WO2005087418A1 - Sintered tool and method for production thereof - Google Patents

Sintered tool and method for production thereof Download PDF

Info

Publication number
WO2005087418A1
WO2005087418A1 PCT/JP2005/004351 JP2005004351W WO2005087418A1 WO 2005087418 A1 WO2005087418 A1 WO 2005087418A1 JP 2005004351 W JP2005004351 W JP 2005004351W WO 2005087418 A1 WO2005087418 A1 WO 2005087418A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
silicon
surface layer
sintered
hard particles
Prior art date
Application number
PCT/JP2005/004351
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Iwasaki
Hidefumi Yanagita
Masaaki Ikebe
Original Assignee
Sanalloy Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanalloy Industry Co., Ltd. filed Critical Sanalloy Industry Co., Ltd.
Priority to JP2006511012A priority Critical patent/JP4726781B2/en
Publication of WO2005087418A1 publication Critical patent/WO2005087418A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • C23C12/02Diffusion in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Definitions

  • the present invention relates to a sintered tool in which hard particles such as tungsten carbide WC and titanium carbide TiC are bonded via an iron-based binder metal such as cobalt nickel, and a method for producing the same.
  • a sintered tool generally uses an iron group metal (for example, nickel Ni or cobalt Co) as a binder, and forms hard particles, for example, carbide (for example, tungsten carbide WC, titanium carbide TiC), nitride, Alternatively, it is a tool using a sintered body composed of fine carbonitride particles dispersed.Since the sintered body is excellent in hardness, heat resistance, and impact resistance, cutting tools ⁇ plastic working tools, Widely used for rock drill bits for civil mines.
  • iron group metal for example, nickel Ni or cobalt Co
  • hard particles for example, carbide (for example, tungsten carbide WC, titanium carbide TiC), nitride
  • carbide for example, tungsten carbide WC, titanium carbide TiC
  • nitride nitride
  • it is a tool using a sintered body composed of fine carbonitride particles dispersed.Since the sintered body is excellent in hardness, heat resistance, and impact resistance, cutting tools
  • a sintered tool is a two-phase sintered body composed of a relatively soft and stable heat-resistant binder metal phase and high hardness and fine hard particles.
  • the binder metal is reduced by increasing the content of particles
  • the sintered body has a higher surface hardness but lower toughness.
  • the sintered body has a high toughness but a relatively low surface hardness and a low wear resistance.
  • the sintered body or cermet is generally used by appropriately adjusting the composition of the binder metal and the hard particles and the particle size distribution of the hard particles according to the intended use. I have.
  • Patent Document 1 discloses that a compact compacted from a carbide and a binder metal is heated and heated in a gas carburizing atmosphere, the surface is carburized, and the carburized material is heated in a vacuum and sintered. In this technique, a hard layer is formed on the surface, and the inner portion is made of a cermet with high toughness and a significantly hardened surface layer.
  • Patent Document 1 Japanese Patent Publication No. 59-17176
  • Ni-based or Co-based sintered tools there is a restriction such as softening and softening, because graphite tools are used for carburizing.
  • a first object of the present invention is to provide a sintered body having high surface hardness and excellent toughness obtained by hardening the particles of high melting point compound particles without growing the particles based on the hard sintered body. They want to provide tools.
  • a second object of the present invention is to provide a method for producing a sintered tool having surface hardness and toughness by hardening the surface of a sintered body.
  • An object of the present invention is to provide a manufacturing method including a surface hardening treatment with a small dimensional change in the manufacturing process.
  • the sintered tool of the present invention comprises hard particles and an iron-based binder metal, and has a surface layer containing boron B and / or silicon silicon in a weight range of 0.010 to 2.0%. Therefore, boride and / or silicate of the binder metal is distributed, and the surface layer is made to have a high hardness as a higher distribution density of hard particles than the inner part, and the other inner part is made of a nodder metal. This ensures high toughness, which results in a sintered tool with excellent surface hardness and internal toughness.
  • a sintered body composed of hard particles and a binder metal is formed in a desired shape, a boron and / or silicon coating layer is formed on the surface of the sintered body, and heat treatment is performed in a vacuum. Is performed to form a low-melting eutectic melt containing boron and / or silicon on the surface layer, so that the heat treatment process diffuses and moves the eutectic melt from the surface layer toward the inside.
  • the surface layer reduces the content of binder metal and increases the distribution density of hard particles. is there.
  • the boron and / or silicon forms a boride and / or silicide phase (which may be a boriding compound) formed by the reaction with the iron group metal, and the hard particles have a high density distribution.
  • the large surface layer can be formed into a thick layer, and a tool that combines the hardening of the surface layer and the high toughness of the internal part is formed.
  • a predetermined coating layer is formed on the surface of a sintered body having a desired shape which has been sintered and densified in advance, and heat treatment is performed. Therefore, unlike the conventional liquid-phase sintering, the amount of deformation during heat treatment is small, because heating and holding are performed at a temperature below the melting point (below the eutectic point) where no melt is generated. In the surface layer portion, precipitation of the enamel and / or silicate phase and a high distribution density of the hard particles are caused, whereby a surface layer portion having high hardness can be formed.
  • FIG. 1 shows a method for manufacturing a sintered tool according to an embodiment of the present invention, in which fine hard particles (particle diameter: 1 to 2 m) are immersed in a 9% BC coating solution for coating.
  • Cross section of sintered body after heat treatment in which fine hard particles (particle diameter: 1 to 2 m) are immersed in a 9% BC coating solution for coating.
  • FIG. 2 By a method for manufacturing a sintered tool according to an example of the present invention, coarse hard particles (particle diameter: 3 to 6 m) were immersed in a 9% coating solution of BC, coated and heat-treated.
  • FIG. 3 is a view showing a change in hardness in a surface force depth direction of a sintered body manufactured by a manufacturing method according to Example 1 of the present invention.
  • FIG. 4 is a view similar to FIG. 3 according to another embodiment 2.
  • FIG. 5 is a view similar to FIG. 3, according to yet another embodiment 3.
  • FIG. 6 is a schematic view of a CVD apparatus for forming a coating layer.
  • FIG. 7 is a diagram showing a change in hardness in a surface force depth direction of a sintered body manufactured by a manufacturing method according to Example 4 of the present invention.
  • the sintered tool has a force integrally formed from an inner part and a surface layer formed by heat treatment so as to surround the inner part.
  • the inner part is formed of hard particles and hard particles. It contains the binder metal that binds these particles, and the surface layer necessarily contains hard particles and boron B and / or silicon silicon.
  • the surface layer portion may contain a binder metal but has a lower content than the internal portion, or preferably does not substantially contain it, in order to increase the surface hardness.
  • the hard particles in the sintered tool include carbides, nitrides, or carbonitrides.
  • carbides WC, TiC, TaC, NbC, VC, CrC, and nitrides such as TiN, TaN, NbN,
  • VN, CrN, ZrN force At least one kind or two or more kinds are used.
  • the other binder metal is at least one selected from iron group metals, that is, Fe, Ni, and Co. From the viewpoints of corrosion resistance, heat resistance, and acid resistance, Ni or Co can be preferably used.
  • Ni and Co form a solid solution of B in the surface layer and, in the presence of WC, form their hard borides, NiWB and CoWB, and contribute to surface hardening.
  • silicon silicon Ni and Co form a solid solution of Si in the surface layer and form the hard silicide NiWSi, CoWSi in the presence of WC to form a surface.
  • the inner part is a sintered body composed of hard particles, a binder metal, and a sintered body.
  • the content ratio of the binder metal to the hard particles is in the range of 5:95 to 40:60. is there. If the content ratio of the hard particles is lower than 5:95, the binder metal is too small to form a sintered body. If the content ratio is greater than 40:60, the sintered body with less hard metal cannot be sufficiently hardened
  • the content ratio of the binder metal to the hard particles is preferably in the range of 5:95 to 30:70.
  • the ratio of this content is selected depending on the application of the sintering tool. However, in general, in an application requiring toughness, particularly impact resistance, together with the surface hardness, the above-described mixing amount range is used. Among them, the hard particles are reduced and the content ratio of the binder metal is increased. On the other hand, for applications requiring particularly high surface hardness and abrasion resistance, the content ratio of the hard particles should be increased within the above range.
  • the surface layer portion of the sintered tool is formed by diffusing boron B and / or silicon Si during the heat treatment of the sintered body having the above-described composition as described later. And And / or silicon-containing layers are utilized.
  • the surface layer contains boron B or silicon Si alone or in a total weight range of 0.010 to 2.0%. Also, the distribution density of hard particles is increased.
  • the content of boron or silicon in the surface layer is preferably in the range of 0.050 to 1.0%. When both boron and silicon are contained, the total amount is preferably in the above range.
  • Noinder metal is reduced from the inner part. Reduce the content of boron B or silicon Si to 0.
  • the content of 010-2.00% is to secure the hardness of the surface layer. If the content of boron or silicon is less than 0.010%, the diffusion movement of the binder metal from the surface layer to the inside during the diffusion heat treatment. On the other hand, if it exceeds 2.00%, the surface layer cannot follow the volume change accompanying the internal diffusion of the binder metal phase, and surface cracks are likely to occur during the diffusion heat treatment. In particular, by setting the boron or silicon content to 0.050-1.0%, the diffusion of the binder metal from the surface layer to the inside can be increased, and the surface crack can be effectively prevented. effective. As a result, the surface layer portion has a relatively low binder metal content and a high hard particle content as compared with the internal portion. This makes it possible to reduce the average spacing between adjacent hard particles, which is also, by volume, the distribution density of the hard particles being higher than that of the inner part, and Due to the particles, the surface hardness is higher than the inner part.
  • the distribution density of the hard particles is highest near the surface in the surface layer portion, is reduced in the depth direction of the surface layer portion, and approaches the distribution of the internal portion.
  • the content of the solder metal is made lower in the surface layer than in the inner part, and the hardness distribution also decreases from near the surface to the inner part. And incline.
  • the content of the binder metal element is preferably an average value within a surface force depth of 0.5 mm of the surface layer portion, and is preferably 2% or less by weight.
  • the surface layer of the tool of the present invention is substantially composed of the hard particle phase and the boride and Z or silicate phases, and is hardened by the aggregation of the hard particles and boron and Z or the silicon compound. High surface hardness can be obtained on the tool surface.
  • the average particle size of the hard particles in the sintered tool is preferably , 0.2-15 / zm.
  • the finer the hard particles the greater the hardness, but if it is less than 0.1, the amount of change in the bound carbon and nitrogen of the hard particle phase increases, and the stability in terms of surface hardness can be maintained. Disappears. On the other hand, if it exceeds 15 m, it is better to avoid it because the wear resistance decreases.
  • the particle size of the surface layer portion and the internal portion varies depending on the application of the tool and the shape, in particular, the average particle size in the range of 0.5-10 / zm is more preferably used.
  • the particle size distribution of the hard particles is substantially the same between the surface layer portion and the internal portion of the sintered tool of the present invention without any particular difference.
  • the binder metal content is reduced, and the structure of the surface layer is such that fine hard particles are densely distributed, and the surface layer is closer to each other than the inner part.
  • the average spacing between adjacent hard particles can be reduced.
  • Such surface layer microstructure force and the hardness of the surface layer composed of hard particles including borides are increased, the friction coefficient is reduced, and the wear resistance and the heat resistance are enhanced.
  • the force containing boron together with the hard particles is combined with the binder metal to form an iron group metal boride, and the boride precipitates between the hard particles.
  • the iron group boride itself is hard, so that the surface layer is hardened by the contribution of the iron group boride.
  • Borides include FeWB, NiWB, or CoWB in the presence of WC. NiWSi, CoWSi in the presence of WC
  • the sintering tool uses WC or TiC or a mixture thereof for the hard particles, and Ni or Co for the binder metal.
  • the required amount of the internal part is determined by the fine particle phase WC phase and the metal Co phase (Co solid solution) as the main phase.
  • the surface layer contains a WC phase, a finely precipitated CoWB phase as a boride phase (and a very small amount of a Co solid solution phase, if a Co phase is present). I have.
  • a silicide phase a finely precipitated CoSi phase, a WSi layer, and a CoWSi layer are included in the surface layer.
  • the surface hardness of the WC-Co-based sintered tool of the present invention also depends on the hardness of the internal part, but it is higher than the Vitzkers hardness of Hv700, especially HvlOO, usually higher than the surface hardness of the internal part. , Hvl40 Those having a range of 0 to 1800 or higher, for example, having Hv2300 are preferred.
  • the thickness of the surface layer portion is defined as a distance from a linear portion of the hardness distribution curve from the surface to the inside toward a position where the average hardness of the internal portion is reached, and the thickness of the surface portion is 2 mm or more. , Preferably, 4 mm or more.
  • the surface layer portion of the present invention achieves surface hardening due to the densification of hard particles and the coexistence of iron group metal boride, and the internal portion is formed by the hard particles and the binder metal.
  • the required toughness, hardness and strength can be ensured by the blending of.
  • a sintered body is produced.
  • the sintered body is formed into a desired shape by compression molding a mixed powder of hard particles and an iron group binder metal.
  • the green compact is then formed into a normal sintered body by ordinary liquid phase sintering. Thereby, a dense and uniform sintered body is obtained.
  • This sintering method is entirely sintered using a conventional method. After sintering, the sintered body can be appropriately machined such as cutting, grinding, and electric discharge machining into a desired shape.
  • a boron or silicon coating layer is formed on the surface.
  • This kind of coating layer is coated with a boron coating agent containing boron, and in the heat treatment, the sintered body having the boron coating layer is heated to form a surface layer portion rich in boron or silicon. is there.
  • the sintered body having the boron coating layer is cooled in a vacuum or an inert gas atmosphere, preferably a nitrogen gas atmosphere, to a temperature lower than the liquidus temperature in the internal body of the sintered body. Heating and holding for a desired time in a temperature range higher than the eutectic temperature of the boron-containing phase in the sintered body.
  • the boron in the boron coating layer is diffused from the surface of the sintered body into the interior to form a boron-rich surface layer, and the melt in the surface layer is diffused and moved to the inner part, and the sintered body is diffused.
  • the distribution density of the hard particles in the surface layer portion is made higher than that in the inner portion, and after cooling, boron or silicon is precipitated on the surface portion as a boride containing noinder metal and Z or a silicide phase, A sintered tool having a hardened surface layer is obtained.
  • the hard particles include carbide, nitride or carbonitride, and particularly as carbide. , WC, TiC, TaC, NbC, VC, Cr C, TiN, TaN, NbN, VN, Cr N as nitride
  • ZrN force At least one or two or more are used.
  • the other binder metal is at least one selected from iron group metals, that is, Fe, Ni, and Co. Preferably, Ni and Co can be used.
  • Ni or Co as a binder metal contains B or Si, it becomes Ni—B or Ni—Si alloy or Co—B or Co—Si alloy! / — And Ni—W—B or Ni— Since the eutectic temperature of the W—Si alloy or Co W—B or Co—W—Si alloy is lower than the solidus temperature of the alloy system of M or Co and the above carbide, Ni—W—B or Ni — W—Si alloy or Co— W—B or Co—W—Si alloy is used for heat treatment to harden the surface by making the distribution of hard particles in the surface layer higher than the inner part as described later. Used for
  • the ratio of the content of the hard particles to the content of the binder metal in the raw material of the hard particles and the powder of the binder metal raw material is preferably in the range of 5:95 to 30:70.
  • the ratio of this content is selected depending on the use of the sintering tool. However, in general, in the use requiring toughness, particularly impact resistance, together with the surface hardness, the above-mentioned compounding range is used. Among them, hard particles are reduced and the content ratio of the binder metal is increased. On the other hand, for applications requiring particularly high surface hardness and abrasion resistance, the content ratio of the hard particles is increased within the above range.
  • the raw material hard particles preferably have an average particle diameter in the range of 0.2 to 15 m, and more preferably in the range of 0.5 to 10 m.
  • the average particle size of the hard particles in the tool is in the range of 0.2 to 15 m in average particle size. As described above, the finer the hard particles, the greater the surface hardness. If the force is smaller than 0, the change in the amount of bound carbon and nitrogen in the hard particle phase increases, and the stability in terms of surface hardness is increased. Cannot be maintained. On the other hand, if it exceeds 15 m, it is better to avoid it because wear resistance is reduced.
  • the particle size of the surface layer portion and the internal portion varies depending on the use of the tool * shape, but in particular, the range of 0.5 to 10 m in average particle size is more preferably used.
  • the mixed powder of the hard particles and the binder metal is compression-molded into a green compact having a desired shape, and the green compact is sintered similarly to a conventional sintered component.
  • sintering perform main sintering after preliminary sintering. Although a dense sintered body is obtained, conventional liquid phase sintering can be applied, for example.
  • a coating material containing boron or silicon is applied to the surface of the sintered body.
  • the boron coating material for this purpose contains a boron compound and oxidizes boron.
  • the silicon coating material includes a silicon compound, and includes a carbide or nitride, a boride, a precursor thereof, or an intermetallic compound. More specifically, there are Si, SiH4, SiC14, SiC, Si3N4, SiB6, or CoSi2, MoSi2, CrSi2, WSi2, or silanes, polysilane polymers, and other organic silicon compounds.
  • the boron coating material contains these boron compounds and coats the surface of the sintered body.
  • the coating material may be applied directly to this surface. However, from the viewpoint of coating reliability, these coating materials are preferably used.
  • the boron compound is suspended in water or a non-aqueous solvent to prepare a slurry-like coating solution, and applied to the surface of the sintered body. For example, a method of applying a coating liquid by brush on the surface of the sintered body, a method of spraying with a spray or the like, a method of dipping the sintered body in a coating liquid bath and pulling it up are used. Next, the coating liquid is dried on the surface of the sintered body so that the coating material is left.
  • the coating liquid may be applied to the entire surface of the sintered body. However, the surface to be hardened of the sintering tool is limited, and the other surface portions are appropriately masked to obtain a boride. If the coating material is prevented from being covered, the surface layer is formed only in a desired surface area by the heat treatment step, and the surface layer allows the surface of the tool to be hardened. It is relatively soft and has high toughness. The same applies to silicon.
  • a boride or silicate coating step as another means, chloride, fluoride, or hydride or an organometallic compound is introduced into a heating furnace to be decomposed, and the surface of the sintered body is decomposed.
  • vapor deposition coating This method is generally called chemical vapor deposition [CVD].
  • CVD chemical vapor deposition
  • plasma CVD method, thermal CVD method, laser CVD method, etc. have been developed.
  • the deposition rate by vapor deposition has been improved to 0.1 / zm / sec or more.
  • Materials used as the raw material source at this time include, for example, boron chloride and boron fluoride, and boron fluoride and boron fluoride.
  • the hydrides include diborane, pentaborane and dihydroborane as borohydrides (boranes) and derivatives thereof, and monosilane and disilane as hydrides (silanes).
  • Examples of the organometallic compound include an organic boron compound and an organic silicon compound, such as trialkylboron, chlorosilane, and alkoxysilane. -n-butylboron, etc., and dichloromethylsilane, chlorodimethylsilane, chlorotrimethylsilane, tetramethylsilane, etc.
  • Other compounds include organic boronic acids.
  • these compounds are made into a gaseous state, and the gaseous compounds are introduced into a heating furnace set at a furnace temperature at which the compounds can be decomposed by a predetermined flow rate of a carrier gas, and the compound is fired.
  • a boride or a silicide resulting from the decomposition of the compound is deposited on the surface of the composite.
  • a coating metal layer having a predetermined thickness is formed on the surface of the sintered body.
  • the adjustment of the coating thickness at this time is controlled by gas concentration, carrier gas flow rate, heating temperature, heating time, and the like.
  • a dense boride-silicide metal coating is formed by spraying a boride or silicide powder agglomerate heated to a semi-molten state onto the surface of a sintered body at a high speed.
  • borides and silicides include SiB, SiC, SiN, BN, and BC.
  • the sintered body whose surface contains boron or silicon and is coated with the dry coating material is then heated while being held in a vacuum.
  • the heat treatment temperature should be lower than the solidus temperature or eutectic temperature determined by the composition of the alloy system of the hard particles and the iron group noinder metal, and the sintered body composition In this case, the temperature is selected so as not to produce a melt and higher than the eutectic temperature of an alloy system containing boron or silicon from the coating layer, hard particles and a binder metal on the surface.
  • the present invention utilizes the fact that the eutectic temperature containing boron or silicon is lower than the eutectic temperature of a sintered body not containing boron or silicon, and the heat treatment temperature is set to the eutectic temperature.
  • the temperature is set to a certain degree, and a melt is partially formed only on the surface or the surface layer. This melt consists of the majority of boron and iron group metals and only a small portion of the hard particles, with most of the hard particles remaining solid.
  • the eutectic temperature is about 1320 ° C., while the Co—B series Side eutectic point, ie eutectic temperature of Co—Co B
  • a heat treatment temperature of 1150-1310 is used, preferably for a force in the range of 1200-1300 degrees C.
  • the eutectic temperature is about 1390 ° C, while the Ni-B-based Ni-side eutectic point (ie, eutectic of Ni-Ni B
  • the heat treatment temperature of the TiC—Co-based and TiC Ni-based sintered tools is 1200 — 1250 ° C is preferred.
  • the eutectic temperature of the MoC—Ni system is about 1250 ° C,
  • diffusion heat treatment of TiC Mo C—Ni can be performed.
  • the appearance of the liquid phase, the formation of the conjugate, and the diffusion transfer in the heat treatment process as described above are the same for the silicon.
  • the appearance temperature of the liquid phase on the 0-side of the 0-31 system is around 1200 ° C. In the case of ⁇ -31, the liquid phase appearance temperature drops below 1000 ° C at ⁇ -30% 31 composition.
  • the temperature of silicon diffusion heat treatment for WC-Co alloys is 1250-1320. C is used, and the range of 1150-1350 ° C is used for WC-Ni alloys.
  • the region where the content of boron or silicon is high and the hard particle density is high is the surface layer portion, and the surface layer portion is such that the distance between the particles adjacent to each other is small and the remaining boron or boron is small.
  • the content of silicon also increases.
  • the surface layer forms a compound of boron or silicon and a binder metal, and a boride or a silicate is deposited.
  • the surface layer constitutes a layer composed of borides or silicates and hard particles having a high distribution density.However, in this manufacturing method, the hard particles in the surface layer hardly grow and are densified. , Surface hardening can be realized.
  • the content of boron or silicon in the surface layer after heat treatment is controlled by the type of boron or silicon compound in the coating material before heat treatment and the amount of boron or silicon coating per surface area of the sintered body.
  • the amount of boron in the boron coating layer is preferably in the range of 5.0 to 40 mgZcm 2 with respect to the coated surface in terms of the metallic boron B element.
  • the surface layer portion can contain boron B in the range of 0.050-0.50% by weight as described above. At the surface, this high content of boron is due to the fact that boron is present as a compound of the iron group metal. The same applies to silicon.
  • the surface hardness also depends on the hardness of the internal part. Hv700 or more, especially HvlOOO or more, usually in the range of Hvl400-1800, or more, for example, Hv2300, which is preferred! / ⁇ .
  • the thickness of the surface layer portion is 3 mm or more, assuming that it is the distance from the surface to the inside of the hardness distribution curve in a straight line portion to the position at which the average hardness of the internal portion is reached.
  • 6 mm or more can be secured.
  • the sintered tool of the present invention can be widely applied to cutting tools, plastic working tools, rock drill bits for mining and civil engineering construction, and the like.
  • Examples of cutting tools include single tool blades, milling cutters, and drills and reamers.
  • Drills and reamers are hard particles with a particle system of 1.0 m or less, a sintered body of ultra-fine particles. Since the shape has a high ratio of the length D to its diameter D (LZD ratio), a material with high toughness is required. High hardness and fine braid By weaving, the surface layer has high hardness, which is advantageous for the configuration of the cutting edge, and the tool life can be increased.
  • the working tool examples include a press die, a forging die, a punch, and the like, and the sintered tool of the present invention can be applied to these.
  • molds for cans have conventionally been made of ceramic materials or Ni-based superalloys.However, ceramics cause surface defects and superalloys are difficult to prepare the metallographic structure immediately.
  • the WC—Co-based sintered body is subjected to boron diffusion heat treatment to increase the distribution density of hard particles containing boron, thereby obtaining high hardness, high wear resistance, and high adhesion resistance.
  • due to the corrosion resistance a mold having a long mold life can be obtained.
  • the processing tool also includes a drawing die for steel pipes and a plug for drawing.
  • Conventional cemented carbide has a problem of seizure.
  • the surface of the cemented carbide is coated with TiN.
  • CoWB (or Si) on the surface layer reduces the friction coefficient. As a result, the adhesion resistance is improved, and the life of the tool can be extended.
  • Examples of other processing tools include a hot extrusion die for an aluminum alloy, and the die is formed by using the sintered tool of the present invention in place of the conventional steel for hot forming, thereby increasing the extrusion temperature.
  • the die is formed by using the sintered tool of the present invention in place of the conventional steel for hot forming, thereby increasing the extrusion temperature.
  • adhesion resistance is improved and die life can be improved.
  • the cold forging punch for backward extrusion is used under severe conditions in which the frictional force with the work material with a large compression load is extremely high.
  • the present invention can be applied to prevent a breakage accident due to insufficient punch toughness, reduce seizure wear of a bearing portion of the punch, and improve tool life.
  • a commercially available tungsten carbide WC powder having an average particle size of 1.5 ⁇ m and a metal cobalt Co powder of 1.3 m were mixed, and 10% contained in WC and 20% contained in WC And two types of mixtures with Co.
  • the mixed powder is compression-molded, and the green compact is intermediately sintered, After being formed into a shape having a size of 30 mm in diameter and 30 mm in length after sintering, liquid phase sintering was performed at 1400 ° C. for 1 hour in a vacuum to obtain each sintered material.
  • boron carbide BC is used as a boron source for the heat treatment to prepare a boron-containing coating material.
  • a boron-containing coating liquid for coating was used.
  • the sintering material is immersed in a coating solution and then taken out using an immersion method as a coating method.
  • the sample was dried in a drier at ° C.
  • the above sintered material was used as it was without applying a boron-containing coating material.
  • Diffusion heat treatment was performed on the above-described example samples and comparative example samples under the following conditions.
  • the sample is held in a vacuum furnace, the furnace pressure is controlled to 40-80 Pa, and the sample is heated at a heating rate of 5 ° C, min, and heat treated at three levels of 12,000 ° C, 1250 ° C, and 1280 ° C.
  • the temperature was maintained for 3 hours, diffusion heat treatment was performed, and the furnace was ordered later.
  • the heat-treated sample was cut at a position of 15 mm in length, the cut surface was polished, and the cross-sectional structure was observed with a microscope. Hardness was measured.
  • FIG. 1 (A) the cross-sectional structure of the sample showed many clear white metallic Co phases in the WC particles in the structure photograph of the internal part.
  • FIG. 1 (B) shows a dense carbide WC indicating the structure of the surface layer of this sample, and almost no white metal phase is observed. A comparison of these structures shows that the metallic Co phase near the surface migrated to the inside during the heat treatment process.Comparing Fig. 1 (A) and Fig. 1 (B), In both cases, there was almost no difference in the particle size of the WC particles.
  • Fig. 2 (A) shows a microstructure photograph of the cross-sectional structure of the solid part and the surface layer part of Fig. 2 (B) of the sintered body that was coated by dipping in 9% coating solution of 4 and subjected to diffusion heat treatment with boron. Shown in the comparison From this figure, it can be seen from the figure that the surface layer (Fig. 2 (B)) becomes a whiter phase in the binder metal phase (Fig. 2 (A)) than the inner part (Fig. 2 (A)) in the diffusion heat treatment. It can be seen that the particle diameter of the hard particles (WC particles) hardly changed in both cases.
  • the structure of the untreated comparative example showed no significant structural change similar to Fig. 1 (A) both in the surface layer and inside.
  • the gradient region of hardness is also a diffusion region of boron B, and it is considered that the internal diffusion of boron B progressed by increasing the heat treatment temperature.
  • the main reason for the improvement of the surface layer hardness is that the distance between the particles on the surface layer side is reduced due to the decrease in the surface layer metal phase, and that the hardness improvement effect due to the formation of CoWB also contributes. Conceivable. As for the untreated product, of course, almost uniform hardness distribution was obtained.
  • the BC slurry concentration was set to 9%, 18%, and 24%.
  • Example 2 a mixed powder having a composition of WC-20% Co-0.7% Cr-0.4% V was prepared and compacted to obtain a compact.
  • the green compact was subjected to intermediate sintering, then cut into a cylindrical body having a diameter of 30 mm and a length of 30 mm, and similarly subjected to vacuum sintering at 1350 ° C for 1 hour and tested. Sintering material.
  • boron coating material a slurry-like coating liquid containing boron carbide B and C was used as in Example 1.
  • h-BN hexagonal boron nitride
  • the above-mentioned sintered material was subjected to two types of coating, that is, coating with a BC-containing slurry and, separately, coating with a BN-containing slurry-like coating solution.
  • the sintered material of WC-10% Co and WC-20% Co prepared in Example 1 was subjected to BN coating. After drying, each sample was subjected to a diffusion heat treatment at 1280 ° C for 3 hours.
  • Table 3 and Fig. 5 show that in the sample WC—20% Co—0.7% Cr—0.4% V using WC powder with an average particle size of 0.55 m belonging to the ultrafine particle system, With the BC coating treatment, the surface layer hardness has reached HV hardness of 2050, indicating the effect of diffusion heat treatment.
  • Both the BN-coated WC-10% Co and the WC-20% Co have a diffusion depth of 3-4 mm, which is smaller than that of Example 1, and the surface layer hardness is lower. You can see that it is. This is considered to be due to the fact that h-BN is a compound that is stable at high temperatures and therefore does not easily react with the metal phase.
  • the prepared gas is supplied to the heating furnace 1 from the cylinders 11, 12, and 13 via the flow meter 3 and the regulating valve 4.
  • a water ring pump 2 is connected to the heating furnace 1 so that the inside of the heating furnace can be set to a desired reduced pressure.
  • the two kinds of The sintered body was set and subjected to CVD treatment under the chemical vapor deposition conditions shown in the table below.
  • the thickness of the BC film on the surface of the sintered body after the treatment was confirmed to be about 12 to 15 m.
  • a desired coating layer thickness can be obtained by using a thermal CVD method or a laser CVD method in order to further increase the film thickness by the low pressure CVD process.
  • the cemented carbide used in general warm and hot regions has a WC average particle size of 3 ⁇ m or more, the so-called medium-grain force was evaluated using WC powder in the coarse-grain region.
  • a coating material was prepared using silicon carbide SiC as a silicon source for the heat treatment.
  • the method of adjustment was the same as in Example 1, and a 15% SiC-containing ethanol coating was prepared.
  • the surface of the sintered material was coated by an immersion method, dried, and subjected to diffusion heat treatment.
  • the heat treatment temperature was 1300 ° C X 3 Hr.
  • the comparative evaluation was also performed on the sample as it was without coating.
  • the heat-treated sample was cut at a length of 15 mm, the cut surface was polished, the cross-sectional structure was observed, and then the hardness was measured with a Vickers hardness tester while changing the surface force depth.
  • the distribution density of WC particles is up to the surface depth of about 2 mm.
  • the internal structure was clearly higher in the amount of binder metal inside.
  • the hardness is relatively low due to the use of coarse-grained WC, but the hardness of the surface layer is remarkably increased as compared with the internal part.
  • the diffusion depth of silicon is smaller than that of boron diffusion material when considered as the hardness gradient part. This is thought to be due to the difference in elemental characteristics between boron and silicon. However, it was confirmed that the diffusion movement of the binder metal showed the same behavior as that of boron. The fact that is given is a feature extremely useful as a tool applied to a high-temperature region.
  • the surface layer contains 0.01% to 2.0% by weight of boron B and Z or silicon Si, and contains hard particles having a higher content than the inner part.
  • the surface layer is hardened from the internal portion, and the internal portion can secure toughness, thereby providing a tool having excellent toughness and surface hardness.
  • the surface layer portion can substantially form a hardened surface from a hard particle phase, boron and Z or a silicon, a binder metal, a boride and a Z or a silicide phase.
  • the weight ratio of the iron group metal to the hard particles in the internal part can be adjusted in the range of 5:95 to 40:60.
  • the composition can be adjusted according to.
  • the method for manufacturing a sintered tool according to the present invention is characterized in that, after sintering from hard particles and a binder metal, a boron coating layer is formed on a dense sintered body, and diffusion heat treatment is performed.
  • the surface layer can be hardened while ensuring the toughness of the sintered body, and a sintered tool having surface hardness and toughness can be provided.
  • the production method is to prepare a sintered body into a desired shape, and then heat-treat the surface while the internal portion remains solid, thereby polishing the surface layer where the dimensional change of the heat-treated product is small. Since the amount is small, it can be used as a tool without reducing the hardness of the surface layer.

Abstract

A sintered tool, which has a surface layer portion containing boron B and/or silicon Si in an amount in a range of 0.010 to 2.0 wt %, wherein said surface layer portion contains hard particles such as WC in a content higher than that in the inner portion; and a method for producing the sintered tool which comprises compressing a mixed powder of the above hard particles and a binder metal such as Co to form a green compact having a desired shape, sintering the green compact, coating the surface of the resultant sintered compact with a boron and/or silicon applying agent, and subjecting the coated sintered compact to a heat treatment in vacuum wherein the coated compact is heated and kept within a temperature range which is lower than the solid phase temperature of the sintered compact and in which range a melt containing boron and/or silicon is formed in the sintered compact. In the above-mentioned heat treatment, boron and/or silicon in the boron and/or silicon coating layer is diffused into the surface layer portion, and a melt containing boron and/or silicon in the surface layer portion is diffused and moved into the inner portion, to thereby achieve the distribution density of hard particles in the surface layer portion of the sintered compact which is higher than that in the inner portion. The above sintered tool, wherein the above hard particles are bound via the above binder metal, exhibits the combination of an enhanced surface hardness and excellent toughness, which is achieved by the hardening without the growth of the hard particles.

Description

明 細 書  Specification
焼結工具とその製造方法  Sintering tool and its manufacturing method
技術分野  Technical field
[0001] 本発明は、タングステンカーバイド WCやチタンカーバイド TiC等の硬質粒子をコバ ルトゃニッケルなどの鉄系バインダ金属を介して結合した焼結工具とその製造方法 に関する。  The present invention relates to a sintered tool in which hard particles such as tungsten carbide WC and titanium carbide TiC are bonded via an iron-based binder metal such as cobalt nickel, and a method for producing the same.
背景技術  Background art
[0002] 焼結工具は、一般に、バインダとしての鉄族金属(例えばニッケル Niやコバルト Co )をバインダにして、硬質粒子、例えば、炭化物(例えば、タングステンカーバイド WC 、チタンカーバイド TiC)、窒化物、あるいは炭窒化物の微細粒子を分散させて構成 される焼結体を用いた工具であり、焼結体が硬さと耐熱性、耐衝撃性において優れ ていることから、切削工具ゃ塑性加工具、土木鉱山用の削岩ビット等に広く使用され ている。  [0002] A sintered tool generally uses an iron group metal (for example, nickel Ni or cobalt Co) as a binder, and forms hard particles, for example, carbide (for example, tungsten carbide WC, titanium carbide TiC), nitride, Alternatively, it is a tool using a sintered body composed of fine carbonitride particles dispersed.Since the sintered body is excellent in hardness, heat resistance, and impact resistance, cutting tools ゃ plastic working tools, Widely used for rock drill bits for civil mines.
[0003] 焼結工具は、相対的に軟質で安定な耐熱性のバインダ金属相と、硬さが高 、微細 な硬質粒子との 2相焼結体であることから、焼結体中の硬質粒子の含有量を高めて バインダ金属を減らすと、焼結体は、表面硬さが高くなるが靭性が低下し、他方、硬 質粒子の含有量を低くしてバインダ金属の含有量を大きくすると、焼結体は、靭性が 高くなるが表面硬さが相対的に低下し耐摩耗性が低下するようになる。また、焼結体 の硬質粒子の粒径を小さくするほど、表面硬さは増すが靭性は低下する。このような 焼結体の性質から、焼結体ないしサーメットは、一般には、その用途に対応してバイ ンダ金属と硬質粒子との組成や硬質粒子の粒度分布を最適に調節して利用されて いる。  [0003] A sintered tool is a two-phase sintered body composed of a relatively soft and stable heat-resistant binder metal phase and high hardness and fine hard particles. When the binder metal is reduced by increasing the content of particles, the sintered body has a higher surface hardness but lower toughness.On the other hand, when the content of hard particles is reduced and the content of the binder metal is increased, On the other hand, the sintered body has a high toughness but a relatively low surface hardness and a low wear resistance. Further, as the particle size of the hard particles of the sintered body decreases, the surface hardness increases, but the toughness decreases. Due to such properties of the sintered body, the sintered body or cermet is generally used by appropriately adjusting the composition of the binder metal and the hard particles and the particle size distribution of the hard particles according to the intended use. I have.
[0004] し力しながら、硬さと靭性との両方の点で優れた焼結体も要求されており、これに関 する技術も知られている。特許文献 1は、炭化物とバインダ金属から圧縮成形した圧 粉体をガス浸炭雰囲気中で加熱昇温して、表面を浸炭して、浸炭材を真空中で加熱 して焼結することを開示しており、この技術は、表面に硬質層を形成して、内質部は 高靭性で表層部を著しく硬化したサーメットとするものである。 [0005] 特許文献 1 :特公昭 59 - 17176号 [0004] Also, a sintered body that is excellent in both hardness and toughness is required, and techniques related to this are also known. Patent Document 1 discloses that a compact compacted from a carbide and a binder metal is heated and heated in a gas carburizing atmosphere, the surface is carburized, and the carburized material is heated in a vacuum and sintered. In this technique, a hard layer is formed on the surface, and the inner portion is made of a cermet with high toughness and a significantly hardened surface layer. Patent Document 1: Japanese Patent Publication No. 59-17176
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、上記の浸炭を伴う焼結法は、硬化層深さが小さ 、ので、硬質合金を 研削加工して使用する場合には、硬化層を除去するので、適当ではなかった。特に[0006] However, the sintering method involving carburization described above is not suitable because the hardened layer is small when the hard alloy is used by grinding because the hardened layer depth is small. Was. In particular
、 Ni系又は Co系の焼結工具では、浸炭処理により、黒鉛ィ匕するので、力えって、軟 化するなどの制限があった。 On the other hand, in Ni-based or Co-based sintered tools, there is a restriction such as softening and softening, because graphite tools are used for carburizing.
[0007] そこで、本発明の第 1の目的は、硬質焼結体を基礎にして高融点化合物粒子の粒 子を成長させることなく硬化させた高い表面硬さと優れた靭性とを具備した焼結工具 を提供しょうとするものである。 [0007] Therefore, a first object of the present invention is to provide a sintered body having high surface hardness and excellent toughness obtained by hardening the particles of high melting point compound particles without growing the particles based on the hard sintered body. They want to provide tools.
[0008] 本発明は、さらに焼結体を表面硬化することにより表面硬さと靭性とを具備した焼結 工具の製造方法を提供することを第 2の目的とするものである。本発明は、特に、製 造工程での寸法変化の小さい表面硬化処理を含む製造方法を提供しょうとするもの である。 [0008] A second object of the present invention is to provide a method for producing a sintered tool having surface hardness and toughness by hardening the surface of a sintered body. An object of the present invention is to provide a manufacturing method including a surface hardening treatment with a small dimensional change in the manufacturing process.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の焼結工具は、硬質粒子と鉄系バインダ金属とから成り、表層部にはホウ素 Bおよび/またはケィ素 Siを重量で 0. 010— 2. 0%の範囲で含有させて、バインダ金 属のホウ化物及び/又はケィ化物を分布させて、且つ、表層部を、内質部よりも硬質 粒子の高い分布密度として高硬度にし、他方の内質部にはノインダ金属によって高 い靭性を確保するもので、これにより表面硬さと内部靭性に優れた焼結工具とするの である。 [0009] The sintered tool of the present invention comprises hard particles and an iron-based binder metal, and has a surface layer containing boron B and / or silicon silicon in a weight range of 0.010 to 2.0%. Therefore, boride and / or silicate of the binder metal is distributed, and the surface layer is made to have a high hardness as a higher distribution density of hard particles than the inner part, and the other inner part is made of a nodder metal. This ensures high toughness, which results in a sintered tool with excellent surface hardness and internal toughness.
発明の効果  The invention's effect
[0010] 本発明の焼結工具では、硬質粒子とバインダ金属とから成る焼結体を所望形状で 造り、焼結体表面にホウ素および/またはケィ素被覆層を形成して、真空中で熱処理 を行ない表層部にホウ素および/またはケィ素を含む低融点の共晶融液を形成する ので、熱処理過程は、共晶融液を、表層部から内部に向けて拡散移動させ、これに より、表層部はバインダ金属の含有量を低減させ硬質粒子の分布密度を高めるので ある。これにより、ホウ素および/またはケィ素が鉄族金属との反応により形成したホウ 化物および/またはケィ化物相(ホウケィ化複合物となる場合もある)と、硬質粒子の 高密度の分布により、硬さの大きい表層部を厚い層に形成することができて、表層部 の硬化と内質部の高い靭性とを兼備した工具を形成するのである。 [0010] In the sintered tool of the present invention, a sintered body composed of hard particles and a binder metal is formed in a desired shape, a boron and / or silicon coating layer is formed on the surface of the sintered body, and heat treatment is performed in a vacuum. Is performed to form a low-melting eutectic melt containing boron and / or silicon on the surface layer, so that the heat treatment process diffuses and moves the eutectic melt from the surface layer toward the inside. The surface layer reduces the content of binder metal and increases the distribution density of hard particles. is there. Due to this, the boron and / or silicon forms a boride and / or silicide phase (which may be a boriding compound) formed by the reaction with the iron group metal, and the hard particles have a high density distribution. The large surface layer can be formed into a thick layer, and a tool that combines the hardening of the surface layer and the high toughness of the internal part is formed.
[0011] 本発明の製造方法においては、予め焼結して緻密化した所望の形状の焼結体の 表面に所定の被膜層を形成して熱処理するのであり、しかも、熱処理が、内質部に っ 、ては融液が生じな 、融点以下 (な 、し共晶点以下)の温度での加熱保持である ので、従来の液相焼結とは異なり、熱処理中の変形量が小さい。表層部は、ホウィ匕 物および/またはケィ化物相の析出と硬質粒子の高い分布密度とを生じ、これらによ り、硬さの高い表層部を形成することができる。  [0011] In the manufacturing method of the present invention, a predetermined coating layer is formed on the surface of a sintered body having a desired shape which has been sintered and densified in advance, and heat treatment is performed. Therefore, unlike the conventional liquid-phase sintering, the amount of deformation during heat treatment is small, because heating and holding are performed at a temperature below the melting point (below the eutectic point) where no melt is generated. In the surface layer portion, precipitation of the enamel and / or silicate phase and a high distribution density of the hard particles are caused, whereby a surface layer portion having high hardness can be formed.
以下、本発明を具体例に基づき、詳細に説明する。  Hereinafter, the present invention will be described in detail based on specific examples.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の実施例に係る焼結工具の製造方法により、細粒の硬質粒子 (粒径 1一 2 m)を用いて、 B Cの 9%塗液に浸漬して被覆し熱処理した焼結体の断面金属組  FIG. 1 shows a method for manufacturing a sintered tool according to an embodiment of the present invention, in which fine hard particles (particle diameter: 1 to 2 m) are immersed in a 9% BC coating solution for coating. Cross section of sintered body after heat treatment
4  Four
織についての金属顕微鏡写真で、(A)は内質部を、(B)は表層部を、それぞれ示す  In the metal micrograph of the weave, (A) shows the inner part and (B) shows the surface part, respectively.
[図 2]本発明の実施例に係る焼結工具の製造方法により、粗粒の硬質粒子 (粒径 3— 6 m)を用いて、 B Cの 9%塗液に浸漬して被覆し熱処理した焼結体の断面金属組 [FIG. 2] By a method for manufacturing a sintered tool according to an example of the present invention, coarse hard particles (particle diameter: 3 to 6 m) were immersed in a 9% coating solution of BC, coated and heat-treated. Cross section metal set of sintered body
4  Four
織についての金属顕微鏡写真で、(A)は内質部を、(B)は表層部を、それぞれ示す  In the metal micrograph of the weave, (A) shows the inner part and (B) shows the surface part, respectively.
[図 3]本発明の実施例 1に係る製造方法により製造した焼結体の表面力 深さ方向で の硬さの変化を示す図。 FIG. 3 is a view showing a change in hardness in a surface force depth direction of a sintered body manufactured by a manufacturing method according to Example 1 of the present invention.
[図 4]別の実施例 2に係る図 3の同様図。  FIG. 4 is a view similar to FIG. 3 according to another embodiment 2.
[図 5]さらに別の実施例 3に係る図 3同様図。  FIG. 5 is a view similar to FIG. 3, according to yet another embodiment 3.
[図 6]被膜層を形成する CVD装置の概略図。  FIG. 6 is a schematic view of a CVD apparatus for forming a coating layer.
[図 7]本発明の実施例 4に係る製造方法により製造した焼結体の表面力 深さ方向で の硬さの変化を示す図。  FIG. 7 is a diagram showing a change in hardness in a surface force depth direction of a sintered body manufactured by a manufacturing method according to Example 4 of the present invention.
発明を実施するための最良の形態 [0013] 本発明においては、焼結工具は、内質部とこれを取り囲むように熱処理により形成 した表層部とから一体に形成されている力 基本的には、内質部は、硬質粒子とこれ ら粒子を結合するバインダ金属を含んでおり、表層部は、硬質粒子と、ホウ素 Bおよ び/またはケィ素 Siを必然的に含んでいる。表層部は、バインダ金属を含んでも良い が内質部より少ない含有量である力、または実質的には含まないのが、表面硬さを高 めるために好まし 、ものである。 BEST MODE FOR CARRYING OUT THE INVENTION [0013] In the present invention, the sintered tool has a force integrally formed from an inner part and a surface layer formed by heat treatment so as to surround the inner part. Basically, the inner part is formed of hard particles and hard particles. It contains the binder metal that binds these particles, and the surface layer necessarily contains hard particles and boron B and / or silicon silicon. The surface layer portion may contain a binder metal but has a lower content than the internal portion, or preferably does not substantially contain it, in order to increase the surface hardness.
[0014] 焼結工具中の硬質粒子には、炭化物、窒化物若しくは炭窒化物を含み、特に、炭 化物として、 WC、 TiC、 TaC, NbC, VC、 Cr C、窒化物として TiN、 TaN、 NbN、  [0014] The hard particles in the sintered tool include carbides, nitrides, or carbonitrides. In particular, as carbides, WC, TiC, TaC, NbC, VC, CrC, and nitrides such as TiN, TaN, NbN,
2 3  twenty three
VN、 Cr N、 ZrN力 少なくとも 1種又は 2種以上が利用される。  VN, CrN, ZrN force At least one kind or two or more kinds are used.
2  2
[0015] 他方のバインダ金属は、鉄族金属、即ち、 Fe、 Ni、 Coから少なくとも 1種が選ばれ る。耐食性と耐熱性、耐酸ィ匕性との点から、好ましくは、 Ni又は Coが利用できる。 Ni と Coとは、表層部中の Bを固溶し、 WCの共存下で、その硬質のホウ化物 NiWB, Co WBを形成して表面硬化に寄与する。ケィ素 Siの場合は Niと Coとは、表層部中の Si を固溶し、 WCの共存下で、その硬質のケィ化物 NiWSi , CoWSiを形成して表面  [0015] The other binder metal is at least one selected from iron group metals, that is, Fe, Ni, and Co. From the viewpoints of corrosion resistance, heat resistance, and acid resistance, Ni or Co can be preferably used. Ni and Co form a solid solution of B in the surface layer and, in the presence of WC, form their hard borides, NiWB and CoWB, and contribute to surface hardening. In the case of silicon silicon, Ni and Co form a solid solution of Si in the surface layer and form the hard silicide NiWSi, CoWSi in the presence of WC to form a surface.
4 4  4 4
硬化に寄与する。  Contributes to hardening.
[0016] 内質部にっ 、ては、硬質粒子とバインダ金属と焼結体であり、バインダ金属と硬質 粒子との含有量の比は、 5 : 95力ら 40 : 60までの範囲〖こある。硬質粒子の含有量比 力 5 : 95より低いと、バインダ金属が過小で、焼結体が形成できない。この含有量比 力 40 : 60より大きいと、硬質金属が少なぐ焼結体は十分に硬くすることができない  [0016] The inner part is a sintered body composed of hard particles, a binder metal, and a sintered body. The content ratio of the binder metal to the hard particles is in the range of 5:95 to 40:60. is there. If the content ratio of the hard particles is lower than 5:95, the binder metal is too small to form a sintered body. If the content ratio is greater than 40:60, the sintered body with less hard metal cannot be sufficiently hardened
[0017] バインダ金属と硬質粒子との含有量の比は、好ましくは、 5 : 95から 30 : 70の範囲に ある。この含有量の比は、焼結工具の用途に依存して選択されるが、一般には、表面 硬さと共に、靭性、特に、耐衝撃性を要求するような用途においては、上記配合量範 囲の中で、硬質粒子を減らしてバインダ金属の含有量比が高ぐ調製される。他方、 表面硬さと耐摩耗性を特に要求する用途には、硬質粒子の含有量比を上記の含有 量の範囲で高めておく。 [0017] The content ratio of the binder metal to the hard particles is preferably in the range of 5:95 to 30:70. The ratio of this content is selected depending on the application of the sintering tool. However, in general, in an application requiring toughness, particularly impact resistance, together with the surface hardness, the above-described mixing amount range is used. Among them, the hard particles are reduced and the content ratio of the binder metal is increased. On the other hand, for applications requiring particularly high surface hardness and abrasion resistance, the content ratio of the hard particles should be increased within the above range.
[0018] 他方、焼結工具の表層部は、後述の如ぐ上記配合の焼結体の熱処理過程で、焼 結体の表面力 ホウ素 Bおよび/またはケィ素 Siを拡散させて形成されたホウ素およ び/またはケィ素 Si含有層が利用される。 On the other hand, the surface layer portion of the sintered tool is formed by diffusing boron B and / or silicon Si during the heat treatment of the sintered body having the above-described composition as described later. And And / or silicon-containing layers are utilized.
[0019] 本発明においては、この表層部は、ホウ素 Bまたはケィ素 Siを単独または合計重量 で、 0. 010— 2. 0%の範囲を含むものであり、表層部は、内質部よりも硬質粒子の 分布密度を高くされている。特に、表層部のホウ素またはケィ素含有量は、 0. 050— 1. 0%の範囲が好ましい。ホウ素およびケィ素の両者を含む場合は合計量で上記範 囲にあるのが好ましい。 [0019] In the present invention, the surface layer contains boron B or silicon Si alone or in a total weight range of 0.010 to 2.0%. Also, the distribution density of hard particles is increased. In particular, the content of boron or silicon in the surface layer is preferably in the range of 0.050 to 1.0%. When both boron and silicon are contained, the total amount is preferably in the above range.
[0020] ノインダ金属は内質部より低減させている。ホウ素 Bまたはケィ素 Siの含有量を 0.  [0020] Noinder metal is reduced from the inner part. Reduce the content of boron B or silicon Si to 0.
010— 2. 00%とするのは、表層部の硬さを確保するためであり、ホウ素またはケィ素 0. 010%未満では、拡散熱処理中に表層部から内部へのバインダ金属の拡散移動 が不十分となり、他方、 2. 00%を越えると、表層部は、バインダ金属相の内部拡散 に伴う体積変化に追随できず、拡散熱処理中に表面クラックが発生しやすくなる。特 に、ホウ素またはケィ素含有量を 0. 050— 1. 0%とすることにより、表層部から内部 へのバインダ金属の拡散を高めることができ、さらに、表面クラック等を有効に防止で きる効果がある。これにより、表層部は、内質部に比較して、バインダ金属含有量を相 対的に少なくされ、硬質粒子の含有量を高くしてある。これにより、互いに隣接する硬 質粒子間の平均間隔を小さくすることができ、これはまた、体積で見積もると、硬質粒 子の分布密度は、内質部より高くされており、高密度の硬質粒子によって、表面硬さ 力 内質部より高くされている。  The content of 010-2.00% is to secure the hardness of the surface layer. If the content of boron or silicon is less than 0.010%, the diffusion movement of the binder metal from the surface layer to the inside during the diffusion heat treatment. On the other hand, if it exceeds 2.00%, the surface layer cannot follow the volume change accompanying the internal diffusion of the binder metal phase, and surface cracks are likely to occur during the diffusion heat treatment. In particular, by setting the boron or silicon content to 0.050-1.0%, the diffusion of the binder metal from the surface layer to the inside can be increased, and the surface crack can be effectively prevented. effective. As a result, the surface layer portion has a relatively low binder metal content and a high hard particle content as compared with the internal portion. This makes it possible to reduce the average spacing between adjacent hard particles, which is also, by volume, the distribution density of the hard particles being higher than that of the inner part, and Due to the particles, the surface hardness is higher than the inner part.
[0021] 硬質粒子の分布密度は、表層部中の表面近くで最も高くして、表層部の深さ方向 に向けて軽減し、内質部の分布に近づく。このような硬質粒子の傾斜分布に伴って、 ノ^ンダ金属の含有量は、表層部で内質部よりも低くされて、硬さ分布も表面近傍か ら内質部に向けて低下するように傾斜させて 、る。  [0021] The distribution density of the hard particles is highest near the surface in the surface layer portion, is reduced in the depth direction of the surface layer portion, and approaches the distribution of the internal portion. With such a gradient distribution of hard particles, the content of the solder metal is made lower in the surface layer than in the inner part, and the hardness distribution also decreases from near the surface to the inner part. And incline.
[0022] バインダ金属元素の含有量は、表層部の表面力 深さ 0. 5mmまでの範囲での平 均値で、重量で、 2%以下とするのが好ましい。このようにして、本発明の工具の表層 部は、実質的に、硬質粒子相とホウ化物および Zまたはケィ化物相とから成り、硬質 粒子とホウ素および Zまたはケィ素化合物の凝集による硬化により、工具表面に高い 表面硬さが得られる。  [0022] The content of the binder metal element is preferably an average value within a surface force depth of 0.5 mm of the surface layer portion, and is preferably 2% or less by weight. In this way, the surface layer of the tool of the present invention is substantially composed of the hard particle phase and the boride and Z or silicate phases, and is hardened by the aggregation of the hard particles and boron and Z or the silicon compound. High surface hardness can be obtained on the tool surface.
[0023] 本発明の焼結工具においては、焼結工具中の硬質粒子の平均粒径は、好ましくは 、 0. 2— 15 /z mの範囲にあるものが利用される。硬質粒子を細粒ィ匕するほど、硬さは 大きくなるが、 0. より小さいと、硬質粒子相の結合炭素と窒素の変化量が大き くなり、表面硬度の面での安定性が維持できなくなる。他方、 15 mを越えると、耐 摩耗性が低下するで避けるのがよい。表層部及び内質部の粒径は、工具の用途'形 状によって異なるけれども、特に、平均粒径で、 0. 5— 10 /z mの範囲が一層好ましく 利用される。 In the sintered tool of the present invention, the average particle size of the hard particles in the sintered tool is preferably , 0.2-15 / zm. The finer the hard particles, the greater the hardness, but if it is less than 0.1, the amount of change in the bound carbon and nitrogen of the hard particle phase increases, and the stability in terms of surface hardness can be maintained. Disappears. On the other hand, if it exceeds 15 m, it is better to avoid it because the wear resistance decreases. Although the particle size of the surface layer portion and the internal portion varies depending on the application of the tool and the shape, in particular, the average particle size in the range of 0.5-10 / zm is more preferably used.
[0024] この硬質粒子の粒度分布は、本発明の焼結工具の表層部と内質部とでは、特に差 異を設けないで、実質的に同じとしている。表層部においては、前述のように、バイン ダ金属含有量を、低下させており、表層部の組織は、微細な硬質粒子が緻密に分布 しており、表層部が、内質部より、互いに隣接する硬質粒子の間の平均間隔が小さく することができる。このような表層部微細組織力、ホウ化物を含め硬質粒子から成る 表層部の硬さを高め、摩擦係数を減じ、耐摩耗性と耐熱強度を高めるのに役立って いる。  [0024] The particle size distribution of the hard particles is substantially the same between the surface layer portion and the internal portion of the sintered tool of the present invention without any particular difference. In the surface layer, as described above, the binder metal content is reduced, and the structure of the surface layer is such that fine hard particles are densely distributed, and the surface layer is closer to each other than the inner part. The average spacing between adjacent hard particles can be reduced. Such surface layer microstructure force and the hardness of the surface layer composed of hard particles including borides are increased, the friction coefficient is reduced, and the wear resistance and the heat resistance are enhanced.
[0025] この表層部においては、上記のように、硬質粒子と共にホウ素を含む力 ホウ素は、 バインダ金属と化合して、鉄族金属ホウ化物を形成し、ホウ化物は、硬質粒子間に析 出相として存在して、鉄族ホウ化物はそれ自体が硬ぐ従って、表層部には、鉄族ホ ゥ化物の寄与による硬化が認められる。ホウ化物としては、 WCの共存下で、 FeWB、 NiWB、又は CoWBを含む。ケィ化物としては、 WCの共存下で、 NiWSi , CoWSi  [0025] In the surface layer, as described above, the force containing boron together with the hard particles is combined with the binder metal to form an iron group metal boride, and the boride precipitates between the hard particles. Existing as a phase, the iron group boride itself is hard, so that the surface layer is hardened by the contribution of the iron group boride. Borides include FeWB, NiWB, or CoWB in the presence of WC. NiWSi, CoWSi in the presence of WC
4 4 を含む。  4 Including 4
[0026] 焼結工具は、上述のように、硬質粒子に、 WC若しくは TiC、又はこれらの混合物を 使用し、バインダ金属には、 Ni又は Coを利用することができる。工具の一例として、 硬質粒子を WCとし、バインダ金属を Coとするとき、内質部は、主相として微細な粒 子相の WC相と金属 Co相(Co固溶体)とから、所要の配合量で決まる組成で構成さ れるが、表層部は、 WC相と、ホウ化物相として、微細に析出した CoWB相と (もし Co 相が存在するとすれば、極く少量の Co固溶体相)を含んでいる。また、ケィ化物相と して、微細に析出した CoSi相、 WSi層, CoWSi層を表層部に含んでいる。  As described above, the sintering tool uses WC or TiC or a mixture thereof for the hard particles, and Ni or Co for the binder metal. As an example of a tool, when the hard particles are WC and the binder metal is Co, the required amount of the internal part is determined by the fine particle phase WC phase and the metal Co phase (Co solid solution) as the main phase. The surface layer contains a WC phase, a finely precipitated CoWB phase as a boride phase (and a very small amount of a Co solid solution phase, if a Co phase is present). I have. In addition, as a silicide phase, a finely precipitated CoSi phase, a WSi layer, and a CoWSi layer are included in the surface layer.
2 2 4  2 2 4
[0027] 本発明の WC— Co系焼結工具の表面硬さは、内質部の硬さにも依存するが、内質 部の表面硬さよりヴイツカース硬さ Hv700以上、特に、 HvlOOO以上、通常、 Hvl40 0— 1800の範囲であり、ないしはそれ以上、例えば、 Hv2300を有するものが好まし い。 [0027] The surface hardness of the WC-Co-based sintered tool of the present invention also depends on the hardness of the internal part, but it is higher than the Vitzkers hardness of Hv700, especially HvlOO, usually higher than the surface hardness of the internal part. , Hvl40 Those having a range of 0 to 1800 or higher, for example, having Hv2300 are preferred.
[0028] 表層部の厚みは、一般に、表面から内部へ向けての硬さ分布曲線の直線部力 内 質部の平均硬さに到達する位置までの距離とすると、表層部厚みは、 2mm以上、好 ましくは、 4mm以上を確保する。  [0028] In general, the thickness of the surface layer portion is defined as a distance from a linear portion of the hardness distribution curve from the surface to the inside toward a position where the average hardness of the internal portion is reached, and the thickness of the surface portion is 2 mm or more. , Preferably, 4 mm or more.
[0029] 本発明の表層部は、このようにして、硬質粒子の高密度化と鉄族金属ホウ化物の共 存により、表面硬化を果たし、内質部は、硬質粒子とバインダ金属との所要の配合に より所要の靭性と硬さ、強度を確保することができるのである。  [0029] In this way, the surface layer portion of the present invention achieves surface hardening due to the densification of hard particles and the coexistence of iron group metal boride, and the internal portion is formed by the hard particles and the binder metal. The required toughness, hardness and strength can be ensured by the blending of.
[0030] 本発明の焼結工具の製造方法について、先ず、焼結体を造るのであるが、焼結体 は、硬質粒子と鉄族のバインダ金属との混合粉末を圧縮成形して所望形状の圧粉体 とし、次いで、圧粉体を常用の液相焼結により通常の焼結体にする。これにより、緻 密化した均一な焼結体を得る。この焼結方法は、従来の方法を利用して、全体が焼 結される。焼結後には、焼結体は、適宜、所望形状に精密に切削、研削、放電加工 などの機械加工をすることもできる。  [0030] Regarding the method for manufacturing a sintered tool of the present invention, first, a sintered body is produced. The sintered body is formed into a desired shape by compression molding a mixed powder of hard particles and an iron group binder metal. The green compact is then formed into a normal sintered body by ordinary liquid phase sintering. Thereby, a dense and uniform sintered body is obtained. This sintering method is entirely sintered using a conventional method. After sintering, the sintered body can be appropriately machined such as cutting, grinding, and electric discharge machining into a desired shape.
[0031] 次いで、この焼結体の表面には、表面にホウ素又はケィ素被覆層を形成する。この 種の被覆層を形成するにホウ素を含むホウ素塗剤を被覆させて、熱処理では、ホウ 素被覆層を有する焼結体を加熱して、ホウ素またはケィ素に富む表層部を形成する ものである。  Next, on the surface of the sintered body, a boron or silicon coating layer is formed on the surface. This kind of coating layer is coated with a boron coating agent containing boron, and in the heat treatment, the sintered body having the boron coating layer is heated to form a surface layer portion rich in boron or silicon. is there.
[0032] この熱処理においては、上記のホウ素被覆層を有する焼結体を、真空中または不 活性ガス好ましくは窒素ガス雰囲気中で、上記焼結体内質部における液相温度より 低ぐ且つ、該焼結体中のホウ素含有相の共晶温度より高い温度の範囲で所望時間 の間加熱保持する。熱処理中に、ホウ素被覆層中のホウ素を焼結体の表面から内部 に拡散させて、ホウ素に富む表層部を形成し、表層部中の融液を内質部に拡散移動 させ、焼結体の表層部の硬質粒子の分布密度を内質部よりも高くし、冷却後には、 表層部には、ホウ素またはケィ素を、ノインダ金属を含むホウ化物および Zまたはケ ィ化物相として析出させ、硬化した表層部を有する焼結工具が得られる。  [0032] In this heat treatment, the sintered body having the boron coating layer is cooled in a vacuum or an inert gas atmosphere, preferably a nitrogen gas atmosphere, to a temperature lower than the liquidus temperature in the internal body of the sintered body. Heating and holding for a desired time in a temperature range higher than the eutectic temperature of the boron-containing phase in the sintered body. During the heat treatment, the boron in the boron coating layer is diffused from the surface of the sintered body into the interior to form a boron-rich surface layer, and the melt in the surface layer is diffused and moved to the inner part, and the sintered body is diffused. The distribution density of the hard particles in the surface layer portion is made higher than that in the inner portion, and after cooling, boron or silicon is precipitated on the surface portion as a boride containing noinder metal and Z or a silicide phase, A sintered tool having a hardened surface layer is obtained.
[0033] 本発明の焼結工具の製造方法の詳細について、上記焼結工具について述べたよ うに、硬質粒子には、炭化物、窒化物若しくは炭窒化物を含み、特に、炭化物として 、 WC、 TiC、 TaC, NbC, VC、 Cr C、窒化物として TiN、 TaN、 NbN、 VN、 Cr N [0033] As to the details of the method for producing a sintered tool of the present invention, as described above for the sintered tool, the hard particles include carbide, nitride or carbonitride, and particularly as carbide. , WC, TiC, TaC, NbC, VC, Cr C, TiN, TaN, NbN, VN, Cr N as nitride
2 3 2 2 3 2
、 ZrN力 少なくとも 1種又は 2種以上が利用される。他方のバインダ金属は、鉄族金 属、即ち、 Fe、 Ni、 Coから少なくとも 1種が選ばれる。好ましくは、 Niと Coが利用でき る。 , ZrN force At least one or two or more are used. The other binder metal is at least one selected from iron group metals, that is, Fe, Ni, and Co. Preferably, Ni and Co can be used.
[0034] バインダ金属としての Ni又は Coが Bまたは Siを含有すると、 Ni— Bまたは Ni— Si合 金または Co— Bまたは Co— Si合金な!/ヽし、 Ni— W— Bまたは Ni— W— Si合金または Co W— Bまたは Co— W— Si合金は、その共晶温度が、 Mまたは Coと上記炭化物との 合金系固相線温度より低 、ので、 Ni— W— Bまたは Ni— W— Si合金または Co— W— B または Co— W— Si合金を熱処理に利用して、後述の如ぐ表層部での硬質粒子の分 布を内質部より高くして、表面硬化するのに利用される。  [0034] When Ni or Co as a binder metal contains B or Si, it becomes Ni—B or Ni—Si alloy or Co—B or Co—Si alloy! / — And Ni—W—B or Ni— Since the eutectic temperature of the W—Si alloy or Co W—B or Co—W—Si alloy is lower than the solidus temperature of the alloy system of M or Co and the above carbide, Ni—W—B or Ni — W—Si alloy or Co— W—B or Co—W—Si alloy is used for heat treatment to harden the surface by making the distribution of hard particles in the surface layer higher than the inner part as described later. Used for
[0035] 硬質粒子の原料とバインダ金属原料の粉末とは、硬質粒子とバインダ金属の含有 量の比は、好ましくは、 5 : 95ないし 30 : 70の範囲にある。この含有量の比は、焼結ェ 具の用途に依存して選択されるが、一般には、表面硬さと共に、靭性、特に、耐衝撃 性を要求するような用途においては、上記配合量範囲の中で、硬質粒子を減らして バインダ金属の含有量比が高ぐ調製される。他方、表面硬さと耐摩耗性を特に要求 する用途には、硬質粒子の含有量比を上記の含有量の範囲で高めておく。  [0035] The ratio of the content of the hard particles to the content of the binder metal in the raw material of the hard particles and the powder of the binder metal raw material is preferably in the range of 5:95 to 30:70. The ratio of this content is selected depending on the use of the sintering tool. However, in general, in the use requiring toughness, particularly impact resistance, together with the surface hardness, the above-mentioned compounding range is used. Among them, hard particles are reduced and the content ratio of the binder metal is increased. On the other hand, for applications requiring particularly high surface hardness and abrasion resistance, the content ratio of the hard particles is increased within the above range.
[0036] 原料の硬質粒子は、平均粒径で、 0. 2— 15 mの範囲が好ましく利用され、好ま しくは、 0. 5— 10 mの範囲である。  [0036] The raw material hard particles preferably have an average particle diameter in the range of 0.2 to 15 m, and more preferably in the range of 0.5 to 10 m.
[0037] 上記原料硬質粒子を使用して、焼結と熱処理により、製品工具中の表層部及び内 質部の粒径が得られるが、工具の用途 *形状によって異なるけれども、特に、焼結ェ 具中の硬質粒子の平均粒径は、平均粒径で、 0. 2— 15 mの範囲が利用される。 上述の如ぐ硬質粒子を細粒ィ匕するほど、表面硬さは大きくなる力 0. より小さ いと、硬質粒子相の結合炭素と窒素の変化量が大きくなり、表面硬度の面での安定 性が維持できなくなる。他方、 15 mを越えると、耐摩耗性が低下するので避けるの がよい。表層部及び内質部の粒径は、工具の用途 *形状によって異なるけれども、特 に、平均粒径で、 0. 5— 10 mの範囲が一層好ましく利用される。  [0037] By using the above raw material hard particles, sintering and heat treatment can obtain the particle size of the surface layer portion and the internal portion of the product tool. The average particle size of the hard particles in the tool is in the range of 0.2 to 15 m in average particle size. As described above, the finer the hard particles, the greater the surface hardness. If the force is smaller than 0, the change in the amount of bound carbon and nitrogen in the hard particle phase increases, and the stability in terms of surface hardness is increased. Cannot be maintained. On the other hand, if it exceeds 15 m, it is better to avoid it because wear resistance is reduced. The particle size of the surface layer portion and the internal portion varies depending on the use of the tool * shape, but in particular, the range of 0.5 to 10 m in average particle size is more preferably used.
[0038] 硬質粒子とバインダ金属との混合粉は、所望形状の圧粉体に圧縮成形され、圧粉 体は、従来の焼結部品と同様に、焼結される。焼結は、予備焼結した後本焼結を行 ない緻密な焼結体を得るが、これは、例えば、従来の液相焼結を適用することができ る。 [0038] The mixed powder of the hard particles and the binder metal is compression-molded into a green compact having a desired shape, and the green compact is sintered similarly to a conventional sintered component. For sintering, perform main sintering after preliminary sintering. Although a dense sintered body is obtained, conventional liquid phase sintering can be applied, for example.
[0039] 本発明のホウ素またはケィ素被覆工程においては、ホウ素またはケィ素を含む塗 剤を焼結体の表面に塗布するが、このためのホウ素被覆材は、ホウ素化合物を含み 、ホウ素の酸化物、窒化物又は炭化物、又は、これらの前駆体、例えば、炭酸塩や水 酸化物、を含む。例えば、 SiB、 BN、 B C、 B O、 H BO、ボラン、又は有機ホウ素  [0039] In the boron or silicon coating step of the present invention, a coating material containing boron or silicon is applied to the surface of the sintered body. The boron coating material for this purpose contains a boron compound and oxidizes boron. Materials, nitrides or carbides, or precursors thereof, for example, carbonates and hydroxides. For example, SiB, BN, BC, BO, HBO, borane, or organoboron
6 4 2 3 3 3  6 4 2 3 3 3
化合物等を塗材に使用することができる。ケィ素被覆材としては、ケィ素化合物を含 み、炭化物又は窒化物、硼化物、又はこれらの前駆体、あるいは金属間化合物、等 を含む。より具体的には、 Si, SiH4, SiC14, SiC, Si3N4, SiB6,又は CoSi2, MoSi2, CrSi2, WSi2,又はシラン類、ポリシランポリマー類、その他有機ケィ素化合物等が挙 げられる。  Compounds and the like can be used for the coating material. The silicon coating material includes a silicon compound, and includes a carbide or nitride, a boride, a precursor thereof, or an intermetallic compound. More specifically, there are Si, SiH4, SiC14, SiC, Si3N4, SiB6, or CoSi2, MoSi2, CrSi2, WSi2, or silanes, polysilane polymers, and other organic silicon compounds.
[0040] ホウ素被覆材は、これらのホウ素化合物を含んで、焼結体に表面に被覆する、塗材 は、この表面に直接適用されても良いが、被覆の確実性から、好ましくは、これらのホ ゥ素化合物を水又は非水溶剤中に懸濁させてスラリ状の塗液に調製して、上記焼結 体の表面に塗布する。塗布は、例えば、塗液を焼結体の表面に刷毛塗りする方法、 スプレーなどで吹き付ける方法、塗液浴中に焼結体を浸漬して引き揚げる方法など が取られる。次いで、焼結体表面で塗液を乾燥させて、被覆材を残すようにする。  [0040] The boron coating material contains these boron compounds and coats the surface of the sintered body. The coating material may be applied directly to this surface. However, from the viewpoint of coating reliability, these coating materials are preferably used. The boron compound is suspended in water or a non-aqueous solvent to prepare a slurry-like coating solution, and applied to the surface of the sintered body. For example, a method of applying a coating liquid by brush on the surface of the sintered body, a method of spraying with a spray or the like, a method of dipping the sintered body in a coating liquid bath and pulling it up are used. Next, the coating liquid is dried on the surface of the sintered body so that the coating material is left.
[0041] 塗液は、焼結体の全面に塗布しても良いが、また、焼結工具の硬化すべき表面を 限定し、他の表面部位には、適当なマスキングを施して、ホウ化物含有被覆材の被 覆を防止するようにすれば、熱処理工程によって所望の面域だけに上記の表層部が 形成され、表層部により工具の表面硬化をすることができ、当該他の表面部位は、相 対的に軟質で高!ヽ靭性を保持できる。ケィ素においても同様である。  [0041] The coating liquid may be applied to the entire surface of the sintered body. However, the surface to be hardened of the sintering tool is limited, and the other surface portions are appropriately masked to obtain a boride. If the coating material is prevented from being covered, the surface layer is formed only in a desired surface area by the heat treatment step, and the surface layer allows the surface of the tool to be hardened. It is relatively soft and has high toughness. The same applies to silicon.
[0042] 一方、別手段としてのホウ化物またはケィ化物の被覆工程として、塩化物、フッ化物 、又は、水素化物や有機金属化合物を加熱炉中に導入して分解させて、焼結体表 面に蒸着被覆する方法もある。この方法は、一般には化学蒸着法 [CVD]と呼ばれる ものであるが、従来の常圧 CVD法と減圧 CVD法以外に、近年ではプラズマ CVD法、 熱 CVD法、あるいはレーザー CVD法などが開発されており、蒸着による成膜速度は 0.1 /z m/sec以上にまで、向上している。 [0043] この時の原料ソースとして使用される材料としては、塩ィ匕物として、 3塩ィ匕ホウ素や 4 塩ィ匕ケィ素があり、フッ化物としては 3フッ化ホウ素や 4フッ化ケィ素があり、水素化物 は、水素化ボロン (ボラン)として、ジボラン、ペンタボラン、ジヒドロボランや、これらの 誘導体があり、水素化ケィ素 (シラン)として、モノシラン、ジシラン等がある。有機金属 化合物としては、有機ホウ素化合物や有機ケィ素化合物があり、例えば、トリアルキ ルホウ素やクロロシラン、アルコキシシラン等があり、より具体的にはトリメチルホウ素、 トリェチルホウ素、トリ- n-プロピルホウ素やトリ- n-ブチルホウ素等があり、又、ジクロロ メチルシラン、クロロジメチルシラン、クロロトリメチルシランゃテトラメチルシラン等があ る。その他化合物として、有機ボロン酸類もある。 [0042] On the other hand, as a boride or silicate coating step as another means, chloride, fluoride, or hydride or an organometallic compound is introduced into a heating furnace to be decomposed, and the surface of the sintered body is decomposed. There is also a method of vapor deposition coating. This method is generally called chemical vapor deposition [CVD]. In addition to the conventional atmospheric pressure CVD method and reduced pressure CVD method, in recent years, plasma CVD method, thermal CVD method, laser CVD method, etc. have been developed. Thus, the deposition rate by vapor deposition has been improved to 0.1 / zm / sec or more. [0043] Materials used as the raw material source at this time include, for example, boron chloride and boron fluoride, and boron fluoride and boron fluoride. The hydrides include diborane, pentaborane and dihydroborane as borohydrides (boranes) and derivatives thereof, and monosilane and disilane as hydrides (silanes). Examples of the organometallic compound include an organic boron compound and an organic silicon compound, such as trialkylboron, chlorosilane, and alkoxysilane. -n-butylboron, etc., and dichloromethylsilane, chlorodimethylsilane, chlorotrimethylsilane, tetramethylsilane, etc. Other compounds include organic boronic acids.
[0044] 具体的には、これらの化合物をガス状にして、所定流量のキャリアガスにより、化合 物が分解可能な炉内温度に設定された加熱炉内に、ガス状化合物を導入し、焼結 体表面に化合物の分解によるホウ化物又はケィ化物を蒸着させる。所定時間の継続 的な分解'蒸着反応が進むことで、焼結体表面に所定被膜厚さの被覆金属層が形 成される。  [0044] Specifically, these compounds are made into a gaseous state, and the gaseous compounds are introduced into a heating furnace set at a furnace temperature at which the compounds can be decomposed by a predetermined flow rate of a carrier gas, and the compound is fired. A boride or a silicide resulting from the decomposition of the compound is deposited on the surface of the composite. As the decomposition / deposition reaction continues for a predetermined time, a coating metal layer having a predetermined thickness is formed on the surface of the sintered body.
この時の被膜厚さの調整は、ガス濃度、キャリアガス流量、加熱温度、加熱時間、等 によって制御される。  The adjustment of the coating thickness at this time is controlled by gas concentration, carrier gas flow rate, heating temperature, heating time, and the like.
[0045] 一方、別の被覆手段として、半溶融状態にまで加熱した硼化物や珪化物の粉末凝 集体を高速で焼結体表面に溶射することにより、緻密な硼化物ゃ珪化物の金属被膜 を形成できる。これら硼化物や珪化物としては、 SiB , SiC、 Si N , BN、 B Cが挙げ  On the other hand, as another coating means, a dense boride-silicide metal coating is formed by spraying a boride or silicide powder agglomerate heated to a semi-molten state onto the surface of a sintered body at a high speed. Can be formed. These borides and silicides include SiB, SiC, SiN, BN, and BC.
6 3 4 4 られる。  6 3 4 4
[0046] 熱処理においては、表面にホウ素またはケィ素を含んで乾燥被覆材を被覆した焼 結体は、次に、真空中で保持して加熱されて熱処理を行なう。熱処理の温度は、上 記の硬質粒子と鉄族のノインダ金属との合金系の組成から定まる固相線温度ないし 共晶温度よりは低くして、焼結体の内質部に焼結体組成では融液を造らない温度で あって、且つ、表面で被覆層からのホウ素またはケィ素と硬質粒子とバインダ金属と を含む合金系の共晶温度よりは高い温度に選ばれる。  [0046] In the heat treatment, the sintered body whose surface contains boron or silicon and is coated with the dry coating material is then heated while being held in a vacuum. The heat treatment temperature should be lower than the solidus temperature or eutectic temperature determined by the composition of the alloy system of the hard particles and the iron group noinder metal, and the sintered body composition In this case, the temperature is selected so as not to produce a melt and higher than the eutectic temperature of an alloy system containing boron or silicon from the coating layer, hard particles and a binder metal on the surface.
[0047] 即ち、本願発明は、ホウ素またはケィ素を含む共晶温度が、ホウ素またはケィ素を 含まない焼結体の共晶温度より低いことを利用して、熱処理温度は、それら共晶温 度の間の温度に設定して、表面ないし表層部のみに一部融液を形成するのである。 この融液は、ホウ素と鉄族金属の大部分と硬質粒子の極く一部とから成り、大部分の 硬質粒子は、固体のまま残存している。 [0047] That is, the present invention utilizes the fact that the eutectic temperature containing boron or silicon is lower than the eutectic temperature of a sintered body not containing boron or silicon, and the heat treatment temperature is set to the eutectic temperature. The temperature is set to a certain degree, and a melt is partially formed only on the surface or the surface layer. This melt consists of the majority of boron and iron group metals and only a small portion of the hard particles, with most of the hard particles remaining solid.
[0048] WC— Co系焼結工具にぉ 、ては、 WC— Co擬ニ元系合金の状態図から、共晶温度 は、約 1320°Cであり、他方、 Co— B系は、 Co側共晶点し即ち、 Co— Co Bの共晶温  From the phase diagram of the WC—Co pseudo binary alloy, the eutectic temperature is about 1320 ° C., while the Co—B series Side eutectic point, ie eutectic temperature of Co—Co B
3 度)が約 1110°Cであるので、熱処理温度は、 1150—1310でが利用され、好ましく は、 1200— 1300°Cの範囲力 S禾 IJ用される。  Since 3 degrees) is about 1110 degrees Celsius, a heat treatment temperature of 1150-1310 is used, preferably for a force in the range of 1200-1300 degrees C.
[0049] また、 WC— Ni系焼結工具にぉ ヽては WC— Ni擬ニ元系合金の状態図から、共晶 温度は、約 1390°Cであり、他方、 Ni— B系は、 Ni側共晶点(即ち、 Ni— Ni Bの共晶 [0049] For the WC-Ni-based sintered tool, from the phase diagram of the WC-Ni pseudo binary alloy, the eutectic temperature is about 1390 ° C, while the Ni-B-based Ni-side eutectic point (ie, eutectic of Ni-Ni B
3 温度)が約 1090°Cであるので、熱処理温度は、上記両方の共晶温度の間で、 1150 一 1380°Cの範囲力 S禾 IJ用され、好ましくは、 1200— 1370°Cの範囲力 S禾 IJ用される。  3) is about 1090 ° C, so the heat treatment temperature is between 1150 ° C and 1380 ° C between the two eutectic temperatures, and the force is used for SJ IJ, preferably in the range of 1200-1370 ° C. Used for power S He IJ.
[0050] さらに、 TiC Co系と TiC Ni系とは、共に、液相出現温度が約 1270°Cであるので 、 TiC— Co系と TiC Ni系の焼結工具においては、熱処理温度は、 1200— 1250°C が好ましい。さらに、 Mo C— Ni系の共晶温度は、約 1250°Cであるので、上記 1200 Further, since both the TiC Co-based and TiC Ni-based have a liquid phase appearance temperature of about 1270 ° C., the heat treatment temperature of the TiC—Co-based and TiC Ni-based sintered tools is 1200 — 1250 ° C is preferred. Further, since the eutectic temperature of the MoC—Ni system is about 1250 ° C,
2  2
一 1250°Cの温度範囲で、 TiC Mo C— Ni系の拡散熱処理も実施することができ、  In a temperature range of 1250 ° C, diffusion heat treatment of TiC Mo C—Ni can be performed.
2  2
この系においては、 Mo Cの配合力 TiC Co系ないし TiC Ni系における炭化物  In this system, the compounding power of Mo C carbides in TiC Co system or TiC Ni system
2  2
粒成長の抑制と焼結性の改善を図ることができる。上述のような熱処理過程における 液相の出現やィ匕合物の形成やあるいは拡散移動は、ケィ素についても同様であり、 じ0—31系のじ0側液相出現温度は1200°〇近傍でぁり、^ー31では^ー30%31組成 にて液相出現温度は 1000°C以下まで低下する。  It is possible to suppress grain growth and improve sinterability. The appearance of the liquid phase, the formation of the conjugate, and the diffusion transfer in the heat treatment process as described above are the same for the silicon. The appearance temperature of the liquid phase on the 0-side of the 0-31 system is around 1200 ° C. In the case of ^ -31, the liquid phase appearance temperature drops below 1000 ° C at ^ -30% 31 composition.
これらのことから、 WC- Co系合金におけるケィ素拡散熱処理温度は、 1250— 1320 。Cが利用され、 WC- Ni系合金では 1150— 1350°Cの範囲が利用される。  From these facts, the temperature of silicon diffusion heat treatment for WC-Co alloys is 1250-1320. C is used, and the range of 1150-1350 ° C is used for WC-Ni alloys.
[0051] 上記温度範囲で熱処理をしたとき、熱処理の初期においては、焼結体表面に被覆 して ヽるホウ素含有被覆層中のホウ素が表面で鉄族金属と反応して、表面にはホウ 素を含む低い温度の共晶組成を含む融液が形成される力 但し、焼結体の内部は、 ホウ素を含まないので、その処理温度で融解しない固体のままである。熱処理時間 の経過に伴なつて、表面部位の融液は、ホウ素を随伴しながら、内部の金属を溶解 し内部に浸透する。融液の内部への浸透拡散に伴って、表面近くは、融液が少なく なり、硬質粒子の濃度ないし分布密度が高くなる。ケィ素においても同様である。 [0051] When the heat treatment is performed in the above temperature range, in the initial stage of the heat treatment, boron in the boron-containing coating layer that coats the surface of the sintered body reacts with the iron group metal on the surface, and borane on the surface. Force to form a melt containing a low temperature eutectic composition containing element However, since the interior of the sintered body does not contain boron, it remains a solid that does not melt at the processing temperature. As the heat treatment time elapses, the melt at the surface dissolves the metal inside and permeates the inside while accompanying the boron. As the melt permeates and diffuses into the interior, there is less melt near the surface. And the concentration or distribution density of the hard particles increases. The same applies to silicon.
[0052] このホウ素またはケィ素の含有量が高く硬質粒子密度が高くなつた領域が、表層部 であるが、表層部は、互いに隣合う粒子の間隔が小さぐしかも、残留しているホウ素 またはケィ素の含有量も高くなる。所望の処理時間後に、冷却ないし放冷すれば、表 層部は、ホウ素またはケィ素とバインダ金属との化合物を形成して、ホウ化物または ケイイ匕物が析出する。表層部は、ホウ化物またはケィ化物と、分布密度の高い硬質 粒子から成る層を構成し、しかし、この製造方法では、表層部の硬質粒子は、殆ど成 長せずに、高密度化するので、表面の硬化を実現することができる。  [0052] The region where the content of boron or silicon is high and the hard particle density is high is the surface layer portion, and the surface layer portion is such that the distance between the particles adjacent to each other is small and the remaining boron or boron is small. The content of silicon also increases. After the desired treatment time, if cooled or left to cool, the surface layer forms a compound of boron or silicon and a binder metal, and a boride or a silicate is deposited. The surface layer constitutes a layer composed of borides or silicates and hard particles having a high distribution density.However, in this manufacturing method, the hard particles in the surface layer hardly grow and are densified. , Surface hardening can be realized.
[0053] 熱処理後の表層部のホウ素またはケィ素含有量は、熱処理前被覆材中のホウ素ま たはケィ素化合物の種類と、焼結体表面積当たりのホウ素またはケィ素被覆量により 制御することができる。例えば、ホウ素被覆層中のホウ素は、金属ホウ素 B元素に換 算して、被覆面に対して 5. 0— 40mgZcm2の範囲にあるのが好ましい。この範囲で は、表層部が、ホウ素 Bを、上述の如ぐ重量で、 0. 050—0. 50%の範囲で含有す ることができる。表層部で、ホウ素のこのような高い含有量は、ホウ素が、鉄族金属の 化合物として存在するカゝらである。ケィ素においても同様である。 [0053] The content of boron or silicon in the surface layer after heat treatment is controlled by the type of boron or silicon compound in the coating material before heat treatment and the amount of boron or silicon coating per surface area of the sintered body. Can be. For example, the amount of boron in the boron coating layer is preferably in the range of 5.0 to 40 mgZcm 2 with respect to the coated surface in terms of the metallic boron B element. In this range, the surface layer portion can contain boron B in the range of 0.050-0.50% by weight as described above. At the surface, this high content of boron is due to the fact that boron is present as a compound of the iron group metal. The same applies to silicon.
[0054] 本発明の製造方法を WC— Co系焼結工具に適用した場合には、表面硬さは、内質 部の硬さにも依存するが、内質部の表面硬さよりヴイツカース硬さ Hv700以上、特に 、 HvlOOO以上、通常、 Hvl400— 1800の範囲であり、ないしはそれ以上、例えば 、 Hv2300を有するちの力好まし!/ヽ。  When the production method of the present invention is applied to a WC—Co-based sintered tool, the surface hardness also depends on the hardness of the internal part. Hv700 or more, especially HvlOOO or more, usually in the range of Hvl400-1800, or more, for example, Hv2300, which is preferred! / ヽ.
[0055] 表層部の厚みは、一般に、表面から内部へ向けての硬さ分布曲線の直線部力 内 質部の平均硬さに到達する位置までの距離とすると、表層部厚みは、 3mm以上、好 ましくは、 6mm以上を確保することができる。  [0055] In general, the thickness of the surface layer portion is 3 mm or more, assuming that it is the distance from the surface to the inside of the hardness distribution curve in a straight line portion to the position at which the average hardness of the internal portion is reached. Preferably, 6 mm or more can be secured.
[0056] 本発明の焼結工具には、切削工具、塑性加工具、鉱山'土木建築用の削岩ビット 等に広く適用することができる。  [0056] The sintered tool of the present invention can be widely applied to cutting tools, plastic working tools, rock drill bits for mining and civil engineering construction, and the like.
[0057] 切削工具の例として、単一工具刃、フライス、ドリルやリーマなどがある力 ドリルとリ 一マは、硬質粒子の粒子系 1. 0 m以下の超微粒子の焼結体で、工具長さ Lに対 するその直径 Dとの比 (LZD比)が高い形状であるから、靭性の高い材質が要求さ れるが、本発明の構造にして、中心部で高い靭性とし、表層部が高い硬さと微細組 織とすることにより、表層部が、刃先の構成に有利な高硬度として、工具寿命を高め ることがでさる。 [0057] Examples of cutting tools include single tool blades, milling cutters, and drills and reamers. Drills and reamers are hard particles with a particle system of 1.0 m or less, a sintered body of ultra-fine particles. Since the shape has a high ratio of the length D to its diameter D (LZD ratio), a material with high toughness is required. High hardness and fine braid By weaving, the surface layer has high hardness, which is advantageous for the configuration of the cutting edge, and the tool life can be increased.
[0058] 加工具の例として、プレス金型や鍛造用のダイ、パンチなどを含み、これらに本発 明の焼結工具が適用できる。金型として、例えば、製缶用金型は、従来は、セラミック 材料や Ni基超合金が使用されているが、セラミックは、表面欠損を生じやすぐ超合 金は金属組織の調製が難しいのである力 本発明によれば、 WC— Co系焼結体をホ ゥ素拡散熱処理を行なってホウ素を含んで硬質粒子の分布密度を高くして、高硬度 とし、高い耐摩耗性、耐凝着と、耐食性により、金型寿命の高い金型とすることができ る。  Examples of the working tool include a press die, a forging die, a punch, and the like, and the sintered tool of the present invention can be applied to these. For example, molds for cans have conventionally been made of ceramic materials or Ni-based superalloys.However, ceramics cause surface defects and superalloys are difficult to prepare the metallographic structure immediately. According to the present invention, the WC—Co-based sintered body is subjected to boron diffusion heat treatment to increase the distribution density of hard particles containing boron, thereby obtaining high hardness, high wear resistance, and high adhesion resistance. In addition, due to the corrosion resistance, a mold having a long mold life can be obtained.
[0059] 加工具には、鋼管用の引抜きダイと線引き用のプラグをも含み、従来の超硬合金は 、焼き付き性の問題があり、焼き付き防止に超硬合金の表面に TiNのコーティングを 施して使用される場合があるが、焼き付きを生じやすぐ本発明の焼結工具として W C Co系を使用してホウ素拡散熱処理を行なうことにより、表層部の CoWB (または S i)が摩擦係数を小さくして、耐凝着性が改善されて、工具の長寿命化を図ることがで きる。  [0059] The processing tool also includes a drawing die for steel pipes and a plug for drawing. Conventional cemented carbide has a problem of seizure. To prevent seizure, the surface of the cemented carbide is coated with TiN. However, by performing boron diffusion heat treatment using WC Co as a sintering tool of the present invention as soon as seizure occurs, CoWB (or Si) on the surface layer reduces the friction coefficient. As a result, the adhesion resistance is improved, and the life of the tool can be extended.
[0060] 他の加工具の例には、アルミニウム合金用の熱間押出しダイがあり、ダイは、従来 の熱間型用鋼に代えて、本発明の焼結工具とすることにより、押出し温度 500°C前後 で、表層部の CoWBまたは CoWS湘の存在下で、耐凝着性が改善されて、ダイ寿 命を改善することができる。  [0060] Examples of other processing tools include a hot extrusion die for an aluminum alloy, and the die is formed by using the sintered tool of the present invention in place of the conventional steel for hot forming, thereby increasing the extrusion temperature. At around 500 ° C, in the presence of CoWB or CoWS in the surface layer, adhesion resistance is improved and die life can be improved.
[0061] さらに、後方押出し用の冷間鍛造パンチは、圧縮負荷が大きぐ加工材との摩擦力 も極めて高ぐ過酷な条件で用いられているが、このためにコーティング処理をして、 用いることが多いのである力 ここに、本発明を適用して、パンチの靭性不足による折 損事故を防止し、パンチのベアリング部の焼付き摩耗を軽減して、工具寿命を改善 することができる。  [0061] Furthermore, the cold forging punch for backward extrusion is used under severe conditions in which the frictional force with the work material with a large compression load is extremely high. Here, the present invention can be applied to prevent a breakage accident due to insufficient punch toughness, reduce seizure wear of a bearing portion of the punch, and improve tool life.
実施例 1  Example 1
[0062] 市販の平均粒径 1. 5 μ mのタングステンカーバイド WC粉末と、同 1. 3 mの金属 コバルト Co粉末とを混合して、 WCに 10%含有した Coと、 WCに 20%含有の Coとの 2種類の混合物に調製した。混合粉末は、圧縮成型して、圧粉体を中間焼結して、 焼結後の寸法が直径 30mm X長さ 30mmの寸法になるように成形加工した後、真空 中で 1400°Cで 1時間の液相焼結を行 、、それぞれの焼結材を得た。 [0062] A commercially available tungsten carbide WC powder having an average particle size of 1.5 µm and a metal cobalt Co powder of 1.3 m were mixed, and 10% contained in WC and 20% contained in WC And two types of mixtures with Co. The mixed powder is compression-molded, and the green compact is intermediately sintered, After being formed into a shape having a size of 30 mm in diameter and 30 mm in length after sintering, liquid phase sintering was performed at 1400 ° C. for 1 hour in a vacuum to obtain each sintered material.
[0063] 次に、熱処理のホウ素源には、炭化ホウ素 B Cを用いて、ホウ素含有被覆材の調 Next, boron carbide BC is used as a boron source for the heat treatment to prepare a boron-containing coating material.
4  Four
製のために、市販の炭化ホウ素 B Cをエタノールを用いてボールミルにより、 30時間  For commercial production, commercially available boron carbide B C was ball-milled with ethanol for 30 hours.
4  Four
粉砕して B Cを 9%含有するスラリに調製した。スラリにポリエチレンイミンを加えて、  It was ground to prepare a slurry containing 9% of BC. Add polyethyleneimine to the slurry,
4  Four
被覆用のホウ素含有塗液とした。  A boron-containing coating liquid for coating was used.
[0064] 塗布法には浸漬法を利用して、焼結材を塗液中に浸漬した後取出し、次 、で、 40[0064] The sintering material is immersed in a coating solution and then taken out using an immersion method as a coating method.
°Cの乾燥機中で乾燥させて、試料とした。 The sample was dried in a drier at ° C.
[0065] 比較例として、上記の焼結素材に、ホウ素含有被覆材を適用しな 、で、そのまま用 いた。 As a comparative example, the above sintered material was used as it was without applying a boron-containing coating material.
上記の実施例試料と比較例試料は、次の条件で拡散熱処理を行った。試料は、真 空炉中で保持して、炉内圧 40— 80Paに制御し、昇温速度 5°C,minで加熱し、 12 00°C、 1250°C及び 1280°Cの 3水準の熱処理温度に 3時間保持し、拡散熱処理を 行い、後に炉令した。  Diffusion heat treatment was performed on the above-described example samples and comparative example samples under the following conditions. The sample is held in a vacuum furnace, the furnace pressure is controlled to 40-80 Pa, and the sample is heated at a heating rate of 5 ° C, min, and heat treated at three levels of 12,000 ° C, 1250 ° C, and 1280 ° C. The temperature was maintained for 3 hours, diffusion heat treatment was performed, and the furnace was ordered later.
[0066] 熱処理した試料は、長さ 15 mmの位置で切断して、切断面を研磨した後、断面組 織の顕鏡観察を行 、、その後表面力 深さを変えてビッカース硬さ計による硬さ測定 を行った。  [0066] The heat-treated sample was cut at a position of 15 mm in length, the cut surface was polished, and the cross-sectional structure was observed with a microscope. Hardness was measured.
[0067] ホウ素被覆処理をした WC— 20%Coの焼結工具にっ 、て、細粒の硬質粒子 (粒径 1一 2 m)を用いて、 B Cの 9%塗液に浸漬して被覆し、ホウ素による拡散熱処理し  [0067] Boron-coated WC- 20% Co sintered tool, using fine hard particles (particle diameter 1-2m), dipped in 9% BC coating solution and coated And diffusion heat treatment with boron
4  Four
た試料ついての断面組織について、図 1 (A)に示すように、内質部の組織写真では 、 WC粒子群の中に、多数の明瞭な白色の金属 Co相が認められる。図 1 (B)は、この 試料の表層部の組織を示す力 緻密な炭化物 WCを有し、白色の金属相は殆ど認 められない。これらの組織を比較すると、熱処理過程で、表面近傍の金属 Co相が内 部に移動した結果であり、図 1 (A)と図 1 (B)とを比較して、表層部と内部とは、共に、 WC粒子の粒子径に殆ど差違は認められな ヽ。  As shown in FIG. 1 (A), the cross-sectional structure of the sample showed many clear white metallic Co phases in the WC particles in the structure photograph of the internal part. FIG. 1 (B) shows a dense carbide WC indicating the structure of the surface layer of this sample, and almost no white metal phase is observed. A comparison of these structures shows that the metallic Co phase near the surface migrated to the inside during the heat treatment process.Comparing Fig. 1 (A) and Fig. 1 (B), In both cases, there was almost no difference in the particle size of the WC particles.
[0068] 同様に、 WC—20%Co組成の粗粒の硬質粒子(粒子径 3— 6 μ m)を用いて、 B C [0068] Similarly, by using coarse hard particles (particle diameter 3-6 μm) of WC—20% Co composition,
4 の 9%塗液に浸漬して被覆し、ホウ素による拡散熱処理した焼結体について、図 2 (A )に内質部と、図 2 (B)に表層部と、の断面組織の顕微鏡写真で示して、比較してい るが、この図から、拡散熱処理において、表層部(図 2 (B) )は、内質部(図 2 (A) )に 比してバインダ金属相(図 2 (A)中白色の相に見える)が低減すること、但し、両者で は硬質粒子 (WC粒子)の粒子径が殆ど変化して 、な 、ことが判る。 Fig. 2 (A) shows a microstructure photograph of the cross-sectional structure of the solid part and the surface layer part of Fig. 2 (B) of the sintered body that was coated by dipping in 9% coating solution of 4 and subjected to diffusion heat treatment with boron. Shown in the comparison From this figure, it can be seen from the figure that the surface layer (Fig. 2 (B)) becomes a whiter phase in the binder metal phase (Fig. 2 (A)) than the inner part (Fig. 2 (A)) in the diffusion heat treatment. It can be seen that the particle diameter of the hard particles (WC particles) hardly changed in both cases.
[0069] 他方、被覆未処理の比較例の組織は、表層部 ·内部とも図 1 (A)に類似して大きな 組織変化は認められなカゝつた。  [0069] On the other hand, the structure of the untreated comparative example showed no significant structural change similar to Fig. 1 (A) both in the surface layer and inside.
[0070] 次に、硬さ測定結果を表 1、及び図 3に示す。図から明らかなように、被覆処理の素 材には、硬さ分布に明瞭な勾配が認められた。上記の熱処理範囲で、温度が低いほ ど表面硬さは高ぐまた、表層部厚みは小さいことが判る。熱処理温度を高くすると、 融液の内部への拡散が進行して表層部が相対的に厚ぐ表面の硬さが低下する傾 向がある。即ち、表層部と内質部との硬さ差は HV= 300— 600程度有り、さらに熱 処理温度の高!、試料の方が勾配の深さが大き!/、。  Next, the hardness measurement results are shown in Table 1 and FIG. As is clear from the figure, a clear gradient was observed in the hardness distribution of the coating material. Within the above heat treatment range, the lower the temperature, the higher the surface hardness and the smaller the thickness of the surface layer. When the heat treatment temperature is increased, the diffusion of the melt into the interior proceeds, and the hardness of the surface having a relatively thick surface layer tends to decrease. That is, the difference in hardness between the surface layer and the internal part is about HV = 300-600, the heat treatment temperature is higher, and the sample has a greater gradient depth! /.
[0071] 表 1  [0071] Table 1
Figure imgf000017_0001
Figure imgf000017_0001
[0072] 硬さの勾配領域はホウ素 Bの拡散領域でもあり、熱処理温度を高くすることにより、 ホウ素 Bの内部拡散が進行したためと考えられた。表層部硬さ向上の主要因は、表 層部金属相の減少により表層部側の粒子間距離が小さくなつたことによるものであり 、 CoWBの形成による硬さ向上効果も寄与しているものと考えられる。未処理品につ いては、当然のことながら、ほぼ一様な硬さ分布が得られた。 [0072] The gradient region of hardness is also a diffusion region of boron B, and it is considered that the internal diffusion of boron B progressed by increasing the heat treatment temperature. The main reason for the improvement of the surface layer hardness is that the distance between the particles on the surface layer side is reduced due to the decrease in the surface layer metal phase, and that the hardness improvement effect due to the formation of CoWB also contributes. Conceivable. As for the untreated product, of course, almost uniform hardness distribution was obtained.
[0073] 表層部力 厚さ 2mmの試料を切り出して、ホウ素 B含有量を ICP— MS法により測 定したところ、 280— 330mgZkgの分析結果が得られ、 Bの拡散が確認できた。 実施例 2  [0073] A sample having a thickness of 2mm in the surface layer was cut out, and the boron B content was measured by an ICP-MS method. Example 2
[0074] 実施例 1で調製した焼結素材を用いて、 B Cスラリ濃度を 9%と、 18%と、 24%との  [0074] Using the sintered material prepared in Example 1, the BC slurry concentration was set to 9%, 18%, and 24%.
4  Four
3水準にした被覆条件にて被覆し、熱処理条件は、加熱速度 5°CZminで、熱処理 温度を 1280°Cで 3時間の熱処理を行なつた。 Coating with 3 levels of coating conditions, heat treatment conditions: heating rate 5 ° CZmin, heat treatment The heat treatment was performed at a temperature of 1280 ° C. for 3 hours.
[0075] 得られた試料を中央部で切断して研磨した後、断面組織の観察を行 ヽ、その後表 面力も深さを変えてビッカース硬さ計による硬さ測定を行った。この結果を表 2と図 4 に示した。 [0075] After the obtained sample was cut and polished at the center, the cross-sectional structure was observed, and then the surface force was varied in depth, and the hardness was measured by a Vickers hardness tester. The results are shown in Table 2 and FIG.
[0076]  [0076]
Figure imgf000018_0001
表 2
Figure imgf000018_0001
Table 2
[0077] 表 2と図 4を見ると、粒径 1. 5 μ mのタングステンカーバイド WC粉末を用いた WC— 10%Coと WC— 20%Coとは、共に、実施例 1と比較して、拡散深さは 2— 5mmと大 きぐ被覆材濃度に比例して拡散深さは大きくなつていることがわかる。  [0077] Referring to Table 2 and Fig. 4, it can be seen that WC-10% Co and WC-20% Co using tungsten carbide WC powder having a particle size of 1.5 µm were both compared with those in Example 1. It can be seen that the diffusion depth is as large as 2-5 mm, and the diffusion depth increases in proportion to the coating material concentration.
[0078] このように、被覆材濃度、従ってホウ素の表面添加量と、熱処理温度の条件を設定 することにより、表層部に適切に硬さ分布を得ることがわかる。  [0078] As described above, it is found that by setting the conditions of the coating material concentration, that is, the amount of boron to be added to the surface, and the heat treatment temperature, an appropriate hardness distribution can be obtained in the surface layer portion.
[0079] 実施例 2で熱処理した試料にっ 、て、表層部の X線回折を行った力 図示しな 、が 、回折チャートには、 CoWBに相当する回折ピークが認められた。このことから、表層 部の硬さ向上に硬質なホウ化物粒子の効果が寄与したものと考えられる。  [0079] With respect to the sample heat-treated in Example 2, the force of X-ray diffraction of the surface layer was not shown, but a diffraction peak corresponding to CoWB was observed in the diffraction chart. From this, it is considered that the effect of the hard boride particles contributed to the improvement of the hardness of the surface layer.
実施例 3  Example 3
[0080] 次に、市販の平均粒径 0. 55 μ mの WC粉末と、以下同じく平均粒径 1. 3 μ mの金 属 Co粉末とクロム炭化物 Cr Cの粉末と、バナジウム炭化物 VCの粉末とを混合して  Next, commercially available WC powder having an average particle size of 0.55 μm, metal Co powder, chromium carbide Cr C powder, and vanadium carbide VC powder also having an average particle size of 1.3 μm And mix
3 2  3 2
、組成 WC—20%Co— 0. 7%Cr-0. 4%Vの混合粉を作り、圧粉成型して、圧粉体と した。実施例 1と同様にして、圧粉体を中間焼結をしてのち切削加工により、直径 30 mm、長さ 30mmの円柱体とし、同様に、 1350°C X 1時間の真空焼結を行い試験用 の焼結材とした。  Then, a mixed powder having a composition of WC-20% Co-0.7% Cr-0.4% V was prepared and compacted to obtain a compact. In the same manner as in Example 1, the green compact was subjected to intermediate sintering, then cut into a cylindrical body having a diameter of 30 mm and a length of 30 mm, and similarly subjected to vacuum sintering at 1350 ° C for 1 hour and tested. Sintering material.
[0081] ホウ素被覆材には、実施例 1と同様に炭化ホウ素 B C含有のスラリ状塗液を用いた  As the boron coating material, a slurry-like coating liquid containing boron carbide B and C was used as in Example 1.
4  Four
力 さらに、巿販の六方晶系窒化ホウ素(h— BN)と、をエタノール中に 30時間のボー ルミル粉砕し、得られた 9%h— BNスラリにポリエチレンイミンをカ卩えて BN被覆用塗液 とした。 Power In addition, commercially available hexagonal boron nitride (h-BN) is mixed in ethanol for 30 hours. The resulting 9% h-BN slurry was polished with polyethyleneimine to obtain a coating liquid for BN coating.
[0082] 上記焼結素材は、 BC含有スラリの被覆処理と、これとは別に、 BN含有のスラリ状 塗液との被覆処理の 2種類の被覆を行なった。他方、実施例 1で調製した WC-10% Coと WC— 20%Coとの焼結素材には、 BN被覆処理を行い。乾燥後に何れの試料と も 1280°Cで 3時間の拡散熱処理を行った。  [0082] The above-mentioned sintered material was subjected to two types of coating, that is, coating with a BC-containing slurry and, separately, coating with a BN-containing slurry-like coating solution. On the other hand, the sintered material of WC-10% Co and WC-20% Co prepared in Example 1 was subjected to BN coating. After drying, each sample was subjected to a diffusion heat treatment at 1280 ° C for 3 hours.
[0083] 熱処理した試料は、表面力 深さを変えてビッカース硬さ計による硬さ測定を行つ た。この結果を表 3と図 5に示した。  [0083] The hardness of the heat-treated sample was measured with a Vickers hardness meter while changing the surface force depth. The results are shown in Table 3 and FIG.
[0084] 表 3  [0084] Table 3
Figure imgf000019_0001
Figure imgf000019_0001
[0085] 表 3と図 5を見ると、超微粒子系に属する平均粒径 0. 55 mの WC粉末を用いた 試料 WC— 20%Co— 0. 7%Cr-0. 4%Vでは、 BC被覆処理で、表層部硬さが HV 硬さ 2050にも達しており、拡散熱処理の効果が認められる。 [0085] Table 3 and Fig. 5 show that in the sample WC—20% Co—0.7% Cr—0.4% V using WC powder with an average particle size of 0.55 m belonging to the ultrafine particle system, With the BC coating treatment, the surface layer hardness has reached HV hardness of 2050, indicating the effect of diffusion heat treatment.
[0086] BN被覆した WC—10%Coと WC—20%Coは、共に、拡散深さは 3— 4mmであつ て、実施例 1と比較して小さくなつており、表層部硬さも低くなつていることがわかる。 これは、 h— BNが高温安定な化合物であるため、金属相との反応が進みにくいことに よるちのと考免られる。  [0086] Both the BN-coated WC-10% Co and the WC-20% Co have a diffusion depth of 3-4 mm, which is smaller than that of Example 1, and the surface layer hardness is lower. You can see that it is. This is considered to be due to the fact that h-BN is a compound that is stable at high temperatures and therefore does not easily react with the metal phase.
実施例 4  Example 4
[0087] ここでは、金属蒸着被覆工程として、金属塩ィ匕物である 3塩ィ匕ホウ素 [BC1 ]と、メタ  [0087] Here, as the metal vapor deposition coating step, a metal salt shading product, 3 salt shading boron [BC1],
3 ン [CH ]、水素 ]を用いた実施例について説明する。  An example using [CH], hydrogen] will be described.
4 2  4 2
図 6に示す CVD装置を用いた。 3塩化ホウ素 [BC1 ]と、メタン [CH ]、水素 ]のガ  The CVD apparatus shown in FIG. 6 was used. 3 Gas of boron chloride [BC1] and methane [CH], hydrogen]
3 4 2 スボンべ 11, 12, 13から流量計 3および調整弁 4を介して加熱炉 1に調製されたガス が供給される。なお、加熱炉 1には水封ポンプ 2が連結されており、加熱炉内を所望 の減圧に設定できるようになつている。この加熱炉 1内に、実施例 1で用いた 2種類の 焼結体をセットしておき、下表に示す化学蒸着条件で CVD処理を行った。処理後の 焼結体表面の B C成膜厚さを確認したところ、およそ 12— 15 mであった。 3 4 2 The prepared gas is supplied to the heating furnace 1 from the cylinders 11, 12, and 13 via the flow meter 3 and the regulating valve 4. A water ring pump 2 is connected to the heating furnace 1 so that the inside of the heating furnace can be set to a desired reduced pressure. In this heating furnace 1, the two kinds of The sintered body was set and subjected to CVD treatment under the chemical vapor deposition conditions shown in the table below. The thickness of the BC film on the surface of the sintered body after the treatment was confirmed to be about 12 to 15 m.
4  Four
この実施例では、減圧 CVD処理であった力 さらに膜厚を増大させるには、熱 CVD 法やレーザー CVD法を用いればよぐ所望の被覆層厚さが得られる。 In this embodiment, a desired coating layer thickness can be obtained by using a thermal CVD method or a laser CVD method in order to further increase the film thickness by the low pressure CVD process.
4 Four
項 目 条 件  Item Condition
B C 1 5 1 %  B C 15 1%
C H 5 o 1 %  C H 5 o 1%
H 2 残 o 1 % H 2 remaining o 1%
反応温度 1 0 0 0〜1 2 0 0 °C  Reaction temperature 100-120 ° C
ガス流量 1 0 ?/ m i n  Gas flow rate 10? / Min
反応時間 5 時間 上記被膜層は上記実施例 1一 3と同様の熱処理により、所定の拡散熱処理効果が認 められた。  Reaction time: 5 hours The above coating layer was confirmed to have a predetermined diffusion heat treatment effect by the same heat treatment as in Examples 13 to 13.
実施例 5 Example 5
一般的な温間や熱間領域で用いられる超硬合金は、 WC平均粒度が 3 μ m以上で あるため、いわゆる中粒力も粗粒域の WC粉を用いて、評価を行った。  Since the cemented carbide used in general warm and hot regions has a WC average particle size of 3 μm or more, the so-called medium-grain force was evaluated using WC powder in the coarse-grain region.
市販の平均粒度 5.7 mの WC粉と 1.3 mの Co粉、 1.5 mの Ni粉、さらに Cr-C粉を用いて、 WC- 13%Co- 2%Ni- l%Cr [ 15LB ]と、 WC- 18%Co- 4%Ni- 1.5%Cr [ 22HB ]組成に調合、混合した。得られた混合粉末から、実施例 1と同形状の圧粉成 型体を作製した後、真空中で 1380°C X 1 Hrの液相焼結を行い、それぞれの焼結素 材を得た。  Using commercially available 5.7 m average particle size WC powder, 1.3 m Co powder, 1.5 m Ni powder and Cr-C powder, WC-13% Co-2% Ni-l% Cr [15LB] and WC -18% Co-4% Ni-1.5% Cr [22HB] was prepared and mixed. After forming a green compact having the same shape as in Example 1 from the obtained mixed powder, liquid-phase sintering at 1380 ° C × 1 Hr was performed in a vacuum to obtain respective sintered materials.
次に、熱処理のケィ素源として、炭化ケィ素 SiCを用いて被覆材を調整した。調整 の方法は実施例 1と同様に行い、 15% SiC含有エタノール塗剤を準備した。浸漬法に より焼結素材表面に被覆し、乾燥し、拡散熱処理を行った。熱処理温度は 1300°C X 3 Hrとした。尚、被覆処理をしない素材そのままの試料も比較評価を行った。  Next, a coating material was prepared using silicon carbide SiC as a silicon source for the heat treatment. The method of adjustment was the same as in Example 1, and a 15% SiC-containing ethanol coating was prepared. The surface of the sintered material was coated by an immersion method, dried, and subjected to diffusion heat treatment. The heat treatment temperature was 1300 ° C X 3 Hr. In addition, the comparative evaluation was also performed on the sample as it was without coating.
熱処理後の試料は、長さ 15 mmの位置で切断し、切断面を研磨後、断面組織観 察を行い、その後、表面力 深さを変えてビッカース硬度計による硬さ測定を行った 組織観察の結果については、表層部深さ 2 mm程度までが WC粒子の分布密度 に向上が認められ、それより内部では明らかにバインダ金属が多い組織形態であつ た。 The heat-treated sample was cut at a length of 15 mm, the cut surface was polished, the cross-sectional structure was observed, and then the hardness was measured with a Vickers hardness tester while changing the surface force depth. The distribution density of WC particles is up to the surface depth of about 2 mm. The internal structure was clearly higher in the amount of binder metal inside.
硬度測定の結果は、表 4および図 7に示す。  The results of the hardness measurement are shown in Table 4 and FIG.
表 4Table 4
Figure imgf000021_0001
図 7から明らかなように、粗粒 WCを使用しているため、硬さとしては比較的低い値 であるが、内質部と比較すると、表層部硬さは顕著な増大が認められた。
Figure imgf000021_0001
As is clear from FIG. 7, the hardness is relatively low due to the use of coarse-grained WC, but the hardness of the surface layer is remarkably increased as compared with the internal part.
又、ケィ素の拡散深さは、硬さ傾斜部と見なすと、ホウ素拡散素材よりも小さぐこれ はホウ素とケィ素の元素特性の違いによるものと考えられた。しかしながら、バインダ 金属の拡散移動はホウ素と同様の挙動を示すことが確認され、温間'熱間工具に致 命的なヒートクラックの抑制に対する表面圧縮残留応力の効果、並びに耐熱性、耐 酸化性が付与されることは、高温領域に適用される工具として極めて有用な特徴を 有するものである。  The diffusion depth of silicon is smaller than that of boron diffusion material when considered as the hardness gradient part. This is thought to be due to the difference in elemental characteristics between boron and silicon. However, it was confirmed that the diffusion movement of the binder metal showed the same behavior as that of boron. The fact that is given is a feature extremely useful as a tool applied to a high-temperature region.
又、被覆材として、 SiB を使用すれば、ホウ素とケィ素の両特性が複合した表層部  Also, if SiB is used as the coating material, the surface layer where both the properties of boron and silicon are combined
6  6
特性が得られる。 Characteristics are obtained.
産業上の利用可能性 [0089] 本発明の焼結工具は、表層部が、ホウ素 Bおよび Zまたはケィ素 Siを重量で 0. 01 0-2. 0%を含み、内質部よりも高い含有量の硬質粒子を有するので、表層部を内 質部より硬化させ、内質部は、靭性を確保することができ、これにより、靭性と表面硬 さの優れた工具を提供することができる。 Industrial applicability [0089] In the sintered tool of the present invention, the surface layer contains 0.01% to 2.0% by weight of boron B and Z or silicon Si, and contains hard particles having a higher content than the inner part. As a result, the surface layer is hardened from the internal portion, and the internal portion can secure toughness, thereby providing a tool having excellent toughness and surface hardness.
[0090] さらに、表層部は、実質的に、硬質粒子相と、ホウ素および Zまたはケィ素とバイン ダ金属とホウ化物および Zまたはケィ化物相とから硬化させた表面を形成することが できる。  Further, the surface layer portion can substantially form a hardened surface from a hard particle phase, boron and Z or a silicon, a binder metal, a boride and a Z or a silicide phase.
[0091] 工具は、硬化した表面を具備しながら、内質部中の鉄族金属と硬質粒子との重量 比が、 5 : 95ないし 40 : 60の範囲に調節することができ、工具の用途に応じた組成を 調節することができる。  [0091] While the tool has a hardened surface, the weight ratio of the iron group metal to the hard particles in the internal part can be adjusted in the range of 5:95 to 40:60. The composition can be adjusted according to.
[0092] 本発明の焼結工具の製造方法は、硬質粒子とバインダ金属とから焼結をしたあと、 緻密な焼結体に、ホウ素被覆層を形成し拡散熱処理をすることにより、内質部の靭性 を確保しながら、表層部を硬化することができ、表面硬さと靭性を具備した焼結工具 を提供することができる。  [0092] The method for manufacturing a sintered tool according to the present invention is characterized in that, after sintering from hard particles and a binder metal, a boron coating layer is formed on a dense sintered body, and diffusion heat treatment is performed. The surface layer can be hardened while ensuring the toughness of the sintered body, and a sintered tool having surface hardness and toughness can be provided.
[0093] 製造方法は、特に、焼結体として、所望形状に調製したあと、内質部が固体のまま で熱処理して表面硬化させるから、熱処理品の寸法変化が"が小さぐ表層の研磨量 も少なくて良 、ので、表層部の硬さ特性を減ずることなく工具として利用できる利点が ある。  [0093] In particular, the production method is to prepare a sintered body into a desired shape, and then heat-treat the surface while the internal portion remains solid, thereby polishing the surface layer where the dimensional change of the heat-treated product is small. Since the amount is small, it can be used as a tool without reducing the hardness of the surface layer.

Claims

請求の範囲 The scope of the claims
[1] 硬質の炭化物、窒化物若しくは炭窒化物を含む硬質粒子と、バインダ金属として鉄 族金属と、力 成る焼結工具において、  [1] Hard particles containing hard carbide, nitride or carbonitride, iron group metal as binder metal, and sintered sintered tool
上記の焼結工具が、ホウ素 Bおよび/またはケィ素 Siを重量で 0. 010— 2. 0%の 範囲で含む表層部を有し、該表層部が、内質部よりも高い分布密度の硬質粒子を有 することを特徴とする焼結工具。  The sintering tool has a surface portion containing boron B and / or silicon Si in a range of 0.010 to 2.0% by weight, and the surface portion has a higher distribution density than the inner portion. A sintered tool characterized by having hard particles.
[2] 表層部が、実質的に、硬質粒子相と、ホウ素および Zまたはケィ素 Siとバインダ金 属との化合物であるホウ化物および Zまたはケィ化物相と、力 成り、焼結工具中該 表層部より内側の内質部が、実質的に硬質粒子相とバインダ金属相とから成る請求 項 1に記載の焼結工具。 [2] The surface layer substantially comprises a hard particle phase, a boride and a Z or a silicide phase, which are compounds of boron and Z or silicon carbide and a binder metal, and is formed by a sintering tool. 2. The sintered tool according to claim 1, wherein the inner portion inside the surface layer portion substantially comprises a hard particle phase and a binder metal phase.
[3] 内質部中の鉄族金属と硬質粒子との含有量の重量比力 5 : 95ないし 40 : 60の範 囲にある請求項 1又は 2に記載の焼結工具。 [3] The sintered tool according to claim 1 or 2, wherein the content by weight of the iron group metal and the hard particles in the internal part is in the range of 5:95 to 40:60.
[4] ノインダ金属が Co若しくは Niを含み、 [4] Noinder metals include Co or Ni,
表層部のホウ化物および Zまたはケィ化物相が Co若しくは Niを含む請求項 2又は Claim 2 or 3 wherein the boride and Z or silicate phases of the surface layer contain Co or Ni.
3に記載の焼結工具。 3. The sintering tool according to 3.
[5] 表層部の表面から深さ 0. 5mmまでの範囲でのバインダ金属の含有量力 重量で [5] Binder metal content force in the range from surface surface to depth 0.5mm
2%以下である請求項 1な 、し 4 、ずれかに記載の焼結工具。 The sintered tool according to claim 1, wherein the content is 2% or less.
[6] 表層部が、内質部より、互いに隣接する硬質粒子の間の平均間隔が小さいことを特 徴とする請求項 1な 、し 5 、ずれかに記載の焼結工具。 [6] The sintered tool according to any one of claims 1 to 5, wherein the surface layer has a smaller average distance between hard particles adjacent to each other than the inner part.
[7] 表層部の硬質粒子の粒子径分布が、内質部と実質的に同じである請求項 1ないし[7] The particle diameter distribution of the hard particles in the surface layer part is substantially the same as that of the inner part,
6いずれかに記載の焼結工具。 6. The sintered tool according to any one of the above.
[8] 硬質粒子と鉄族のバインダ金属とから焼結して成る焼結工具の製造方法にぉ 、て[8] A method for manufacturing a sintered tool formed by sintering hard particles and an iron group binder metal is described.
、製造方法が、 , Manufacturing method,
硬質粒子と鉄族のバインダ金属との混合粉末を圧縮成形して所望形状の圧粉体と し、次いで、該圧粉体を焼結により焼結体とすること、  Compression molding a mixed powder of the hard particles and the iron group binder metal into a green compact having a desired shape, and then sintering the green compact to form a sintered body;
該焼結体の表面にホウ素および Zまたはケィ素被覆層を形成すること、及び 該ホウ素および Zまたはケィ素被覆層を有する上記焼結体を、真空中または不活 性ガス雰囲気中で、上記焼結体の液相温度より低ぐ且つ、該焼結体でホウ素およ び zまたはケィ素を含有する融液を形成するに必要な温度の範囲で、加熱保持する 熱処理をすること、 Forming a boron and Z or silicon coating layer on the surface of the sintered body; and forming the sintered body having the boron and Z or silicon coating layer in a vacuum or in an inert gas atmosphere. The temperature is lower than the liquidus temperature of the sintered body, and boron and Heat treatment at a temperature required to form a melt containing zirconium and z or silicon;
を含み、  Including
上記の熱処理過程で、ホウ素および Zまたはケィ素被覆層中のホウ素および Zま たはケィ素を焼結体の表層部に拡散させて、表層部中のホウ素および zまたはケィ 素含有融液を内質部に拡散移動させ、焼結体の表層部の硬質粒子の分布密度を内 質部よりも高くしたことを特徴とする焼結工具の製造方法。  In the heat treatment process described above, boron and Z or boron or boron in the silicon coating layer are diffused into the surface layer of the sintered body, and the boron and z or silicon-containing melt in the surface layer is diffused. A method for manufacturing a sintered tool, characterized by diffusing and moving into an inner part to increase the distribution density of hard particles in a surface layer of a sintered body higher than the inner part.
[9] 表層部に、ホウ素 Bおよび Zまたはケィ素を重量で 0. 050—1. 0%の範囲で含有 させる請求項 8に記載の製造方法。  [9] The production method according to claim 8, wherein the surface layer contains boron B and Z or silicon in a weight range of 0.050 to 1.0%.
[10] 表層部は、硬質粒子の粒径分布が、内質部と実質的に同じである請求項 8又は 9 に記載の製造方法。 10. The method according to claim 8, wherein the surface layer has substantially the same particle size distribution of the hard particles as the internal part.
[11] 上記のホウ素および Zまたはケィ素被覆材が、ホウ素および Zまたはケィ素の酸化 物、窒化物及び炭化物の 、ずれか 1種を含む請求項 8な 、し 10 、ずれかに記載の 製造方法。  11. The method according to claim 8, wherein the boron and Z or silicon coating material contains at least one of oxides, nitrides and carbides of boron and Z or silicon. Production method.
[12] 被覆層中ホウ素および Zまたはケィ素力 金属ホウ素および Zまたはケィ素元素に 換算して、被覆面に対して 5. 0— 60mg/cm2の範囲にあることを特徴とする請求項 8な 、し 1 IV、ずれかに記載の製造方法。 [12] The power of boron and Z or silicon or silicon in the coating layer is in the range of 5.0 to 60 mg / cm 2 with respect to the coated surface in terms of boron metal and Z or silicon element. 8 9 1 The production method described in IV.
[13] 被膜層形成工程が a)焼結体表面にホウ素および Zまたはケィ素を含む塗剤を被 覆するか、 b)焼結体をホウ素又はケィ素の塩ィヒ物、フッ化物、水素化物、又は有機 金属化合物のガス気流中で加熱して焼結体表面にホウ素又はケィ素を蒸着被覆す る力、あるいは c)焼結体に半溶融状態にまで加熱したホウ素又はケィ素の化合物を 溶射して焼結体表面にホウ素又はケィ素を被覆する工程力 なる請求項 8記載の焼 結工具の製造方法。  [13] The coating layer forming step includes: a) coating the surface of the sintered body with a coating agent containing boron and Z or silicon; or b) coating the sintered body with boron or silicon chloride, fluoride, The ability to heat the hydride or organometallic compound in a gas stream to vapor-deposit and coat boron or silicon on the surface of the sintered body, or c) the boron or silicon heated to a semi-molten state on the sintered body. 9. The method for producing a sintering tool according to claim 8, which is a process capable of spraying a compound to coat the surface of the sintered body with boron or silicon.
PCT/JP2005/004351 2004-03-12 2005-03-11 Sintered tool and method for production thereof WO2005087418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511012A JP4726781B2 (en) 2004-03-12 2005-03-11 Sintered tool and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-070252 2004-03-12
JP2004070252 2004-03-12

Publications (1)

Publication Number Publication Date
WO2005087418A1 true WO2005087418A1 (en) 2005-09-22

Family

ID=34975402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004351 WO2005087418A1 (en) 2004-03-12 2005-03-11 Sintered tool and method for production thereof

Country Status (2)

Country Link
JP (1) JP4726781B2 (en)
WO (1) WO2005087418A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297650A (en) * 2006-04-27 2007-11-15 Fuji Kihan:Kk Boronization method
EP1932930A1 (en) * 2005-09-12 2008-06-18 Sanalloy Industry Co., Ltd. High-strength cemented carbide and process for producing the same
EP2121226A1 (en) * 2007-02-13 2009-11-25 Robert Bosch GmbH Cutting element for a rock drill and method for producing a cutting element for a rock drill
JP5189222B1 (en) * 2012-07-18 2013-04-24 サンアロイ工業株式会社 Cemented carbide provided with low friction reducing ability, manufacturing method thereof, and cemented carbide tool
JP2019203195A (en) * 2018-05-22 2019-11-28 国立大学法人 名古屋工業大学 Structural member and manufacturing method thereof
CN112969674A (en) * 2018-10-30 2021-06-15 瑞典海博恩材料与技术有限公司 Method for boronizing sintered bodies, tool for cold forming operations and hollow wear-resistant part with boronized sintered bodies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120274A (en) * 1989-12-27 1992-04-21 Sumitomo Electric Ind Ltd Coated cemented carbide and production thereof
JPH04128330A (en) * 1990-09-17 1992-04-28 Toshiba Tungaloy Co Ltd Sintered alloy of graded composition structure and its production
JPH06157135A (en) * 1992-11-25 1994-06-03 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120274A (en) * 1989-12-27 1992-04-21 Sumitomo Electric Ind Ltd Coated cemented carbide and production thereof
JPH04128330A (en) * 1990-09-17 1992-04-28 Toshiba Tungaloy Co Ltd Sintered alloy of graded composition structure and its production
JPH06157135A (en) * 1992-11-25 1994-06-03 Toshiba Tungaloy Co Ltd Surface-tempered sintered alloy and production thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932930A1 (en) * 2005-09-12 2008-06-18 Sanalloy Industry Co., Ltd. High-strength cemented carbide and process for producing the same
EP1932930A4 (en) * 2005-09-12 2010-06-16 Sanalloy Industry Co Ltd High-strength cemented carbide and process for producing the same
JP2007297650A (en) * 2006-04-27 2007-11-15 Fuji Kihan:Kk Boronization method
EP2121226A1 (en) * 2007-02-13 2009-11-25 Robert Bosch GmbH Cutting element for a rock drill and method for producing a cutting element for a rock drill
JP5189222B1 (en) * 2012-07-18 2013-04-24 サンアロイ工業株式会社 Cemented carbide provided with low friction reducing ability, manufacturing method thereof, and cemented carbide tool
WO2014013715A1 (en) * 2012-07-18 2014-01-23 サンアロイ工業株式会社 Superhard alloy imparted with low friction ability, method for producing same, and superhard tool
JP2019203195A (en) * 2018-05-22 2019-11-28 国立大学法人 名古屋工業大学 Structural member and manufacturing method thereof
CN112969674A (en) * 2018-10-30 2021-06-15 瑞典海博恩材料与技术有限公司 Method for boronizing sintered bodies, tool for cold forming operations and hollow wear-resistant part with boronized sintered bodies

Also Published As

Publication number Publication date
JP4726781B2 (en) 2011-07-20
JPWO2005087418A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
WO2007032348A1 (en) High-strength cemented carbide and process for producing the same
JP4911937B2 (en) High-strength cemented carbide, manufacturing method thereof and tool using the same
KR101215656B1 (en) Method for consolidating Tough Coated Hard Powders
JP5619006B2 (en) Hard metal
CA2770291C (en) Tough coated hard particles consolidated in a tough matrix material
JP2012517531A (en) Polycrystalline diamond
AU7484698A (en) Tough-coated hard powders and sintered articles thereof
JP4726781B2 (en) Sintered tool and its manufacturing method
JP4997561B2 (en) Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same
JP2012522887A (en) Object coated with SiC layer and method of manufacturing the same
JP3949181B2 (en) Diamond sintered body using hard alloy as binder and method for producing the same
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
CN112941390B (en) Titanium carbonitride base metal ceramic and preparation method and application thereof
CN112941389B (en) Titanium carbonitride base metal ceramic and preparation method and application thereof
CN113462944A (en) Boron-doped (Ti, W, Mo, Nb, Ta) (C, N) -Co-Ni powder, cermet and preparation method
KR20220115559A (en) Gradient cemented carbide with alternative binders
JPH058153B2 (en)
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JPH0135041B2 (en)
JPH0215622B2 (en)
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPH0734250A (en) Coated carbide tool
JP2001080953A (en) Ceramic sintered compact and coated ceramic sintered compact
JP2005239443A (en) Ceramic sintered compact and coated ceramic sintered compact

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006511012

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase