WO2014013713A1 - Optical module and method for producing same - Google Patents

Optical module and method for producing same Download PDF

Info

Publication number
WO2014013713A1
WO2014013713A1 PCT/JP2013/004325 JP2013004325W WO2014013713A1 WO 2014013713 A1 WO2014013713 A1 WO 2014013713A1 JP 2013004325 W JP2013004325 W JP 2013004325W WO 2014013713 A1 WO2014013713 A1 WO 2014013713A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
optical
optical element
substrate
optical module
Prior art date
Application number
PCT/JP2013/004325
Other languages
French (fr)
Japanese (ja)
Inventor
杉本 宝
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2014013713A1 publication Critical patent/WO2014013713A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Definitions

  • the present invention relates to an optical module and a manufacturing method thereof.
  • optical interconnection technology is widely used for inter-node connections and routers of computers.
  • an optical module used for optical interconnection is generally a parallel optical module using a plurality of optical elements and a plurality of optical fibers. In such a parallel optical module, it is necessary to prevent variations in coupling efficiency of individual channels.
  • Patent Document 1 discloses a technique for realizing this.
  • FIG. 19 is a perspective view showing an optical module of this technology.
  • An optical LSI package 102 is mounted on the wiring board 101.
  • the optical LSI package 102 contains an optical element 103.
  • a connector 104 is superimposed on the optical LSI package 102. Both are configured to be detachably fixed by a clamp 105.
  • the connector 104 holds the optical fiber array 106.
  • the optical fiber array 106 is a bundle of optical fibers bundled in a tape shape. Although the detailed structure is left to Patent Document 1, the optical fiber array 106 is accurately positioned with respect to the connector 104.
  • a mirror 107 is provided at the tip of the optical fiber array 106 at an angle of about 45 degrees with respect to the optical axis of the optical fiber array 106.
  • the optical fiber array 106 and the optical element 103 are optically coupled by the action of the mirror.
  • the lower surface of the connector 104 is flat.
  • a positioning hole 108 is formed on the lower surface.
  • the upper surface of the optical LSI package 102 is flat. Above the optical element 103 on the top surface is a window 109 that transmits light. A positioning pin 110 is formed on the upper surface. A clamp claw recess 111 is formed on the side surface.
  • the clamp 105 is an elastic body having a recess at the center and has claws at both ends.
  • the positioning pins 110 are fitted into the positioning holes 108, and the horizontal positioning is performed. Further, when the lower surface of the connector 104 and the upper surface of the optical LSI package 102 are in close contact with each other, positioning in the height direction is performed. As described above, since the optical fiber array 106 is accurately positioned with respect to the connector 104, the optical axis adjustment of the optical system including the optical fiber array 106, the mirror 107, and the optical element 103 is completed by this mounting. Will do.
  • the connector 104 is fixed by attaching the clamp 105 from above.
  • the claw provided at the end portion fits into the clamp claw recess 111 on the side surface of the optical LSI package 102.
  • the concave portion of the clamp 105 pushes the connector 104 downward, the close contact between the connector 104 and the optical LSI package 102 is maintained.
  • Patent Document 2 discloses another technique.
  • FIG. 20 is a perspective view showing an optical module of this technology.
  • This optical module includes an upper structure 203 in which an optical fiber array 201 is held by a holding member 202, an optical element mounting board 205 on which an optical element 204 is mounted, an anisotropic conductive sheet 206, a wiring board 207, a wiring board, and the like. And a fitting member 208 fixed on 207.
  • the holding member 202 corresponds to the connector 104 of Patent Document 1.
  • a tapered shoulder 202 a is provided at the end of the holding member 202.
  • a positioning hole 209 is provided on the lower surface.
  • the optical fiber array 201 is bent into an arc shape by an arc portion 210 inside the holding member 202, and its tip is exposed on the lower surface of the holding member 202.
  • the fitting member 208 is a receptacle for holding the holding member 202 (connector).
  • the fitting member 208 is formed of a member having rigidity and elasticity such as metal.
  • An opening 211 is provided at the bottom, where the wiring of the wiring board 207 is exposed.
  • side plates 212 extending in the vertical direction of the substrate are provided from the four sides of the opening 211, and the tip thereof is a protruding ridge 213 having elasticity.
  • the optical element mounting substrate 205 is a substrate on which the optical element 204 and LSI and other electronic circuits are mounted. Positioning pins 214 are provided on the upper surface.
  • the positioning pins 214 are fitted into the positioning holes 209.
  • the holding member 202 and the optical element mounting substrate 205 are positioned in the horizontal direction. Further, when the flat portion on the outer periphery of the optical element mounting substrate 205 and the lower surface of the holding member 202 are in contact with each other, positioning in the height direction is performed. In this way, alignment of the tip of the optical fiber array 201 and the optical element 204 is performed.
  • the procedure for mounting the upper structure 203 with this optical module is as follows. 1) First, the anisotropic conductive sheet 206 is disposed in the opening 209 of the fitting member 208. 2) The optical element mounting substrate 205 is disposed thereon. 3) The upper structure 203 is vertically fitted from above. At this time, the positioning pin 214 and the positioning hole 209 are fitted. 4) When the upper structure 203 is attached to the fitting member 208, the shoulder portion 202a of the holding member 202 is pressed inward and downward by the protrusion 213. By this pressure, the upper structure 203 is fixed, and the optical element mounting substrate 205 and the wiring substrate 207 are electrically connected via the anisotropic conductive sheet 206.
  • the optical fiber array 201 and the optical element 204 can be aligned and optically connected.
  • the optical element mounting substrate 205 and the wiring substrate 207 can be aligned and electrically connected.
  • the clamp 105 applies pressure to a part of the connector 104 from above. This pressure acts to distort the connector 104 and also applies strain to the optical fiber array 106. For this reason, the reliability of the optical module was lowered, and the lifetime was shortened.
  • Patent Document 2 has a problem that the electrical connection between the wiring of the wiring substrate 207 and the back electrode of the optical element mounting substrate 205 is unstable.
  • An anisotropic conductive sheet 206 is used for connection between the two, but the anisotropic conductive sheet 206 becomes conductive when pressure is applied. For this reason, normally, a sufficiently high pressure is applied, but in the present technology, the shoulder 102a of the holding member 202 (connector) is connected to the protrusion 213 (spring) at the tip of the fitting member 208 (receiver). It just pushes diagonally downward. Therefore, there was a place where the pressure applied below was weak and sufficient pressure was not applied. In such a place, the connection resistance is high, and the connection is unstable as a whole.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an optical module in which the electrical connection between the optical element and the wiring board is stable and the optical fiber array is not stressed. That is.
  • an optical module having a substrate, an optical element connected to the substrate by a conductive adhesive layer, and a receiver provided on the substrate and positioned above the optical element.
  • the receptacle has holding means for holding the connector from the side.
  • the effect of the present invention is that an optical module having stable electrical connection between the optical element and the wiring board and having high reliability can be obtained.
  • FIG. 1 is a perspective view showing a first embodiment of the present invention.
  • a wiring 2 is formed on the optical element mounting substrate 1, and an optical element 4 is connected to the wiring 2 through a conductive adhesive layer 3.
  • the optical element mounting substrate 1 is provided with a back electrode connected to the wiring 2.
  • a receptacle 5 is provided above the optical element 4 and is bonded to the optical element mounting substrate 1 through an adhesive layer 6.
  • the receptacle 5 is a receptacle for fitting the connector 8 holding the optical fiber 7 and optically coupling the optical fiber 7 and the optical element 4.
  • the receptacle 5 is provided with a flat reference surface 9, and a guide 10 extending in a direction perpendicular to the reference surface is provided at the end.
  • the guide 10 is provided with a projection 11 for locking the side surface of the connector 8, and the reference surface 9 is provided with a window 12 for transmitting light and a positioning pin 13 for positioning the connector 8 in the horizontal direction. ing.
  • a space for housing the optical element 4 and other components is provided on the lower surface of the receptacle 5.
  • an LSI 14 that exchanges electrical signals with the optical element 4 may be mounted on the optical element mounting substrate 1.
  • the optical fiber 7 is a tape-shaped optical fiber array composed of a plurality of fibers
  • the optical element 4 is generally an optical element array in which a plurality of elements are arranged in an array.
  • FIG. 1 also shows a configuration for connecting the optical module to the outside.
  • the optical element mounting substrate 1 is connected to an external electronic circuit via the wiring substrate 15.
  • the back electrode (not shown) of the optical element mounting substrate 1 and the external wiring 16 on the wiring substrate 15 are connected.
  • sockets such as LGA (Land Grid Array) and PGA (Pin Grid Array) can also be used for connection.
  • the connector 8 accurately positions and holds the optical fiber 7 and has an optical path changing means inside, so that the path of light entering from the horizontal direction of the optical element mounting substrate 1 can be changed downward.
  • a positioning hole 17 is provided on the lower surface of the connector 8.
  • the positioning pins 13 and the positioning holes 17 are fitted, and the horizontal positioning is performed.
  • the relationship between the positioning pin 13 and the positioning hole 17 may be reversed.
  • a flat surface (not shown) is provided on the lower surface of the connector 8, and the flat surface is brought into close contact with the reference surface 9, whereby positioning in the height direction is performed.
  • a groove 18 that fits into the protrusion 11 is provided on the side surface of the connector 8.
  • FIG. 2 is a plan view showing the optical module of the present embodiment. On the optical element mounting substrate 1, the receptacle 5 and the connector 8 are fitted.
  • FIG. 3 is a cross-sectional view taken along the line A-A ′ of FIG.
  • the optical element 4 has a pad 19 and is connected to the wiring 2 by the conductive adhesive layer 3.
  • a paste or solder containing a conductor such as Ag, Ni, or C can be used.
  • the electrical connection with the wiring 2 is ensured by baking the paste or reflowing the solder.
  • the receptacle 5 is bonded to the optical element mounting substrate 1 by an adhesive layer 6 provided on the wiring 2.
  • the adhesive layer 6 a resin having heat resistance, a double-sided tape, solder or the like can be used.
  • the receptacle 5 is placed on the wiring 2 for accurate positioning, and other marks may be used instead of the wiring 2. If the structure using the same pad 19 and conductive adhesive layer 3 as the optical element 4 is used, the number of steps can be reduced.
  • a lens 20 is bonded to the window 12 of the receptacle 5.
  • a connector 8 is fitted and connected above the receptacle 5.
  • a part of the lower surface of the connector 4 is a recess.
  • the optical fiber 7 is disposed in the recess and is sandwiched between the flat plate 21 and the connector 4.
  • a mirror 22 having an angle with respect to the optical fiber 7 is provided at the end of the recess. The tip of the optical fiber 7 is exposed toward the mirror 22, and the light emitted from the optical fiber 7 is reflected by the mirror 22 so that the path can be changed in the direction of the optical element 4.
  • the lens 20 condenses the light reflected by the mirror 22 on the optical element 4. Further, the light emitted from the optical element 4 is condensed on the end face of the optical fiber 7.
  • the optical system is configured so that the optical fiber 7 and the optical element 4 respectively correspond to the lens 20 as an array.
  • the optical element 4 is a light source such as a VCSEL (vertical cavity surface emitting laser), and a light receiving element such as a PD (photodiode). A plurality of these can be combined.
  • the optical element 4 is not limited to these, and elements having various optical functions can be used.
  • FIG. 4 is a cross-sectional view taken along the line B-B ′ of FIG.
  • a protrusion 11 provided on the guide 10 is fitted in a groove 18 provided on a side surface of the connector 8.
  • Positioning pins 13 are fitted into the positioning holes 17 so that the connector 8 and the receptacle 5 are positioned.
  • a separation groove 23 dug below the reference surface 7 is formed between the reference surface 9 at the center of the receptacle 5 and the guide 10. Due to the separation groove 23, even if the guide 10 bends when the connector 8 is attached or detached, the deformation does not affect the reference surface 9.
  • a material having both rigidity and elasticity is used as the material of the receptacle 2.
  • heat-resistant resins such as PEEK (polyether ether ketone), PPS (polyphenylene sulfide), and liquid crystal polymer.
  • Metals such as aluminum and copper can also be used.
  • FIG. 5 is a cross-sectional view showing a state in which the optical fiber 7 is attached to the connector 8 in the present embodiment.
  • a V-shaped groove 24 is formed in the concave portion for housing the optical fiber 7 of the connector 8.
  • One optical fiber 7 is disposed in each groove of the V-shaped groove 24.
  • a flat plate 21 is provided so as to sandwich the optical fiber 7 and holds the optical fiber 7 in a positioned state.
  • a resin such as PET or ABS can be used.
  • glass or ceramic having high hardness and good flatness can be used.
  • a similar material can be used for the flat plate 21.
  • FIG. 6 is a cross-sectional view of the connector 4 in the length direction of the optical fiber 7.
  • a stopper 25 is provided at the end of the V-shaped groove 21, and positioning in the length direction is performed when the tip of the optical fiber 7 abuts against the stopper 25.
  • a slope is formed at the tip of the stopper 22, and a mirror 18 is formed on the slope.
  • FIG. 7 is an enlarged sectional view of the vicinity of the stopper 25.
  • the stopper 25 is in contact with the clad 7b of the optical fiber 7 and is formed so as not to hang on the extension line of the core 7c.
  • the light emitted from the optical fiber 7 is reflected by the mirror 22 and is directed downward in the figure, that is, toward the optical element 4.
  • the mirror 22 is preferably a metal film such as Au, Ag, or Al.
  • the optical element 4 and the receptacle 5 are mounted on the optical element mounting substrate 1 while being accurately positioned.
  • a connector 8 is attached to this from above the receptacle 5.
  • the position of the connector 8 in the horizontal direction is regulated by the guide 10, and the positioning pins 13 and the positioning holes 17 are fitted to position the connector 8 in the horizontal direction.
  • the reference surface 9 of the receptacle 5 and the flat plate 21 on the lower surface of the connector 8 are brought into close contact with each other, thereby positioning in the height direction.
  • the protrusion 11 provided on the guide 10 is fitted into the groove 18 provided on the side surface of the connector 8.
  • the connector 8 is fixed to the receptacle 5 in a state where the optical elements such as the optical fiber 7, the mirror 22, the lens 20, and the optical element 4 are aligned.
  • the fixing pressure is applied to the side surface of the connector 8, no stress is applied to the optical fiber 7.
  • the optical element 4 receives an optical signal
  • the light emitted from the tip of the optical fiber 7 is reflected by the mirror 22, condensed by the lens 20, and enters the optical element 4 (light receiving element).
  • the light receiving element converts light into electricity, and signal processing is performed by the LSI 14 or the like connected by the optical element mounting substrate 1.
  • an electrical signal is sent from the LSI 14 or the like to the optical element 4 (light emitting element).
  • the light emitting element converts an electrical signal into an optical signal and emits light.
  • the light is collected by the lens 20, then reflected by the mirror 22, and then enters the fiber 7.
  • transmission / reception of optical signals and signal processing are performed.
  • FIG. 8 is a cross-sectional view showing a method for manufacturing an optical module in the present embodiment.
  • the wiring 2 is formed on the optical element mounting substrate 1.
  • the optical element mounting substrate 1 one having a high dimensional accuracy and a low coefficient of thermal expansion is suitable. Ceramic, glass ceramic, glass epoxy, glass polyimide, fluororesin, liquid crystal polymer, or the like can be used.
  • a material of the wiring 2 Cu, Ag, Au, Al, an alloy thereof, or the like can be used. Plating with Ni, Au or the like is desirable to prevent corrosion and improve bondability.
  • the conductive adhesive layer 3 is formed on the portion where the wiring 2 and the optical element 4 and other components are connected by screen printing, dispensing method or the like. Alternatively, solder balls may be placed. As described above, the conductive adhesive layer 3 is a paste or solder containing a conductor such as Ag, Ni, or C.
  • the optical element 4 is mounted as shown in FIG. 8C.
  • a treatment such as heating and UV irradiation is performed to cure the conductive adhesive layer 3.
  • an adhesive layer 6 is formed on the wiring 2 on which the receptacle 5 is mounted using screen printing, a dispensing method, or the like.
  • a mark different from the wiring 2 is used.
  • the receptacle 5 on which the lens 20 is mounted is mounted.
  • the adhesive layer 6 is cured by heat treatment, UV irradiation, or the like, and an optical module including the receptacle 5 is completed.
  • FIG. 9 is a cross-sectional view showing another manufacturing method.
  • a pad 26 similar to that of the optical element 4 is provided on the lower surface of the receptacle 5.
  • the wiring 2 is formed on the optical element mounting substrate 1 as shown in FIG. 9A.
  • a conductive adhesive layer 3 is formed on the wiring 2 as shown in FIG. 9B.
  • components such as the optical element 4, the receptacle 5, and the LSI 14 are mounted.
  • the conductive adhesive layer 3 is cured by heat treatment or the like.
  • the optical element 4 and the receptacle 5 are bonded simultaneously, the number of processes can be reduced. Further, when solder is used as the conductive adhesive layer 3, the whole can be baked by reflow, so that productivity is improved.
  • FIG. 10 is a schematic sectional view showing a method for manufacturing the connector 8 holding the optical fiber 7.
  • a concave portion is formed on the lower surface of the connector 8, and a V-shaped groove 24 is formed so that the optical fibers 7 can be accommodated one by one.
  • a stopper 25 is formed at the end of the V-shaped groove 24 so that the clad 7a at the tip of the optical fiber 7 abuts.
  • a mirror 22 is formed on the slope.
  • the mirror 22 can be produced by forming a metal film such as Al or Ag by vapor deposition or sputtering, for example. Alternatively, a reflective member may be attached.
  • the optical fiber 7 is inserted into the V-shaped groove 24, and the tip is abutted against the stopper 25.
  • the flat plate 21 is bonded to the connector 8, and the optical fiber 7 is fixed in a positioned state.
  • the electrical connection between the optical element 4 and the optical element mounting substrate 1 can be firmly established. Further, since the optical element 4, the lens 20, the mirror 22, and the optical fiber 7 are aligned, the optical axis alignment is completed simply by attaching the connector 8 to the receptacle 5.
  • FIG. 11 is a cross-sectional view showing a second embodiment of the present invention.
  • a screw 27 is used as a locking means for the connector 8.
  • the connector 8 is attached, the screw 27 is first removed.
  • the connector 8 is fitted to the receptacle 5.
  • a screw is passed through the screw hole of the guide 10, and the tip is brought into contact with the groove 18 on the side surface of the connector 8 and fixed.
  • the groove 18 may be a hole or a screw hole. According to the present embodiment, since the connector 8 can be fixed without bending the guide 10, the life of the receptacle 5 can be extended.
  • FIG. 12 is a sectional view showing a third embodiment of the present invention.
  • the guide 10 is provided with a through hole.
  • An elastic body 29 that holds the pin 28 is fixed to the side surface of the receptacle 5.
  • the pin 29 is slidable through the through hole.
  • the elastic body 29 is expanded and the tip of the pin 28 is retracted from the inner surface of the guide 10, and the connector 8 is inserted.
  • the pressure applied to the elastic body 29 is released.
  • the pin 28 fits into the groove 18 and the connector 8 is fixed.
  • the groove 18 may be a hole.
  • the elastic body 29 can be fixed to the receptacle 5 by various methods such as adhesion, double-sided tape, and screwing.
  • FIG. 13 is a cross-sectional view showing a second embodiment of the present invention, and is an enlarged view of a fitting portion between a protrusion 11 provided on a guide 8 and a groove 14 provided on a side surface of a connector 4. It is.
  • the tip of the protrusion 11 is disposed below the bottom of the groove 14. With this configuration, even if the position of the groove 12 is shifted due to component tolerances, a downward biasing force acts on the connector 4 and is pressed against the reference surface 7. By this action, the connector 4 can be brought into contact with the reference surface 7 without looseness.
  • the same method can be applied to any of the first, second, and third embodiments.
  • FIG. 14 shows a configuration in which the groove 10 is provided in the guide 10 and the projection 11 is provided in the connector 8.
  • the tip of the protrusion 11 is positioned higher than the bottom of the groove 14.
  • FIG. 15 is a sectional view showing a fifth embodiment of the present invention.
  • a spring 30 that covers from above is provided with the connector 8 mounted on the receptacle 5. Since the guide 10 is pushed inward by the action of the spring 30, the connector 8 and the receptacle 5 are more securely fixed. Further, if the spring 30 completely covers the upper surface of the receptacle 2, it is possible to prevent dust and moisture from entering from the gap between the fitting portions.
  • FIG. 16 is a side view showing a sixth embodiment of the present invention.
  • a base 31 that is directly mounted on the optical element mounting substrate 1 is provided.
  • the receptacle 5 and the lens array 20 are mounted on a pedestal 27.
  • the positioning pin 10 is provided integrally with the pedestal 31.
  • the guide 10 in the present embodiment is provided apart from the positioning pin 10. For this reason, even if the guide 10 is deformed when the connector 8 is attached or detached, no stress is applied to the positioning pin 13. Therefore, positioning can be performed more accurately. In addition, the mechanical life against repeated attachment and detachment can be extended.
  • FIG. 17 is a side view showing a seventh embodiment of the present invention.
  • a pedestal 31 that is directly mounted on the optical element mounting substrate 1 is provided as in the sixth embodiment.
  • the difference is that the positioning pin 10 is provided in the receptacle 2. With this configuration, the optical module can be reduced in size.
  • FIG. 18 is a cross-sectional view showing a seventh embodiment of the present invention.
  • the positioning pin 10 is provided on the connector 4 side, and the positioning hole 13 is provided in the receptacle 2. According to the present embodiment, it becomes easy to arrange the positioning pins 10 in a direction perpendicular to the longitudinal direction of the window. In this case, the width of the connector 4 or the receptacle 2 can be made narrower than when the positioning pins 10 are provided in the longitudinal direction of the window. As a result, the entire optical module can be reduced in size.
  • An optical module comprising: a substrate; an optical element connected to the substrate by a conductive adhesive layer; and a receiver provided on the substrate and positioned above the optical element, wherein the receiver includes the connector
  • An optical module having a holding means for holding from a side surface
  • the optical module according to appendix 1 wherein the receiver has a side plate portion, and has a locking means for locking the side plate portion and a side surface of the connector.
  • the optical module according to appendix 2 The optical module according to appendix 2, wherein the locking means is a convex portion or a concave portion connected to the side plate portion.
  • Appendix 4 4.
  • the apparatus further comprising a positioning unit that positions the optical element with respect to the substrate and a positioning unit that positions the receiver with respect to the substrate. 5.
  • the optical module as described in. (Appendix 5) 5.
  • Appendix 9 The optical module according to any one of appendices 1 to 8, wherein the substrate has a back electrode, and the back electrode is connected to a wiring substrate.
  • Appendix 10 A step of applying a conductive adhesive to a predetermined position of a substrate; a step of mounting an optical element on the conductive adhesive; a step of applying an adhesive to a predetermined position of the substrate; and a connector on the adhesive
  • a method of manufacturing an optical module comprising: mounting a receiver having a holding means for holding the substrate from a side; curing the conductive adhesive; and curing the adhesive.
  • Appendix 15 15. The optical module according to claim 1, further comprising an elastic body that urges the side plate portion from the outside toward the inside.
  • Appendix 16 The optical module according to appendix 15, wherein the elastic body covers an upper surface of the receiver.
  • Appendix 17 The optical module according to any one of appendices 1 to 16, further comprising an LSI electrically connected to the optical element on the substrate.
  • (Appendix 18) Forming a conductive adhesive layer on a predetermined position of a substrate on which wiring is formed; mounting an optical element on the conductive adhesive layer; applying an adhesive on a predetermined position of the substrate;
  • An optical module comprising a step of mounting a receiver having a holding means for holding a connector from the side on an adhesive, a step of curing the conductive adhesive, and a step of curing the adhesive.
  • Manufacturing method (Appendix 19) A step of forming a conductive adhesive layer at a predetermined position of a substrate on which wiring is formed; a step of mounting an optical element on the conductive adhesive layer and a receiver having a holding means for holding the connector from the side surface; And a step of curing the conductive adhesive layer.

Abstract

This optical module is provided with: a substrate; an optical element that is connected to the substrate by means of a conductive adhesive layer; and a receptor that is provided on the substrate so as to be positioned above the optical element. The receptor comprises a holding means that holds a connector from the sides.

Description

光モジュールおよびその製造方法Optical module and manufacturing method thereof
 本発明は、光モジュールおよびその製造方法に関する。 The present invention relates to an optical module and a manufacturing method thereof.
 近年のコンピュータの計算性能の向上に伴い、データ通信速度に対する要求も急速に高くなっている。このため、コンピュータのノード間接続やルータには光インターコネクション技術が広く用いられている。 With the recent improvement in computer computing performance, the demand for data communication speed is rapidly increasing. For this reason, optical interconnection technology is widely used for inter-node connections and routers of computers.
 現在、光インターコネクションに用いる光モジュールは複数の光素子と複数の光ファイバとを用いたパラレル光モジュールが一般的である。このようなパラレル光モジュールでは、個々のチャンネルの結合効率にばらつきが出ないようにする必要がある。 Currently, an optical module used for optical interconnection is generally a parallel optical module using a plurality of optical elements and a plurality of optical fibers. In such a parallel optical module, it is necessary to prevent variations in coupling efficiency of individual channels.
 これを実現する技術が、例えば特許文献1に開示されている。 For example, Patent Document 1 discloses a technique for realizing this.
 図19はこの技術の光モジュールを示す斜視図である。配線基板101上に光LSIパッケージ102が搭載されている。光LSIパッケージ102は光素子103を内蔵している。光LSIパッケージ102上にはコネクタ104が重畳されている。この両者をクランプ105で着脱自在に固定する構造となっている。 FIG. 19 is a perspective view showing an optical module of this technology. An optical LSI package 102 is mounted on the wiring board 101. The optical LSI package 102 contains an optical element 103. A connector 104 is superimposed on the optical LSI package 102. Both are configured to be detachably fixed by a clamp 105.
 コネクタ104は光ファイバアレイ106を保持している。光ファイバアレイ106は光ファイバをテープ状に束ねたものである。詳細な構造は特許文献1に譲るが、光ファイバアレイ106はコネクタ104に対して正確に位置決めされている。また光ファイバアレイ106先端の先には光ファイバアレイ106の光軸に対して略45度の角度をなすミラー107が設けられている。ミラーの作用により、光ファイバアレイ106と光素子103が光学的に結合されている。またコネクタ104の下面は平坦になっている。下面には位置決め穴108が形成されている。 The connector 104 holds the optical fiber array 106. The optical fiber array 106 is a bundle of optical fibers bundled in a tape shape. Although the detailed structure is left to Patent Document 1, the optical fiber array 106 is accurately positioned with respect to the connector 104. A mirror 107 is provided at the tip of the optical fiber array 106 at an angle of about 45 degrees with respect to the optical axis of the optical fiber array 106. The optical fiber array 106 and the optical element 103 are optically coupled by the action of the mirror. The lower surface of the connector 104 is flat. A positioning hole 108 is formed on the lower surface.
 光LSIパッケージ102の上面は平坦になっている。上面の光素子103の上方は光を透過する窓109となっている。また上面には位置決めピン110が形成されている。また側面にはクランプ爪用窪み111が形成されている。 The upper surface of the optical LSI package 102 is flat. Above the optical element 103 on the top surface is a window 109 that transmits light. A positioning pin 110 is formed on the upper surface. A clamp claw recess 111 is formed on the side surface.
 クランプ105は中央に凹部を持つ弾性体であり、両端に爪を有している。 The clamp 105 is an elastic body having a recess at the center and has claws at both ends.
 次に光モジュールの組立てについて説明する。 Next, the assembly of the optical module will be described.
 コネクタ104を光LSIパッケージ102上に配置すると、位置決めピン110が位置決め穴108に嵌合し、水平方向の位置決めなされる。またコネクタ104の下面と、光LSIパッケージ102の上面が密着することにより、高さ方向の位置決めがなされる。前述したように、光ファイバアレイ106はコネクタ104に対して正確に位置決めされているため、この装着により、光ファイバアレイ106、ミラー107、光素子103で構成される光学系の光軸調整が完了することになる。 When the connector 104 is disposed on the optical LSI package 102, the positioning pins 110 are fitted into the positioning holes 108, and the horizontal positioning is performed. Further, when the lower surface of the connector 104 and the upper surface of the optical LSI package 102 are in close contact with each other, positioning in the height direction is performed. As described above, since the optical fiber array 106 is accurately positioned with respect to the connector 104, the optical axis adjustment of the optical system including the optical fiber array 106, the mirror 107, and the optical element 103 is completed by this mounting. Will do.
 コネクタ104の固定は、上方からクランプ105を装着することによってなされる。クランプ105を装着すると端部に設けられた爪が、光LSIパッケージ102側面のクランプ爪用窪み111に嵌合する。このときクランプ105の凹部がコネクタ104を下方へ押すため、コネクタ104と光LSIパッケージ102の密着が保たれることになる。 The connector 104 is fixed by attaching the clamp 105 from above. When the clamp 105 is attached, the claw provided at the end portion fits into the clamp claw recess 111 on the side surface of the optical LSI package 102. At this time, since the concave portion of the clamp 105 pushes the connector 104 downward, the close contact between the connector 104 and the optical LSI package 102 is maintained.
 また特許文献2には別の技術が開示されている。 Further, Patent Document 2 discloses another technique.
 図20はこの技術の光モジュールを示す斜視図である。この光モジュールは、光ファイバアレイ201が保持部材202により保持された上部構造体203と、光素子204を搭載した光素子搭載基板205と、異方導電シート206と、配線基板207と、配線基板207上に固定された嵌合部材208とを有する。 FIG. 20 is a perspective view showing an optical module of this technology. This optical module includes an upper structure 203 in which an optical fiber array 201 is held by a holding member 202, an optical element mounting board 205 on which an optical element 204 is mounted, an anisotropic conductive sheet 206, a wiring board 207, a wiring board, and the like. And a fitting member 208 fixed on 207.
 保持部材202は特許文献1のコネクタ104に相当する。保持部材202の端にはテーパー状の肩部202aが設けられている。また下面には位置決め穴209が設けられている。 The holding member 202 corresponds to the connector 104 of Patent Document 1. A tapered shoulder 202 a is provided at the end of the holding member 202. A positioning hole 209 is provided on the lower surface.
 光ファイバアレイ201は、保持部材202内部の円弧部210によって、円弧状に曲げられ、その先端が保持部材202の下面に露出するようになっている。 The optical fiber array 201 is bent into an arc shape by an arc portion 210 inside the holding member 202, and its tip is exposed on the lower surface of the holding member 202.
 嵌合部材208は保持部材202(コネクタ)を保持するための受容器である。嵌合部材208は金属等の剛性と弾性を有する部材で形成されている。底部には開口部211が設けられ、そこで配線基板207の配線が露出している。また開口部211の4辺からは基板の鉛直方向に延びる側板部212が設けられ、その先端は弾性を有する突条部213となっている。 The fitting member 208 is a receptacle for holding the holding member 202 (connector). The fitting member 208 is formed of a member having rigidity and elasticity such as metal. An opening 211 is provided at the bottom, where the wiring of the wiring board 207 is exposed. Further, side plates 212 extending in the vertical direction of the substrate are provided from the four sides of the opening 211, and the tip thereof is a protruding ridge 213 having elasticity.
 光素子搭載基板205は光素子204とLSIその他の電子回路を搭載した基板である。上面に位置決めピン214が設けられている。 The optical element mounting substrate 205 is a substrate on which the optical element 204 and LSI and other electronic circuits are mounted. Positioning pins 214 are provided on the upper surface.
 次に光モジュールの組立てについて説明する。 Next, the assembly of the optical module will be described.
 光素子搭載基板205に保持部材202を重畳すると、位置決めピン214は、位置決め穴209と嵌合する。嵌合により保持部材202と光素子搭載基板205との水平方向における位置決めがなされる。また光素子搭載基板205外周の平坦部と、保持部材202の下面が当接することにより、高さ方向の位置決めがなされる。このようにして、光ファイバアレイ201先端と光素子204の位置合わせが行われる。 When the holding member 202 is superimposed on the optical element mounting substrate 205, the positioning pins 214 are fitted into the positioning holes 209. By the fitting, the holding member 202 and the optical element mounting substrate 205 are positioned in the horizontal direction. Further, when the flat portion on the outer periphery of the optical element mounting substrate 205 and the lower surface of the holding member 202 are in contact with each other, positioning in the height direction is performed. In this way, alignment of the tip of the optical fiber array 201 and the optical element 204 is performed.
 この光モジュールで上部構造体203を装着する手順は下記の通りである。1)まず嵌合部材208の開口部209に、異方導電シート206を配置する。2)その上に光素子搭載基板205を配置する。3)その上から上部構造体203を垂直に嵌め込む。このとき位置決めピン214と、位置決め穴209を嵌合させる。4)嵌合部材208に上部構造体203が装着されると、突条部213によって、保持部材202の肩部202aが内側および下方に押圧される。この圧力により、上部構造体203が固定され、異方導電シート206を介して光素子搭載基板205と配線基板207とが電気的に接続される。 The procedure for mounting the upper structure 203 with this optical module is as follows. 1) First, the anisotropic conductive sheet 206 is disposed in the opening 209 of the fitting member 208. 2) The optical element mounting substrate 205 is disposed thereon. 3) The upper structure 203 is vertically fitted from above. At this time, the positioning pin 214 and the positioning hole 209 are fitted. 4) When the upper structure 203 is attached to the fitting member 208, the shoulder portion 202a of the holding member 202 is pressed inward and downward by the protrusion 213. By this pressure, the upper structure 203 is fixed, and the optical element mounting substrate 205 and the wiring substrate 207 are electrically connected via the anisotropic conductive sheet 206.
 以上のように特許文献2の技術を用いれば、光ファイバアレイ201と光素子204を位置合わせして光学的に接続できる。同時に、光素子搭載基板205と配線基板207を位置合わせして電気的に接続することができる。 As described above, if the technique of Patent Document 2 is used, the optical fiber array 201 and the optical element 204 can be aligned and optically connected. At the same time, the optical element mounting substrate 205 and the wiring substrate 207 can be aligned and electrically connected.
特開2006-65358号公報JP 2006-65358 A 特開2009-53281号公報JP 2009-53281 A
 しかしながら、公知の技術には下記の問題点があった。 However, the known techniques have the following problems.
 特許文献1の技術では、クランプ105がコネクタ104の一部に上方から圧力をかけている。この圧力はコネクタ104を歪ませるように作用し、光ファイバアレイ106にも歪みを加える。このため、光モジュールの信頼性が低下し、寿命が短くなっていた。 In the technique of Patent Document 1, the clamp 105 applies pressure to a part of the connector 104 from above. This pressure acts to distort the connector 104 and also applies strain to the optical fiber array 106. For this reason, the reliability of the optical module was lowered, and the lifetime was shortened.
 また特許文献2の技術には、配線基板207の配線と、光素子搭載基板205の裏面電極との電気的接続が不安定であるという問題点があった。両者の接続には異方導電シート206が用いられているが、異方導電シート206は圧力が掛かることによって導通状態となる。このため通常は十分に高い圧力を掛けて使用されるが、本技術では、保持部材202(コネクタ)の肩部102aを、嵌合部材208(受容器)先端の突条部213(バネ)で斜め下方向に押し付けているだけである。したがって、下方に加えられる圧力が弱く、十分な圧力が加わらない場所が存在した。このような場所では接続抵抗が高くなり、全体として接続が不安定になっていた。 Further, the technique of Patent Document 2 has a problem that the electrical connection between the wiring of the wiring substrate 207 and the back electrode of the optical element mounting substrate 205 is unstable. An anisotropic conductive sheet 206 is used for connection between the two, but the anisotropic conductive sheet 206 becomes conductive when pressure is applied. For this reason, normally, a sufficiently high pressure is applied, but in the present technology, the shoulder 102a of the holding member 202 (connector) is connected to the protrusion 213 (spring) at the tip of the fitting member 208 (receiver). It just pushes diagonally downward. Therefore, there was a place where the pressure applied below was weak and sufficient pressure was not applied. In such a place, the connection resistance is high, and the connection is unstable as a whole.
 本発明は上記の問題点に鑑みてなされたものであり、その目的は、光素子と配線基板の電気的な接続が安定していて、かつ光ファイバアレイにストレスを加えない光モジュールを提供することである。 The present invention has been made in view of the above problems, and an object thereof is to provide an optical module in which the electrical connection between the optical element and the wiring board is stable and the optical fiber array is not stressed. That is.
 上記目的を達成するため、本発明では、基板と、導電性の接着層によって前記基板に接続された光素子と、前記基板上に設けられ前記光素子の上方に位置する受容器を有する光モジュールであって、前記受容器は前記コネクタを側面から保持する保持手段を有している。 In order to achieve the above object, in the present invention, an optical module having a substrate, an optical element connected to the substrate by a conductive adhesive layer, and a receiver provided on the substrate and positioned above the optical element. The receptacle has holding means for holding the connector from the side.
 本発明の効果は、光素子と配線基板の電気的な接続が安定していて、かつ信頼性の高い光モジュールが得られることである。 The effect of the present invention is that an optical module having stable electrical connection between the optical element and the wiring board and having high reliability can be obtained.
第1の実施の形態を示す斜視図である。It is a perspective view which shows 1st Embodiment. 第1の実施の形態を示す平面図である。It is a top view which shows 1st Embodiment. 第1の実施の形態を示す断面図である。It is sectional drawing which shows 1st Embodiment. 第1の実施の形態の別の断面を示す断面図である。It is sectional drawing which shows another cross section of 1st Embodiment. 第1の実施の形態のコネクタを示す断面図である。It is sectional drawing which shows the connector of 1st Embodiment. 第1の実施の形態のコネクタの別の断面を示す断面図である。It is sectional drawing which shows another cross section of the connector of 1st Embodiment. 第1の実施の形態のコネクタの光ファイバ先端近傍を示す断面図である。It is sectional drawing which shows the optical fiber front-end | tip vicinity of the connector of 1st Embodiment. 第1の実施の形態の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of 1st Embodiment. 第1の実施の形態の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of 1st Embodiment. 第1の実施の形態の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of 1st Embodiment. 第1の実施の形態の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of 1st Embodiment. 第1の実施の形態の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of 1st Embodiment. 第1の実施の形態の別の製造方法を示す断面図である。It is sectional drawing which shows another manufacturing method of 1st Embodiment. 第1の実施の形態の別の製造方法を示す断面図である。It is sectional drawing which shows another manufacturing method of 1st Embodiment. 第1の実施の形態の別の製造方法を示す断面図である。It is sectional drawing which shows another manufacturing method of 1st Embodiment. 第1の実施の形態のコネクタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the connector of 1st Embodiment. 第1の実施の形態のコネクタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the connector of 1st Embodiment. 第1の実施の形態のコネクタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the connector of 1st Embodiment. 第1の実施の形態のコネクタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the connector of 1st Embodiment. 第2の実施の形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment. 第3の実施の形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment. 第4の実施の形態を示す断面図である。It is sectional drawing which shows 4th Embodiment. 第4の実施の形態の別の例を示す断面図である。It is sectional drawing which shows another example of 4th Embodiment. 第5の実施の形態を示す断面図である。It is sectional drawing which shows 5th Embodiment. 第6の実施の形態を示す側面図である。It is a side view which shows 6th Embodiment. 第7の実施の形態を示す側面図である。It is a side view which shows 7th Embodiment. 第8の実施の形態を示す断面図である。It is sectional drawing which shows 8th Embodiment. 特許文献1の技術を示す斜視図である。It is a perspective view which shows the technique of patent document 1. FIG. 特許文献2の技術を示す斜視図である。It is a perspective view which shows the technique of patent document 2. FIG.
 次に、本発明の実施形態について図面を参照して説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕図1は、本発明の第1の実施形態を示す斜視図である。光素子搭載基板1上に配線2が形成され、配線2には導電性接着層3を介して光素子4が接続されている。図示はしていないが、光素子搭載基板1には配線2に接続する裏面電極が設けられている。光素子4の上方にはレセプタクル5が設けられ、接着層6を介して光素子搭載基板1に接合されている。レセプタクル5は光ファイバ7を保持したコネクタ8を嵌合し、光ファイバ7と光素子4を光学的に結合させるための受容器である。レセプタクル5には平坦な基準面9が設けられ、端部には基準面から垂直な方向に延伸するガイド10が設けられている。ガイド10にはコネクタ8の側面を係止するための突起11が設けられ、基準面9には光を透過させるための窓12とコネクタ8の水平方向を位置決めするための位置決めピン13が設けられている。図示はしていないが、レセプタクル5の下面には、光素子4や、その他の部品を収納するためのスペースが設けられている。なお光素子搭載基板1には、光素子4と電気信号をやり取りするLSI14を搭載しても良い。なお光ファイバ7は複数のファイバからなる例えばテープ状の光ファイバアレイ、光素子4は複数の素子がアレイ状に配列した光素子アレイとするのが一般的である。 [First Embodiment] FIG. 1 is a perspective view showing a first embodiment of the present invention. A wiring 2 is formed on the optical element mounting substrate 1, and an optical element 4 is connected to the wiring 2 through a conductive adhesive layer 3. Although not shown, the optical element mounting substrate 1 is provided with a back electrode connected to the wiring 2. A receptacle 5 is provided above the optical element 4 and is bonded to the optical element mounting substrate 1 through an adhesive layer 6. The receptacle 5 is a receptacle for fitting the connector 8 holding the optical fiber 7 and optically coupling the optical fiber 7 and the optical element 4. The receptacle 5 is provided with a flat reference surface 9, and a guide 10 extending in a direction perpendicular to the reference surface is provided at the end. The guide 10 is provided with a projection 11 for locking the side surface of the connector 8, and the reference surface 9 is provided with a window 12 for transmitting light and a positioning pin 13 for positioning the connector 8 in the horizontal direction. ing. Although not shown, a space for housing the optical element 4 and other components is provided on the lower surface of the receptacle 5. Note that an LSI 14 that exchanges electrical signals with the optical element 4 may be mounted on the optical element mounting substrate 1. In general, the optical fiber 7 is a tape-shaped optical fiber array composed of a plurality of fibers, and the optical element 4 is generally an optical element array in which a plurality of elements are arranged in an array.
 図1では、光モジュールを外部と接続する構成も示している。光素子搭載基板1は配線基板15を介して外部の電子回路と接続される。このとき光素子搭載基板1の裏面電極(図示せず)と配線基板15上の外部配線16が接続される。接続にはハンダバンプやBGA(Ball Grid Array)などを用いたハンダ付けのほか、LGA(Land Grid Array)やPGA(Pin Grid Array)などのソケットを利用することも出来る。 FIG. 1 also shows a configuration for connecting the optical module to the outside. The optical element mounting substrate 1 is connected to an external electronic circuit via the wiring substrate 15. At this time, the back electrode (not shown) of the optical element mounting substrate 1 and the external wiring 16 on the wiring substrate 15 are connected. In addition to soldering using solder bumps or BGA (Ball Grid Array), sockets such as LGA (Land Grid Array) and PGA (Pin Grid Array) can also be used for connection.
 コネクタ8は光ファイバ7を正確に位置決めして保持するとともに、内部に光進路変更手段を有し、光素子搭載基板1の水平方向から入ってきた光の進路を下方に変えることが出来る。コネクタ8の下面には位置決め穴17が設けられている。コネクタ8をレセプタクル5に装着すると、位置決めピン13と位置決め穴17が嵌合し、水平方向の位置決めがなされる。なお位置決めピン13と位置決め穴17の関係は逆であっても良い。またコネクタ8の下面には平坦面(図示せず)が設けられており、この平坦面が基準面9に密着することにより、高さ方向の位置決めがなされる。またコネクタ8の側面には突起11に嵌合する溝18が設けられている。 The connector 8 accurately positions and holds the optical fiber 7 and has an optical path changing means inside, so that the path of light entering from the horizontal direction of the optical element mounting substrate 1 can be changed downward. A positioning hole 17 is provided on the lower surface of the connector 8. When the connector 8 is attached to the receptacle 5, the positioning pins 13 and the positioning holes 17 are fitted, and the horizontal positioning is performed. The relationship between the positioning pin 13 and the positioning hole 17 may be reversed. Further, a flat surface (not shown) is provided on the lower surface of the connector 8, and the flat surface is brought into close contact with the reference surface 9, whereby positioning in the height direction is performed. A groove 18 that fits into the protrusion 11 is provided on the side surface of the connector 8.
 図2は本実施の形態の光モジュールを示す平面図である。光素子搭載基板1上で、レセプタクル5とコネクタ8が嵌合している。 FIG. 2 is a plan view showing the optical module of the present embodiment. On the optical element mounting substrate 1, the receptacle 5 and the connector 8 are fitted.
 図3は、図2のA-A’における断面図である。光素子4はパッド19を有し、導電性接着層3によって配線2に接続されている。導電性接着層3としてはAg、Ni、C等の導電体を含有するペーストやハンダなどを用いることが出来る。ペーストを焼成したり、ハンダをリフローしたりすることにより、配線2との電気的な接続が確保される。レセプタクル5は、配線2の上に設けられた接着層6により、光素子搭載基板1に接着されている。接着層6としては耐熱性を有する樹脂、両面テープ、ハンダ等を用いることができる。レセプタクル5を配線2上に設置するのは、正確に位置決めするためであり、配線2ではなく他のマークであっても良い。また光素子4と同じパッド19と導電性接着層3を用いる構造とすれば、工程を削減することが出来る。またレセプタクル5の窓12には、レンズ20が接着されている。 FIG. 3 is a cross-sectional view taken along the line A-A ′ of FIG. The optical element 4 has a pad 19 and is connected to the wiring 2 by the conductive adhesive layer 3. As the conductive adhesive layer 3, a paste or solder containing a conductor such as Ag, Ni, or C can be used. The electrical connection with the wiring 2 is ensured by baking the paste or reflowing the solder. The receptacle 5 is bonded to the optical element mounting substrate 1 by an adhesive layer 6 provided on the wiring 2. As the adhesive layer 6, a resin having heat resistance, a double-sided tape, solder or the like can be used. The receptacle 5 is placed on the wiring 2 for accurate positioning, and other marks may be used instead of the wiring 2. If the structure using the same pad 19 and conductive adhesive layer 3 as the optical element 4 is used, the number of steps can be reduced. A lens 20 is bonded to the window 12 of the receptacle 5.
 レセプタクル5の上方にはコネクタ8が嵌合接続されている。コネクタ4下面の一部は凹部になっている。凹部には光ファイバ7が配置され、平板21とコネクタ4によって挟持されている。凹部の端には光ファイバ7に対して角度を持つミラー22が設けられている。光ファイバ7の先端はミラー22に向かって露出しており、光ファイバ7から出射された光はミラー22によって反射され、光素子4の方向に進路を変えられるようになっている。 A connector 8 is fitted and connected above the receptacle 5. A part of the lower surface of the connector 4 is a recess. The optical fiber 7 is disposed in the recess and is sandwiched between the flat plate 21 and the connector 4. A mirror 22 having an angle with respect to the optical fiber 7 is provided at the end of the recess. The tip of the optical fiber 7 is exposed toward the mirror 22, and the light emitted from the optical fiber 7 is reflected by the mirror 22 so that the path can be changed in the direction of the optical element 4.
 レンズ20は、ミラー22で反射された光を光素子4上に集光する。また、光素子4から出射された光を光ファイバ7の端面に集光する。光ファイバ7と光素子4がアレイであるときは、レンズ20もアレイとして光ファイバ7と光素子4のそれぞれが対応するよう光学系を構成する。 The lens 20 condenses the light reflected by the mirror 22 on the optical element 4. Further, the light emitted from the optical element 4 is condensed on the end face of the optical fiber 7. When the optical fiber 7 and the optical element 4 are an array, the optical system is configured so that the optical fiber 7 and the optical element 4 respectively correspond to the lens 20 as an array.
 光素子4は、例えばVCSEL(垂直共振器型面発光レーザ)などの光源であり、また例えばPD(フォトダイオード)などの受光素子である。これらを複数組み合わせることもできる。また光素子4は、これらに限られるものではなく、種々の光学機能を有する素子を用いることができる。 The optical element 4 is a light source such as a VCSEL (vertical cavity surface emitting laser), and a light receiving element such as a PD (photodiode). A plurality of these can be combined. The optical element 4 is not limited to these, and elements having various optical functions can be used.
 図4は図2のB-B’における断面図である。コネクタ8の側面に設けられた溝18に、ガイド10に設けられた突起11が嵌合している。位置決め穴17には位置決めピン13が嵌合し、コネクタ8とレセプタクル5の位置決めがなされている。またレセプタクル5中央の基準面9とガイド10の間には、基準面7より下方に掘り込まれた分離溝23が形成されている。分離溝23あることによって、コネクタ8の着脱時にガイド10が撓んでも変形が基準面9に影響しなくなる。 FIG. 4 is a cross-sectional view taken along the line B-B ′ of FIG. A protrusion 11 provided on the guide 10 is fitted in a groove 18 provided on a side surface of the connector 8. Positioning pins 13 are fitted into the positioning holes 17 so that the connector 8 and the receptacle 5 are positioned. Further, a separation groove 23 dug below the reference surface 7 is formed between the reference surface 9 at the center of the receptacle 5 and the guide 10. Due to the separation groove 23, even if the guide 10 bends when the connector 8 is attached or detached, the deformation does not affect the reference surface 9.
 コネクタ8を確実に保持するために、レセプタクル2の材料には、剛性と弾性を併せ持つ材料が用いられる。また後の工程で、ハンダリフローが使えるように、260℃程度の耐熱性を有することが望ましい。この条件を満たすものとしては、例えばPEEK(ポリエーテルエーテルケトン)、PPS(ポリフェニレンサルファイド)、液晶ポリマーなどの耐熱性樹脂がある。またアルミや銅などの金属も用いることが出来る。 In order to securely hold the connector 8, a material having both rigidity and elasticity is used as the material of the receptacle 2. In addition, it is desirable to have heat resistance of about 260 ° C. so that solder reflow can be used in the subsequent process. Examples of satisfying this condition include heat-resistant resins such as PEEK (polyether ether ketone), PPS (polyphenylene sulfide), and liquid crystal polymer. Metals such as aluminum and copper can also be used.
 次にコネクタ8について説明する。図5は本実施の形態におけるコネクタ8に光ファイバ7を装着した状態を示す断面図である。コネクタ8の光ファイバ7を収納する凹部にはV字溝24が形成されている。V字溝24のそれぞれの溝には、光ファイバ7が1本ずつ配置される。さらに光ファイバ7を挟むように平板21が設けられ、光ファイバ7を位置決めした状態で保持している。コネクタ8の材料は、例えばPET、ABSなどの樹脂を用いることができる。また硬度が高く平坦性の良いガラスやセラミックなども用いることができる。平板21にも同様の材料を用いることができる。 Next, the connector 8 will be described. FIG. 5 is a cross-sectional view showing a state in which the optical fiber 7 is attached to the connector 8 in the present embodiment. A V-shaped groove 24 is formed in the concave portion for housing the optical fiber 7 of the connector 8. One optical fiber 7 is disposed in each groove of the V-shaped groove 24. Further, a flat plate 21 is provided so as to sandwich the optical fiber 7 and holds the optical fiber 7 in a positioned state. As the material of the connector 8, for example, a resin such as PET or ABS can be used. Further, glass or ceramic having high hardness and good flatness can be used. A similar material can be used for the flat plate 21.
 図6は光ファイバ7の長さ方向におけるコネクタ4の断面図である。V字溝21の終端にはストッパ25が設けられており、光ファイバ7の先端がストッパ25に突き当たることにより長さ方向の位置決めがなされる。ストッパ22の先には斜面が形成され、斜面上にはミラー18が形成されている。 FIG. 6 is a cross-sectional view of the connector 4 in the length direction of the optical fiber 7. A stopper 25 is provided at the end of the V-shaped groove 21, and positioning in the length direction is performed when the tip of the optical fiber 7 abuts against the stopper 25. A slope is formed at the tip of the stopper 22, and a mirror 18 is formed on the slope.
 図7はストッパ25近傍を拡大した断面図である。ストッパ25は光ファイバ7のクラッド7bに当接し、コア7cの延長線上には掛からないように形成されている。光ファイバ7から出射された光は、ミラー22で反射され、図の下方、すなわち光素子4の方向に向かうようになっている。ミラー22としてはAu、Ag、Alなどの金属膜が好適である。 FIG. 7 is an enlarged sectional view of the vicinity of the stopper 25. The stopper 25 is in contact with the clad 7b of the optical fiber 7 and is formed so as not to hang on the extension line of the core 7c. The light emitted from the optical fiber 7 is reflected by the mirror 22 and is directed downward in the figure, that is, toward the optical element 4. The mirror 22 is preferably a metal film such as Au, Ag, or Al.
 次にコネクタ8をレセプタクル5に装着する時の動作について説明する(図4参照)。光素子搭載基板1には、光素子4およびレセプタクル5が、正確に位置決めされて実装されている。これにコネクタ8をレセプタクル5の上方から装着する。コネクタ8は、ガイド10によって水平方向の位置を規制されるとともに、位置決めピン13と位置決め穴17が嵌合し、コネクタ8の水平方向の位置決めがなされる。また、レセプタクル5の基準面9と、コネクタ8下面の平板21が密着することにより高さ方向の位置決めがなされる。さらに、ガイド10に設けられた突起11が、コネクタ8側面に設けられた溝18と嵌合する。これらの動作により、光ファイバ7、ミラー22、レンズ20、光素子4の各光学要素が位置合わせされた状態で、コネクタ8がレセプタクル5に固定される。以上のように、本実施の形態では、固定のための圧力が、コネクタ8の側面に対して加えられるため、光ファイバ7にストレスが加わらない。 Next, the operation when the connector 8 is attached to the receptacle 5 will be described (see FIG. 4). The optical element 4 and the receptacle 5 are mounted on the optical element mounting substrate 1 while being accurately positioned. A connector 8 is attached to this from above the receptacle 5. The position of the connector 8 in the horizontal direction is regulated by the guide 10, and the positioning pins 13 and the positioning holes 17 are fitted to position the connector 8 in the horizontal direction. Further, the reference surface 9 of the receptacle 5 and the flat plate 21 on the lower surface of the connector 8 are brought into close contact with each other, thereby positioning in the height direction. Further, the protrusion 11 provided on the guide 10 is fitted into the groove 18 provided on the side surface of the connector 8. By these operations, the connector 8 is fixed to the receptacle 5 in a state where the optical elements such as the optical fiber 7, the mirror 22, the lens 20, and the optical element 4 are aligned. As described above, in the present embodiment, since the fixing pressure is applied to the side surface of the connector 8, no stress is applied to the optical fiber 7.
 次に本実施の形態の光モジュールの動作について説明する(図3参照)。まず光素子4が光信号を受信する場合について説明する。光ファイバ7の先端から出射された光はミラー22で反射され、レンズ20で集光され、光素子4(受光素子)に入射する。受光素子は光を電気に変換し、光素子搭載基板1によって接続されたLSI14等によって信号処理される。 Next, the operation of the optical module of the present embodiment will be described (see FIG. 3). First, the case where the optical element 4 receives an optical signal will be described. The light emitted from the tip of the optical fiber 7 is reflected by the mirror 22, condensed by the lens 20, and enters the optical element 4 (light receiving element). The light receiving element converts light into electricity, and signal processing is performed by the LSI 14 or the like connected by the optical element mounting substrate 1.
 次に光素子4が光信号を発信する場合について説明する。まずLSI14等から電気信号が光素子4(発光素子)に送られる。発光素子は電気信号を光信号に変換し光を出射する。光はレンズ20によって集光され、次いでミラー22によって反射され、次いでファイバ7に入射する。以上のようにして光信号の送受信および信号処理が行われる。 Next, the case where the optical element 4 transmits an optical signal will be described. First, an electrical signal is sent from the LSI 14 or the like to the optical element 4 (light emitting element). The light emitting element converts an electrical signal into an optical signal and emits light. The light is collected by the lens 20, then reflected by the mirror 22, and then enters the fiber 7. As described above, transmission / reception of optical signals and signal processing are performed.
 次に本実施の形態における光モジュールの製造方法について説明する。図8は本実施の形態における、光モジュールの製造方法を示す断面図である。 Next, a method for manufacturing the optical module in the present embodiment will be described. FIG. 8 is a cross-sectional view showing a method for manufacturing an optical module in the present embodiment.
 まず図8Aのように、光素子搭載基板1の上に配線2を形成する。光素子搭載基板1としては、寸法精度が高く、熱膨張率の低いものが好適である。セラミック、ガラスセラミック、ガラスエポキシ、ガラスポリイミド、フッ素樹脂、液晶ポリマーなどを用いることができる。配線2の材料としてはCu、Ag、Au、Alやその合金などを用いることができる。腐食防止と、接合性向上のためにNiやAuなどでめっきすることが望ましい。 First, as shown in FIG. 8A, the wiring 2 is formed on the optical element mounting substrate 1. As the optical element mounting substrate 1, one having a high dimensional accuracy and a low coefficient of thermal expansion is suitable. Ceramic, glass ceramic, glass epoxy, glass polyimide, fluororesin, liquid crystal polymer, or the like can be used. As a material of the wiring 2, Cu, Ag, Au, Al, an alloy thereof, or the like can be used. Plating with Ni, Au or the like is desirable to prevent corrosion and improve bondability.
 次に図8Bのように、配線2と、光素子4その他の部品を接続する部分に、導電性接着層3をスクリーン印刷やディスペンス法などを用いて形成する。あるいはハンダボールを載せても良い。前記したように、導電性接着層3はAg、Ni、C等の導電体を含有するペーストやハンダなどである。 Next, as shown in FIG. 8B, the conductive adhesive layer 3 is formed on the portion where the wiring 2 and the optical element 4 and other components are connected by screen printing, dispensing method or the like. Alternatively, solder balls may be placed. As described above, the conductive adhesive layer 3 is a paste or solder containing a conductor such as Ag, Ni, or C.
 次に、図8Cのように光素子4を搭載する。次で加熱、UV照射などの処理を行い、導電性接着層3を硬化させる。 Next, the optical element 4 is mounted as shown in FIG. 8C. Next, a treatment such as heating and UV irradiation is performed to cure the conductive adhesive layer 3.
 次に、図8Dのようにレセプタクル5を搭載する配線2の上に、接着層6をスクリーン印刷やディスペンス法などを用いて形成する。ここで配線2とは異なるマークを用いても問題ない。 Next, as shown in FIG. 8D, an adhesive layer 6 is formed on the wiring 2 on which the receptacle 5 is mounted using screen printing, a dispensing method, or the like. Here, there is no problem even if a mark different from the wiring 2 is used.
 次に、図8Eのようにレンズ20を装着したレセプタクル5を搭載する。次いで、接着層6を熱処理、UV照射などによって硬化し、レセプタクル5を含む光モジュールが完成する。 Next, as shown in FIG. 8E, the receptacle 5 on which the lens 20 is mounted is mounted. Next, the adhesive layer 6 is cured by heat treatment, UV irradiation, or the like, and an optical module including the receptacle 5 is completed.
 図9は、別の製造方法を示す断面図である。この例では、レセプタクル5の下面に光素子4と同様なパッド26を設けておく。まず図9Aのように光素子搭載基板1に配線2を形成する。 FIG. 9 is a cross-sectional view showing another manufacturing method. In this example, a pad 26 similar to that of the optical element 4 is provided on the lower surface of the receptacle 5. First, the wiring 2 is formed on the optical element mounting substrate 1 as shown in FIG. 9A.
 次に図9Bのように、配線2上に導電性接着層3を形成する。 Next, a conductive adhesive layer 3 is formed on the wiring 2 as shown in FIG. 9B.
 次に図9Cのように、光素子4、レセプタクル5、およびLSI14等の部品を搭載する。次いで、熱処理などにより導電性接着層3を硬化させる。 Next, as shown in FIG. 9C, components such as the optical element 4, the receptacle 5, and the LSI 14 are mounted. Next, the conductive adhesive layer 3 is cured by heat treatment or the like.
 この例では、光素子4とレセプタクル5を同時に接着しているので工程が削減できる。さらに導電性接着層3としてハンダを用いた場合は、全体をリフローで焼成できるので、生産性が向上する。 In this example, since the optical element 4 and the receptacle 5 are bonded simultaneously, the number of processes can be reduced. Further, when solder is used as the conductive adhesive layer 3, the whole can be baked by reflow, so that productivity is improved.
 次にコネクタ8の製造方法について説明する。図10は光ファイバ7を保持したコネクタ8の製造方法を示す断面模式図である。 Next, a method for manufacturing the connector 8 will be described. FIG. 10 is a schematic sectional view showing a method for manufacturing the connector 8 holding the optical fiber 7.
 まず図10Aのようにコネクタ8本体を作製する。コネクタ8の下面には凹部が形成され、さらに光ファイバ7が1本ずつ収まるようなV字溝24を形成する。V字溝24の終端には光ファイバ7先端のクラッド7aが当接するストッパ25を形成する。これらの加工は、射出成形、スタンピング、切削等で行うことができる。 First, as shown in FIG. A concave portion is formed on the lower surface of the connector 8, and a V-shaped groove 24 is formed so that the optical fibers 7 can be accommodated one by one. A stopper 25 is formed at the end of the V-shaped groove 24 so that the clad 7a at the tip of the optical fiber 7 abuts. These processes can be performed by injection molding, stamping, cutting, or the like.
 次に図10Bのように、斜面にミラー22を形成する。ミラー22は、例えば蒸着やスパッタなどによって、AlやAgなどの金属膜を形成することにより作製できる。あるいは反射性の部材を貼付しても良い。 Next, as shown in FIG. 10B, a mirror 22 is formed on the slope. The mirror 22 can be produced by forming a metal film such as Al or Ag by vapor deposition or sputtering, for example. Alternatively, a reflective member may be attached.
 次に図10Cのように光ファイバ7をV字溝24に挿入し、先端をストッパ25に突き当てる。 Next, as shown in FIG. 10C, the optical fiber 7 is inserted into the V-shaped groove 24, and the tip is abutted against the stopper 25.
 次に図10Dのように平板21をコネクタ8に接着し、光ファイバ7を位置決めされた状態で固定する。 Next, as shown in FIG. 10D, the flat plate 21 is bonded to the connector 8, and the optical fiber 7 is fixed in a positioned state.
 以上説明したように、本実施の形態によれば、レセプタクル5を含む光モジュールにおいて、光素子4と光素子搭載基板1との電気的な接続が堅固に確立できる。また、光素子4、レンズ20、ミラー22、光ファイバ7が、それぞれ位置合わせされているため、コネクタ8をレセプタクル5に装着するだけで光軸合わせも完了することになる。 As described above, according to the present embodiment, in the optical module including the receptacle 5, the electrical connection between the optical element 4 and the optical element mounting substrate 1 can be firmly established. Further, since the optical element 4, the lens 20, the mirror 22, and the optical fiber 7 are aligned, the optical axis alignment is completed simply by attaching the connector 8 to the receptacle 5.
 〔第2の実施形態〕図11は本発明第2の実施の形態を示す断面図である。本実施の形態ではコネクタ8の係止手段としてネジ27を用いている。コネクタ8を装着する場合は、まずネジ27を外しておく。この状態でレセプタクル5にコネクタ8を嵌合する。次にガイド10のネジ穴にネジを通し、先端部をコネクタ8側面の溝18に当接して固定する。なお、溝18は穴や、ネジ穴であってもよい。本実施の形態によれば、ガイド10を撓ませずにコネクタ8を固定できるので、レセプタクル5の寿命を延ばすことができる。 [Second Embodiment] FIG. 11 is a cross-sectional view showing a second embodiment of the present invention. In this embodiment, a screw 27 is used as a locking means for the connector 8. When the connector 8 is attached, the screw 27 is first removed. In this state, the connector 8 is fitted to the receptacle 5. Next, a screw is passed through the screw hole of the guide 10, and the tip is brought into contact with the groove 18 on the side surface of the connector 8 and fixed. The groove 18 may be a hole or a screw hole. According to the present embodiment, since the connector 8 can be fixed without bending the guide 10, the life of the receptacle 5 can be extended.
 〔第3の実施形態〕図12は本発明第3の実施の形態を示す断面図である。本実施の形態ではガイド10に貫通口が設けられている。レセプタクル5の側面にはピン28を保持する弾性体29が固定されている。ピン29は前記貫通口を介してスライド可能となっている。コネクタ8を装着する場合は、弾性体29を押し広げ、ピン28の先端をガイド10の内面よりも引っ込んだ状態にして、コネクタ8を挿入する。次に弾性体29に加えている圧力を解除する。するとピン28が溝18に嵌合し、コネクタ8が固定される。なお、溝18は穴であってもよい。本実施の形態によれば、ネジ27を螺合させる必要がないので、摩擦による粉塵の発生を防ぐことができる。またピン28がレセプタクルと一体になっているため、ピン28を紛失することがない。なお、レセプタクル5への弾性体29の固定は、接着、両面テープ、ネジ止め等種々の方法を用いることができる。 [Third Embodiment] FIG. 12 is a sectional view showing a third embodiment of the present invention. In the present embodiment, the guide 10 is provided with a through hole. An elastic body 29 that holds the pin 28 is fixed to the side surface of the receptacle 5. The pin 29 is slidable through the through hole. When attaching the connector 8, the elastic body 29 is expanded and the tip of the pin 28 is retracted from the inner surface of the guide 10, and the connector 8 is inserted. Next, the pressure applied to the elastic body 29 is released. Then, the pin 28 fits into the groove 18 and the connector 8 is fixed. The groove 18 may be a hole. According to the present embodiment, since it is not necessary to screw the screw 27, generation of dust due to friction can be prevented. Further, since the pin 28 is integrated with the receptacle, the pin 28 is not lost. The elastic body 29 can be fixed to the receptacle 5 by various methods such as adhesion, double-sided tape, and screwing.
 〔第4の実施形態〕図13は本発明第2の実施の形態を示す断面図であり、ガイド8に設けられた突起11とコネクタ4側面に設けられた溝14の嵌合部分の拡大図である。本実施の形態では、突起11の先端は、溝14の底よりも下に配置される。この構成とすれば、部品の公差により溝12の位置がずれても、コネクタ4には下方に向かう付勢力が働き、基準面7に押し付けられる。この作用により、コネクタ4を基準面7に緩み無く当接することができる。同様の方法は、実施の形態1、2,3いずれの場合も適用することが出来る。 [Fourth Embodiment] FIG. 13 is a cross-sectional view showing a second embodiment of the present invention, and is an enlarged view of a fitting portion between a protrusion 11 provided on a guide 8 and a groove 14 provided on a side surface of a connector 4. It is. In the present embodiment, the tip of the protrusion 11 is disposed below the bottom of the groove 14. With this configuration, even if the position of the groove 12 is shifted due to component tolerances, a downward biasing force acts on the connector 4 and is pressed against the reference surface 7. By this action, the connector 4 can be brought into contact with the reference surface 7 without looseness. The same method can be applied to any of the first, second, and third embodiments.
 図14はガイド10に溝18、コネクタ8に突起11を設けた場合の構成を示している。この場合は、突起11の先端を溝14の底より高い位置とする。この構成により図13の場合と同様の効果が得られる。
〔第5の実施形態〕図15は本発明第5の実施の形態を示す断面図である。本実施の形態ではコネクタ8をレセプタクル5に装着した状態で、上からカバーするバネ30を設けている。バネ30の作用によりガイド10が内側に押されるため、コネクタ8とレセプタクル5の固定はより確実なものとなる。またバネ30が、レセプタクル2の上面を完全に覆うようにしておけば、嵌合部の隙間から埃や水分が浸入するのを防ぐことができる。
FIG. 14 shows a configuration in which the groove 10 is provided in the guide 10 and the projection 11 is provided in the connector 8. In this case, the tip of the protrusion 11 is positioned higher than the bottom of the groove 14. With this configuration, the same effect as in the case of FIG. 13 can be obtained.
[Fifth Embodiment] FIG. 15 is a sectional view showing a fifth embodiment of the present invention. In the present embodiment, a spring 30 that covers from above is provided with the connector 8 mounted on the receptacle 5. Since the guide 10 is pushed inward by the action of the spring 30, the connector 8 and the receptacle 5 are more securely fixed. Further, if the spring 30 completely covers the upper surface of the receptacle 2, it is possible to prevent dust and moisture from entering from the gap between the fitting portions.
 〔第6の実施形態〕図16は本発明第6の実施の形態を示す側面図である。本実施の形態では光素子搭載基板1に直接実装される台座31を設けている。レセプタクル5およびレンズアレイ20は、台座27上に搭載される。位置決めピン10は台座31と一体に設けられている。図16に示すように、本実施の形態におけるガイド10は、位置決めピン10とは離間して設けられている。このため、コネクタ8の着脱時にガイド10が変形しても、位置決めピン13にストレスが加わらない。したがって、より正確に位置決めをすることが可能になる。また着脱の繰り返しに対する機械的な寿命も延ばすことが出来る。 [Sixth Embodiment] FIG. 16 is a side view showing a sixth embodiment of the present invention. In this embodiment, a base 31 that is directly mounted on the optical element mounting substrate 1 is provided. The receptacle 5 and the lens array 20 are mounted on a pedestal 27. The positioning pin 10 is provided integrally with the pedestal 31. As shown in FIG. 16, the guide 10 in the present embodiment is provided apart from the positioning pin 10. For this reason, even if the guide 10 is deformed when the connector 8 is attached or detached, no stress is applied to the positioning pin 13. Therefore, positioning can be performed more accurately. In addition, the mechanical life against repeated attachment and detachment can be extended.
 〔第7の実施形態〕図17は本発明第7の実施の形態を示す側面図である。本実施の形態では、実施の形態6と同様に光素子搭載基板1に直接実装される台座31を設けている。違いは位置決めピン10をレセプタクル2に設けていることである。この構成とすることにより、光モジュールを小型化することが出来る。 [Seventh Embodiment] FIG. 17 is a side view showing a seventh embodiment of the present invention. In the present embodiment, a pedestal 31 that is directly mounted on the optical element mounting substrate 1 is provided as in the sixth embodiment. The difference is that the positioning pin 10 is provided in the receptacle 2. With this configuration, the optical module can be reduced in size.
 〔第8の実施形態〕図18は、本発明第7の実施の形態を示す断面図である。本実施の形態では位置決めピン10をコネクタ4側に、位置決め穴13をレセプタクル2に設けている。本実施の形態によれば、位置決めピン10を、窓の長手方向に対して直角な方向に並べることが容易になる。この場合は、窓の長手方向に位置決めピン10を設けた場合よりも、コネクタ4やレセプタクル2の幅を狭くすることができる。その結果、光モジュール全体を小型化することが出来る。
(付記1)
 基板と、導電性の接着層によって前記基板に接続された光素子と、前記基板上に設けられ前記光素子の上方に位置する受容器を有する光モジュールであって、前記受容器は前記コネクタを側面から保持する保持手段を有する、ことを特徴とする光モジュール
(付記2)
 前記受容器が側板部を有し、前記側板部と前記コネクタの側面を係止する係止手段を有することを特徴とする付記1に記載の光モジュール。
(付記3)
 前記係止手段が、前記側板部に連結する凸部または凹部である、ことを特徴とする付記2に記載の光モジュール。
(付記4)
 前記光素子を前記基板に対して位置決めする位置決め手段と、前記受容器を前記基板に対して位置決めする位置決め手段を有している、ことを特徴とする請求項1乃至請求項3いずれか一項に記載の光モジュール。
(付記5)
 前記受容器が、複数の前記側板部の間に平坦面を有する、ことを特徴とする付記1乃至付記4いずれか一項に記載の光モジュール。
(付記6)
 前記受容器が、前記コネクタに嵌合する位置決め手段を有する、ことを特徴とする付記1乃至付記5いずれか一項に記載の光モジュール。
(付記7)
 前記光素子が、複数の光素子がアレイ状に配列した光素子アレイである、ことを特徴とする付記1乃至付記6いずれか一項に記載の光モジュール。
(付記8)
 前記光素子が半導体レーザまたはフォトダイオード、あるいはその両方を含むことを特徴とする付記1乃至付記7いずれか一項に記載の光モジュール。
(付記9)
 前記基板が裏面電極を有し、前記裏面電極が配線基板に接続されている、ことを特徴とする付記1乃至付記8いずれか一項に記載の光モジュール。
(付記10)
 基板の所定位置に導電性接着剤を塗布する工程と、光素子を前記導電性接着剤上に搭載する工程と、前記基板の所定位置に接着剤を塗布する工程と、前記接着剤上にコネクタを側面から保持する保持手段を有する受容器を搭載する工程と、前記導電性接着剤を硬化する工程と、前記接着剤を硬化する工程を有する、ことを特徴とする光モジュールの製造方法。
(付記11)
 前記側板部に設けられた前記凸部の先端から前記平坦面までの距離が、前記コネクタに設けられた凹部の底から前記コネクタ下面までの距離より短い、ことを特徴とする付記3に記載の光モジュール。
(付記12)
 前記側板部に設けられた前記凹部の底から前記基準面までの距離が、前記コネクタに設けられた凸部の先端から前記コネクタ下面までの距離より短い、ことを特徴とする付記3に記載の光モジュール。
(付記13)
 前記受容器の前記側板部と前記平坦面との間に、基準面より下方に掘り込まれた溝を有する、ことを特徴とする付記1乃至付記12いずれか一項に記載の光モジュール。
(付記14)
 前記平坦面と前記コネクタの下面の、どちらか一方に凸部を有し、他方にこれに嵌合する凹部を有する、ことを特徴とする付記1乃至付記13に記載の光モジュール。
(付記15)
 前記側板部を外側から内側に向かって付勢する弾性体を有する、ことを特徴とする付記1乃至付記14いずれか一項に記載の光モジュール。
(付記16)
 前記弾性体が前記受容器の上面を覆っている、ことを特徴とする付記15に記載の光モジュール。
(付記17)
 前記基板上に前記光素子と電気的に接続されたLSIを有する、ことを特徴とする付記1乃至付記16いずれか一項に記載の光モジュール。
(付記18)
 配線の形成された基板の所定位置に導電性接着層を形成する工程と、前記導電性接着層上に光素子を搭載する工程と、前記基板の所定位置に接着剤を塗布する工程と、前記接着剤上にコネクタを側面から保持する保持手段を有する受容器を搭載する工程と、前記導電性接着剤を硬化する工程と、前記接着剤を硬化する工程を有する、ことを特徴とする光モジュールの製造方法。
(付記19)
 配線の形成された基板の所定位置に導電性接着層を形成する工程と、前記導電性接着層上に、光素子と、コネクタを側面から保持する保持手段を有する受容器を搭載する工程と、前記導電性接着層を硬化する工程とを有する、ことを特徴とする光モジュールの製造方法。
(付記20)
 前記導電性接着層がハンダである、ことを特徴とする付記19記載の光モジュールの製造方法。
(付記21)
 前記ハンダをリフローする工程を有する、ことを特徴とする付記20記載の光モジュールの製造方法。
[Eighth Embodiment] FIG. 18 is a cross-sectional view showing a seventh embodiment of the present invention. In the present embodiment, the positioning pin 10 is provided on the connector 4 side, and the positioning hole 13 is provided in the receptacle 2. According to the present embodiment, it becomes easy to arrange the positioning pins 10 in a direction perpendicular to the longitudinal direction of the window. In this case, the width of the connector 4 or the receptacle 2 can be made narrower than when the positioning pins 10 are provided in the longitudinal direction of the window. As a result, the entire optical module can be reduced in size.
(Appendix 1)
An optical module comprising: a substrate; an optical element connected to the substrate by a conductive adhesive layer; and a receiver provided on the substrate and positioned above the optical element, wherein the receiver includes the connector An optical module having a holding means for holding from a side surface (Appendix 2)
The optical module according to appendix 1, wherein the receiver has a side plate portion, and has a locking means for locking the side plate portion and a side surface of the connector.
(Appendix 3)
The optical module according to appendix 2, wherein the locking means is a convex portion or a concave portion connected to the side plate portion.
(Appendix 4)
4. The apparatus according to claim 1, further comprising a positioning unit that positions the optical element with respect to the substrate and a positioning unit that positions the receiver with respect to the substrate. 5. The optical module as described in.
(Appendix 5)
5. The optical module according to claim 1, wherein the receiver has a flat surface between the plurality of side plate portions.
(Appendix 6)
The optical module according to any one of Supplementary Note 1 to Supplementary Note 5, wherein the receiver includes positioning means that fits into the connector.
(Appendix 7)
The optical module according to any one of appendix 1 to appendix 6, wherein the optical element is an optical element array in which a plurality of optical elements are arranged in an array.
(Appendix 8)
8. The optical module according to claim 1, wherein the optical element includes a semiconductor laser, a photodiode, or both.
(Appendix 9)
The optical module according to any one of appendices 1 to 8, wherein the substrate has a back electrode, and the back electrode is connected to a wiring substrate.
(Appendix 10)
A step of applying a conductive adhesive to a predetermined position of a substrate; a step of mounting an optical element on the conductive adhesive; a step of applying an adhesive to a predetermined position of the substrate; and a connector on the adhesive A method of manufacturing an optical module, comprising: mounting a receiver having a holding means for holding the substrate from a side; curing the conductive adhesive; and curing the adhesive.
(Appendix 11)
The distance from the tip of the convex part provided in the side plate part to the flat surface is shorter than the distance from the bottom of the concave part provided in the connector to the connector lower surface. Optical module.
(Appendix 12)
The distance from the bottom of the concave portion provided in the side plate portion to the reference surface is shorter than the distance from the tip of the convex portion provided in the connector to the lower surface of the connector. Optical module.
(Appendix 13)
The optical module according to any one of appendices 1 to 12, further comprising a groove dug below the reference plane between the side plate portion of the receiver and the flat surface.
(Appendix 14)
14. The optical module according to appendix 1 to appendix 13, wherein a convex portion is provided on one of the flat surface and the lower surface of the connector, and a concave portion fitted to the other is provided on the other.
(Appendix 15)
15. The optical module according to claim 1, further comprising an elastic body that urges the side plate portion from the outside toward the inside.
(Appendix 16)
The optical module according to appendix 15, wherein the elastic body covers an upper surface of the receiver.
(Appendix 17)
The optical module according to any one of appendices 1 to 16, further comprising an LSI electrically connected to the optical element on the substrate.
(Appendix 18)
Forming a conductive adhesive layer on a predetermined position of a substrate on which wiring is formed; mounting an optical element on the conductive adhesive layer; applying an adhesive on a predetermined position of the substrate; An optical module comprising a step of mounting a receiver having a holding means for holding a connector from the side on an adhesive, a step of curing the conductive adhesive, and a step of curing the adhesive. Manufacturing method.
(Appendix 19)
A step of forming a conductive adhesive layer at a predetermined position of a substrate on which wiring is formed; a step of mounting an optical element on the conductive adhesive layer and a receiver having a holding means for holding the connector from the side surface; And a step of curing the conductive adhesive layer.
(Appendix 20)
20. The method for manufacturing an optical module according to appendix 19, wherein the conductive adhesive layer is solder.
(Appendix 21)
The method of manufacturing an optical module according to appendix 20, further comprising a step of reflowing the solder.
 この出願は、2012年7月20日に出願された日本出願特願2012-161162を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-161162 filed on July 20, 2012, the entire disclosure of which is incorporated herein.
 1  光素子搭載基板
 2  配線
 3  導電性接着層
 4  光素子
 5  レセプタクル
 6  接着層
 7  光ファイバ
 8  コネクタ
 9  基準面
 10  ガイド
 11  突起
 12  窓
 13  位置決めピン
 14  LSI
 15  配線基板
 16  外部配線
 17  位置決め穴
 18  溝
 19  パッド
 20  レンズ
 21  平板
 22  ミラー
 23  分離溝
 24  V字溝
 25  ストッパ
 26  パッド
 27  ネジ
 28  ピン
 29  弾性体
 30  バネ
 31  台座
 101  配線基板
 102  光LSIパッケージ
 103  光素子
 104  コネクタ
 105  クランプ
 106  光ファイバアレイ
 107  ミラー
 108  位置決め穴
 109  窓
 110  位置決めピン
 111  クランプ爪用窪み
 201  光ファイバアレイ
 202  保持部材
 203  上部構造体
 204  光素子
 205  光素子搭載基板
 206  異方導電シート
 207  配線基板
 208  嵌合部材
 209  位置決め穴
 210  円弧部
 211  開口部
 212  側板部
 213  突条部
 214  位置決めピン
DESCRIPTION OF SYMBOLS 1 Optical element mounting board 2 Wiring 3 Conductive adhesive layer 4 Optical element 5 Receptacle 6 Adhesive layer 7 Optical fiber 8 Connector 9 Reference plane 10 Guide 11 Protrusion 12 Window 13 Positioning pin 14 LSI
15 Wiring Board 16 External Wiring 17 Positioning Hole 18 Groove 19 Pad 20 Lens 21 Flat Plate 22 Mirror 23 Separating Groove 24 V-shaped Groove 25 Stopper 26 Pad 27 Screw 28 Pin 29 Elastic Body 30 Spring 31 Base 101 Wiring Board 102 Optical LSI Package 103 Light Element 104 Connector 105 Clamp 106 Optical fiber array 107 Mirror 108 Positioning hole 109 Window 110 Positioning pin 111 Clamp claw depression 201 Optical fiber array 202 Holding member 203 Upper structure 204 Optical element 205 Optical element mounting substrate 206 Anisotropic conductive sheet 207 Wiring Board 208 Fitting member 209 Positioning hole 210 Arc part 211 Opening part 212 Side plate part 213 Projection part 214 Positioning pin

Claims (10)

  1.  基板と、導電性の接着層によって前記基板に接続された光素子と、前記基板上に設けられ前記光素子の上方に位置する受容器を有する光モジュールであって、前記受容器は前記コネクタを側面から保持する保持手段を有する、ことを特徴とする光モジュール。 An optical module comprising: a substrate; an optical element connected to the substrate by a conductive adhesive layer; and a receiver provided on the substrate and positioned above the optical element, wherein the receiver includes the connector An optical module comprising holding means for holding from a side.
  2.  前記受容器が側板部を有し、前記側板部と前記コネクタの側面を係止する係止手段を有することを特徴とする請求項1に記載の光モジュール。 The optical module according to claim 1, wherein the receiver has a side plate portion, and has a locking means for locking the side plate portion and a side surface of the connector.
  3.  前記係止手段が、前記側板部に連結する凸部または凹部である、ことを特徴とする請求項2に記載の光モジュール。 3. The optical module according to claim 2, wherein the locking means is a convex portion or a concave portion connected to the side plate portion.
  4.  前記光素子を前記基板に対して位置決めする位置決め手段と、前記受容器を前記基板に対して位置決めする位置決め手段を有している、ことを特徴とする請求項1乃至請求項3いずれか一項に記載の光モジュール。 4. The apparatus according to claim 1, further comprising a positioning unit that positions the optical element with respect to the substrate and a positioning unit that positions the receiver with respect to the substrate. 5. The optical module as described in.
  5.  前記受容器が、複数の前記側板部の間に平坦面を有する、ことを特徴とする請求項1乃至請求項4いずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 4, wherein the receiver has a flat surface between the plurality of side plate portions.
  6.  前記受容器が、前記コネクタに嵌合する位置決め手段を有する、ことを特徴とする請求項1乃至請求項5いずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 5, wherein the receiver includes positioning means for fitting into the connector.
  7.  前記光素子が、複数の光素子がアレイ状に配列した光素子アレイである、ことを特徴とする請求項1乃至請求項6いずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 6, wherein the optical element is an optical element array in which a plurality of optical elements are arranged in an array.
  8.  前記光素子が半導体レーザまたはフォトダイオード、あるいはその両方を含む、ことを特徴とする請求項1乃至請求項7いずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 7, wherein the optical element includes a semiconductor laser, a photodiode, or both.
  9.  前記基板が裏面電極を有し、前記裏面電極が配線基板に接続されている、ことを特徴とする請求項1乃至請求項8いずれか一項に記載の光モジュール。 The optical module according to any one of claims 1 to 8, wherein the substrate has a back electrode, and the back electrode is connected to a wiring substrate.
  10.  基板の所定位置に導電性接着剤を塗布する工程と、光素子を前記導電性接着剤上に搭載する工程と、前記基板の所定位置に接着剤を塗布する工程と、前記接着剤上にコネクタを側面から保持する保持手段を有する受容器を搭載する工程と、前記導電性接着剤を硬化する工程と、前記接着剤を硬化する工程を有する、ことを特徴とする光モジュールの製造方法。 A step of applying a conductive adhesive to a predetermined position of a substrate; a step of mounting an optical element on the conductive adhesive; a step of applying an adhesive to a predetermined position of the substrate; and a connector on the adhesive A method of manufacturing an optical module, comprising: mounting a receiver having a holding means for holding the substrate from a side; curing the conductive adhesive; and curing the adhesive.
PCT/JP2013/004325 2012-07-20 2013-07-16 Optical module and method for producing same WO2014013713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-161162 2012-07-20
JP2012161162 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014013713A1 true WO2014013713A1 (en) 2014-01-23

Family

ID=49948556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004325 WO2014013713A1 (en) 2012-07-20 2013-07-16 Optical module and method for producing same

Country Status (1)

Country Link
WO (1) WO2014013713A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662561U (en) * 1993-01-31 1994-09-02 第一電子工業株式会社 Optical semiconductor module
JP2008191349A (en) * 2007-02-05 2008-08-21 Yazaki Corp Method of manufacturing optical communication module
JP2008250350A (en) * 2008-07-07 2008-10-16 Fujikura Ltd Optical connector
JP2009103998A (en) * 2007-10-24 2009-05-14 Fujikura Ltd Optical connector
JP2009192834A (en) * 2008-02-14 2009-08-27 Tomoegawa Paper Co Ltd Optical fiber and optical connection structure
JP2011059484A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Optical path change member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662561U (en) * 1993-01-31 1994-09-02 第一電子工業株式会社 Optical semiconductor module
JP2008191349A (en) * 2007-02-05 2008-08-21 Yazaki Corp Method of manufacturing optical communication module
JP2009103998A (en) * 2007-10-24 2009-05-14 Fujikura Ltd Optical connector
JP2009192834A (en) * 2008-02-14 2009-08-27 Tomoegawa Paper Co Ltd Optical fiber and optical connection structure
JP2008250350A (en) * 2008-07-07 2008-10-16 Fujikura Ltd Optical connector
JP2011059484A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Optical path change member

Similar Documents

Publication Publication Date Title
JP5625138B1 (en) Optical module, optical module mounting method, optical module mounting circuit board, optical module evaluation kit system, circuit board, and communication system
EP2428828B1 (en) Miniaturized high speed optical module
JP6345917B2 (en) Optical module
JP5958364B2 (en) Optical module
US9325418B2 (en) Optical module with flexible wiring board
JP2004246279A (en) Optical module and its manufacturing method, optical communication device, optical and electric mixed integrated circuit, circuit board, electronic equipment
JP5246136B2 (en) Optical transceiver
JP5223050B2 (en) Optical module
JP5718514B2 (en) Optical module, optical module mounting method, optical module mounting circuit board, optical module evaluation kit system, circuit board, and communication system
US20120258636A1 (en) Connecting terminal structure, socket and electronic package
US20140071632A1 (en) Semiconductor device, communication device, and semiconductor package
US8867231B2 (en) Electronic module packages and assemblies for electrical systems
US20150192745A1 (en) Optical fiber connecter and optical communication module
JP4397735B2 (en) Optical module, optical module ceramic substrate, coupling structure between optical module and optical fiber connector plug
JP4260694B2 (en) Optical module, ceramic substrate for optical module
WO2007091733A2 (en) Photoelectric converting device, manufacturing method of the same, and external waveguide
US10386592B2 (en) Optical engine and optical module
JP4867046B2 (en) Optical module
JP5889040B2 (en) Optical module mounted circuit board, optical module mounted system, optical module evaluation kit system, and communication system
WO2014013713A1 (en) Optical module and method for producing same
JP4856028B2 (en) Optical module
JP6200393B2 (en) Optical module protection method and optical module mounting method
JP5090261B2 (en) Optical module
JP2011247951A (en) Optical module
JP5246537B2 (en) Optical element / electronic component mounting board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP