のポリエーテル、ポリエトキシ変性ビスフェノールA、ポリプロポキシ変性ビスフェノールA等のポリアルコキシ変性ビスフェノールA、ポリエトキシ変性ビスフェノールF、ポリプロポキシ変性ビスフェノールF等のポリアルコキシ変性ビスフェノールF、ナフタレン、フェナントレン、アントラセン等の多環芳香族、(ビ)ナフトール、(ポリ)エトキシ変性(ビ)ナフトール、(ポリ)プロポキシ変性(ビ)ナフトール、(ポリ)テトラメチレングリコール変性(ビ)ナフトール、(ポリ)カプロラクトン変性(ビ)ナフトール等のナフトール誘導体、ジフェニルスルフィド、ジフェニルポリスルフィド、ベンゾチアゾリルジスルフィド、ジフェニルチオ尿素、モルホリノジチオベンゾチアゾール、シクロヘキシルベンゾチアゾール-2-スルフェンアミン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等の含硫黄化合物が上げられる。好ましくは、(ポリ)エチレングリコールジベンゾエート、(ポリ)プロピレングリコールジベンゾエート、ビナフトール、(ポリ)エトキシ変性ビナフトール、(ポリ)プロポキシ変性ビナフトール、ジフェニルスルフィドである。 In many cases, plasticizers are used to obtain durability and flexibility. The plasticizer used is selected depending on the desired viscosity, durability, transparency, flexibility and the like. Specifically, olefinic polymers such as polyethylene and polypropylene, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, bis (2-ethylhexyl) phthalate, diisodecyl phthalate, butyl benzyl phthalate, diisononyl phthalate, dicyclohexyl phthalate, ethyl phthalyl ethyl glycolate Phthalates such as butyl phthalyl butyl glycolate, trimellitic esters such as tris (2-ethylhexyl) trimellitate, dibutyl adipate, diisobutyl adipate, bis (2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis (2 -(2-butoxyethoxy) ethyl) adipate, bis (2-ethylhexyl) azelate, dibutyl sebacate, (2-ethylhexyl) sebacate, aliphatic dibasic acid esters such as diethyl succinate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (2-ethylhexyl) phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate Orthophosphoric acid esters such as cresyl diphenyl phosphate and 2-ethylhexyl diphenyl phosphate, ricinoleic acid esters such as methylacetylricinoleate, polyesters such as poly (1,3-butanediol adipate), acetate esters such as glyceryl triacetate, N -Sulfonamides such as butylbenzenesulfonamide, polyethylene glycol benzoate, polyethylene glycol dibenzoate, polypropylene Polyalkylene oxide (di) benzoate such as recall benzoate, polypropylene glycol dibenzoate, polytetramethylene glycol benzoate, polytetramethylene glycol benzoate, polyether such as polypropylene glycol, polyethylene glycol, polytetramethylene glycol, polyethoxy modified bisphenol A, poly Polyalkoxy-modified bisphenol A such as propoxy-modified bisphenol A, polyethoxy-modified bisphenol F, polyalkoxy-modified bisphenol F such as polypropoxy-modified bisphenol F, polycyclic aromatics such as naphthalene, phenanthrene and anthracene, (bi) naphthol Ethoxy modified (bi) naphthol, (poly) propoxy modified (bi) naphthol, (poly) te Naphthol derivatives such as tramethylene glycol modified (bi) naphthol, (poly) caprolactone modified (bi) naphthol, diphenyl sulfide, diphenyl polysulfide, benzothiazolyl disulfide, diphenylthiourea, morpholinodithiobenzothiazole, cyclohexylbenzothiazole-2- And sulfur-containing compounds such as sulfenamine, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethylthiuram monosulfide and dipentamethylenethiuram tetrasulfide. Preferred are (poly) ethylene glycol dibenzoate, (poly) propylene glycol dibenzoate, binaphthol, (poly) ethoxy modified binaphthol, (poly) propoxy modified binaphthol, and diphenyl sulfide.
 更に、必要に応じて、アクリルポリマー、ポリエステルエラストマー、ウレタンポリマー及びニトリルゴム等のポリマー類といった柔軟化剤も添加することができる。
 可塑剤ないし柔軟化剤の含有量は、樹脂組成物100質量部に対して、通常0~90質量部であり、使用する場合は、1~90質量部であり、2~80質量部が好ましい。
Further, if necessary, softening agents such as polymers such as acrylic polymer, polyester elastomer, urethane polymer and nitrile rubber can be added.
The content of the plasticizer or softening agent is usually 0 to 90 parts by mass with respect to 100 parts by mass of the resin composition, and when used, it is 1 to 90 parts by mass, preferably 2 to 80 parts by mass. .
 本発明における反応性基を有しない有機化合物成分としては、オキセタニル基、エポキシ基、ラジカル反応性の不飽和結合含有基等の、イオン反応性又はラジカル反応性の基を含まない有機化合物が含まれ、前記の微粒子(D)における有機微粒子、前記の成分(A)~成分(D)以外の添加剤などが含まれる。これらは、相溶性の点から重量平均分子量が10,000g/mol以下であることが好ましく、5,000g/mol以下が特に好ましい。本発明においては、重量平均分子量が10,000g/mol以上の反応性基を有しない有機化合物は、本発明の樹脂組成物中に含まないか、又は、含む場合、その含有量は、有機溶剤を除く樹脂組成物の総量に対して1.5重量%以下であることが好ましく、1.0重量%以下であることがより好ましく、0.5重量%以下であることが特に好ましい。1.5重量%以下とすることで、反応性基を有しない成分が相溶せずに、固形状またはゲル状等の不溶成分として残存していることを防ぐことが可能となるため、硬化物性として透明性、耐熱性に劣るものとなることを防ぐことができることから好ましい。また、水蒸気透過度を低下させるためにアルキルアルミニウム等の有機金属化合物を加えることもできる。溶剤を加えることもできるが、溶剤を添加しないものが好ましい。 The organic compound component having no reactive group in the present invention includes an organic compound not containing an ion reactive or radical reactive group such as an oxetanyl group, an epoxy group, or a radical reactive unsaturated bond-containing group. , Organic fine particles in the fine particles (D), additives other than the components (A) to (D), and the like. These have a weight average molecular weight of preferably 10,000 g / mol or less, particularly preferably 5,000 g / mol or less, from the viewpoint of compatibility. In the present invention, the organic compound having no reactive group having a weight average molecular weight of 10,000 g / mol or more is not included in the resin composition of the present invention, or when it is included, the content thereof is an organic solvent. It is preferably 1.5% by weight or less, more preferably 1.0% by weight or less, and particularly preferably 0.5% by weight or less, based on the total amount of the resin composition excluding. By setting the amount to 1.5% by weight or less, it is possible to prevent the component having no reactive group from being incompatible and remaining as an insoluble component such as a solid or gel, and thus curing. It is preferable because the physical properties can be prevented from being inferior in transparency and heat resistance. An organometallic compound such as alkylaluminum can also be added to reduce the water vapor permeability. Although a solvent can also be added, what does not add a solvent is preferable.
 本発明の樹脂組成物では用いられる有機化合物の各成分の重量平均分子量が10,000g/mol以下が好ましく、さらに好ましくは5,000g/mol以下である。重量平均分子量の大きい成分は溶解し難い為、調製された樹脂組成物は濁った液体となる。これは、ディスプレイに使用される樹脂組成物は均一に透明であることが不可欠である為、好適ではない。また、透過率に関しても優れた特性が求められ、具体的には波長380~780nmにおける各波長の光線透過率が80%以上であることが好ましい。光線透過率は、株式会社日立ハイテクノロジーズ製の分光光度計U-3900H等の測定機器により測定ができる。 In the resin composition of the present invention, the weight average molecular weight of each component of the organic compound used is preferably 10,000 g / mol or less, more preferably 5,000 g / mol or less. Since a component having a large weight average molecular weight is difficult to dissolve, the prepared resin composition becomes a turbid liquid. This is not preferable because the resin composition used for the display must be uniformly transparent. In addition, excellent characteristics are also required for the transmittance, and specifically, the light transmittance at each wavelength in the wavelength range of 380 to 780 nm is preferably 80% or more. The light transmittance can be measured with a measuring instrument such as a spectrophotometer U-3900H manufactured by Hitachi High-Technologies Corporation.
 本発明の有機EL素子封止材用樹脂組成物の好ましい態様のいくつかを下記に挙げる。なお、下記において、樹脂組成物の総量といった場合、該樹脂組成物が溶媒を含む場合はそれを除いた総量を意味する。
I.前記、分子中に2つ以上のオキセタン環を有する化合物(A)を少なくとも2種類含有する有機EL素子封止材用エネルギー線硬化型樹脂組成物において、分子中に2つ以上のオキセタン環を有する化合物(A)の少なくとも2種類の組合せが前記一般式(2)で表される化合物と前記一般式(3)の化合物の組合せであり、一般式(3)の化合物1質量部に対して、一般式(2)で表される化合物を、0.6~1.5質量部の割合で含む態様。
II.一般式(2)で表される化合物の含量割合が、0.8~1.2である上記Iに記載の態様。
III.更に、光カチオン重合開始剤(C)を、上記化合物(A)の合計含量100質量部に対して、0.1~10質量部の割合で含む上記I又はIIに記載の態様。
IV.更に、エポキシ化合物(B)を含有し、上記化合物(A)とエポキシ化合物(B)の総量100質量部に対して、10~70質量部の割合で含む上記I~IIIの何れか一項に記載の態様。
V.樹脂組成物の総量100質量部に対して、上記化合物(A)の含量が50質量部以上である上記I~IVの何れか一項に記載の態様。
VI.(メタ)アクリレート化合物を含まないか、又は含んでも、樹脂組成物の総量100質量部に対して、15質量部未満である上記I~Vの何れか一項に記載の態様。
VII.硬化収縮率が5.5%以下である上記I~VIの何れか一項に記載の態様。
VIII.硬化収縮率が5%以下である上記I~VIの何れか一項に記載の態様。
IX.有機EL素子封止材用が、封止用透明基板接着用である上記I~VIの何れか一項に記載の態様。
Some of the preferable aspects of the resin composition for organic EL element sealing materials of this invention are mentioned below. In the following description, when the total amount of the resin composition is referred to, when the resin composition contains a solvent, it means the total amount excluding it.
I. In the energy ray-curable resin composition for organic EL device sealing material containing at least two kinds of compounds (A) having two or more oxetane rings in the molecule, the molecule has two or more oxetane rings. A combination of at least two kinds of the compound (A) is a combination of the compound represented by the general formula (2) and the compound of the general formula (3), and with respect to 1 part by mass of the compound of the general formula (3), An embodiment comprising the compound represented by the general formula (2) in a proportion of 0.6 to 1.5 parts by mass.
II. The embodiment according to I above, wherein the content ratio of the compound represented by the general formula (2) is 0.8 to 1.2.
III. Further, the embodiment according to the above I or II, wherein the photocationic polymerization initiator (C) is contained at a ratio of 0.1 to 10 parts by mass with respect to 100 parts by mass of the total content of the compound (A).
IV. Further, according to any one of the above I to III, which further contains an epoxy compound (B) and contains 10 to 70 parts by mass with respect to 100 parts by mass of the total amount of the compound (A) and the epoxy compound (B). Description aspect.
V. The embodiment according to any one of I to IV above, wherein the content of the compound (A) is 50 parts by mass or more with respect to 100 parts by mass of the total amount of the resin composition.
VI. The embodiment according to any one of the above items I to V, which contains no (meth) acrylate compound or contains less than 15 parts by mass with respect to 100 parts by mass of the total amount of the resin composition.
VII. The embodiment according to any one of the above I to VI, wherein the cure shrinkage is 5.5% or less.
VIII. The embodiment according to any one of the above I to VI, wherein the cure shrinkage is 5% or less.
IX. The aspect according to any one of the above I to VI, wherein the organic EL element sealing material is for bonding a transparent substrate for sealing.
 本発明の樹脂組成物は、各成分を常法に従い混合溶解することにより調製することができる。例えば、撹拌装置、温度計のついた丸底フラスコに各成分を仕込み、20~80℃、好ましくは40~80℃にて0.5~6時間撹拌することにより得ることができる。 The resin composition of the present invention can be prepared by mixing and dissolving each component according to a conventional method. For example, each component can be charged into a round bottom flask equipped with a stirrer and a thermometer and stirred at 20 to 80 ° C., preferably 40 to 80 ° C. for 0.5 to 6 hours.
 本発明の樹脂組成物の粘度は、固体有機EL用封止材(例えばガラス等)を接着するための塗膜を形成することが出来れば良く、25℃で、10mPa・s以上であればよく、好ましくは10~3000mPa・s程度である。また、微粒子(D)を含まない本発明の樹脂組成物の粘度は、10~150mPa・s程度であり、20~120mPa・s程度が好ましい。微粒子(D)を含む本発明の樹脂組成物の粘度は、300~3000mPa・s程度が好ましく、より好ましくは500~2500Pa・s程度である。
 また、基材上に成型する光学レンズを製造する際の形状の転写性や加工性の作業性に適した粘度としては、25℃で10mPa・s以上が好ましい。
The viscosity of the resin composition of the present invention is only required to be able to form a coating film for adhering a solid organic EL sealing material (for example, glass or the like), and may be 10 mPa · s or more at 25 ° C. It is preferably about 10 to 3000 mPa · s. The viscosity of the resin composition of the present invention that does not contain fine particles (D) is about 10 to 150 mPa · s, preferably about 20 to 120 mPa · s. The viscosity of the resin composition of the present invention containing fine particles (D) is preferably about 300 to 3000 mPa · s, more preferably about 500 to 2500 Pa · s.
Moreover, as a viscosity suitable for the transferability of the shape at the time of manufacturing the optical lens shape | molded on a base material, and workability | operativity of workability, 10 mPa * s or more is preferable at 25 degreeC.
 本発明の樹脂組成物はエネルギー線によって容易に硬化させることができる。ここでエネルギー線の具体例としては、紫外線、可視光線、赤外線、X線、ガンマー線、レーザー光線等の電磁波、アルファー線、ベータ線、電子線等の粒子線等が挙げられる。本発明においては、これらのうち、紫外線、レーザー光線、可視光線、または電子線が好ましい。 The resin composition of the present invention can be easily cured by energy rays. Specific examples of energy rays include electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, X-rays, gamma rays and laser rays, particle rays such as alpha rays, beta rays and electron rays. Of these, ultraviolet rays, laser beams, visible rays, or electron beams are preferred in the present invention.
 常法に従い、本発明の樹脂組成物に前記エネルギー線を照射することにより、本発明の硬化物を得ることができる。本発明の樹脂組成物の硬化物層の屈折率を高いものとするために、本発明の樹脂組成物の液屈折率も高い方が好ましく、該液屈折率は通常1.45~1.55であり、好ましくは1.48~1.52である。該液屈折率はアッベ屈折率計(型番:DR-M2、株式会社アタゴ製)等で測定することができる。
 本発明の樹脂組成物を硬化させた時の硬化収縮率は、5.5%以下が好ましく、好ましくは5%以下であり、4.7%以下がより好ましく、4.5%以下が最も好ましい。下限は小さければ小さいほど好ましいが、本発明においては通常4%程度である。
 本発明の樹脂組成物を、厚み100μmの硬化物フィルムとしたとき、60℃での水蒸気透過率が200g/m・day以下であることが好ましく、100g/m・day以下であることがより好ましく、60g/m・day以下であることが特に好ましい。当該範囲にあることで、水分の透過により、素子にダメージを与えることを有効に防ぐことが可能となる。
According to a conventional method, the cured product of the present invention can be obtained by irradiating the resin composition of the present invention with the energy beam. In order to increase the refractive index of the cured layer of the resin composition of the present invention, the liquid refractive index of the resin composition of the present invention is preferably high, and the liquid refractive index is usually 1.45 to 1.55. It is preferably 1.48 to 1.52. The liquid refractive index can be measured with an Abbe refractometer (model number: DR-M2, manufactured by Atago Co., Ltd.).
The curing shrinkage when the resin composition of the present invention is cured is preferably 5.5% or less, preferably 5% or less, more preferably 4.7% or less, and most preferably 4.5% or less. . The lower limit is preferably as small as possible, but is usually about 4% in the present invention.
When the resin composition of the present invention is a cured film having a thickness of 100 μm, the water vapor transmission rate at 60 ° C. is preferably 200 g / m 2 · day or less, and preferably 100 g / m 2 · day or less. More preferably, it is particularly preferably 60 g / m 2 · day or less. By being in the said range, it becomes possible to prevent effectively that a device is damaged by permeation | transmission of a water | moisture content.
 本発明の樹脂組成物を用いる有機EL素子の固体封止は、通常、基板上に形成された有機EL素子上にパッシベーション膜を形成する工程、上記パッシベーション膜の上に、本発明の樹脂組成物(封止用接着剤)を塗布する工程、該塗布層上に、封止用透明基板を設ける工程、および上記塗布層を硬化させる工程を経ることにより行うことが出来る。通常、封止用透明基板としては、ガラスなどの透湿しない透明基板が用いられる。 The solid sealing of the organic EL element using the resin composition of the present invention is usually a step of forming a passivation film on the organic EL element formed on the substrate, the resin composition of the present invention on the passivation film. It can be performed by applying a (sealing adhesive), a step of providing a sealing transparent substrate on the coating layer, and a step of curing the coating layer. Usually, as the transparent substrate for sealing, a transparent substrate such as glass that does not transmit moisture is used.
 封止される有機EL素子は、該素子として機能する素子部本体を支持する基板(支持基板)と、下部電極と、少なくとも発光層を含む有機EL層と、上部電極とを含む素子部本体とから構成される。該基板には、ガラス基板、シクロオレフィンやポリカーボネート、ポリメチルメタクリレート等から成る透明有機材料、該透明有機材料をグラスファイバー等で高剛性化した有機/無機ハイブリッド透明基板等の電気絶縁性物質からなる平坦な基板を用いる。また、素子部本体の代表的な構成としては以下のものが挙げられる。
(1)下部電極/発光層/上部電極
(2)下部電極/電子輸送層/発光層/上部電極
(3)下部電極/発光層/正孔輸送層/上部電極
(4)下部電極/電子輸送層/発光層/正孔輸送層/上部電極
 例えば、上記(4)の層構造を有する有機EL素子は、基板の片面上に、Al-Li合金等からなる下部電極(陰極)を抵抗加熱蒸着法またはスパッタ法によって形成し、次いで有機EL層として、オキサジアゾール誘導体やトリアゾール誘導体等からなる電子輸送層、発光層、TPD(トリフェニルジアミン)等からなる正孔輸送層及び上部電極(陽極)を抵抗加熱蒸着法又はイオンビームスパッタ法等の薄膜形成方法によって順次積層することによって作製することが可能である。なお、有機EL素子の層構造、又は材料は表示素子として機能するものであれば特に限定されるものではない。また、本発明による固体封止方法はいかなる構造の有機EL素子であっても適用可能である。
An organic EL element to be sealed includes a substrate (supporting substrate) that supports an element body that functions as the element, a lower electrode, an organic EL layer that includes at least a light emitting layer, and an element body that includes an upper electrode. Consists of The substrate is made of an electrically insulating material such as a glass substrate, a transparent organic material made of cycloolefin, polycarbonate, polymethylmethacrylate, or the like, or an organic / inorganic hybrid transparent substrate in which the transparent organic material is made highly rigid with glass fiber or the like. A flat substrate is used. Moreover, the following are mentioned as a typical structure of an element part main body.
(1) Lower electrode / light emitting layer / upper electrode (2) Lower electrode / electron transport layer / light emitting layer / upper electrode (3) Lower electrode / light emitting layer / hole transport layer / upper electrode (4) Lower electrode / electron transport Layer / light emitting layer / hole transport layer / upper electrode For example, in the organic EL device having the layer structure of (4) above, a lower electrode (cathode) made of an Al—Li alloy or the like is deposited on one side of a substrate by resistance heating vapor deposition. Then, as an organic EL layer, an electron transport layer composed of an oxadiazole derivative or a triazole derivative, a light emitting layer, a hole transport layer composed of TPD (triphenyldiamine), etc., and an upper electrode (anode) Can be produced by sequentially laminating them by a thin film forming method such as resistance heating vapor deposition or ion beam sputtering. The layer structure or material of the organic EL element is not particularly limited as long as it functions as a display element. The solid sealing method according to the present invention can be applied to any structure of organic EL elements.
 パッシベーション膜は、有機EL素子を覆うように形成される。パッシベーション膜は、窒化ケイ素、酸化ケイ素などの無機材料を蒸着やスパッタなどの方法によって形成することが可能である。パッシベーション膜は、有機EL素子へ水分やイオン性不純物等が浸入するのを防止するために設けられる。パッシベーション膜の厚さは、10nm~100μmの範囲が好ましく、100nm~10μmの範囲とすることがより好ましい。 The passivation film is formed so as to cover the organic EL element. The passivation film can be formed by a method such as vapor deposition or sputtering of an inorganic material such as silicon nitride or silicon oxide. The passivation film is provided to prevent moisture, ionic impurities, and the like from entering the organic EL element. The thickness of the passivation film is preferably in the range of 10 nm to 100 μm, and more preferably in the range of 100 nm to 10 μm.
 パッシベーション膜は、成膜法にもよるが、一般にピンホールが存在する不完全な膜であるか、機械的強度が弱い膜であることが多い。そのため、固体封止方法では、パッシベーション膜の上にさらに接着剤を塗布し、封止用透明基板を用いて圧着し、接着剤を硬化することによって封止の信頼性を高めている。
 上記のようにして得られた封止された有機EL素子を、表示装置に組み込む(搭載する)ことにより、本発明の樹脂組成物の硬化物を有する有機ELディスプレイを得ることが出来る。
The passivation film is generally an incomplete film having pinholes or a film having low mechanical strength, although it depends on the film forming method. Therefore, in the solid sealing method, the reliability of sealing is improved by further applying an adhesive on the passivation film, press-bonding using a transparent substrate for sealing, and curing the adhesive.
An organic EL display having a cured product of the resin composition of the present invention can be obtained by incorporating (mounting) the sealed organic EL element obtained as described above into a display device.
 次に、実施例により本発明を更に詳細に説明する。本発明は以下の実施例によって何ら限定されるものではない。なお、数値の単位「部」は質量部を示す。 Next, the present invention will be described in more detail with reference to examples. The present invention is not limited in any way by the following examples. The unit “part” of the numerical value indicates part by mass.
 以下の実施例(表1)に示す組成にて本発明の樹脂組成物及び硬化物を得た。又、樹脂組成物及び硬化膜についての評価方法及び評価基準は以下の通り行った。なお、有機溶媒を含有する実施例については、エバポレーターで十分に有機溶媒を揮発させた後に評価を行った。 The resin composition and cured product of the present invention were obtained with the compositions shown in the following examples (Table 1). The evaluation method and evaluation criteria for the resin composition and the cured film were as follows. In addition, about the Example containing an organic solvent, it evaluated, after volatilizing an organic solvent fully with an evaporator.
(1)粘度:E型粘度計(TV-200:東機産業株式会社製)を用いて25℃で測定した。 (1) Viscosity: Viscosity was measured at 25 ° C. using an E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.).
(2)液屈折率:配合した樹脂組成物の屈折率(25℃)をアッベ屈折率計(DR-M2:株式会社アタゴ製)で測定した。 (2) Liquid refractive index: The refractive index (25 ° C.) of the blended resin composition was measured with an Abbe refractometer (DR-M2: manufactured by Atago Co., Ltd.).
(3)透湿度:紫外線硬化型樹脂をガラス基板で挟み、100μmのスペーサーを使用し膜厚を調整し、高圧水銀灯(80W/cm、オゾンレス)で3000mJ/cmで硬化させ試験片を作製した。得られた試験片をLyssy水蒸気透過度計L80-5000(Systech Illinois社製)、60℃×90%RHにて透湿度を測定した。 (3) Moisture permeability: UV curable resin was sandwiched between glass substrates, the thickness was adjusted using a 100 μm spacer, and cured at 3000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less) to produce a test piece. . The moisture permeability of the obtained test piece was measured with a Lyssy water vapor permeability meter L80-5000 (manufactured by Systech Illinois), 60 ° C. × 90% RH.
(4)Tg(ガラス転移点):硬化した紫外線硬化性樹脂層のTg点を粘弾性測定システムEXSTAR DMS-6000(エスアイアイ・ナノテクノロジー株式会社製)、引張モード、周波数1Hz、スキャンレイト(scan rate); 室温より2℃/min にて測定した。 (4) Tg (glass transition point): Viscoelasticity measurement system EXSTAR DMS-6000 (manufactured by SII Nanotechnology Co., Ltd.), tension mode, frequency 1 Hz, scan rate rate); measured at 2 ° C./min from room temperature.
(5)硬化収縮率:基材上に紫外線硬化型樹脂層を塗布し、高圧水銀灯(80W/cm、オゾンレス)で3000mJ/cmの照射を行い硬化させ膜比重測定用の硬化物を作成した。
これを、JIS K7112 B法に準拠し、硬化物の比重(DS)を測定した。また、23±2℃で樹脂組成物の比重(DL)を測定し、次式により硬化収縮率を算出した。測定結果は4回の測定結果の平均値で示す。
硬化収縮率(%)=(DS-DL)/DS×100
(5) Curing shrinkage rate: An ultraviolet curable resin layer was applied on the substrate, and cured by irradiating 3000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less) to produce a cured product for measuring film specific gravity. .
This was measured based on JIS K7112 B method, and the specific gravity (DS) of the cured product was measured. Further, the specific gravity (DL) of the resin composition was measured at 23 ± 2 ° C., and the cure shrinkage rate was calculated by the following formula. A measurement result is shown by the average value of four measurement results.
Curing shrinkage (%) = (DS−DL) / DS × 100
(6)脆性:易接着PET(A4300 100μm厚み:東洋紡績株式会社製)上にメイヤーバーコーターにて20μm厚みで塗布し、高圧水銀灯(80W/cm、オゾンレス)で3000mJ/cmの照射を行い硬化させ試験片を得た。その後、試験片を180°折り曲げることで評価を行った。
○・・・クラックの発生無し
×・・・クラックの発生有り
(6) Brittleness: Easy-adhesion PET (A4300 100 μm thickness: manufactured by Toyobo Co., Ltd.) is applied with a Meyer bar coater with a thickness of 20 μm, and irradiated with 3000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less). A test piece was obtained by curing. Thereafter, the test piece was evaluated by bending it 180 °.
○ ・ ・ ・ No crack occurrence × ・ ・ ・ Crack occurrence
(7)光線透過率: 紫外線硬化型樹脂をガラス基板で挟み、60μmのスペーサーを使用し膜厚を調整し、高圧水銀灯(80W/cm、オゾンレス)で3000mJ/cmで硬化させ試験片を作製した。得られた試験片を株式会社日立ハイテクノロジーズ製分光光度計U-3900H(光源C)により、波長380~780nmにおける各波長の光線透過率を測定し、400nmでの数値を透過率とした。 (7) Light transmittance: An ultraviolet curable resin is sandwiched between glass substrates, the thickness is adjusted using a 60 μm spacer, and cured at 3000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less) to produce a test piece. did. The light transmittance of each wavelength at wavelengths of 380 to 780 nm was measured using a spectrophotometer U-3900H (light source C) manufactured by Hitachi High-Technologies Corporation, and the numerical value at 400 nm was taken as the transmittance.
表1
Figure JPOXMLDOC01-appb-I000007

 上表において、比較例1は高圧水銀灯(80W/cm、オゾンレス)で3000mJ/cmの照射でも硬化しなかった為、液状で測定可能な項目のみを記載した
Table 1
Figure JPOXMLDOC01-appb-I000007

In the above table, since Comparative Example 1 was not cured by irradiation at 3000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less), only items that can be measured in liquid form were described.
OXT-121:東亞合成株式会社製キシリレンビスオキセタン
OXT-221:東亞合成株式会社製3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン
SEJ-01R:日本化薬株式会社製3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート
GSID 26-1:BASFジャパン株式会社製(トリス[4-(4-アセチルフェニルスルファニル)フェニル]スルホニウムトリス[(トリフルオロメチル)スルホニル]メタニド
SZR-K:堺化学工業株式会社製MEK分散酸化ジルコニウム(固形分濃度30% 一次粒径4nm)
OXT-101:東亞合成株式会社製3-エチル-3-ヒドロキシメチルオキセタン
OXT-121: Xylylenebisoxetane OXT-221 manufactured by Toagosei Co., Ltd .: 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane SEJ-01R manufactured by Toagosei Co., Ltd. 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate GSID 26-1 manufactured by Yakuhin Co., Ltd. (Tris [4- (4-acetylphenylsulfanyl) phenyl] sulfonium tris [ (Trifluoromethyl) sulfonyl] methanide SZR-K: MEK dispersed zirconium oxide manufactured by Sakai Chemical Industry Co., Ltd. (solid content concentration 30%, primary particle size 4 nm)
OXT-101: 3-ethyl-3-hydroxymethyloxetane manufactured by Toagosei Co., Ltd.
 実施例1~3及び比較例1~4の評価結果から明らかなように、特定の組成を有する本発明の樹脂組成物は硬化収縮率が小さく、その硬化物はTgが高く、水蒸気透過度が低い。そのため例えば各種封止材、特に、有機EL素子の封止材として適し、有機EL素子の固体封止における封止用透明基板の接着用の接着剤として用いることができる。 As is clear from the evaluation results of Examples 1 to 3 and Comparative Examples 1 to 4, the resin composition of the present invention having a specific composition has a low cure shrinkage, the cured product has a high Tg, and a water vapor permeability. Low. Therefore, for example, it is suitable as various sealing materials, especially as a sealing material for organic EL elements, and can be used as an adhesive for bonding a transparent substrate for sealing in solid sealing of organic EL elements.
 本発明の樹脂組成物は硬化収縮率が小さく、その硬化物は、可視光透過率、耐光性に優れ、Tgが高く、水蒸気透過度が低いことから、各種封止材、特に有機EL素子の封止材として適し、有機EL素子の固体封止における封止用透明基板の接着用の接着剤として用いることができる。 The resin composition of the present invention has a low curing shrinkage, and the cured product has excellent visible light transmittance and light resistance, high Tg, and low water vapor permeability. It is suitable as a sealing material and can be used as an adhesive for bonding a transparent substrate for sealing in solid sealing of an organic EL element.

Claims (23)

  1.  分子中に2つ以上のオキセタン環を有する化合物(A)を2種類以上含有する有機EL素子封止材用エネルギー線硬化型樹脂組成物。 An energy ray-curable resin composition for an organic EL device sealing material containing two or more compounds (A) having two or more oxetane rings in the molecule.
  2.  エネルギー線硬化型樹脂組成物が、重量平均分子量10,000g/mol以上である反応性基を有さない有機化合物成分を含まないか、又は、含む場合はその含有量が該樹脂組成物の総量に対して1.5重量%未満であることを特徴とする請求項1に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The energy ray curable resin composition does not contain an organic compound component that does not have a reactive group having a weight average molecular weight of 10,000 g / mol or more, or if included, the content is the total amount of the resin composition. The energy ray-curable resin composition for an organic EL device sealing material according to claim 1, wherein the content is less than 1.5% by weight.
  3.  分子中に2つ以上のオキセタン環を有する化合物(A)が少なくとも下記一般式(1)または下記一般式(2)で表されるオキセタン環を有する化合物、
    式(1)
    Figure JPOXMLDOC01-appb-I000008

    (式中、Rはそれぞれ独立して直接結合または炭素数1~6の直鎖または分岐鎖状の炭化水素基を示し、Rは炭素数1~15の直鎖若しくは分岐鎖状の炭化水素基、または、脂環、芳香環、複素環若しくは縮合環を含む炭化水素基を示し、Rはそれぞれ独立して炭素数1~6の直鎖または分岐鎖状炭化水素基を示し、nは平均値で1~5の整数を表す)、
    式(2)
    Figure JPOXMLDOC01-appb-I000009

    (式中、Rはそれぞれ独立して炭素数1~6の直鎖または分岐鎖状の炭化水素基、及びRはそれぞれ独立して炭素数1~6の直鎖または分岐鎖状炭化水素基を表す)、
    である請求項1または請求項2に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。
    A compound in which the compound (A) having two or more oxetane rings in the molecule has an oxetane ring represented by at least the following general formula (1) or the following general formula (2);
    Formula (1)
    Figure JPOXMLDOC01-appb-I000008

    (In the formula, each R 1 independently represents a direct bond or a linear or branched hydrocarbon group having 1 to 6 carbon atoms, and R 2 represents a linear or branched carbon group having 1 to 15 carbon atoms. A hydrogen group or a hydrocarbon group containing an alicyclic ring, an aromatic ring, a heterocyclic ring or a condensed ring, and R 3 each independently represents a straight or branched hydrocarbon group having 1 to 6 carbon atoms, n Represents an average value of an integer of 1 to 5),
    Formula (2)
    Figure JPOXMLDOC01-appb-I000009

    (Wherein R 4 is independently a linear or branched hydrocarbon group having 1 to 6 carbon atoms, and R 5 is each independently a linear or branched hydrocarbon group having 1 to 6 carbon atoms. Group),
    The energy ray curable resin composition for organic EL device sealing materials according to claim 1 or 2.
  4.  分子中に2つ以上のオキセタン環を有する化合物(A)が少なくとも分子中に脂環または芳香環を有する化合物である請求項1乃至請求項3の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The organic EL device sealing according to any one of claims 1 to 3, wherein the compound (A) having two or more oxetane rings in the molecule is a compound having at least an alicyclic ring or an aromatic ring in the molecule. Energy ray curable resin composition for materials.
  5.  分子中に2つ以上のオキセタン環を有する化合物(A)として、上記式(1)の化合物及び上記式(2)の化合物を含有する請求項1乃至請求項4のいずれか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The compound (A) having two or more oxetane rings in the molecule includes the compound of the above formula (1) and the compound of the above formula (2). An energy ray curable resin composition for an organic EL device sealing material.
  6.  式(1)の化合物1質量部に対して、式(2)の化合物の含有割合が0.6~1.5質量部の範囲である上記請求項5に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The organic EL device sealing material according to claim 5, wherein the content of the compound of the formula (2) is in the range of 0.6 to 1.5 parts by mass with respect to 1 part by mass of the compound of the formula (1). Energy ray curable resin composition.
  7.  分子中に2つ以上のオキセタン環を有する化合物(A)を2種類以上含有し、該樹脂組成物中に含まれる全有機化合物成分が重量平均分子量10,000g/mol以下で、且つ、20℃~80℃で相互に可溶な成分から構成された請求項1乃至請求項5のいずれか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 2 or more kinds of compounds (A) having two or more oxetane rings in the molecule, the total organic compound component contained in the resin composition has a weight average molecular weight of 10,000 g / mol or less, and 20 ° C. 6. The energy ray-curable resin composition for an organic EL device sealing material according to any one of claims 1 to 5, comprising components mutually soluble at -80 ° C.
  8.  (メタ)アクリレート化合物を含まないか、又は含んでも、溶剤を除く樹脂組成物の総量100質量部に対して、15質量部未満である請求項1乃至請求項6の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 It is less than 15 mass parts with respect to 100 mass parts of total amounts of the resin composition except a solvent even if it does not contain a (meth) acrylate compound, The solvent as described in any one of Claims 1 thru | or 6 An energy ray curable resin composition for an organic EL device sealing material.
  9.  更に、エポキシ化合物(B)及び光カチオン重合開始剤(C)の何れか一方若しくは両者を含み、その含量が、溶剤を除く樹脂組成物の総量100質量部に対して、0.1~70質量部であり、上記化合物(A)を、その合計含量で、溶剤を除く樹脂組成物の総量100質量部に対して、30~99.9質量部含む請求項1乃至請求項8の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 Further, it contains one or both of the epoxy compound (B) and the photocationic polymerization initiator (C), and the content thereof is 0.1 to 70 parts by mass with respect to 100 parts by mass of the total amount of the resin composition excluding the solvent. The amount of the compound (A) is 30 to 99.9 parts by mass with respect to 100 parts by mass of the total amount of the resin composition excluding the solvent. The energy ray-curable resin composition for organic EL device sealing material according to Item.
  10.  更に、エポキシ化合物(B)を含有する請求項1乃至請求項8の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 Furthermore, the energy-beam curable resin composition for organic electroluminescent element sealing materials as described in any one of Claims 1 thru | or 8 containing an epoxy compound (B).
  11.  エポキシ化合物(B)が脂環式エポキシ化合物である請求項9又は請求項10に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The energy ray-curable resin composition for an organic EL device sealing material according to claim 9 or 10, wherein the epoxy compound (B) is an alicyclic epoxy compound.
  12.  エポキシ化合物(B)が分子中に2個以上のエポキシ基を有する化合物である請求項9乃至請求項11の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The energy ray curable resin composition for organic EL device sealing materials according to any one of claims 9 to 11, wherein the epoxy compound (B) is a compound having two or more epoxy groups in the molecule.
  13.  エポキシ化合物(B)を、上記化合物(A)とエポキシ化合物(B)の総量100質量部に対して、20~70質量部含有する請求項10乃至請求項12の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The organic compound according to any one of claims 10 to 12, wherein the epoxy compound (B) is contained in an amount of 20 to 70 parts by mass with respect to 100 parts by mass of the total amount of the compound (A) and the epoxy compound (B). An energy ray curable resin composition for an EL element sealing material.
  14.  分子中に2つ以上のオキセタン環を有する化合物(A)を、該化合物(A)およびエポキシ化合物(B)の総量100質量部に対して、30~90質量部含有する請求項10乃至請求項13の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The compound (A) having two or more oxetane rings in the molecule is contained in an amount of 30 to 90 parts by mass with respect to 100 parts by mass of the total amount of the compound (A) and the epoxy compound (B). The energy ray curable resin composition for organic EL element sealing materials according to any one of 13.
  15.  更に、光カチオン重合開始剤(C)を含有する請求項1乃至請求項14の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 Furthermore, the energy-beam curable resin composition for organic EL element sealing materials as described in any one of Claims 1 thru | or 14 containing a photocationic polymerization initiator (C).
  16.  光カチオン重合開始剤(C)がスルホニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩及びアンチモン酸塩からなる群から選択される少なくとも一つである請求項15に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The energy for an organic EL device sealing material according to claim 15, wherein the cationic photopolymerization initiator (C) is at least one selected from the group consisting of a sulfonium salt, an iodonium salt, a phosphonium salt, an ammonium salt, and an antimonate. A linear curable resin composition.
  17.  更に、微粒子(D)を含有する請求項1乃至請求項16の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 Furthermore, the energy-beam curable resin composition for organic EL element sealing materials as described in any one of Claims 1 thru | or 16 containing microparticles | fine-particles (D).
  18.  微粒子(D)の一次粒径が100nm以下である請求項17に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The primary particle size of the fine particles (D) is 100 nm or less, The energy ray-curable resin composition for an organic EL device sealing material according to claim 17.
  19.  E型粘度計で測定した25℃での粘度が10mPa・s以上である請求項1乃至請求項18の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The energy ray curable resin composition for organic EL device sealing materials according to any one of claims 1 to 18, wherein the viscosity at 25 ° C measured with an E-type viscometer is 10 mPa · s or more.
  20.  該樹脂組成物を硬化したときの硬化収縮率が、5.5%以下である請求項1乃至請求項15の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物。 The energy shrinkable resin composition for an organic EL device sealing material according to any one of claims 1 to 15, wherein a curing shrinkage ratio when the resin composition is cured is 5.5% or less. .
  21.  請求項1乃至請求項20の何れか一項に記載の有機EL素子封止材用エネルギー線硬化型樹脂組成物を硬化せしめて得られる硬化物。 A cured product obtained by curing the energy ray-curable resin composition for an organic EL device sealing material according to any one of claims 1 to 20.
  22.  厚み100μmでの水蒸気透過率が200g/m・day/60℃以下である請求項21に記載の硬化物。 The hardened | cured material of Claim 21 whose water-vapor-permeation rate in thickness of 100 micrometers is 200 g / m < 2 > * day / 60 degrees C or less.
  23.  請求項21または請求項22に記載の硬化物を有する有機ELディスプレイ。 An organic EL display having the cured product according to claim 21 or claim 22.
PCT/JP2013/004331 2012-07-19 2013-07-16 Energy ray-curable resin composition and cured product thereof WO2014013716A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157000929A KR101980560B1 (en) 2012-07-19 2013-07-16 Energy ray-curable resin composition and cured product thereof
CN201380038436.3A CN104470971B (en) 2012-07-19 2013-07-16 Energy ray curable resin composition and its solidfied material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-160182 2012-07-19
JP2012160182A JP5916220B2 (en) 2012-07-19 2012-07-19 Energy ray curable resin composition and cured product thereof

Publications (1)

Publication Number Publication Date
WO2014013716A1 true WO2014013716A1 (en) 2014-01-23

Family

ID=49948558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004331 WO2014013716A1 (en) 2012-07-19 2013-07-16 Energy ray-curable resin composition and cured product thereof

Country Status (5)

Country Link
JP (1) JP5916220B2 (en)
KR (1) KR101980560B1 (en)
CN (1) CN104470971B (en)
TW (1) TWI603963B (en)
WO (1) WO2014013716A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045279A1 (en) * 2014-09-26 2016-03-31 京东方科技集团股份有限公司 Encapsulating layer, electronic encapsulating device and display apparatus
WO2017086144A1 (en) * 2015-11-19 2017-05-26 積水化学工業株式会社 Sealing agent for organic electroluminescent display elements
WO2018052007A1 (en) * 2016-09-16 2018-03-22 積水化学工業株式会社 Sealing agent for organic electroluminescent display element
WO2018131553A1 (en) * 2017-01-12 2018-07-19 積水化学工業株式会社 Sealant for organic electroluminescent display element
US10059803B2 (en) 2014-11-24 2018-08-28 Industrial Technology Research Institute Resin containing oxetane and epoxy groups and resin composition including the same
JP2022087332A (en) * 2016-10-19 2022-06-09 積水化学工業株式会社 Sealing agent for organic el display element
KR102662808B1 (en) * 2017-01-12 2024-05-02 세키스이가가쿠 고교가부시키가이샤 Encapsulant for organic EL display elements

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121277A (en) * 2014-12-25 2016-07-07 日東電工株式会社 Photocurable resin composition and optical material using the same
JP6548030B2 (en) * 2015-12-08 2019-07-24 協立化学産業株式会社 Method for producing a substrate with an uneven film using a photocurable resin composition
JP7012424B2 (en) * 2016-03-25 2022-02-14 東京応化工業株式会社 Energy-sensitive compositions, cured products and methods for producing cured products
CN114716648A (en) * 2016-08-08 2022-07-08 积水化学工业株式会社 Sealing agent for organic electroluminescent display element
KR102416054B1 (en) * 2016-10-19 2022-07-01 세키스이가가쿠 고교가부시키가이샤 Encapsulant for organic EL display element and manufacturing method of encapsulant for organic EL display element
CN109076661B (en) * 2016-10-19 2021-11-12 积水化学工业株式会社 Sealing agent for organic EL display element
CN116782448A (en) * 2016-10-19 2023-09-19 积水化学工业株式会社 Sealing agent for organic EL display element
CN109076660B (en) * 2016-10-19 2021-10-29 积水化学工业株式会社 Sealing agent for organic EL display element
CN109790359B (en) * 2016-12-09 2022-02-25 株式会社Lg化学 Packaging composition
US11024827B2 (en) 2017-05-24 2021-06-01 Lg Chem, Ltd. Organic electronic device
JP7010824B2 (en) * 2017-06-07 2022-01-26 積水化学工業株式会社 Encapsulant for organic EL display elements
JP2019029355A (en) * 2017-08-02 2019-02-21 積水化学工業株式会社 Sealing agent for organic EL display element
WO2019203123A1 (en) * 2018-04-20 2019-10-24 積水化学工業株式会社 Sealant for organic el display element and top emission type organic el display element
JP6573089B1 (en) * 2018-05-31 2019-09-11 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, method for manufacturing light emitting device, and light emitting device
JP6730549B2 (en) * 2018-08-10 2020-07-29 三井化学株式会社 Sealant
JP6783973B2 (en) * 2018-08-31 2020-11-11 三井化学株式会社 Encapsulant
KR102253501B1 (en) * 2018-09-28 2021-05-18 주식회사 엘지화학 Encapsulating composition
TW202035638A (en) * 2019-01-17 2020-10-01 日商電化股份有限公司 Sealing agent, cured body, organic electroluminescent display device, and method for producing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005051A (en) * 2003-06-10 2005-01-06 Sekisui Chem Co Ltd Manufacturing method for organic el display panel
JP2005235467A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Organic el element
JP2005320434A (en) * 2004-05-10 2005-11-17 Nitto Denko Corp Ultraviolet-curable resin composition
JP2008101136A (en) * 2006-10-19 2008-05-01 Nof Corp Thermosetting resin composition
JP2010209126A (en) * 2009-03-06 2010-09-24 Sumitomo Chemical Co Ltd Photosetting adhesive composition, polarizing plate and production method of the same, optical member, and liquid crystal display
JP2010275545A (en) * 2009-04-30 2010-12-09 Toagosei Co Ltd Photocuring type adhesive composition
WO2011040211A1 (en) * 2009-09-30 2011-04-07 Jsr株式会社 Organic el element, organic el display device, organic el lighting device, and curable composition for sealing agent
WO2011104997A1 (en) * 2010-02-23 2011-09-01 Jsr株式会社 Organic el element, organic el display device, organic el lighting device, and curable composition for sealing agent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679586B2 (en) 1993-08-17 1997-11-19 東亞合成株式会社 Active energy ray-curable composition
JP2000169552A (en) 1998-12-08 2000-06-20 Toagosei Co Ltd Cationically curable resin composition
JP4655172B2 (en) 2000-04-27 2011-03-23 日立化成工業株式会社 Hydroxyl-containing oxetane compounds
JP3876630B2 (en) 2001-03-01 2007-02-07 東亞合成株式会社 Curable composition
JP2005154738A (en) * 2003-10-28 2005-06-16 Toshiba Tec Corp Inkjet recording ink
JP4590997B2 (en) * 2004-09-15 2010-12-01 コニカミノルタホールディングス株式会社 Substrate film for display and organic electroluminescence device
CN101522749A (en) * 2006-10-11 2009-09-02 住友电木株式会社 Transparent composite sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005051A (en) * 2003-06-10 2005-01-06 Sekisui Chem Co Ltd Manufacturing method for organic el display panel
JP2005235467A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Organic el element
JP2005320434A (en) * 2004-05-10 2005-11-17 Nitto Denko Corp Ultraviolet-curable resin composition
JP2008101136A (en) * 2006-10-19 2008-05-01 Nof Corp Thermosetting resin composition
JP2010209126A (en) * 2009-03-06 2010-09-24 Sumitomo Chemical Co Ltd Photosetting adhesive composition, polarizing plate and production method of the same, optical member, and liquid crystal display
JP2010275545A (en) * 2009-04-30 2010-12-09 Toagosei Co Ltd Photocuring type adhesive composition
WO2011040211A1 (en) * 2009-09-30 2011-04-07 Jsr株式会社 Organic el element, organic el display device, organic el lighting device, and curable composition for sealing agent
WO2011104997A1 (en) * 2010-02-23 2011-09-01 Jsr株式会社 Organic el element, organic el display device, organic el lighting device, and curable composition for sealing agent

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016045279A1 (en) * 2014-09-26 2016-03-31 京东方科技集团股份有限公司 Encapsulating layer, electronic encapsulating device and display apparatus
US9685632B2 (en) 2014-09-26 2017-06-20 Boe Technology Group Co., Ltd. Encapsulating structure, the electronical package device and display apparatus that incorporates it
US10059803B2 (en) 2014-11-24 2018-08-28 Industrial Technology Research Institute Resin containing oxetane and epoxy groups and resin composition including the same
JP2019147963A (en) * 2015-11-19 2019-09-05 積水化学工業株式会社 Sealing agent for organic electroluminescence display element
JPWO2017086144A1 (en) * 2015-11-19 2018-06-07 積水化学工業株式会社 Sealant for organic electroluminescence display element
WO2017086144A1 (en) * 2015-11-19 2017-05-26 積水化学工業株式会社 Sealing agent for organic electroluminescent display elements
WO2018052007A1 (en) * 2016-09-16 2018-03-22 積水化学工業株式会社 Sealing agent for organic electroluminescent display element
JPWO2018052007A1 (en) * 2016-09-16 2018-09-13 積水化学工業株式会社 Sealant for organic electroluminescence display element
CN108781489A (en) * 2016-09-16 2018-11-09 积水化学工业株式会社 Organic electro-luminescent display unit sealant
JP2022087332A (en) * 2016-10-19 2022-06-09 積水化学工業株式会社 Sealing agent for organic el display element
WO2018131553A1 (en) * 2017-01-12 2018-07-19 積水化学工業株式会社 Sealant for organic electroluminescent display element
JPWO2018131553A1 (en) * 2017-01-12 2019-11-07 積水化学工業株式会社 Sealant for organic EL display element
JP7303628B2 (en) 2017-01-12 2023-07-05 積水化学工業株式会社 Sealant for organic EL display element
KR102662808B1 (en) * 2017-01-12 2024-05-02 세키스이가가쿠 고교가부시키가이샤 Encapsulant for organic EL display elements

Also Published As

Publication number Publication date
KR20150036071A (en) 2015-04-07
TWI603963B (en) 2017-11-01
CN104470971A (en) 2015-03-25
CN104470971B (en) 2018-06-22
JP2014019800A (en) 2014-02-03
KR101980560B1 (en) 2019-05-21
JP5916220B2 (en) 2016-05-11
TW201410660A (en) 2014-03-16

Similar Documents

Publication Publication Date Title
JP5916220B2 (en) Energy ray curable resin composition and cured product thereof
JP6274639B2 (en) Energy ray curable resin composition and cured product thereof
JP6099198B2 (en) Energy ray curable resin composition and cured product thereof
JP5967654B2 (en) Resin composition and cured product thereof (2)
JP6363508B2 (en) Resin composition and cured product thereof (1)
JP6284217B2 (en) Energy ray curable resin composition and cured product thereof
JP6112603B2 (en) Energy ray curable resin composition and cured product thereof
JP6012433B2 (en) Resin composition and cured product thereof (3)
JP6474432B2 (en) Energy ray curable resin composition and cured product thereof
WO2018163837A1 (en) Active energy ray curable composition, cured product, and film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157000929

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819604

Country of ref document: EP

Kind code of ref document: A1