WO2014013715A1 - Superhard alloy imparted with low friction ability, method for producing same, and superhard tool - Google Patents

Superhard alloy imparted with low friction ability, method for producing same, and superhard tool Download PDF

Info

Publication number
WO2014013715A1
WO2014013715A1 PCT/JP2013/004329 JP2013004329W WO2014013715A1 WO 2014013715 A1 WO2014013715 A1 WO 2014013715A1 JP 2013004329 W JP2013004329 W JP 2013004329W WO 2014013715 A1 WO2014013715 A1 WO 2014013715A1
Authority
WO
WIPO (PCT)
Prior art keywords
cemented carbide
powder
green compact
particles
supply source
Prior art date
Application number
PCT/JP2013/004329
Other languages
French (fr)
Japanese (ja)
Inventor
政昭 池邉
政弘 岩崎
Original Assignee
サンアロイ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアロイ工業株式会社 filed Critical サンアロイ工業株式会社
Priority to CN201380038030.5A priority Critical patent/CN104470661B/en
Publication of WO2014013715A1 publication Critical patent/WO2014013715A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen

Definitions

  • the present invention relates to a cemented carbide provided with a low friction reducing ability, a manufacturing method thereof, and a cemented carbide tool including a cutting tool and a mold.
  • a titanium nitride (hereinafter referred to as TiN) is formed on the surface of a tool base made of tungsten carbide based cemented carbide, titanium carbonitride based cermet, or cubic boron nitride based ultra high pressure sintered material.
  • TiN titanium nitride
  • TiAlN composite nitride
  • This type of carbide tool is used for cutting various steels and cast irons, for example. Furthermore, in order to increase the lubricity between the coated tool and the work material and reduce the cutting resistance, a coated tool in which a lubricating layer or a lubricating film is further formed on the surface of the hard coating layer is also known.
  • a carbide tool for cutting in which a lubricating film is formed on the uppermost layer of a tool base to improve lubricity (see Patent Document 1).
  • This type of cemented carbide tool is intended to improve lubricity by forming a coating of MoS 2 or a mixture of MoS 2 on the surface of the hard coating layer formed on the surface of the tool base by using a sputtering method. .
  • a TiN layer, a TiCN layer, and a TiAlN layer formed on the surface of the tool base are further MOI (where M is Si, Zr) by an ion plating method. , Ni, Fe, Co, and Cr, and 0.2 ⁇ Y ⁇ 2) is formed to improve the lubricity by forming a lubricating film (for example, Patent Document 2).
  • a carbide for cutting in which a lubricating film made of an amorphous silicon nitride film is formed on a hard coating layer made of a TiN layer, a TiCN layer, and a TiAl layer formed on the surface of a tool base.
  • a tool see Patent Document 3
  • This kind of carbide tool can suppress abnormal damage such as chipping and chipping when applied to wet interrupted cutting where impact and intermittent load act on the cutting edge, and over a long period of use, It is known to maintain excellent finished surface accuracy and exhibit stable cutting characteristics. This is because the amorphous silicon nitride film has excellent lubricity.
  • the cemented carbide tool in which the tool base is formed of a tungsten carbide (WC) based cemented carbide sintered material, cubic boron nitride (hereinafter referred to as c-BN), hexagonal boron nitride is formed on the surface of the tool base.
  • c-BN cubic boron nitride
  • a-BN amorphous boron nitride
  • a mold used for molding a processing material such as a metal material into a certain shape is required to have a lubricity on the molding surface.
  • the present invention aims to further speed up the cutting of the material to be cut and to improve the lubricity of the mold using the cemented carbide, so that the cemented carbide is excellent in low friction characteristics and its manufacture.
  • the present invention has been proposed for the purpose of providing a method, a cutting tool using the cemented carbide as a substrate, and a cemented carbide tool including a die.
  • h-BN which is known as a solid lubricant, for improving the low friction characteristics of a cutting tool and further a carbide tool including a die.
  • this h-BN is used for forming a lubricating layer on the surface of the substrate
  • it is used as a composite material when forming a coating layer of c-BN, but a tool substrate such as TiN is used.
  • a lubricating layer is formed by forming a film alone on the surface. That is, h-BN alone is formed on the surface of the tool base and only reduces the mechanical performance of the tool when the coating layer of the carbide tool is formed. This is because it could not function as a lubricant for the tool.
  • the present invention provides a cemented carbide having excellent lubricity and high mechanical strength, and a method for producing the same, without adopting a configuration in which a lubricating layer is formed on the surface of the tool base as described above. Furthermore, the present invention is proposed for the purpose of providing a cutting tool using the cemented carbide as a tool base, and further a cemented carbide tool including a die.
  • the inventors of the present invention have improved lubricity and improved mechanical strength, thereby suppressing the occurrence of abnormal damage that occurs when used for grinding workpieces, etc., for long-term use. Over time, as a result of earnest research to develop cutting tools that maintain stable finished surface accuracy and exhibit stable machining characteristics, as well as carbide tools including molds, excellent low friction reduction ability Has succeeded in developing the present invention.
  • the present invention relates to a cemented carbide that achieves the above-described characteristics and a cemented carbide tool that uses the cemented carbide, and improves the lubricity of the cemented carbide constituting the tool base. Suppressing the occurrence of abnormal damage that occurs during machining such as cutting, maintaining excellent finished surface accuracy over a long period of use, and realizing stable machining characteristics.
  • the present invention is a tungsten carbide-based cemented carbide in which tungsten carbide particles are sintered and bonded with a bonding metal, and hexagonal boron nitride (h— This is a cemented carbide in which BN) is dispersedly formed.
  • This cemented carbide is imparted with low friction reducing ability by dispersing and forming hexagonal boron nitride (h-BN) in a bonding metal that bonds the particles of tungsten carbide.
  • At least a part of the tungsten carbide particles bonded by the bonding metal has a double structure of a tungsten carbide nucleus and a structure around the tungsten carbonitride.
  • h-BN formed in the bonding metal that bonds the WC particles is preferably in the range of 10 to 1500 ppm in terms of boron (B). Further, the h-BN formed in the bonding metal that bonds the WC particles is preferably in the range of 10 to 1000 ppm in terms of boron (B), and more preferably in the range of 10 to 10 in terms of boron (B). It is desirable to be in the range of 500 ppm.
  • the crystal grains of h-BN deposited in the bonding metal that bonds the WC particles be 1 ⁇ m or less.
  • the present invention is a cutting tool using any of the above-mentioned cemented carbides as a tool base, and further a cemented carbide tool including a die.
  • the present invention is also a method for producing a cemented carbide with low friction reducing ability, wherein boron (B) is mixed in a mixed powder in which a tungsten carbide powder and a bonding metal powder for bonding between tungsten carbide particles are mixed.
  • boron (B) is mixed in a mixed powder in which a tungsten carbide powder and a bonding metal powder for bonding between tungsten carbide particles are mixed.
  • a cemented carbide powder in which a supply source is dispersed and mixed is manufactured, and then the cemented carbide powder is compression-molded to form a green compact, and then the green compact is nitrided in a nitrogen-pressurized atmosphere, Crystal grains of hexagonal boron nitride (h-BN) are dispersedly formed in a bonding metal that bonds the particles of tungsten carbide.
  • h-BN hexagonal boron nitride
  • the green compact is heated and sintered in a vacuum, and then nitriding treatment, whereby h-BN crystal grains are dispersedly formed in the bonding metal. It is desirable that the h-BN crystal grains are dispersed and formed in the crystalline metal as particles of 1 ⁇ m or less.
  • the step of nitriding the green compact may be performed during the step of heating and sintering the green compact.
  • the B source used to form hexagonal boron nitride (h-BN) grains in the bond metal is from the group consisting of B 2 O 3 , H 3 BO 3 , h-BN, WB and TiB 2. One selected can be used.
  • another method for producing a cemented carbide with low friction reducing ability is to produce a cemented carbide powder in which a tungsten carbide powder and a bonded metal powder that bonds between tungsten carbide particles are mixed, Subsequently, the cemented carbide powder is compression-molded to form a green compact, and then a B supply source solution in which a B supply source is dissolved in a solvent is supplied from the surface of the green compact. The B supply source is dispersedly supplied, and then the green compact is nitrided in a nitrogen-pressurized atmosphere, and hexagonal boron nitride (h-BN) is bonded into the bonding metal that bonds the particles of the tungsten carbide. The crystal grains are dispersedly formed.
  • h-BN hexagonal boron nitride
  • the green compact is heat-sintered in a vacuum, and then subjected to nitriding treatment, whereby hexagonal boron nitride (h-BN) crystal grains are dispersedly formed in the bonding metal.
  • the step of nitriding the green compact may be performed during the step of heating and sintering the green compact.
  • the B source solution used for forming hexagonal boron nitride (h-BN) grains in the binding metal is a solution containing 0.02 wt% or more and 4 wt% or less of the B supply source in terms of boron. It is desirable to use a solution dissolved in
  • the present invention provides a cemented carbide tool in which h-BN crystal grains are dispersedly formed in a bonding metal that bonds between WC particles constituting a WC-based cemented carbide, so that the bending strength is not reduced.
  • the frictional resistance can be reduced while maintaining the bending strength required when processing is performed.
  • Cutting tools using this cemented carbide as a tool base, and cemented carbide tools including dies suppress the occurrence of abnormal damage when used in machining processes such as cutting and forming various metals.
  • stable machining characteristics can be realized while maintaining excellent finished surface accuracy over a long period of use.
  • the cemented carbide manufactured by adopting the manufacturing method according to the present invention is formed by nitriding a green compact in which a B supply source is dispersed in a nitrogen pressurized atmosphere. Part or all of the particles have a double structure of the WC nucleus and the surrounding structure of tungsten carbonitride, which further improves the low friction ability.
  • a cutting tool using the cemented carbide according to the present invention as a base, and further, a cemented carbide tool including a die is excellent in low friction characteristics and maintains a certain bending strength. Improves machining efficiency and extends the service life.
  • FIG. 3 is an X-ray absorption spectroscopy (XANES) spectrum analysis diagram showing that hexagonal boron nitride (h-BN) is formed in the bonded metal of the cemented carbide according to the present invention. It is the photograph which observed the structure
  • XANES X-ray absorption spectroscopy
  • the cemented carbide according to the present invention is a cemented carbide mainly composed of tungsten carbide (WC), in which hexagonal boron nitride (h-BN) crystal grains are dispersed in a bonding metal that bonds WC particles. It is formed and given a low friction reducing ability.
  • WC tungsten carbide
  • h-BN hexagonal boron nitride
  • the bonding metal of the cemented carbide according to the present invention Co, Ni, Co—Ni alloy, Fe—Ni alloy, Co—W alloy in which 20 wt% or less of W, Cr, Mo, V is dissolved, Ni— A Cr alloy, Co—Cr—V alloy, Co—Ni—Cr alloy, Co—Ni—W—Cr alloy, Fe—Ni—Co—W—Cr—Mo alloy, or the like can be used. If the content of the bonding metal in the cemented carbide is less than 3% by weight relative to the entire cemented carbide, voids remain inside the alloy and the strength and toughness are reduced. Since the wear resistance is lowered, it is appropriate to be in the range of 3 to 30% by weight.
  • the cemented carbide according to the present embodiment is manufactured by the following process. First, a group consisting of B 2 O 3 , H 3 BO 3 , h-BN, WB, and TiB 2 in a mixed powder obtained by mixing WC powder constituting the cemented carbide powder and metal powder that binds between WC particles.
  • One B source selected from the above is dispersed and mixed.
  • paraffin wax is added to the cemented carbide powder material mixed with the B supply source to obtain a finished powder.
  • the cemented carbide finished powder mixed with the B supply source is compression-molded to obtain a green compact.
  • the green compact is degreased. Thereafter, the green compact is heat-sintered in vacuum, and then nitriding is performed in a nitrogen-pressurized atmosphere.
  • h-BN hexagonal boron nitride
  • the B supply source is preferably determined in relation to the h-BN concentration interposed in the bonded metal, and is preferably in the range of 10 to 1500 ppm in terms of B, and desirably in terms of B. It is preferably in the range of 10 to 1000 ppm, more preferably in the range of 10 to 500 ppm.
  • the step of nitriding the green compact may be performed during the step of heating and sintering the green compact. Good.
  • the cemented carbide according to the present invention may be manufactured through the following steps. First, WC powder and binding metal powder are mixed, and further, paraffin wax is added to the mixed powder to obtain a finished powder.
  • the cemented carbide finished powder is compression molded to form a green compact, and then the green compact is degreased.
  • a B supply source solution in which a B supply source is dissolved in a solvent is applied to the surface of the defatted green compact, or impregnated from the surface of the green compact and penetrates into the green compact.
  • the B supply source solution that has penetrated into the green compact diffuses into the green compact and finely disperses on the surface of the particles constituting the cemented carbide powder forming the green compact.
  • B 2 O 3 or H 3 BO 3 that is soluble in water or alcohol is used as the B supply source.
  • the green compact supplied with the B supply source solution from the surface is heated and sintered in a vacuum, and then is nitrided in a nitrogen-pressurized atmosphere, as in the manufacturing method of the above-described embodiment.
  • This nitriding treatment may be performed during the step of heating and sintering the green compact.
  • the green compact made of the cemented carbide powder impregnated with the B source solution is subjected to nitriding treatment in the same way as in the above-described embodiment, so that hexagonal nitriding is formed in the bonding metal that bonds the WC particles.
  • Boron (h-BN) crystal grains are dispersedly formed.
  • the B supply source solution supplied from the surface of the green compact is obtained by dissolving the B supply source in a solvent such as water or alcohol. Therefore, the B source used for the B source solution is one that can be dissolved in a solvent, water, or alcohol.
  • the concentration of the B supply source solution used here is preferably determined in relation to the concentration of h-BN interposed in the cemented metal of the cemented carbide formed by sintering the green compact.
  • a dilute solution of 0.02 wt% (200 ppm) or more and less than 4 wt% (40000 ppm) is preferred.
  • this B supply source solution When this B supply source solution is supplied from the surface of the green compact having an average porosity of 45%, and then dried by evaporating the solvent, the maximum density of 2000 ppm, preferably 10 to 1000 ppm, is converted into B inside the green compact. In the range of B, the B supply source remains.
  • the solvent is removed in the previous step of nitriding the green compact, and WC particles and bonding It is desirable to remove the oxide on the metal surface.
  • This solvent removal step is desirably performed in a vacuum atmosphere at 1000 ° C. to 1200 ° C.
  • the cemented carbide according to the present invention manufactured through the manufacturing process as described above has a part or all of the WC particles constituting the WC-based cemented carbide sintered material formed by nitriding in a nitrogen-pressurized atmosphere. It has a double structure consisting of the WC nucleus and the surrounding structure of tungsten carbonitride. This cemented carbide can achieve further lower frictional performance.
  • the cemented carbide of Example 1 is a metal powder obtained by weighing 91% by weight of WC powder having an average particle size of 1.5 ⁇ m and 9% by weight of Co powder having an average particle size of 1.1 ⁇ m. , Using a cemented carbide powder to which 0.1 wt% of B 2 O 3 powder as a B supply source is added in terms of B.
  • Cemented carbide powder mainly composed of WC and Co powder with B 2 O 3 powder added is put into a stainless steel pot together with ethanol solvent and cemented carbide ball, and mixed and ground in this pot for 30 hours. Is done. The cemented carbide powder mixed and ground in the pot is taken out from the pot and dried. Paraffin wax is added to the pulverized and dried cemented carbide powder. The cemented carbide powder to which paraffin wax is added is compression molded to a size of 10 ⁇ 10 ⁇ 5 (mm).
  • a green compact formed by compression molding cemented carbide powder is degreased at 600 ° C. in a hydrogen atmosphere, then heated from room temperature to 1390 ° C. in a vacuum atmosphere, and maintained at 1390 ° C. for 3.6 ksec. Is sintered. Thereafter, nitrogen gas was introduced into the furnace, the inside of the furnace was adjusted to 100 kPa, and the test piece was obtained.
  • This test piece is a cemented carbide obtained by sintering a green compact obtained by compression molding cemented carbide powder.
  • the 10 ⁇ 10 surface of the cemented carbide specimen prepared here was ground with a diamond grindstone, the surface layer was removed, and further mirror-finished with diamond paste.
  • XANES X-ray absorption spectroscopy
  • Example 2 Next, in the cemented carbide of Example 2, 91 wt% of WC powder having an average particle diameter of 6.0 ⁇ m and 9 wt% of Co powder having an average particle diameter of 1.1 ⁇ m were weighed. This powder is manufactured using a cemented carbide powder obtained by adding 0.1% by weight of B 2 O 3 powder as a B supply source in terms of B.
  • a cemented carbide powder mainly composed of WC and Co powders to which B 2 O 3 powder as a B supply source is added is made of stainless steel together with an ethanol solvent and a cemented carbide ball, as in Example 1 above. It is put into a pot and mixed and ground in this pot for 30 hours. The cemented carbide powder mixed and ground in the pot is taken out from the pot and dried. Paraffin wax is added to the dried cemented carbide powder. The cemented carbide powder to which paraffin wax is added is compression molded to a size of 30 ⁇ 25 ⁇ 13 (mm).
  • the green compact formed by compression molding the cemented carbide powder is degreased in a hydrogen atmosphere at 600 ° C., and then placed in a furnace that has a vacuum atmosphere and is heated from room temperature to 1100 ° C.
  • the temperature inside the furnace is raised to 1390 ° C., and nitrogen gas is introduced into the furnace to adjust the inside of the furnace to 900 kpa to perform nitriding treatment of the green compact.
  • the inside of the furnace into which the nitrogen gas has been introduced is maintained in a state where the temperature has been raised to 1390 ° C. for 3.6 ksec, whereby the green compact is sintered to form a sintered alloy.
  • the sintered alloy sintered in the furnace is then cooled and used as a test piece. This test piece corresponds to a cemented carbide produced by sintering a green compact obtained by compression molding cemented carbide powder.
  • the test piece obtained here is cut at the center.
  • the cut surface of the cut specimen is ground with a diamond grindstone, then mirror-finished with diamond paste, and etched with Murakami reagent, which is a corrosive liquid that corrodes cemented carbide.
  • the structure was observed using a scanning electron microscope. The observation results are shown in FIG.
  • the WC particles have a double structure of the WC nucleus and the surrounding tissue formed around it, as is apparent from the photograph in FIG.
  • the surrounding tissue of the WC nucleus is presumed to be W (C, N).
  • the cemented carbide of this Example 3 weighed 91% by weight of WC powder with an average particle size of 1.5 ⁇ m and 9% by weight of Co powder with an average particle size of 1.1 ⁇ m.
  • the powder is produced from a cemented carbide powder obtained by adding 0.001 wt% of B 2 O 3 powder as a B supply source to the powder in terms of B.
  • the above cemented carbide powder is put into a stainless steel pot together with an ethanol solvent and a cemented carbide ball, and mixed and ground in this pot for 30 hours.
  • the cemented carbide powder mixed and ground in the pot is taken out from the pot and dried.
  • Paraffin wax is added to the dried cemented carbide powder.
  • the cemented carbide powder to which the paraffin wax was added was compression molded to a size of 10 ⁇ 5 ⁇ 31 (mm). The compression-molded green compact is used as a bending strength test piece.
  • the cemented carbide powder to which paraffin wax was added was compression molded to a size of 25 ⁇ 25 ⁇ 26.5 (mm).
  • the compression-molded green compact is used as a friction coefficient measurement test piece.
  • Both the green compact used as the bending strength test piece and the green compact used as the friction coefficient measurement test piece were degreased in a hydrogen atmosphere at 600 ° C. and then put into a vacuum atmosphere furnace.
  • the furnace is evacuated and the furnace temperature is raised from room temperature to 1390 ° C. and held at 1390 ° C. for 3.6 ksec for sintering. Thereafter, nitrogen gas is introduced into the furnace, and the inside of the furnace is adjusted to 100 kPa and cooled to produce a test piece as a sintered body subjected to nitriding treatment.
  • This test piece is a cemented carbide produced by sintering a compact obtained by compression molding cemented carbide powder.
  • the cemented carbide of Example 4 was manufactured from cemented carbide powder obtained by adding 0.010 wt% of B 2 O 3 powder as a B supply source to the powder shown in Example 3 in terms of B. is there.
  • the yield strength test piece and the friction coefficient measurement test piece obtained here are manufactured through the same manufacturing steps as in Example 3.
  • WC powder with an average particle size of 1.5 ⁇ m was 91% by weight
  • Co powder with an average particle size of 1.1 ⁇ m was 9 Friction strength test piece of cemented carbide made of cemented carbide powder obtained by adding 0.200% by weight of B 2 O 3 powder as a source to powder measured at a weight percent ratio and friction A coefficient measurement specimen was prepared.
  • the friction coefficient was measured using the friction coefficient measurement test pieces prepared in Examples 3 to 6 and Comparative Example 1 described above and the conventional example.
  • the measurement of the friction coefficient was performed on the measurement surface of the friction coefficient measurement test piece subjected to mirror finishing.
  • the friction coefficient measurement surface was subjected to grinding to remove the sintered surface, and further to the mirror finishing. Applied and formed.
  • the coefficient of friction measurement test piece was measured using a ball-on-plate method.
  • a ⁇ 10 mm aluminum sphere loaded with a load of 100 g is used as a test sphere, and the load generated by reciprocating the test sphere at an interval of 7 mm on the measurement surface of the friction coefficient measurement test piece is measured. Do it.
  • the load is measured with a load cell attached to the test ball.
  • the B 2 O 3 addition amount as the B supply source was 0.001% by weight or more in terms of B, and thus the B supply source was not added.
  • the friction coefficient was sufficiently reduced as compared with a cemented carbide made of a WC-based cemented carbide sintered material.
  • the B supply source is added by setting the amount of B 2 O 3 added as the B supply source to 0.001 or more and less than 0.200% by weight in terms of B.
  • a bending strength equivalent to that of a cemented carbide made of a sintered WC-based cemented carbide alloy was obtained.
  • the binding of the metal of the cemented carbide consisting of WC-based cemented carbide sintered material, by the amount of addition of B 2 O 3 is added in less than 0.001 0.200 wt% in terms of B, binder phase A cemented carbide having a significantly reduced friction coefficient while achieving a bending strength equivalent to that of a conventional cemented carbide manufactured without adding B to the metal constituting the metal was obtained.
  • a cutting tool using this cemented carbide as a substrate, and further a cemented carbide tool including a die are excellent in low friction characteristics and can maintain a constant bending force.
  • the cemented carbide of Example 7 was measured by measuring 91% by weight of WC powder having an average particle size of 1.5 ⁇ m and 9% by weight of Co powder having an average particle size of 1.1 ⁇ m. It is a cemented carbide produced from a cemented carbide powder obtained by adding 0.001 wt% of B 2 O 3 powder as a B supply source to the powder in terms of B.
  • the above cemented carbide powder is put into a stainless steel pot together with an ethanol solvent and a cemented carbide ball, and mixed and ground in this pot for 30 hours.
  • the cemented carbide powder mixed and ground in the pot is taken out from the pot and dried.
  • Paraffin wax is added to the dried cemented carbide powder.
  • the cemented carbide powder to which paraffin wax is added is compression molded to a size of 10 ⁇ 5 ⁇ 31 (mm). The compression-molded green compact is used as a bending strength test piece.
  • the cemented carbide powder to which paraffin wax was added was compression molded to a size of 25 ⁇ 25 ⁇ 26.5 (mm).
  • the compression-molded green compact is used as a friction coefficient measurement test piece.
  • the green compact used as the bending strength test piece and the green compact used as the friction coefficient measurement test piece are both degreased in a hydrogen atmosphere at 600 ° C. and then placed in a furnace having a vacuum atmosphere. .
  • the inside of the furnace in which the green compact is charged is evacuated and heated from room temperature to 1100 ° C. Thereafter, nitrogen gas is introduced into the furnace, the inside of the furnace is adjusted to 900 kPa, and the temperature is raised to 1390 ° C.
  • the green compact thrown into the furnace turns into a sintered test piece by hold
  • This test piece is a cemented carbide manufactured by sintering a green compact obtained by compression molding cemented carbide powder.
  • the cemented carbide of Example 8 was manufactured from cemented carbide powder obtained by adding 0.010 wt% of B 2 O 3 powder as a B supply source to the powder shown in Example 7 in terms of B. is there.
  • the yield strength test piece and the friction coefficient measurement test piece obtained here are manufactured through the same manufacturing steps as in Example 7.
  • the cemented carbide of Example 9 was manufactured from cemented carbide powder obtained by adding 0.100 wt% of B 2 O 3 powder as a B supply source to the powder shown in Example 7 in terms of B. is there.
  • the bending strength test piece and the friction coefficient measurement test piece obtained here are also manufactured through the same manufacturing process as in Example 7.
  • the friction coefficient was measured using the friction coefficient measurement test pieces prepared in Examples 7 to 9 and Comparative Example 2 described above and the conventional example.
  • the measurement of the friction coefficient was performed on the measurement surface of the friction coefficient measurement test piece subjected to mirror finishing, and the measurement surface of the friction coefficient was formed in the same manner as in the above-described Examples and Comparative Examples.
  • the friction coefficient measurement of the friction coefficient measurement test piece also used the ball-on-plate method similarly to the above-mentioned Example.
  • the measurement results are shown in FIG.
  • it was configured without adding the B supply source by containing 0.001 wt% or more of B 2 O 3 as the B supply source in terms of B.
  • the friction coefficient was sufficiently reduced as compared with a cemented carbide made of a WC-based cemented carbide sintered material.
  • the bending strength was measured using the bending strength test pieces prepared in Examples 7 to 9 described above and the bending strength test pieces prepared in Comparative Example 2 and the conventional example.
  • the measurement results are shown in Table 2.
  • the B supply source is added by setting the amount of B 2 O 3 added as the B supply source to 0.001 or more and less than 0.200% by weight in terms of B.
  • a bending strength equivalent to that of a cemented carbide made of a sintered WC-based cemented carbide alloy was obtained.
  • the amount of B 2 O 3 added is 0.001 or more and less than 0.200% by weight in terms of B in the cemented carbide of WC.
  • a cutting tool using this cemented carbide as a substrate, and further a cemented carbide tool including a die are excellent in low friction characteristics and can maintain a constant bending force.
  • the present invention has been described by taking as an example a cemented carbide made of a WC-based cemented carbide sintered material containing Co as a binding metal. Widely applied to WC-based cemented carbide sintered alloys in which h-BN is precipitated by nitriding the B supply source intervening between the grain boundaries formed between the WC particles constituting WC and the binding metal particles binding WC It can be made and is not limited to the above-described embodiments.
  • the cemented carbide tool using the cemented carbide according to the present invention has excellent lubricity and seizure resistance by imparting low friction reducing ability, reduces tool wear, By preventing seizure, it is useful to apply to plastic working such as forging and punching of soft materials such as various steels, copper alloys, and aluminum alloys as compared with conventional carbide tools.
  • the cemented carbide tool using the cemented carbide according to the present invention has excellent lubricity and seizure resistance even in cutting, and suppresses the occurrence of chipping, chipping, etc. by reducing the processing load, Since stable cutting performance can be exhibited over a long period of time, forging, punching and cutting apparatus can be improved in performance, labor saving and energy saving of these processes, and further cost reduction can be realized.

Abstract

The present invention is a superhard alloy in which particles of tungsten carbide (WC) are bound to each other through a binder metal, and in which crystal grains of hexagonal boron nitride (h-BN) are formed in a dispersed state in the binder metal that binds the particles of WC to impart a low friction ability to the superhard alloy. The superhard alloy is produced from a material that is prepared by mixing at least one B source component selected from the group consisting of B2O3, H3BO3, h-BN, WB and TiB2 with a powder mixture prepared by mixing a WC powder with a metal powder capable of binding particles of WC to each other so that the B source component can be dispersed in the powder mixture. A superhard alloy powder in which the B source component is mixed in a dispersed state is compression-molded to produce a compression-molded article. The compression-molded article is nitrided in a pressurized nitrogen atmosphere, thereby producing a superhard alloy in which crystal grains of hexagonal boron nitride (h-BN) are formed in a dispersed state in the binder metal that binds particles of WC to each other.

Description

低摩擦化能が付与された超硬合金及びその製造方法、並びに超硬工具Cemented carbide provided with low friction reducing ability, manufacturing method thereof, and cemented carbide tool
 本発明は、低摩擦化能が付与された超硬合金及びその製造方法、並びに、切削工具や金型を含む超硬工具に関する。 [Technical Field] The present invention relates to a cemented carbide provided with a low friction reducing ability, a manufacturing method thereof, and a cemented carbide tool including a cutting tool and a mold.
 切削加工時の衝撃的負荷に対し高い耐衝撃性(抗折力)を維持しつつ、潤滑性が付与され、長期の使用に亘って優れた仕上げ面精度を維持し、しかも、安定した切削性能を発揮する超硬工具が鋭意研究されて提案されている。この種の超硬工具として、炭化タングステン基超硬合金、炭窒化チタン基サーメット、あるいは立方晶窒化ほう素基超高圧焼結材料からなる工具基体の表面に、チタンの窒化物(以下、TiNで示す。)層、チタンの炭窒化物(以下、TiCNで示す。)層、チタンとアルミニウムの複合窒化物(以下、TiAlNで示す。)層などの硬質被覆層を蒸着形成したものが提案されている。 While maintaining high impact resistance (bending strength) against impact load during cutting, lubricity is provided, excellent finished surface accuracy is maintained over a long period of use, and stable cutting performance is achieved. Carbide tools that demonstrate the above are being researched and proposed. As this type of cemented carbide tool, a titanium nitride (hereinafter referred to as TiN) is formed on the surface of a tool base made of tungsten carbide based cemented carbide, titanium carbonitride based cermet, or cubic boron nitride based ultra high pressure sintered material. And a hard coating layer such as a titanium carbonitride (hereinafter referred to as TiCN) layer and a composite nitride (hereinafter referred to as TiAlN) layer of titanium and aluminum have been proposed. Yes.
 この種の超硬工具は、例えば各種の鋼や鋳鉄などの切削加工に用いられている。さらに、被覆工具と被削材間の潤滑性を高め切削抵抗を低減するために、硬質被覆層のさらにその表面に潤滑層若しくは潤滑膜を形成した被覆工具も知られている。 This type of carbide tool is used for cutting various steels and cast irons, for example. Furthermore, in order to increase the lubricity between the coated tool and the work material and reduce the cutting resistance, a coated tool in which a lubricating layer or a lubricating film is further formed on the surface of the hard coating layer is also known.
 例えば、工具基体の最上層に潤滑膜を形成して潤滑性を向上した切削用の超硬工具が知られている(特許文献1参照)。この種の超硬工具は、工具基体表面に形成した硬質皮膜層のさらにその表面に、スパッタリング法を用いてMoSあるいはMoSの混合物皮膜を被服形成することにより潤滑性の向上を図っている。 For example, a carbide tool for cutting is known in which a lubricating film is formed on the uppermost layer of a tool base to improve lubricity (see Patent Document 1). This type of cemented carbide tool is intended to improve lubricity by forming a coating of MoS 2 or a mixture of MoS 2 on the surface of the hard coating layer formed on the surface of the tool base by using a sputtering method. .
 また、この種の超硬工具の他の例としてとして、工具基体の表面に形成したTiN層、TiCN層、TiAlN層のさらにその表面に、イオンプレーティング法によりMOY(但し、MはSi,Zr,Ni,Fe,Co,Crのいずれか1であり、0.2≦Y<2とする。)等からなる潤滑膜を形成することにより潤滑性の向上を図ったものが提案されている(特許文献2参照)。 As another example of this type of cemented carbide tool, a TiN layer, a TiCN layer, and a TiAlN layer formed on the surface of the tool base are further MOI (where M is Si, Zr) by an ion plating method. , Ni, Fe, Co, and Cr, and 0.2 ≦ Y <2) is formed to improve the lubricity by forming a lubricating film (for example, Patent Document 2).
 さらに他の例として、工具基体の表面に形成されたTiN層、TiCN層、TiAl層からなる硬質被覆層のさらにその表面に非晶質窒化珪素膜からなる潤滑膜を形成した切削用の超硬工具がある(特許文献3参照)。この種の超硬工具は、切刃に対して衝撃的・断続的負荷が作用する湿式断続切削加工に適用したときに、チッピングや欠損等の異常損傷を抑制でき、長期の使用に亘って、すぐれた仕上げ面精度を維持し安定した切削特性を発揮することが知られている。これは、非晶質窒化珪素膜が、優れた潤滑性を備えることによる。 As still another example, a carbide for cutting in which a lubricating film made of an amorphous silicon nitride film is formed on a hard coating layer made of a TiN layer, a TiCN layer, and a TiAl layer formed on the surface of a tool base. There is a tool (see Patent Document 3). This kind of carbide tool can suppress abnormal damage such as chipping and chipping when applied to wet interrupted cutting where impact and intermittent load act on the cutting edge, and over a long period of use, It is known to maintain excellent finished surface accuracy and exhibit stable cutting characteristics. This is because the amorphous silicon nitride film has excellent lubricity.
 さらにまた、工具基体を炭化タングステン(WC)基超硬合金焼結材料により形成した超硬工具において、上記工具基体の表面に立方晶窒化ホウ素(以下、c-BNとい。)、六方晶窒化ホウ素(以下、h-BNという。)及びアモルファス窒化ホウ素(以下、a-BNという。)の混合相からなる複合硬質相の膜を形成し、優れた耐チッピング性、耐摩耗性を発揮させたものが提案されている(特許文献4参照)。 Furthermore, in the cemented carbide tool in which the tool base is formed of a tungsten carbide (WC) based cemented carbide sintered material, cubic boron nitride (hereinafter referred to as c-BN), hexagonal boron nitride is formed on the surface of the tool base. (Hereinafter referred to as h-BN) and amorphous boron nitride (hereinafter referred to as a-BN) formed a composite hard phase film that exhibits excellent chipping resistance and wear resistance Has been proposed (see Patent Document 4).
特表平11-509580号公報Japanese National Patent Publication No. 11-509580 特開2000-233324号公報JP 2000-233324 A 特開2011-51033号公報JP 2011-51033 A 特開2011-194512号公報JP 2011-194512 A
 各種の鋼や鋳鉄などの被切削材料に切削加工を行う分野では、切削加工工程の自動化の伸展が著しいばかりか、切削加工に対する省力化とともに省エネルギー化が進められ、さらには、切削加工の一層の低コスト化が要求されている。このような技術課題の実現とともに低コスト化を実現するための切削加工条件に加え、一層の高速条件下での切削加工が要求されている。 In the field of cutting materials such as various types of steel and cast iron, the automation of the cutting process has been greatly enhanced, and energy saving has been promoted along with labor savings for cutting work. Cost reduction is required. In addition to the cutting conditions for realizing such technical problems and reducing the cost, cutting under higher speed conditions is required.
 また、金属材料等の加工材料を一定の形に成形するために用いられる金型においても、成形加工面の潤滑性が要求されている。しかし、内周面で加工材料の成形を行う金型にあっては、その構造から切削加工用の工具のように、工具基体の表面に潤滑性に優れた膜を形成することが極めて困難である。 Also, a mold used for molding a processing material such as a metal material into a certain shape is required to have a lubricity on the molding surface. However, it is extremely difficult to form a film with excellent lubricity on the surface of the tool base, like a tool for cutting, because of the structure of the mold that molds the work material on the inner peripheral surface. is there.
 そこで、本発明は、被切削材料の切削加工の一層の高速化を図り、超硬合金を用いた金型の潤滑性の向上を実現するため、低摩擦特性に優れた超硬合金及びその製造方法、さらに、この超硬合金を基体に用いた切削用の工具、さらには金型を含む超硬工具を提供することを目的に提案されたものである。 Therefore, the present invention aims to further speed up the cutting of the material to be cut and to improve the lubricity of the mold using the cemented carbide, so that the cemented carbide is excellent in low friction characteristics and its manufacture. The present invention has been proposed for the purpose of providing a method, a cutting tool using the cemented carbide as a substrate, and a cemented carbide tool including a die.
 本発明者等は、切削用の工具、さらには金型を含む超硬工具の低摩擦特性の改善に、個体潤滑剤として知られているh-BNに着目した。 The inventors of the present invention have focused on h-BN, which is known as a solid lubricant, for improving the low friction characteristics of a cutting tool and further a carbide tool including a die.
 このh-BNが基体表面の潤滑層を形成するために用いられた例として、c-BNの被覆層を形成するときの複合材として使用された例はあるが、TiN等のように工具基体表面に単独で成膜されて潤滑層を形成するように用いられた例はない。すなわち、h-BNは、単独で工具基体の表面に成膜され、超硬工具の被覆層を形成したときに、この工具の機械性能を低減させるだけであって、TiN等のように超硬工具の潤滑剤として機能することができなかったためである。 As an example in which this h-BN is used for forming a lubricating layer on the surface of the substrate, there is an example in which it is used as a composite material when forming a coating layer of c-BN, but a tool substrate such as TiN is used. There is no example in which a lubricating layer is formed by forming a film alone on the surface. That is, h-BN alone is formed on the surface of the tool base and only reduces the mechanical performance of the tool when the coating layer of the carbide tool is formed. This is because it could not function as a lubricant for the tool.
 そこで、本発明は、上述のような工具基体の表面に潤滑層を形成する構成を採用することなく、潤滑性に優れ、しかも高い機械的な強度を有する超硬合金及びその製造方法を提供し、さらには、この超硬合金を工具基体に用いた切削用の工具、さらには金型を含む超硬工具を提供することを目的に提案されるものである。 Accordingly, the present invention provides a cemented carbide having excellent lubricity and high mechanical strength, and a method for producing the same, without adopting a configuration in which a lubricating layer is formed on the surface of the tool base as described above. Furthermore, the present invention is proposed for the purpose of providing a cutting tool using the cemented carbide as a tool base, and further a cemented carbide tool including a die.
 本発明者等は、潤滑性の向上を図り、機械的な強度の向上を実現することにより、研削物の被加工物の研削などに用いるときに生ずる異常損傷の発生を抑え、長期の使用に亘って、優れた仕上げ面精度を維持し、安定した加工特性を発揮する切削用の工具、さらには金型を含む超硬工具を開発すべく鋭意研究を行った結果、優れた低摩擦化能を実現した本発明の開発に成功したものである。 The inventors of the present invention have improved lubricity and improved mechanical strength, thereby suppressing the occurrence of abnormal damage that occurs when used for grinding workpieces, etc., for long-term use. Over time, as a result of earnest research to develop cutting tools that maintain stable finished surface accuracy and exhibit stable machining characteristics, as well as carbide tools including molds, excellent low friction reduction ability Has succeeded in developing the present invention.
 本発明は、上述したような特性を実現した超硬合金及びこの超硬合金を用いた超硬工具であって、工具基体を構成する超硬合金の潤滑性を向上することにより、被加工材に切削等の加工を施すときに生ずる異常損傷の発生を抑え、長期の使用に亘って、優れた仕上げ面精度を維持し、安定した加工特性を実現したものである。 The present invention relates to a cemented carbide that achieves the above-described characteristics and a cemented carbide tool that uses the cemented carbide, and improves the lubricity of the cemented carbide constituting the tool base. Suppressing the occurrence of abnormal damage that occurs during machining such as cutting, maintaining excellent finished surface accuracy over a long period of use, and realizing stable machining characteristics.
 まず、本発明は、炭化タングステンの粒子間を結合金属により焼結結合した炭化タングステン基超硬合金であって、上記炭化タングステンの粒子間を結合する結合金属中に、六方晶窒化ホウ素(h-BN)を分散形成した超硬合金である。この超硬合金は、炭化タングステンの粒子間を結合する結合金属中に、六方晶窒化ホウ素(h-BN)が分散形成されることにより低摩擦化能が付与される。 First, the present invention is a tungsten carbide-based cemented carbide in which tungsten carbide particles are sintered and bonded with a bonding metal, and hexagonal boron nitride (h— This is a cemented carbide in which BN) is dispersedly formed. This cemented carbide is imparted with low friction reducing ability by dispersing and forming hexagonal boron nitride (h-BN) in a bonding metal that bonds the particles of tungsten carbide.
 本発明に係る超硬合金において、結合金属により結合される炭化タングステン粒子の少なくとも一部は、炭化タングステン核と炭窒化タングステン周辺組織の二重構造とされている。 In the cemented carbide according to the present invention, at least a part of the tungsten carbide particles bonded by the bonding metal has a double structure of a tungsten carbide nucleus and a structure around the tungsten carbonitride.
 そして、本発明に係る超硬合金において、WCの粒子間を結合する結合金属中に形成されたh-BNは、ホウ素(B)換算で10~1500ppmの範囲にあることが望ましい。さらに、WCの粒子間を結合する結合金属中に形成されたh-BNは、ホウ素(B)換算で10~1000ppmの範囲にあることが望ましく、さらに望ましくは、ホウ素(B)換算で10~500ppmの範囲にあることが望ましい。 In the cemented carbide according to the present invention, h-BN formed in the bonding metal that bonds the WC particles is preferably in the range of 10 to 1500 ppm in terms of boron (B). Further, the h-BN formed in the bonding metal that bonds the WC particles is preferably in the range of 10 to 1000 ppm in terms of boron (B), and more preferably in the range of 10 to 10 in terms of boron (B). It is desirable to be in the range of 500 ppm.
 ところで、WCの粒子間を結合する結合金属中に析出されるh-BNの結晶粒は、1μm以下であることが望ましい。 By the way, it is desirable that the crystal grains of h-BN deposited in the bonding metal that bonds the WC particles be 1 μm or less.
 さらにまた本発明は、上述したいずれかの超硬合金を工具基体に用いた切削用の工具、さらには金型を含む超硬工具である。 Furthermore, the present invention is a cutting tool using any of the above-mentioned cemented carbides as a tool base, and further a cemented carbide tool including a die.
 また、本発明は、低摩擦化能が付与された超硬合金の製造方法であって、炭化タングステン粉末と炭化タングステンの粒子間を結合する結合金属粉末を混合した混合粉末中にホウ素(B)供給源を分散混合した超硬合金粉末を作製し、次いで、上記超硬合金粉末を圧縮成形して圧粉体を形成し、その後、上記圧粉体を窒素加圧雰囲気中で窒化処理し、炭化タングステンの粒子間を結合する結合金属中に、六方晶窒化ホウ素(h-BN)の結晶粒を分散形成する。 The present invention is also a method for producing a cemented carbide with low friction reducing ability, wherein boron (B) is mixed in a mixed powder in which a tungsten carbide powder and a bonding metal powder for bonding between tungsten carbide particles are mixed. A cemented carbide powder in which a supply source is dispersed and mixed is manufactured, and then the cemented carbide powder is compression-molded to form a green compact, and then the green compact is nitrided in a nitrogen-pressurized atmosphere, Crystal grains of hexagonal boron nitride (h-BN) are dispersedly formed in a bonding metal that bonds the particles of tungsten carbide.
 ここで、圧粉体が真空中で加熱焼結され、その後窒化処理されることにより、結合金属中にh-BNの結晶粒が分散形成される。h-BNの結晶粒は、1μm以下の粒子として結晶金属中に分散形成されることが望ましい。なお、圧粉体を窒化処理する工程は、圧粉体を加熱焼結する工程中で行うようにしてもよい。 Here, the green compact is heated and sintered in a vacuum, and then nitriding treatment, whereby h-BN crystal grains are dispersedly formed in the bonding metal. It is desirable that the h-BN crystal grains are dispersed and formed in the crystalline metal as particles of 1 μm or less. The step of nitriding the green compact may be performed during the step of heating and sintering the green compact.
 結合金属中に六方晶窒化ホウ素(h-BN)の結晶粒を形成するために用いられるB供給源は、B,HBO,h-BN,WB及びTiBからなる群から選ばれる1種を用いることができる。 The B source used to form hexagonal boron nitride (h-BN) grains in the bond metal is from the group consisting of B 2 O 3 , H 3 BO 3 , h-BN, WB and TiB 2. One selected can be used.
 また、本発明に係る低摩擦化能が付与された超硬合金の他の製造方法は、炭化タングステン粉末と炭化タングステンの粒子間を結合する結合金属粉末を混合した超硬合金粉末を作製し、次いで、上記超硬合金粉末を圧縮成形して圧粉体を形成し、その後、溶媒にB供給源を溶解したB供給源溶液を上記圧粉体の表面から供給し、上記圧粉体内部に上記B供給源を分散供給し、次いで、上記圧粉体を窒素加圧雰囲気中で窒化処理し、上記炭化タングステンの粒子間を結合する結合金属中に、六方晶窒化ホウ素(h-BN)の結晶粒を分散形成するようにしたものである。 In addition, another method for producing a cemented carbide with low friction reducing ability according to the present invention is to produce a cemented carbide powder in which a tungsten carbide powder and a bonded metal powder that bonds between tungsten carbide particles are mixed, Subsequently, the cemented carbide powder is compression-molded to form a green compact, and then a B supply source solution in which a B supply source is dissolved in a solvent is supplied from the surface of the green compact. The B supply source is dispersedly supplied, and then the green compact is nitrided in a nitrogen-pressurized atmosphere, and hexagonal boron nitride (h-BN) is bonded into the bonding metal that bonds the particles of the tungsten carbide. The crystal grains are dispersedly formed.
 ここで、圧粉体が真空中で加熱焼結され、その後窒化処理されることにより、結合金属中に六方晶窒化ホウ素(h-BN)の結晶粒が分散形成される。なお、圧粉体を窒化処理する工程は、圧粉体を加熱焼結する工程中で行うようにしてもよい。 Here, the green compact is heat-sintered in a vacuum, and then subjected to nitriding treatment, whereby hexagonal boron nitride (h-BN) crystal grains are dispersedly formed in the bonding metal. The step of nitriding the green compact may be performed during the step of heating and sintering the green compact.
 結合金属中に六方晶窒化ホウ素(h-BN)の結晶粒を形成するために用いられるB供給源溶液は、B供給源をホウ素換算で0.02重量%以上4重量%以下の割合で溶液に溶解させたものを用いることが望ましい。   The B source solution used for forming hexagonal boron nitride (h-BN) grains in the binding metal is a solution containing 0.02 wt% or more and 4 wt% or less of the B supply source in terms of boron. It is desirable to use a solution dissolved in
 本発明は、WC基超硬合金を構成するWCの粒子間を結合する結合金属中にh-BNの結晶粒を分散形成したことにより、抗折力の低下を招くことがなく、超硬工具に加工にしたときに要求される抗折力を維持しつつ摩擦抵抗を低減させることができる。この超硬合金を工具基体に用いた切削用の工具、さらには金型を含む超硬工具は、各種金属の切削や成形等の加工工程に用いたときに異常損傷が発生することを抑えることができ、さらに、長期の使用に亘って、優れた仕上げ面精度を維持して安定した加工特性を実現できる。 The present invention provides a cemented carbide tool in which h-BN crystal grains are dispersedly formed in a bonding metal that bonds between WC particles constituting a WC-based cemented carbide, so that the bending strength is not reduced. Thus, the frictional resistance can be reduced while maintaining the bending strength required when processing is performed. Cutting tools using this cemented carbide as a tool base, and cemented carbide tools including dies, suppress the occurrence of abnormal damage when used in machining processes such as cutting and forming various metals. In addition, stable machining characteristics can be realized while maintaining excellent finished surface accuracy over a long period of use.
 また、本発明による製造方法を採用して製造される超硬合金は、B供給源がその内部に分散された圧粉体を窒素加圧雰囲気中で窒化処理して形成されるので、WCの粒子の一部若しくは全てがWC核と炭窒化タングステン周辺組織の二重構造となり、低摩擦能がさらに改善される。 Further, the cemented carbide manufactured by adopting the manufacturing method according to the present invention is formed by nitriding a green compact in which a B supply source is dispersed in a nitrogen pressurized atmosphere. Part or all of the particles have a double structure of the WC nucleus and the surrounding structure of tungsten carbonitride, which further improves the low friction ability.
 本発明に係る超硬合金を基体に用いた切削用の工具、さらには金型を含む超硬工具は、低摩擦特性に優れ、一定の抗折力を維持しているので、切削や成形の加工能率を向上し、長寿命化を実現できる。 A cutting tool using the cemented carbide according to the present invention as a base, and further, a cemented carbide tool including a die is excellent in low friction characteristics and maintains a certain bending strength. Improves machining efficiency and extends the service life.
本発明に係る超硬合金の結合金属中に六方晶窒化ホウ素(h-BN)が形成されていることを示すX線吸収分光測定(XANES)スペクトル解析図である。FIG. 3 is an X-ray absorption spectroscopy (XANES) spectrum analysis diagram showing that hexagonal boron nitride (h-BN) is formed in the bonded metal of the cemented carbide according to the present invention. 本発明に係る超硬合金を用いて形成した超硬工具の端面を鏡面加工した後食刻を施した超硬工具を構成する超硬合金の組織を走査型電子顕微鏡により観察した写真である。It is the photograph which observed the structure | tissue of the cemented carbide which comprises the cemented carbide tool which gave the post-etching which mirror-finished the end surface of the cemented carbide tool formed using the cemented carbide based on this invention with the scanning electron microscope. 本発明に係る超硬金属を用いた超硬工具と従来の超硬工具の摩擦係数をボールオンプレート法を用いて測定した結果を示すグラフである。It is a graph which shows the result of having measured the friction coefficient of the cemented carbide tool using the cemented carbide metal concerning this invention, and the conventional cemented carbide tool using the ball-on-plate method. 本発明に係る超硬合金であって、WC粒子が二重構造となった超硬合金を用いた超硬工具と従来の超硬工具の摩擦係数をボールオンプレート法を用いて測定した結果を示すグラフである。The results of measuring the friction coefficient of a cemented carbide tool according to the present invention using a cemented carbide tool having a double structure of WC particles and a conventional cemented carbide tool using a ball-on-plate method. It is a graph to show.
 本発明に係る超硬合金は、炭化タングステン(WC)を主体とする超硬合金であって、WCの粒子間を結合する結合金属中に六方晶窒化ホウ素(h-BN)の結晶粒を分散形成し、低摩擦化能を付与したものである。 The cemented carbide according to the present invention is a cemented carbide mainly composed of tungsten carbide (WC), in which hexagonal boron nitride (h-BN) crystal grains are dispersed in a bonding metal that bonds WC particles. It is formed and given a low friction reducing ability.
 本発明に係る超硬合金の結合金属としては、Co,Ni,Co-Ni合金,Fe-Ni合金及び20重量%以下のW,Cr,Mo,Vを固溶したCo-W合金,Ni-Cr合金,Co-Cr-V合金,Co-Ni-Cr合金,Co-Ni-W-Cr合金又はFe-Ni-Co-W-Cr-Mo合金などを用いることができる。なお、超硬合金中の結合金属の含有量は、超硬合金の全体に対し3重量%未満では合金内部に空孔が残存し強度・靱性が低下し、30重量%を超えると硬さや耐摩耗性が低下するため、3~30重量%の範囲にあることが適当である。 As the bonding metal of the cemented carbide according to the present invention, Co, Ni, Co—Ni alloy, Fe—Ni alloy, Co—W alloy in which 20 wt% or less of W, Cr, Mo, V is dissolved, Ni— A Cr alloy, Co—Cr—V alloy, Co—Ni—Cr alloy, Co—Ni—W—Cr alloy, Fe—Ni—Co—W—Cr—Mo alloy, or the like can be used. If the content of the bonding metal in the cemented carbide is less than 3% by weight relative to the entire cemented carbide, voids remain inside the alloy and the strength and toughness are reduced. Since the wear resistance is lowered, it is appropriate to be in the range of 3 to 30% by weight.
 本実施の形態に係る超硬合金は、次のような工程で製造される。まず、超硬合金粉末を構成するWC粉末とWCの粒子間を結合する金属粉末を混合した混合粉末中に、B,HBO,h-BN,WB及びTiBからなる群から選ばれる1種のB供給源を分散混合する。次いで、B供給源が混合された超硬合金粉末材料にパラフィンワックスを添加して完成粉末とする。そして、このB供給源が混合された超硬合金完成粉末を圧縮成形し圧粉体とする。次いで、この圧粉体の脱脂を行う。その後、圧粉体を、真空中で加熱焼結し、さらにその後、窒素加圧雰囲気中で窒化処理する。     The cemented carbide according to the present embodiment is manufactured by the following process. First, a group consisting of B 2 O 3 , H 3 BO 3 , h-BN, WB, and TiB 2 in a mixed powder obtained by mixing WC powder constituting the cemented carbide powder and metal powder that binds between WC particles. One B source selected from the above is dispersed and mixed. Next, paraffin wax is added to the cemented carbide powder material mixed with the B supply source to obtain a finished powder. Then, the cemented carbide finished powder mixed with the B supply source is compression-molded to obtain a green compact. Next, the green compact is degreased. Thereafter, the green compact is heat-sintered in vacuum, and then nitriding is performed in a nitrogen-pressurized atmosphere.
 B供給源が混合された超硬合金粉末からなる圧粉体は、窒化処理されると、WCの粒子間を結合する結合金属中に、六方晶窒化ホウ素(h-BN)の結晶粒が分散形成する。 When a green compact made of cemented carbide powder mixed with a B supply source is nitrided, hexagonal boron nitride (h-BN) crystal grains are dispersed in the bonding metal that bonds the WC particles. Form.
 ここで、B供給源は、結合金属中に介在されるh-BN濃度との関係で決定されるのがよく、B換算で10~1500ppmの範囲であるのが好ましく、望ましくは、B換算で10~1000ppmの範囲であり、さらに好ましくは、10~500ppmの範囲にあるのが好ましい
 また、圧粉体を窒化処理する工程は、圧粉体を加熱焼結する工程中で行うようにしてもよい。
Here, the B supply source is preferably determined in relation to the h-BN concentration interposed in the bonded metal, and is preferably in the range of 10 to 1500 ppm in terms of B, and desirably in terms of B. It is preferably in the range of 10 to 1000 ppm, more preferably in the range of 10 to 500 ppm. Further, the step of nitriding the green compact may be performed during the step of heating and sintering the green compact. Good.
 さらに、本発明に係る超硬合金は、次のような工程を経て製造するようにしてもよい。まず、WC粉末と結合金属粉末を混合し、さらに、この混合粉末にパラフィンワックスを添加して完成粉末とする。この超硬合金完成粉末を圧縮成形し圧粉体を形成し、次いで、この圧粉体の脱脂を行う。脱脂された圧粉体の表面に、溶媒にB供給源を溶解したB供給源溶液を塗布し、若しくは圧粉体の表面から含浸させて、圧粉体の内部に浸透させる。圧粉体に浸透したB供給源溶液は、圧粉体の内部に拡散し、圧粉体を形成している超硬合金粉末を構成している粒子表面に微細分散する。 Furthermore, the cemented carbide according to the present invention may be manufactured through the following steps. First, WC powder and binding metal powder are mixed, and further, paraffin wax is added to the mixed powder to obtain a finished powder. The cemented carbide finished powder is compression molded to form a green compact, and then the green compact is degreased. A B supply source solution in which a B supply source is dissolved in a solvent is applied to the surface of the defatted green compact, or impregnated from the surface of the green compact and penetrates into the green compact. The B supply source solution that has penetrated into the green compact diffuses into the green compact and finely disperses on the surface of the particles constituting the cemented carbide powder forming the green compact.
B供給源溶液の溶媒として水又はアルコールを用いる場合には、B供給源として、水又はアルコールに溶解するB,HBOが用いられる。 When water or alcohol is used as the solvent of the B supply source solution, B 2 O 3 or H 3 BO 3 that is soluble in water or alcohol is used as the B supply source.
 B供給源溶液が表面から供給された圧粉体は、上述した実施の形態の製造方法と同様に、真空中で加熱焼結され、その後、窒素加圧雰囲気中で窒化処理される。この窒化処理は、圧粉体を加熱焼結する工程中に行うようにしてもよい。 The green compact supplied with the B supply source solution from the surface is heated and sintered in a vacuum, and then is nitrided in a nitrogen-pressurized atmosphere, as in the manufacturing method of the above-described embodiment. This nitriding treatment may be performed during the step of heating and sintering the green compact.
 B供給源溶液が含浸された超硬合金粉末からなる圧粉体は、上述の実施の形態と同様に、窒化処理されることにより、WCの粒子間を結合する結合金属中に、六方晶窒化ホウ素(h-BN)の結晶粒が分散形成する。 The green compact made of the cemented carbide powder impregnated with the B source solution is subjected to nitriding treatment in the same way as in the above-described embodiment, so that hexagonal nitriding is formed in the bonding metal that bonds the WC particles. Boron (h-BN) crystal grains are dispersedly formed.
 ところで、圧粉体の表面から供給されるB供給源溶液は、B供給源を溶媒、例えば水又はアルコールに溶解したものである。したがって、B供給源溶液に用いられるB供給源は、溶媒、水又はアルコールに溶解可能であるものが用いられる。 Incidentally, the B supply source solution supplied from the surface of the green compact is obtained by dissolving the B supply source in a solvent such as water or alcohol. Therefore, the B source used for the B source solution is one that can be dissolved in a solvent, water, or alcohol.
 ここで用いるB供給源溶液の濃度は、圧粉体を焼結して形成される超硬合金の結合金属中に介在させるh-BN濃度との関係で決定されるのがよく、B換算で0.02重量%(200ppm)以上4重量%(40000ppm)未満の希薄溶液であるのが好ましい。 The concentration of the B supply source solution used here is preferably determined in relation to the concentration of h-BN interposed in the cemented metal of the cemented carbide formed by sintering the green compact. A dilute solution of 0.02 wt% (200 ppm) or more and less than 4 wt% (40000 ppm) is preferred.
 このB供給源溶液を平均空孔率45%の圧粉体の表面から供給し、その後溶媒を蒸発させて乾燥すると、圧粉体の内部には、B換算で最大2000ppm、好ましくは10~1000ppmの範囲でB供給源が残留する。 When this B supply source solution is supplied from the surface of the green compact having an average porosity of 45%, and then dried by evaporating the solvent, the maximum density of 2000 ppm, preferably 10 to 1000 ppm, is converted into B inside the green compact. In the range of B, the B supply source remains.
 B供給源溶液に溶解したB供給源を超硬合金粉末からなる圧粉体の内部に均一に介在させるため、圧粉体に窒化処理を施す前工程で溶媒を除去するとともに、WC粒子及び結合金属表面の酸化物を除去することが望ましい。この溶媒除去の工程は、1000℃~1200℃の真空雰囲気中で行うことが望ましい。 In order to uniformly interpose the B supply source dissolved in the B supply source solution inside the green compact made of cemented carbide powder, the solvent is removed in the previous step of nitriding the green compact, and WC particles and bonding It is desirable to remove the oxide on the metal surface. This solvent removal step is desirably performed in a vacuum atmosphere at 1000 ° C. to 1200 ° C.
 上述したような製造工程を経て製造される本発明に係る超硬合金は、窒素加圧雰囲気中での窒化処理より、WC基超硬合金焼結材料を構成するWC粒子の一部若しくは全てがWC核と炭窒化タングステン周辺組織の二重構造となる。この超硬合金は、一層の低摩擦能化が実現される。 The cemented carbide according to the present invention manufactured through the manufacturing process as described above has a part or all of the WC particles constituting the WC-based cemented carbide sintered material formed by nitriding in a nitrogen-pressurized atmosphere. It has a double structure consisting of the WC nucleus and the surrounding structure of tungsten carbonitride. This cemented carbide can achieve further lower frictional performance.
 次に、本発明方法により製造される超硬合金の具体的な実施例を説明する。 Next, specific examples of the cemented carbide manufactured by the method of the present invention will be described.
 〔実施例1〕
 実施例1の超硬合金は、平均粒径を1.5μmとするWCの粉末を91重量%、平均粒径を1.1μmとするCoの粉末を9重量%の割合で計量した金属粉末に、B供給源としてのBの粉末をB換算で0.1重量%添加した超硬合金粉末を用いて製造される。
[Example 1]
The cemented carbide of Example 1 is a metal powder obtained by weighing 91% by weight of WC powder having an average particle size of 1.5 μm and 9% by weight of Co powder having an average particle size of 1.1 μm. , Using a cemented carbide powder to which 0.1 wt% of B 2 O 3 powder as a B supply source is added in terms of B.
 ここで用いるWCの粉末、Coの粉末、Bの粉末は、いずれも市販されているものが用いられる。 Commercially available powders of WC, Co, and B 2 O 3 are used here.
 Bの粉末が添加されたWCとCoの粉末を主体とする超硬合金粉末は、エタノール溶媒と超硬合金製ボールとともにステンレス製ポット内に投入され、このポット内で30時間混合粉砕される。ポット内で混合粉砕された超硬合金粉末は、ポット内から取り出され乾燥される。この粉砕乾燥された超硬合金粉末には、パラフィンワックスが添加される。パラフィンワックスが添加された超硬合金粉末は、10×10×5(mm)の大きさに圧縮成形される。 Cemented carbide powder mainly composed of WC and Co powder with B 2 O 3 powder added is put into a stainless steel pot together with ethanol solvent and cemented carbide ball, and mixed and ground in this pot for 30 hours. Is done. The cemented carbide powder mixed and ground in the pot is taken out from the pot and dried. Paraffin wax is added to the pulverized and dried cemented carbide powder. The cemented carbide powder to which paraffin wax is added is compression molded to a size of 10 × 10 × 5 (mm).
 超硬合金粉末を圧縮成形して形成された圧粉体は、水素雰囲気中600℃にて脱脂された後、真空雰囲気下で室温から1390℃まで昇温され、1390℃にて3.6ksec保持されることにより焼結される。その後、この炉内に窒素ガスを導入して炉内を100kPaに調整して冷却することにより、試験片を得た。この試験片は、超硬合金粉末を圧縮成形した圧粉体を焼結して得られる超硬合金である。ここで作製された超硬合金の試験片の10×10面に、ダイヤモンド砥石にて研削加工を施し、表層部の除去を行い、さらにダイヤモンドペーストにて鏡面加工を施した。 A green compact formed by compression molding cemented carbide powder is degreased at 600 ° C. in a hydrogen atmosphere, then heated from room temperature to 1390 ° C. in a vacuum atmosphere, and maintained at 1390 ° C. for 3.6 ksec. Is sintered. Thereafter, nitrogen gas was introduced into the furnace, the inside of the furnace was adjusted to 100 kPa, and the test piece was obtained. This test piece is a cemented carbide obtained by sintering a green compact obtained by compression molding cemented carbide powder. The 10 × 10 surface of the cemented carbide specimen prepared here was ground with a diamond grindstone, the surface layer was removed, and further mirror-finished with diamond paste.
 ここで得られた試験片の微量生成物について、X線吸収分光測定(XANES)スペクトル分析を行った。この分析には、兵庫県立大付属ニュースバル放射光施設に所在する産業用ビームラインBL5を用いた。その結果を図1に示す。 The X-ray absorption spectroscopy (XANES) spectrum analysis was performed on the trace product of the test piece obtained here. For this analysis, an industrial beam line BL5 located at the University of Hyogo Prefectural University of New Zealand Synchrotron Radiation was used. The result is shown in FIG.
 図1から明らかなように、実施例1により作製した試験片の表面には、h-BNが生成していることが確認できた。さらに、試験片に対する放射光の入射角度を45℃と90℃に変化させると、h-BN標準試料と同様な強度変化が認められた。この結果から、試験片表面に生成したh-BNは、配向していることが認められた。 As is clear from FIG. 1, it was confirmed that h-BN was generated on the surface of the test piece prepared in Example 1. Further, when the incident angle of the radiated light on the test piece was changed to 45 ° C. and 90 ° C., the same intensity change as that of the h-BN standard sample was observed. From this result, it was confirmed that the h-BN produced on the surface of the test piece was oriented.
 〔実施例2〕
 次に、実施例2の超硬合金は、平均粒径を6.0μmとするWCの粉末を91重量%、平均粒径を1.1μmとするCoの粉末を9重量%の割合で計量し、この粉末にB供給源としてのBの粉末をB換算で0.1重量%添加した超硬合金粉末を用いて製造される。
[Example 2]
Next, in the cemented carbide of Example 2, 91 wt% of WC powder having an average particle diameter of 6.0 μm and 9 wt% of Co powder having an average particle diameter of 1.1 μm were weighed. This powder is manufactured using a cemented carbide powder obtained by adding 0.1% by weight of B 2 O 3 powder as a B supply source in terms of B.
 B供給源としてのBの粉末が添加されたWCとCoの粉末を主体とする超硬合金粉末は、上述の実施例1と同様に、エタノール溶媒と超硬合金製ボールとともにステンレス製ポット内に投入され、このポット内で30時間混合粉砕される。ポット内で混合粉砕された超硬合金粉末は、ポット内から取り出され乾燥される。乾燥された超硬合金粉末は、パラフィンワックスが添加される。パラフィンワックスが添加された超硬合金粉末は、30×25×13(mm)の大きさに圧縮成形される。 A cemented carbide powder mainly composed of WC and Co powders to which B 2 O 3 powder as a B supply source is added is made of stainless steel together with an ethanol solvent and a cemented carbide ball, as in Example 1 above. It is put into a pot and mixed and ground in this pot for 30 hours. The cemented carbide powder mixed and ground in the pot is taken out from the pot and dried. Paraffin wax is added to the dried cemented carbide powder. The cemented carbide powder to which paraffin wax is added is compression molded to a size of 30 × 25 × 13 (mm).
超硬合金粉末を圧縮成形して形成された圧粉体は、600℃の水素雰囲気中で脱脂された後、真空雰囲気とされ室温から1100℃まで昇温される炉内に投入される。そして、炉内は1390℃まで昇温されるとともに、この炉内に窒素ガスを導入して炉内を900kpaに調整して圧粉体の窒化処理が施される。窒素ガスが導入された炉内は、1390℃に昇温された状態が3.6ksec保持されることにより圧粉体の焼結が行われ焼結合金とされる。炉内で焼結された焼結合金は、その後冷却され、試験片として用いられる。この試験片は、超硬合金粉末を圧縮成形した圧粉体を焼結して製造される超硬合金に相当する。 The green compact formed by compression molding the cemented carbide powder is degreased in a hydrogen atmosphere at 600 ° C., and then placed in a furnace that has a vacuum atmosphere and is heated from room temperature to 1100 ° C. The temperature inside the furnace is raised to 1390 ° C., and nitrogen gas is introduced into the furnace to adjust the inside of the furnace to 900 kpa to perform nitriding treatment of the green compact. The inside of the furnace into which the nitrogen gas has been introduced is maintained in a state where the temperature has been raised to 1390 ° C. for 3.6 ksec, whereby the green compact is sintered to form a sintered alloy. The sintered alloy sintered in the furnace is then cooled and used as a test piece. This test piece corresponds to a cemented carbide produced by sintering a green compact obtained by compression molding cemented carbide powder.
 ここで得られた試験片は、中央で切断される。切断された試験片の切断面に、ダイヤモンド砥石にて研削加工を施した後、ダイヤモンドペーストにて鏡面加工を施し、さらに、超硬合金を腐食する腐食液である村上試薬により食刻し、走査型電子顕微鏡を用いて組織観察を行った。観察した結果を図2に示す。 * The test piece obtained here is cut at the center. The cut surface of the cut specimen is ground with a diamond grindstone, then mirror-finished with diamond paste, and etched with Murakami reagent, which is a corrosive liquid that corrodes cemented carbide. The structure was observed using a scanning electron microscope. The observation results are shown in FIG.
 WC粒子は、図2の写真からも明らかなように、WC核とその周辺に形成された周辺組織の二重構造を有している。WC核の周辺組織は、W(C,N)と推測される。 The WC particles have a double structure of the WC nucleus and the surrounding tissue formed around it, as is apparent from the photograph in FIG. The surrounding tissue of the WC nucleus is presumed to be W (C, N).
 〔実施例3~6、比較例1、従来例〕
 次に、本発明の実施例3~6と比較例1、さらに従来例を示す。
[Examples 3 to 6, Comparative Example 1, Conventional Example]
Next, Examples 3 to 6 of the present invention, Comparative Example 1, and a conventional example are shown.
 本実施例3の超硬合金は、平均粒径を1.5μmとするWCの粉末を91重量%、平均粒径を1.1μmとするCoの粉末を9重量%の割合で計量し、この粉末にB供給源としてのBの粉末をB換算で0.001重量%添加した超硬合金粉末から製造される。 The cemented carbide of this Example 3 weighed 91% by weight of WC powder with an average particle size of 1.5 μm and 9% by weight of Co powder with an average particle size of 1.1 μm. The powder is produced from a cemented carbide powder obtained by adding 0.001 wt% of B 2 O 3 powder as a B supply source to the powder in terms of B.
 上記超硬合金粉末は、エタノール溶媒と超硬合金製ボールとともにステンレス製ポット内に投入され、このポット内で30時間混合粉砕される。ポット内で混合粉砕された超硬合金粉末は、ポット内から取り出され乾燥される。乾燥された超硬合金粉末は、パラフィンワックスが添加される。パラフィンワックスが添加された超硬合金粉末を、10×5×31(mm)の大きさに圧縮成形した。この圧縮成形された圧粉体は、抗折力試験片とされる。 The above cemented carbide powder is put into a stainless steel pot together with an ethanol solvent and a cemented carbide ball, and mixed and ground in this pot for 30 hours. The cemented carbide powder mixed and ground in the pot is taken out from the pot and dried. Paraffin wax is added to the dried cemented carbide powder. The cemented carbide powder to which the paraffin wax was added was compression molded to a size of 10 × 5 × 31 (mm). The compression-molded green compact is used as a bending strength test piece.
 また、パラフィンワックスが添加された超硬合金粉末を、25×25×26.5(mm)の大きさに圧縮成形した。この圧縮成形された圧粉体は、摩擦係数測定試験片とされる。 Moreover, the cemented carbide powder to which paraffin wax was added was compression molded to a size of 25 × 25 × 26.5 (mm). The compression-molded green compact is used as a friction coefficient measurement test piece.
 抗折力試験片とされる圧粉体及び摩擦係数測定試験片とされる圧粉体は、いずれも600℃の水素雰囲気中で脱脂された後、真空雰囲気とされる炉内に投入され、この炉内が真空にされるとともに炉内温度が室温から1390℃まで昇温され、1390℃にて3.6ksec保持されることにより焼結される。その後、上記炉内に窒素ガスを導入し、炉内を100kPaに調整して冷却することにより、窒化処理が施された焼結体としての試験片が作製される。この試験片は、超硬合金粉末を圧縮成形した圧縮体を焼結して製造される超硬合金である。 Both the green compact used as the bending strength test piece and the green compact used as the friction coefficient measurement test piece were degreased in a hydrogen atmosphere at 600 ° C. and then put into a vacuum atmosphere furnace. The furnace is evacuated and the furnace temperature is raised from room temperature to 1390 ° C. and held at 1390 ° C. for 3.6 ksec for sintering. Thereafter, nitrogen gas is introduced into the furnace, and the inside of the furnace is adjusted to 100 kPa and cooled to produce a test piece as a sintered body subjected to nitriding treatment. This test piece is a cemented carbide produced by sintering a compact obtained by compression molding cemented carbide powder.
 そして、実施例4の超硬合金は、実施例3に示す粉末に、B供給源としてのBの粉末をB換算で0.010重量%添加した超硬合金粉末から製造したものである。ここで得られる抗折力試験片、摩擦係数測定試験片は、それぞれ実施例3と同様の製造工程を経て製造される。 The cemented carbide of Example 4 was manufactured from cemented carbide powder obtained by adding 0.010 wt% of B 2 O 3 powder as a B supply source to the powder shown in Example 3 in terms of B. is there. The yield strength test piece and the friction coefficient measurement test piece obtained here are manufactured through the same manufacturing steps as in Example 3.
 また、実施例5、6の超硬合金は、実施例3に示す粉末に、B供給源としてのBの粉末を、それぞれB換算で0.100重量%、0.150重量%添加した超硬合金粉末から製造したものである。ここで得られる抗折力試験片、摩擦係数測定試験片も、前記実施例3と同様の製造工程を経て製造される。 Further, in the cemented carbides of Examples 5 and 6, 0.100 wt% and 0.150 wt% of B 2 O 3 powder as a B supply source were added to the powder shown in Example 3 in terms of B, respectively. It is manufactured from the cemented carbide powder. The bending strength test piece and the friction coefficient measurement test piece obtained here are also manufactured through the same manufacturing process as in Example 3.
 実施例3~6の超硬合金と比較するため、比較例1として、平均粒径を1.5μmとするWCの粉末を91重量%、平均粒径を1.1μmとするCoの粉末を9重量%の割合で計量した粉末に、供給源としてのBの粉末をB換算で0.200重量%添加した超硬合金粉末から製造される超硬合金の抗折力試験片と摩擦係数測定試験片を作製した。 For comparison with the cemented carbides of Examples 3 to 6, as Comparative Example 1, WC powder with an average particle size of 1.5 μm was 91% by weight, and Co powder with an average particle size of 1.1 μm was 9 Friction strength test piece of cemented carbide made of cemented carbide powder obtained by adding 0.200% by weight of B 2 O 3 powder as a source to powder measured at a weight percent ratio and friction A coefficient measurement specimen was prepared.
 なお、B供給源であるBを添加した実施例3~6の超硬合金と比較するため、平均粒径を1.5μmとするWCの粉末を91重量%、平均粒径を1.1μmとするCoの粉末を9重量%の割合で計量した粉末のみからなる超硬合金粉末から製造される超硬合金の抗折力試験片と摩擦係数測定試験片を作製した。これを従来例とする。 For comparison with the cemented carbides of Examples 3 to 6 to which B 2 O 3 as a B supply source was added, 91 wt% of WC powder having an average particle size of 1.5 μm and an average particle size of 1 A bending strength test piece and a friction coefficient measurement test piece of cemented carbide manufactured from cemented carbide powder consisting only of a powder obtained by weighing Co powder of 1 μm at a ratio of 9% by weight were prepared. This is a conventional example.
 上述した実施例3~6と比較例1、さらに従来例において作製された摩擦係数測定試験片を用いて摩擦係数の測定を行った。摩擦係数の測定は、鏡面加工が施された摩擦係数測定試験片の測定面で行った、摩擦係数の測定面は、研削加工が施されて焼結表面の除去が行われ、さらに鏡面加工が施され形成される。 The friction coefficient was measured using the friction coefficient measurement test pieces prepared in Examples 3 to 6 and Comparative Example 1 described above and the conventional example. The measurement of the friction coefficient was performed on the measurement surface of the friction coefficient measurement test piece subjected to mirror finishing. The friction coefficient measurement surface was subjected to grinding to remove the sintered surface, and further to the mirror finishing. Applied and formed.
 摩擦係数測定試験片の摩擦係数測定は、ボールオンプレート法を使用した。このボールオンプレート法は、100gの加重を負荷したφ10mmのアルミ球を試験球とし、この試験球を摩擦係数測定試験片の測定面上で7mmの間隔で往復運動させて発生する負荷を測定して行う。負荷の測定は、試験球に取り付けたロードセルにて行う。 The coefficient of friction measurement test piece was measured using a ball-on-plate method. In this ball-on-plate method, a φ10 mm aluminum sphere loaded with a load of 100 g is used as a test sphere, and the load generated by reciprocating the test sphere at an interval of 7 mm on the measurement surface of the friction coefficient measurement test piece is measured. Do it. The load is measured with a load cell attached to the test ball.
 その測定の結果を図3に示す。図3に示す測定結果から明らかなように、B供給源としてのBの添加量をB換算で0.001重量%以上含有することにより、B供給源を添加することなく構成されたWC基超硬合金焼結材料からなる超硬合金に比し十分に摩擦係数の低下をみた。 The measurement results are shown in FIG. As is apparent from the measurement results shown in FIG. 3, the B 2 O 3 addition amount as the B supply source was 0.001% by weight or more in terms of B, and thus the B supply source was not added. The friction coefficient was sufficiently reduced as compared with a cemented carbide made of a WC-based cemented carbide sintered material.
 また、上述した実施例3~6により作製した抗折力試験片と、比較例1、従来例により作製した抗折力試験片を用いて抗折力を測定した。その測定結果を表1に示す。
Further, the bending strength was measured using the bending strength test pieces prepared in Examples 3 to 6 described above and the bending strength test pieces prepared in Comparative Example 1 and the conventional example. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す測定結果から明らかなように、B供給源としてのBの添加量をB換算で0.001以上0.200重量%未満とすることにより、B供給源を添加することなく構成されたWC基超硬合金焼結材料からなる超硬合金と同等の抗折力が得られた。 As is apparent from the measurement results shown in Table 1, the B supply source is added by setting the amount of B 2 O 3 added as the B supply source to 0.001 or more and less than 0.200% by weight in terms of B. A bending strength equivalent to that of a cemented carbide made of a sintered WC-based cemented carbide alloy was obtained.
 なお、比較例1の超硬合金のように、B供給源としてのBの添加量をB換算で0.200重量%以上とすることにより、抗折力の著しい低下をみた。これは、Bの添加量をB換算で0.200重量%以上としたことにより、超硬合金の欠陥であるη相が析出した結果であるとみられる。 In addition, like the cemented carbide of Comparative Example 1, when the amount of B 2 O 3 added as a B supply source was 0.200% by weight or more in terms of B, the bending strength was significantly reduced. This seems to be the result of precipitation of the η phase, which is a defect of the cemented carbide, when the amount of B 2 O 3 added is 0.200 wt% or more in terms of B.
 以上より、WC基超硬合金焼結材料からなる超硬合金の結合金属中に、Bの添加量をB換算で0.001以上0.200重量%未満添加することにより、結合相を構成する金属中にBを添加することなく製造される従来の超硬合金と同等の抗折力を実現しながら著しく摩擦係数の低減を図った超硬合金を得ることができた。 Thus, the binding of the metal of the cemented carbide consisting of WC-based cemented carbide sintered material, by the amount of addition of B 2 O 3 is added in less than 0.001 0.200 wt% in terms of B, binder phase A cemented carbide having a significantly reduced friction coefficient while achieving a bending strength equivalent to that of a conventional cemented carbide manufactured without adding B to the metal constituting the metal was obtained.
 この超硬合金を基体に用いた切削用の工具、さらには金型を含む超硬工具は、低摩擦特性に優れ、一定の抗折力を維持することができる。 A cutting tool using this cemented carbide as a substrate, and further a cemented carbide tool including a die are excellent in low friction characteristics and can maintain a constant bending force.
 〔実施例7~9、比較例2、従来例〕
 次に、本発明の実施例7~9と比較例2、さらに従来例を示す。
[Examples 7 to 9, Comparative Example 2, Conventional Example]
Next, Examples 7 to 9 of the present invention, Comparative Example 2, and a conventional example are shown.
 本実施例7の超硬合金は、平均粒径を1.5μmとするWCの粉末を91重量%、平均粒径を1.1μmとするCoの粉末を9重量%の割合で計量し、この粉末にB供給源としてのBの粉末をB換算で0.001重量%添加した超硬合金粉末から製造される超硬合金である。 The cemented carbide of Example 7 was measured by measuring 91% by weight of WC powder having an average particle size of 1.5 μm and 9% by weight of Co powder having an average particle size of 1.1 μm. It is a cemented carbide produced from a cemented carbide powder obtained by adding 0.001 wt% of B 2 O 3 powder as a B supply source to the powder in terms of B.
 上記超硬合金粉末は、エタノール溶媒と超硬合金製ボールとともにステンレス製ポット内に投入され、このポット内で30時間混合粉砕される。ポット内で混合粉砕された超硬合金粉末は、ポット内から取り出され乾燥される。乾燥された超硬合金粉末には、パラフィンワックスが添加される。パラフィンワックスが添加された超硬合金粉末は、10×5×31(mm)の大きさに圧縮成形される。この圧縮成形された圧粉体は、抗折力試験片とされる。 The above cemented carbide powder is put into a stainless steel pot together with an ethanol solvent and a cemented carbide ball, and mixed and ground in this pot for 30 hours. The cemented carbide powder mixed and ground in the pot is taken out from the pot and dried. Paraffin wax is added to the dried cemented carbide powder. The cemented carbide powder to which paraffin wax is added is compression molded to a size of 10 × 5 × 31 (mm). The compression-molded green compact is used as a bending strength test piece.
 また、パラフィンワックスが添加された超硬合金粉末を、25×25×26.5(mm)の大きさに圧縮成形した。この圧縮成形された圧粉体は、摩擦係数測定試験片とされる。 Moreover, the cemented carbide powder to which paraffin wax was added was compression molded to a size of 25 × 25 × 26.5 (mm). The compression-molded green compact is used as a friction coefficient measurement test piece.
 抗折力試験片とされる圧粉体及び摩擦係数測定試験片とされる圧粉体は、いずれも600℃の水素雰囲気中で脱脂された後、真空雰囲気とされる炉内に投入される。圧粉体が投入された炉内は、真空にされるとともに室温から1100℃まで昇温される。その後、炉内に窒素ガスを導入し、この炉内を900kPaに調整して1390℃まで昇温する。そして、炉内を1390℃まで昇温した状態で3.6ksec保持した後冷却することにより、炉内に投入された圧粉体は焼結された試験片となる。この試験片は、超硬合金粉末を圧縮成形した圧粉体を焼結して製造される超硬合金である。 The green compact used as the bending strength test piece and the green compact used as the friction coefficient measurement test piece are both degreased in a hydrogen atmosphere at 600 ° C. and then placed in a furnace having a vacuum atmosphere. . The inside of the furnace in which the green compact is charged is evacuated and heated from room temperature to 1100 ° C. Thereafter, nitrogen gas is introduced into the furnace, the inside of the furnace is adjusted to 900 kPa, and the temperature is raised to 1390 ° C. And the green compact thrown into the furnace turns into a sintered test piece by hold | maintaining 3.6 ksec in the state heated up to 1390 degreeC, and then cooling. This test piece is a cemented carbide manufactured by sintering a green compact obtained by compression molding cemented carbide powder.
 そして、実施例8の超硬合金は、実施例7に示す粉末に、B供給源としてのBの粉末をB換算で0.010重量%添加した超硬合金粉末から製造したものである。ここで得られる抗折力試験片、摩擦係数測定試験片は、それぞれ実施例7と同様の製造工程を経て製造される。 The cemented carbide of Example 8 was manufactured from cemented carbide powder obtained by adding 0.010 wt% of B 2 O 3 powder as a B supply source to the powder shown in Example 7 in terms of B. is there. The yield strength test piece and the friction coefficient measurement test piece obtained here are manufactured through the same manufacturing steps as in Example 7.
 また、実施例9の超硬合金は、実施例7に示す粉末に、B供給源としてのBの粉末をB換算で0.100重量%添加した超硬合金粉末から製造したものである。ここで得られる抗折力試験片、摩擦係数測定試験片も、前記実施例7と同様の製造工程を経て製造される。 The cemented carbide of Example 9 was manufactured from cemented carbide powder obtained by adding 0.100 wt% of B 2 O 3 powder as a B supply source to the powder shown in Example 7 in terms of B. is there. The bending strength test piece and the friction coefficient measurement test piece obtained here are also manufactured through the same manufacturing process as in Example 7.
 ここで、実施例7~9の超硬合金と比較するため、比較例2として、平均粒径を1.5μmとするWCの粉末を91重量%、平均粒径を1.1μmとするCoの粉末を9重量%の割合で計量した粉末に、B供給源としてのBの粉末をB換算で0.200重量%添加した超硬合金粉末から製造される超硬合金の抗折力試験片と摩擦係数測定試験片を作製した。 Here, in order to compare with the cemented carbides of Examples 7 to 9, as Comparative Example 2, 91% by weight of WC powder having an average particle diameter of 1.5 μm and Co having an average particle diameter of 1.1 μm were used. Bending strength of cemented carbide manufactured from cemented carbide powder obtained by adding 0.200% by weight of B 2 O 3 powder as a B source to powder measured at a rate of 9% by weight. A test piece and a friction coefficient measurement test piece were prepared.
 上述した実施例7~9と比較例2、さらに従来例において作製された摩擦係数測定試験片を用いて摩擦係数の測定を行った。摩擦係数の測定は、鏡面加工が施された摩擦係数測定試験片の測定面で行った、摩擦係数の測定面は、上述した実施例及び比較例と同様に形成されている。 The friction coefficient was measured using the friction coefficient measurement test pieces prepared in Examples 7 to 9 and Comparative Example 2 described above and the conventional example. The measurement of the friction coefficient was performed on the measurement surface of the friction coefficient measurement test piece subjected to mirror finishing, and the measurement surface of the friction coefficient was formed in the same manner as in the above-described Examples and Comparative Examples.
 そして、摩擦係数測定試験片の摩擦係数測定も、前述した実施例と同様に、ボールオンプレート法を使用した。その測定の結果を図4に示す。図4に示す測定結果から明らかなように、B供給源としてのBの添加量をB換算で0.001重量%以上含有することにより、B供給源を添加することなく構成されたWC基超硬合金焼結材料からなる超硬合金に比し十分に摩擦係数の低下をみた。 And the friction coefficient measurement of the friction coefficient measurement test piece also used the ball-on-plate method similarly to the above-mentioned Example. The measurement results are shown in FIG. As is apparent from the measurement results shown in FIG. 4, it was configured without adding the B supply source by containing 0.001 wt% or more of B 2 O 3 as the B supply source in terms of B. The friction coefficient was sufficiently reduced as compared with a cemented carbide made of a WC-based cemented carbide sintered material.
 特に、実施例7~9及び比較例2に示す超硬合金を製造するには、超硬合金粉末を圧縮成形した圧粉体を炉内に投入し、この炉内を真空雰囲気下で1100℃まで昇温し、圧粉体に吸着した吸着酸化物の還元を行う。その後、炉内に窒素ガスを導入して900kPaに調整し、1390℃まで昇温し、1390℃で3.6ksec保持することにより圧粉体の焼結が行われ、超硬合金が製造される。 In particular, in order to manufacture the cemented carbide shown in Examples 7 to 9 and Comparative Example 2, a green compact obtained by compression molding cemented carbide powder was put into a furnace, and the furnace was heated to 1100 ° C. in a vacuum atmosphere. The adsorbed oxide adsorbed on the green compact is reduced. Thereafter, nitrogen gas is introduced into the furnace, adjusted to 900 kPa, heated to 1390 ° C., and held at 1390 ° C. for 3.6 ksec, whereby the green compact is sintered and a cemented carbide is produced. .
 ここで製造される超硬合金は、硬質相を構成するWC粒子の一部若しくは全てがWC核と炭窒化タングステン周辺組織の二重構造となる。そのため、一層の低摩擦能化が図られる。これは、図3に示す実施例3~6の超硬合金の摩擦係数との比較からも、実施例7~9の超硬合金の低摩擦化が実現されていることは明らかである。 In the cemented carbide produced here, a part or all of the WC particles constituting the hard phase has a double structure of the WC nucleus and the surrounding structure of tungsten carbonitride. Therefore, further reduction in friction capability is achieved. From the comparison with the friction coefficients of the cemented carbides of Examples 3 to 6 shown in FIG. 3, it is apparent that the friction reduction of the cemented carbides of Examples 7 to 9 is realized.
 また、上述した実施例7~9により作製した抗折力試験片と、比較例2、従来例により作製した抗折力試験片を用いて抗折力を測定した。その測定結果を表2に示す。表2に示す測定結果から明らかなように、B供給源としてのBの添加量をB換算で0.001以上0.200重量%未満とすることにより、B供給源を添加することなく構成されたWC基超硬合金焼結材料からなる超硬合金と同等の抗折力が得られた。 Further, the bending strength was measured using the bending strength test pieces prepared in Examples 7 to 9 described above and the bending strength test pieces prepared in Comparative Example 2 and the conventional example. The measurement results are shown in Table 2. As is apparent from the measurement results shown in Table 2, the B supply source is added by setting the amount of B 2 O 3 added as the B supply source to 0.001 or more and less than 0.200% by weight in terms of B. A bending strength equivalent to that of a cemented carbide made of a sintered WC-based cemented carbide alloy was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、比較例2の超硬合金のように、B供給源としてのBの添加量をB換算で0.200重量%以上とすることにより、抗折力の著しい低下をみた。これは、Bの添加量をB換算で0.200重量%以上としたことにより、1μmより大きな粗大h-BNが析出し、組織欠陥となった結果であるとみられる。 In addition, like the cemented carbide of Comparative Example 2, when the amount of B 2 O 3 added as a B supply source was 0.200 wt% or more in terms of B, the bending strength was significantly reduced. This is considered to be a result of coarse h-BN larger than 1 μm being precipitated and resulting in structural defects when the amount of B 2 O 3 added is 0.200 wt% or more in terms of B.
 以上より、前述した実施例3~6と同様に、WCを主体とする超硬合金の結合金属中に、Bの添加量をB換算で0.001以上0.200重量%未満添加することにより、従来の結合相を構成する金属中にBを添加することなく作製した超硬合金と同等の抗折力を実現しながら著しく摩擦係数の低減を図った超硬合金を得ることができた。 As described above, in the same manner as in Examples 3 to 6 described above, the amount of B 2 O 3 added is 0.001 or more and less than 0.200% by weight in terms of B in the cemented carbide of WC. By doing so, it is possible to obtain a cemented carbide having a significantly reduced friction coefficient while realizing a bending strength equivalent to that of a cemented carbide prepared without adding B in the metal constituting the conventional binder phase. did it.
 この超硬合金を基体に用いた切削用の工具、さらには金型を含む超硬工具は、低摩擦特性に優れ、一定の抗折力を維持することができる。 A cutting tool using this cemented carbide as a substrate, and further a cemented carbide tool including a die are excellent in low friction characteristics and can maintain a constant bending force.
 本発明は、Coを結合金属としたWC基超硬合金焼結材料からなる超硬合金を例に挙げて説明したが、焼結合金の焼結工程を利用して、超硬合金圧粉体を構成するWCの粒子とWCを結合する結合金属の粒子間に形成される粒界に介在されるB供給源を窒化処理してh-BNを析出させるWC基超硬焼結合金に広く適用できるもので、上述の実施例に限定するものでない。 The present invention has been described by taking as an example a cemented carbide made of a WC-based cemented carbide sintered material containing Co as a binding metal. Widely applied to WC-based cemented carbide sintered alloys in which h-BN is precipitated by nitriding the B supply source intervening between the grain boundaries formed between the WC particles constituting WC and the binding metal particles binding WC It can be made and is not limited to the above-described embodiments.
 上述のように、本発明に係る超硬合金を用いた超硬工具は、低摩擦化能を付与することにより優れた潤滑性、耐焼き付き性を備え、工具摩耗を低減し、被加工材の焼き付きを防止することで、従来の超硬工具に比して、各種の鋼や銅合金、アルミ合金といった軟質材料の鍛造、打ち抜き加工などの塑性加工に適用して有用となる。また、本発明に係る超硬合金を用いた超硬工具は、切削加工においても、優れた潤滑性、耐焼き付き性を備え、加工負荷が低減されることによりチッピング、欠損等の発生を抑え、長期に亘って安定した切削性能を発揮し得ることから、鍛造、打ち抜き及び切削加工装置の高性能化、並びにこれらの加工の省力化及び省エネ化、さらに低コスト化を実現できる。 As described above, the cemented carbide tool using the cemented carbide according to the present invention has excellent lubricity and seizure resistance by imparting low friction reducing ability, reduces tool wear, By preventing seizure, it is useful to apply to plastic working such as forging and punching of soft materials such as various steels, copper alloys, and aluminum alloys as compared with conventional carbide tools. Moreover, the cemented carbide tool using the cemented carbide according to the present invention has excellent lubricity and seizure resistance even in cutting, and suppresses the occurrence of chipping, chipping, etc. by reducing the processing load, Since stable cutting performance can be exhibited over a long period of time, forging, punching and cutting apparatus can be improved in performance, labor saving and energy saving of these processes, and further cost reduction can be realized.

Claims (15)

  1.  炭化タングステンの粒子間を結合金属により焼結結合した超硬合金において、
     上記炭化タングステンの粒子間を結合する結合金属中に、六方晶窒化ホウ素(h-BN)が分散形成されていることを特徴とする超硬合金。
    In cemented carbide in which tungsten carbide particles are sintered and bonded with bonding metal,
    A cemented carbide characterized in that hexagonal boron nitride (h-BN) is dispersedly formed in a bonding metal that bonds the particles of tungsten carbide.
  2.  前記炭化タングステンの粒子の少なくとも一部は、炭化タングステン核と炭窒化タングステン周辺組織の二重構造とされていることを特徴とする請求項1記載の超硬合金。 2. The cemented carbide according to claim 1, wherein at least a part of the tungsten carbide particles has a double structure of a tungsten carbide nucleus and a tungsten carbonitride peripheral structure.
  3.  前記炭化タングステンの粒子間を結合する結合金属中に形成された六方晶窒化ホウ素(h-BN)は、ホウ素(B)換算で10~1500ppmの範囲にあることを特徴とする請求項1記載の超硬合金。 The hexagonal boron nitride (h-BN) formed in the bonding metal that bonds the particles of tungsten carbide is in the range of 10 to 1500 ppm in terms of boron (B). Cemented carbide.
  4.  前記炭化タングステンの粒子間を結合する結合金属中に形成された六方晶窒化ホウ素(h-BN)は、ホウ素(B)換算で10~1000ppmの範囲にあることを特徴とする請求項1記載の超硬合金。 The hexagonal boron nitride (h-BN) formed in the bonding metal that bonds the particles of tungsten carbide is in the range of 10 to 1000 ppm in terms of boron (B). Cemented carbide.
  5.  前記炭化タングステンの粒子間を結合する結合金属中に形成された六方晶窒化ホウ素(h-BN)は、ホウ素(B)換算で10~500ppmの範囲にあることを特徴とする請求項1記載の超硬合金。 The hexagonal boron nitride (h-BN) formed in the bonding metal that bonds the particles of tungsten carbide is in the range of 10 to 500 ppm in terms of boron (B). Cemented carbide.
  6.  工具基体を請求項1~5のいずれか1に記載した超硬合金により形成したことを特徴とする超硬工具。 A cemented carbide tool, wherein the tool substrate is formed of the cemented carbide according to any one of claims 1 to 5.
  7.  炭化タングステン粉末と上記炭化タングステンの粒子間を結合する結合金属粉末を混合した混合粉末中にホウ素(B)供給源を分散混合した超硬合金粉末を作製し、
     次いで、上記超硬合金粉末を圧縮成形して圧粉体を形成し、
     その後、上記圧粉体を窒素加圧雰囲気中で窒化処理し、上記炭化タングステンの粒子間を結合する結合金属中に、六方晶窒化ホウ素(h-BN)の結晶粒を分散形成したことを特徴とする超硬合金の製造方法。
    A cemented carbide powder in which a boron (B) supply source is dispersed and mixed in a mixed powder obtained by mixing a tungsten carbide powder and a bonded metal powder that bonds between the tungsten carbide particles,
    Next, the cemented carbide powder is compression molded to form a green compact,
    Thereafter, the green compact is nitrided in a nitrogen-pressurized atmosphere, and hexagonal boron nitride (h-BN) crystal grains are dispersedly formed in a bonding metal that bonds the tungsten carbide particles. A method for producing a cemented carbide.
  8.  前記圧粉体は、真空中で加熱焼結された後、前記窒化処理が行われ、前記結合金属中に六方晶窒化ホウ素(h-BN)の結晶粒を分散形成することを特徴とする請求項7記載の超硬合金の製造方法。 The green compact is heat-sintered in vacuum and then subjected to the nitriding treatment to disperse and form hexagonal boron nitride (h-BN) crystal grains in the bonding metal. Item 8. A method for producing a cemented carbide according to Item 7.
  9.  前記圧粉体を窒化処理する工程は、前記圧粉体を加熱焼結する工程中で行われることを特徴とする請求項8記載の超硬合金の製造方法。 The method for producing a cemented carbide according to claim 8, wherein the step of nitriding the green compact is performed during the step of heating and sintering the green compact.
  10.  前記B供給源は、B,HBO,h-BN,WB及びTiBからなる群から選ばれた1種であることを特徴とする請求項7記載の超硬合金の製造方法。 8. The manufacture of cemented carbide according to claim 7, wherein the B supply source is one selected from the group consisting of B 2 O 3 , H 3 BO 3 , h-BN, WB and TiB 2. Method.
  11.  炭化タングステン粉末と上記炭化タングステンの粒子間を結合する結合金属粉末を混合した超硬合金粉末を作製し、
     次いで、上記超硬合金粉末を圧縮成形して圧粉体を形成し、
     その後、溶媒にB供給源を溶解したB供給源溶液を上記圧粉体の表面から供給し、上記圧粉体内部に上記B供給源を分散供給し、
     次いで、上記圧粉体を窒素加圧雰囲気中で窒化処理し、上記炭化タングステンの粒子間を結合する結合金属中に、六方晶窒化ホウ素(h-BN)の結晶粒を分散形成することを特徴とする超硬合金の製造方法。
    A cemented carbide powder prepared by mixing a tungsten carbide powder and a bonding metal powder that bonds the particles of the tungsten carbide is produced.
    Next, the cemented carbide powder is compression molded to form a green compact,
    Thereafter, a B supply source solution in which a B supply source is dissolved in a solvent is supplied from the surface of the green compact, and the B supply source is dispersedly supplied into the green compact.
    Next, the green compact is nitrided in a nitrogen-pressurized atmosphere, and hexagonal boron nitride (h-BN) crystal grains are dispersedly formed in a bonding metal that bonds the tungsten carbide particles. A method for producing a cemented carbide.
  12.  前記B供給源溶液は、B供給源をホウ素換算で0.02重量%以上4重量%以下の割合で溶液に溶解させたこと特徴とする請求項11記載の超硬合金の製造方法。 The method for producing a cemented carbide according to claim 11, wherein the B supply source solution is obtained by dissolving the B supply source in a solution at a ratio of 0.02 wt% to 4 wt% in terms of boron.
  13.  前記B供給源は、溶媒に溶解可能なB又はHBOを用いることを特徴とする請求項11又は12記載の超硬合金の製造方法。 The method for producing a cemented carbide according to claim 11 or 12, wherein the B supply source uses B 2 O 3 or H 3 BO 3 that is soluble in a solvent.
  14.  前記圧粉体は、真空中で加熱焼結された後、前記窒化処理が行われ、前記結合金属中に六方晶窒化ホウ素(h-BN)の結晶粒を分散形成することを特徴とする請求項11記載の超硬合金の製造方法。 The green compact is heat-sintered in vacuum and then subjected to the nitriding treatment to disperse and form hexagonal boron nitride (h-BN) crystal grains in the bonding metal. Item 12. A method for producing a cemented carbide according to Item 11.
  15.  前記圧粉体を窒化処理する工程は、前記圧粉体を加熱焼結する工程中で行われることを特徴とする請求項13記載の超硬合金の製造方法。 14. The method for producing a cemented carbide according to claim 13, wherein the step of nitriding the green compact is performed during the step of heating and sintering the green compact.
PCT/JP2013/004329 2012-07-18 2013-07-16 Superhard alloy imparted with low friction ability, method for producing same, and superhard tool WO2014013715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380038030.5A CN104470661B (en) 2012-07-18 2013-07-16 The superhard alloy of low friction performance and manufacture method thereof and sintered carbide tools are endowed

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012159207 2012-07-18
JP2012-159207 2012-07-18
JP2012217676A JP5189222B1 (en) 2012-07-18 2012-09-28 Cemented carbide provided with low friction reducing ability, manufacturing method thereof, and cemented carbide tool
JP2012-217676 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014013715A1 true WO2014013715A1 (en) 2014-01-23

Family

ID=48481458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004329 WO2014013715A1 (en) 2012-07-18 2013-07-16 Superhard alloy imparted with low friction ability, method for producing same, and superhard tool

Country Status (3)

Country Link
JP (1) JP5189222B1 (en)
CN (1) CN104470661B (en)
WO (1) WO2014013715A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854393B2 (en) * 2013-09-25 2016-02-09 島根県 Method for producing cobalt alloy material, cobalt alloy material and cutting member
JP6337733B2 (en) * 2014-10-10 2018-06-06 新日鐵住金株式会社 Carbide tool
CN106975693A (en) * 2016-01-19 2017-07-25 Ykk株式会社 Molding die instrument
CN110253028A (en) * 2019-07-16 2019-09-20 湖南伊澍智能制造有限公司 A kind of self-lubricating 3D printing alloy powder and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144045A (en) * 1994-11-22 1996-06-04 Toshiba Tungaloy Co Ltd Cubic boron nitride coated member
JP2000233324A (en) * 1998-12-09 2000-08-29 Nachi Fujikoshi Corp Solid lubricating film for coating tool and manufacture thereof
JP2001259903A (en) * 2000-02-15 2001-09-25 Kennametal Inc Covering tool having lubricant coating and manufacturing process therefor
WO2005087418A1 (en) * 2004-03-12 2005-09-22 Sanalloy Industry Co., Ltd. Sintered tool and method for production thereof
JP2010513037A (en) * 2006-12-13 2010-04-30 ダイヤモンド イノベイションズ インコーポレーテッド Polished molded body having improved machinability
JP2011051033A (en) * 2009-08-31 2011-03-17 Mitsubishi Materials Corp Surface-coated cutting tool
JP2011194512A (en) * 2010-03-19 2011-10-06 Mitsubishi Materials Corp Surface coated cutting tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645612B2 (en) * 2001-08-07 2003-11-11 Saint-Gobain Ceramics & Plastics, Inc. High solids hBN slurry, hBN paste, spherical hBN powder, and methods of making and using them
CN100545287C (en) * 2007-11-06 2009-09-30 中国科学院长春应用化学研究所 A kind of aluminium tungsten carbide hard alloy sintered body with fiber grain

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144045A (en) * 1994-11-22 1996-06-04 Toshiba Tungaloy Co Ltd Cubic boron nitride coated member
JP2000233324A (en) * 1998-12-09 2000-08-29 Nachi Fujikoshi Corp Solid lubricating film for coating tool and manufacture thereof
JP2001259903A (en) * 2000-02-15 2001-09-25 Kennametal Inc Covering tool having lubricant coating and manufacturing process therefor
WO2005087418A1 (en) * 2004-03-12 2005-09-22 Sanalloy Industry Co., Ltd. Sintered tool and method for production thereof
JP2010513037A (en) * 2006-12-13 2010-04-30 ダイヤモンド イノベイションズ インコーポレーテッド Polished molded body having improved machinability
JP2011051033A (en) * 2009-08-31 2011-03-17 Mitsubishi Materials Corp Surface-coated cutting tool
JP2011194512A (en) * 2010-03-19 2011-10-06 Mitsubishi Materials Corp Surface coated cutting tool

Also Published As

Publication number Publication date
JP5189222B1 (en) 2013-04-24
CN104470661A (en) 2015-03-25
JP2014037612A (en) 2014-02-27
CN104470661B (en) 2016-04-27

Similar Documents

Publication Publication Date Title
KR101831754B1 (en) Tough coated hard particles consolidated in a tough matrix material
WO2017191744A1 (en) Cemented carbide and cutting tool
JP6330387B2 (en) Sintered body and manufacturing method thereof
JP6439975B2 (en) Cermet manufacturing method
WO2013069657A1 (en) Cubic boron nitride sintered body
JPWO2017073712A1 (en) Sintered body and manufacturing method thereof
JP5807851B1 (en) Cermets and cutting tools
WO2014175419A1 (en) Sintered object of cubic boron nitride and coated sintered object of cubic boron nitride
JP5892423B2 (en) CBN sintered compact cutting tool with excellent toughness
JP6265103B2 (en) Sintered body
JP5314807B1 (en) Cemented carbide and manufacturing method thereof, and carbide tool
JP5189222B1 (en) Cemented carbide provided with low friction reducing ability, manufacturing method thereof, and cemented carbide tool
KR102587409B1 (en) Sintered body and cutting tool
JP6213935B1 (en) Manufacturing method of fine free carbon dispersion type cemented carbide and coated cemented carbide
JP6048522B2 (en) Sintered body and cutting tool
JP6283985B2 (en) Sintered body
Sui et al. Microstructure and mechanical properties of WC-Co-Ti (C0. 5, N0. 5)-Mo cemented carbides
JP6365228B2 (en) Sintered body
JP6304615B1 (en) tool
JP5644388B2 (en) Cermet and coated cermet
JP2006063416A (en) Chromium-containing hard metal and coated hard metal thereof
JP2004292275A (en) Ceramic sintered body, cutting insert and tool unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380038030.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819552

Country of ref document: EP

Kind code of ref document: A1