WO2014013566A1 - Mirror device - Google Patents

Mirror device Download PDF

Info

Publication number
WO2014013566A1
WO2014013566A1 PCT/JP2012/068200 JP2012068200W WO2014013566A1 WO 2014013566 A1 WO2014013566 A1 WO 2014013566A1 JP 2012068200 W JP2012068200 W JP 2012068200W WO 2014013566 A1 WO2014013566 A1 WO 2014013566A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic
mim
elements
light
Prior art date
Application number
PCT/JP2012/068200
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
吉田 綾子
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/068200 priority Critical patent/WO2014013566A1/en
Publication of WO2014013566A1 publication Critical patent/WO2014013566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/176Passive-matrix OLED displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays

Definitions

  • the present invention relates to a mirror device having a light emitting function including an organic electroluminescence element.
  • An organic electroluminescent element is configured by, for example, sequentially laminating an organic layer including an anode, a light emitting layer, and a cathode on a transparent glass substrate. By injecting current into the organic layer through the anode and the cathode, the electroluminescence ( Hereinafter, the light-emitting element expresses EL).
  • An organic EL element is a self-luminous surface-emitting device, and is used for a display device or a lighting device.
  • MIM light emitting element An organic EL element having a body-metal light emitting element (hereinafter referred to as MIM light emitting element) structure has been proposed (see Patent Document 2 and Non-Patent Document 1).
  • the mirror device described in Patent Document 1 has a drawback in that it does not accurately illuminate a part of the face that the user wants to see because the light source is arranged around the mirror.
  • the MIM light emitting device When the organic EL device described in Patent Document 2 obtains white color by using red, green, and blue emission colors, the MIM light emitting device is likely to be artificial light because the spectral distribution width of each color is narrow, and improves color rendering. There is a problem that it is difficult.
  • an object of the present invention is to provide a mirror device that can be toned and can function as a mirror when not emitting light, as well as an organic EL device capable of stabilizing the color of the emitted light.
  • the mirror device of the present invention is a mirror device having a plurality of light emitting elements carried on a substrate,
  • the plurality of light emitting elements are a plurality of metal-dielectric-metal light emitting elements (MIM light emitting elements) and a plurality of organic EL elements, each of the MIM light emitting elements and the organic EL elements or a group of the MIM light emitting elements. And each group of the organic EL elements is alternately arranged on the substrate.
  • MIM light emitting elements metal-dielectric-metal light emitting elements
  • organic EL elements each of the MIM light emitting elements and the organic EL elements or a group of the MIM light emitting elements.
  • each group of the organic EL elements is alternately arranged on the substrate.
  • the mirror device configured as described above, it is possible to perform color adjustment by changing the luminance of each organic EL element and MIM light emitting element, and it can be used as a mirror with illumination such as a hand mirror or a vanity mirror. It can be used as a mirror / illuminator attached to a pillar, ceiling, etc. to make the interior space look wider.
  • FIG. 1 is a partially cutaway front view of an organic EL device according to an embodiment of the present invention.
  • FIG. 2 is a partial sectional view taken along the line CC in FIG.
  • FIG. 3 is an enlarged cross-sectional view showing an organic EL element of the organic EL device of the example.
  • FIG. 4 is an enlarged cross-sectional view showing the MIM light emitting element of the organic EL device of the example.
  • FIG. 5 is a graph showing a change in light extraction efficiency with respect to photon energy of the organic EL device of the example of the present invention.
  • FIG. 6 is a block diagram showing a schematic configuration of an organic EL device according to an embodiment of the present invention.
  • FIG. 7 is a sectional view of an organic EL device which is another embodiment of the present invention.
  • FIG. 8 is a partially cutaway front view of an organic EL device according to another embodiment of the present invention.
  • FIG. 9 is a partially cutaway front view of an organic EL device which is another embodiment of the present invention.
  • FIG. 10 is a partially cutaway front view of an organic EL device which is another embodiment of the present invention.
  • FIG. 11 is an enlarged cross-sectional view showing an organic EL element of an organic EL device according to another embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view schematically showing a configuration of a light-emitting element according to another embodiment of the present invention.
  • FIG. 1 shows the configuration of an organic EL panel of a mirror apparatus that is an organic EL device according to an embodiment of the present invention.
  • the organic EL panel OELD includes a plurality of organic EL elements OEL partitioned by a light-transmitting bank BK which is a non-light-emitting portion on a light-transmitting flat substrate 1 such as glass or resin, and an MIM light-emitting element MIM. Yes.
  • the organic EL panel OELD is a bottom emission type organic EL panel in which each of the organic EL elements OEL and the MIM light emitting elements MIM are alternately arranged on the back surface 1 of the translucent substrate.
  • the MIM light emitting element functions as a mirror surface, it is also a mirror device.
  • the bank BK is made of a translucent dielectric material such as optical glass or optical resin.
  • Each of the organic EL element OEL and the MIM light emitting element MIM is a strip-shaped light emitting portion that extends in the y direction of the xy main surface of the substrate 1, and emits light from the front surface 1 a of the translucent substrate 1.
  • the organic EL element OEL includes red light emitting, green light emitting and blue light emitting organic EL elements Ro, Go and Bo, which are juxtaposed in parallel to emit light of emission colors of red light emitting R, green light emitting G and blue light emitting B, respectively. Radiate.
  • the MIM light emitting element MIM also includes MIM light emitting elements Rm, Gm, and Bm that emit red light, green light, and blue light, which are juxtaposed in parallel, and emit light of red, green, and blue light emission colors, respectively. Radiate. Although the elements of RGB emission color are arranged in groups in the x direction as a set, the organic EL element OEL and the MIM light emitting element MIM are arranged so as not to be close to each other. This is because portions such as lines of the same emission color become thick and color unevenness occurs.
  • the organic EL elements Ro, Go, and Bo that emit red, green, and blue emission colors, respectively, and the MIM light emitting elements Rm, Gm, and Bm are repeatedly striped in parallel in a predetermined order so as to be evenly spaced. It is arranged.
  • the luminance of the element By adjusting the luminance of the element, light that is recognized as a single emission color is emitted from the front surface of the substrate 1 serving as a light extraction surface by mixing red, green, and blue light at an arbitrary ratio. .
  • the organic EL elements Ro, Go and Bo are each connected to the organic EL element driving unit, and the MIM light emitting elements Rm, Gm and Bm are also connected to the MIM light emitting element driving unit.
  • each of the organic EL elements OEL is configured by laminating a translucent electrode 2, an organic layer 3o including a light emitting layer, and a reflective electrode 4 on the back surface 1b of the substrate 1 between the banks BK.
  • the Each of the MIM light emitting elements MIM is configured by laminating a translucent electrode 2, a metal thin film MF, a dielectric layer 3m including a light emitting layer, and a reflective electrode 4 on the back surface 1b of the substrate 1 between the banks BK.
  • the translucent electrode 2 constituting the anode extends along the xy direction on the substrate 1 and is formed as a common electrode.
  • a bus line MBL electrically connected to supply the power supply voltage to the translucent electrode 2 extends in the y direction and is arranged at a predetermined interval for each element x. It is formed parallel to the direction.
  • a bank BK is formed extending along the y direction so as to cover them.
  • the bank BK is covered with the reflective electrode 4 except for the slot SL to be separated.
  • the reflective electrode 4 may be formed so as to expose all the banks BK.
  • the strip-shaped reflective electrodes 4 constituting the cathode each extend along the y direction on the substrate 1 and are juxtaposed in parallel in the x direction for each element at a constant interval.
  • each OEL of the organic EL element has, as an organic layer 3 o, for example, a hole injection layer 3 a, a hole transport layer 3 b, a light emitting layer 3 c, on the translucent electrode 2 between the banks.
  • the electron transport layer 3d and the electron injection layer 3e may be stacked in order.
  • the organic layer 3o sandwiched between the translucent electrode 2 and the reflective electrode 4 is a light emitting laminated body, and is not limited to these laminated structures, for example, hole blocking between the light emitting layer 3c and the electron transporting layer 3d.
  • a layered structure including at least a light-emitting layer or a charge transport layer that can also be used, such as adding a layer (not shown), may be used.
  • the organic layer 3o may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
  • the anode translucent electrode 2 for supplying holes to the functional layers up to the light emitting layer 3c includes ITO (Indium-tin-oxide), ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 ⁇ . It may be composed of ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2 or the like. Furthermore, for the translucent electrode 2, it is preferable to select a material having a transmittance of at least 10% at the emission wavelength obtained from the light emitting layer.
  • the translucent electrode 2 usually has a single-layer structure, but may have a laminated structure made of a plurality of materials as desired.
  • the cathode reflective electrode 4 that supplies electrons to the functional layers up to the light emitting layer 3c is not limited, and for example, metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the material of the reflective electrode 4 preferably includes a metal having a low work function in order to efficiently inject electrons.
  • a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof. Is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the reflective electrode 4 can be formed as a single layer film or a multilayer film on the organic layer 3o by sputtering or vacuum deposition. The thickness of the reflective electrode 4 is not limited as long as the reflective action of the reflective electrode 4 is maintained.
  • each of the MIM light emitting elements MIM includes, for example, a hole injection layer 3a and a hole as a dielectric layer 3m on the metal thin film MF formed on the translucent electrode 2 between the banks.
  • the transport layer 3b, the light emitting layer 3c, the electron transport layer 3d, and the electron injection layer 3e may be stacked in order.
  • the dielectric layer 3m is configured by being selected from the same material as that of the OEL organic layer 3o of each of the organic EL elements.
  • Each of the MIM light emitting elements MIM includes a metal thin film MF as a first metal electrode, a dielectric layer 3m, and a reflective electrode 4 as a second metal electrode.
  • the translucent electrode 2 is a power supply wiring to the metal thin film MF. is there.
  • a transparent insulating layer such as SiO 2 may be inserted between the translucent electrode 2 and the metal thin film MF, and a separate power supply wiring may be provided to the metal thin film MF.
  • a power supply different from the organic EL element can be used for the MIM light emitting element, and the degree of freedom is increased.
  • an appropriate metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used.
  • Specific examples include a magnesium-silver alloy, a magnesium-indium alloy, and an aluminum-lithium alloy.
  • the silver thin film with a thickness of 20 nm of the metal thin film MF has a transmittance of 50%.
  • An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%.
  • the 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%.
  • the metal thin film MF when comprising the metal thin film MF, although depending on material, a film forming method, and conditions, if the lower limit of the film thickness is 5 nm, conductivity can be ensured.
  • the metal thin film MF can be formed as a single layer film or a multilayer film on the organic layer 3o by sputtering or vacuum deposition.
  • the organic EL elements Ro, Go and Bo shown in FIG. 1 are applied between the electrodes sandwiched between the organic layers 3o sandwiched between the translucent electrode 2 and the reflective electrode 4 facing each other.
  • the light is emitted with the first spectral distribution according to the voltage, and the emitted light is emitted through the translucent electrode 2 and the translucent substrate 1.
  • each of the dielectric layers 3m sandwiched between the metal thin film MF and the reflective electrode 4 facing each other corresponds to the applied voltage between the sandwiched electrodes.
  • the first and second spectral distributions have first and second wavelength bands, respectively.
  • the MIM light emitting element has a property that plasmon coupling occurs between the metal thin film of the anode and the reflective electrode of the cathode, thereby enhancing the light emission.
  • the anode and cathode metals are parallel, and the ratio of light perpendicular to the extraction surface is large, and the emission wavelength band is narrower than that of the organic EL device.
  • the spectral components of the first and second spectral distributions overlap, the peak wavelengths are close, and the spectral distribution
  • Each light emitting portion is formed as an element group including different light emitting materials so that the widths are different from each other. Even if the peak wavelengths are close, the full width at half maximum of the spectrum distribution of the MIM light emitting element is narrower than the full width at half maximum of the spectrum distribution of the organic EL element.
  • the hole injection layer 3a is preferably a layer containing an electron accepting compound (so-called hole transporting compound).
  • the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer.
  • the solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (so-called PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, and phenetole.
  • Aromatic ethers such as 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, and 2,4-dimethylanisole.
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3- isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene and the like. Can be mentioned.
  • amide solvent examples include N, N-dimethylformamide and N, N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
  • the hole transporting compound may be a polymer compound such as a polymer or a low molecular compound such as a monomer, but is preferably a low molecular compound.
  • the hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer.
  • the hole transporting compound include aromatic amine derivatives, phthalocyanine derivatives typified by phthalocyanine copper (so-called CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, tertiary amines with fluorene groups.
  • Examples include linked compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon.
  • the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. There may be.
  • a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene, which is a polythiophene derivative, in high molecular weight polystyrene sulfonic acid is also preferable.
  • the end of the polymer of PEDOT / PSS may be capped with methacrylate or the like.
  • the hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more.
  • the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds.
  • an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
  • the composition for forming a hole injection layer may further contain other components.
  • other components include various organic EL materials, binder resins, coatability improvers, and the like.
  • only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
  • a material for forming the hole injection layer is mixed with an appropriate solvent to prepare a film-forming composition, and this hole injection layer forming composition
  • the hole injection layer is formed by applying the material onto the anode by an appropriate technique, forming a film, and drying.
  • the film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the material of the hole transport layer 3b may be any material conventionally used as a constituent material of the hole transport layer.
  • the hole transport layer is exemplified as the hole transport compound used in the hole injection layer described above. Things.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like.
  • These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
  • a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, and then dried after wet film formation.
  • the hole transporting layer forming composition contains a solvent.
  • the solvent used is the same as that used for the composition for forming the hole injection layer.
  • the film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer.
  • the hole transport layer may contain various organic EL materials, a binder resin, a coating property improving agent and the like in addition to the hole transporting compound.
  • the film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the film thickness of the hole injection layer 3a and / or the hole transport layer 3b from the anode 2 to the light emitting layer 3c is preferably at least 100 nm.
  • the light emitting layer 3c may be a red, green and blue light emitting independent light emitting layer or a mixed light emitting layer thereof, a compound having a property of transporting holes (hole transporting compound), or A compound having an electron transporting property (electron transporting compound) can also be contained.
  • An organic EL material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be appropriately used as a host material. There is no particular limitation on the organic EL material, and a substance that emits light at a desired emission wavelength and has good emission efficiency may be used.
  • the organic EL material may be a fluorescent material or a phosphorescent material, but it is preferable to use a phosphorescent material from the viewpoint of internal quantum efficiency.
  • the light emitting layer may have a single layer structure or a multilayer structure made of a plurality of materials as desired.
  • a fluorescent material may be used for the blue light emitting layer
  • a phosphorescent material may be used for the green and red light emitting layers.
  • a diffusion preventing layer can be provided between the light emitting layers.
  • fluorescent materials blue fluorescent dyes
  • examples of fluorescent materials that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • fluorescent material green fluorescent dye
  • examples of the fluorescent material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of fluorescent materials that give yellow light emission include rubrene and perimidone derivatives.
  • red fluorescent dyes examples include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzoates. Examples thereof include thioxanthene derivatives and azabenzothioxanthene.
  • the phosphorescent material is selected from, for example, the long-period periodic table (hereinafter referred to as the long-period periodic table when referring to “periodic table” unless otherwise specified).
  • An organometallic complex containing a metal can be given.
  • Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable.
  • a pyridine ligand and a phenylpyrazole ligand are preferable.
  • (hetero) aryl represents an aryl group or a heteroaryl group.
  • phosphorescent materials include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenyl).
  • Pyridine) platinum tris (2-phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.
  • the molecular weight of the compound used as the organic EL material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably. Is in the range of 400 or more. If the molecular weight of the organic EL material is too small, the heat resistance will be significantly reduced, gas generation will be caused, the film quality will be deteriorated when the film is formed, or the morphology of the functional layer will be changed due to migration, etc. There is a case. On the other hand, if the molecular weight of the organic EL material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve the organic EL material in a solvent when formed by a wet coating method.
  • the proportion of the organic EL material in the light emitting layer is usually 0.05% by weight or more and usually 35% by weight or less. If the amount of the organic EL material is too small, uneven light emission may occur, and if the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of organic EL material, it is made for the total content of these to be contained in the said range.
  • the component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material.
  • the light emitting layer may contain a hole transporting compound as a constituent material.
  • a hole transporting compound examples include various compounds exemplified as the hole transporting compound in the hole injection layer 3a described above, for example, diphenylnaphthyl.
  • Aromatic diamines represented by diamines (so-called ⁇ -NPD), including two or more tertiary amines and having two or more condensed aromatic rings substituted with nitrogen atoms, or 4,4 ′, 4 ′′- Aromatic amine compounds having a starburst structure such as tris (1-naphthylphenylamino) triphenylamine, aromatic amine compounds composed of tetramers of triphenylamine, and 2,2 ′, 7,7′-tetrakis And spiro compounds such as-(diphenylamino) -9,9'-spirobifluorene.
  • ⁇ -NPD Aromatic diamines represented by diamines (so-called ⁇ -NPD), including two or more tertiary amines and having two or more condensed aromatic rings substituted with nitrogen atoms, or 4,4 ′, 4 ′′- Aromatic amine compounds having a starburst structure such as tris (1-naph
  • a hole transportable compound in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
  • the proportion of the hole transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer may contain an electron transporting compound as a constituent material.
  • examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (so-called BND), 2 , 5-bis (6 ′-(2 ′, 2 ′′ -bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (so-called PyPySPyPy), bathophenanthroline (so-called BPhen), 2,9 -Dimethyl-4,7-diphenyl-1,10-phenanthroline (so-called BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (So-called tBu-PBD), 4,4′-bis (9H-carbazol-9-yl) biphenyl (so-called BND),
  • the proportion of the electron transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
  • the light emitting layer is prepared by dissolving the above light emitting layer material in an appropriate solvent to prepare a composition for forming a light emitting layer. Is formed. Therefore, in the case of forming by a wet coating method, the light emitting layer coating solution is prepared by dispersing or dissolving at least two kinds of solid contents (host material and guest material) to be the light emitting layer as a solute in a solvent.
  • the solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
  • the ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less.
  • the film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
  • the electron transport layer 3d is provided for the purpose of further improving the light emission efficiency of the organic EL element, and efficiently transports electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. It is formed from an electron transporting compound capable of forming
  • the electron transporting compound used for the electron transporting layer usually, the electron injection efficiency from the cathode conductive film MF or the electron injection layer 3e is high, and the injected electrons with high electron mobility are efficiently used.
  • a compound that can be transported is used. Examples of compounds that satisfy such conditions include metal complexes of Alq3 and 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, and 5-hydroxyflavones.
  • Metal complex benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene, quinoxaline compound, phenanthroline derivative, 2-t-butyl-9,10-N, N′-dicyanoanthraquinonediimine, n-type hydrogenated amorphous Quality silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like.
  • the formation method of the electron transport layer is not limited, and can be formed by a wet coating method or a dry coating method.
  • the electron transport layer is prepared by dissolving the electron transport layer material in an appropriate solvent to prepare a composition for forming an electron transport layer. It is formed by removing.
  • the solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
  • the film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron injection layer 3e plays a role of efficiently injecting electrons injected from the cathode into the electron transport layer and the light emitting layer.
  • the electron injection layer 3e includes organic electron transport compounds represented by metal complexes such as nitrogen-containing heterocyclic compounds such as bathophenanthroline and aluminum complexes of 8-hydroxyquinoline. Further, the electron injection efficiency can be increased by doping the electron injection layer 3e of the organic electron transport compound with an electron donating material.
  • the electron donating material examples include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, compounds thereof (CsF, Cs 2 CO 3 , Li 2 O, LiF), sodium, Alkali metals such as potassium, cesium, lithium and rubidium are used.
  • the thickness of the electron injection layer 3e is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
  • the formation method of the electron injection layer is not limited, and can be formed by a wet coating method or a dry coating method.
  • the electron injection layer is prepared by dissolving the electron injection layer material in a suitable solvent to prepare a composition for forming an electron injection layer. It is formed by removing.
  • the solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
  • organic EL element and MIM light emitting element As an organic EL device, an ⁇ -NPD hole transport layer (30 nm thickness) on an ITO transparent electrode (110 nm thickness), and a light emitting layer (35 nm thickness) doped with a phosphorescent material as a guest material using CBP as a host material A BCP hole blocking layer (10 nm thick), an Alq3 electron transporting layer (40 nm thick), and an Al reflective electrode were laminated in order, and the emission characteristics were examined.
  • an MIM light emitting element except that an Ag metal thin film (40 nm thickness) is laminated between the ITO translucent electrode (110 nm thickness) of the organic EL element and the ⁇ -NPD hole transport layer (30 nm thickness). Then, an element having the same configuration as that of the organic EL element was prepared, and the light emission characteristics were examined.
  • FIG. 5 shows how much power the extracted organic EL element and MIM light-emitting element can extract outside the element with respect to the total emission power, and shows the wavelength dependence of the light extraction efficiency with respect to photon energy (wavelength). It is a graph of the spectrum distribution of EL element and MIM light emitting element EL and MIM.
  • the present embodiment is characterized in that both element groups are arranged on the same plane, and are arranged on the same plane and adjusted from the mirror surface by adjusting the intensities of different broad spectrum distributions and very narrow spectrum distributions for each emission color. Yes. Therefore, according to the present embodiment, there is no optical incongruity, and the color rendering can be enhanced by freely adjusting colors from soft light to hard light.
  • the positions of the RGB stripes of the MIM light-emitting elements that are mirror-finished with the RGB stripes of the organic EL elements are defined as red organic EL elements Ro, red MIM light-emitting elements Rm, blue organic EL elements Bo, and blue MIM light-emitting elements Bm , Green organic EL element Go, green MIM light emitting element Gm, red organic EL element Ro, blue MIM light emitting element Bm, green organic EL element Go, red MIM light emitting element Rm, blue organic EL element Bo, green MIM light emitting element Gm Therefore, when all the elements emit light, an effect that the line by the specific color light emitting element does not become thick can be obtained.
  • FIG. 6 is a block diagram showing a schematic configuration of a mirror device of an organic EL device according to an embodiment of the present invention.
  • the mirror device includes a control unit 11, an organic EL element driving unit 12o and an MIM light emitting element driving unit 12m connected to the control unit 11, and an organic EL panel shown in FIG. 1 connected to these driving units. Further, the mirror device includes an operation unit 13 connected to the control unit 11.
  • a panel OELD of such an organic EL device includes a blue light emitting element group of organic EL elements Ro, Go and Bo, a red light emitting element group and a green light emitting element group, a blue light emitting element group of MIM light emitting elements Rm, Gm and Bm, and a red light.
  • a plurality of sets of light emitting element groups and green light emitting element groups are disposed in the same back surface.
  • the control unit 11 includes a microcomputer including a CPU, a ROM, a RAM, an internal timer, and the like that execute program codes such as processing procedures for generating various signals including a luminance designation signal, and the luminance of each element group of the organic EL device. And a lighting control routine for controlling lighting / extinguishing.
  • the control unit 11 generates a luminance designation signal for each color for driving each element group, and supplies it to the organic EL element driving unit 12o and the MIM light emitting element driving unit 12m.
  • the organic EL element driving unit 12o and the MIM light emitting element driving unit 12m are a red driving unit 12Ro, a green driving unit 12Go, a blue driving unit 12Bo, and a red driving unit 12Rm, which are driving circuits for RGB light emission connected to the corresponding elements.
  • a green driving unit 12Gm and a blue driving unit 12Bm According to the luminance designation signal supplied from the control unit 11, the red driving unit 12Ro, the green driving unit 12Go, the blue driving unit 12Bo, the red driving unit 12Rm, the green driving unit 12Gm, and the blue driving unit 12Bm are individually assigned to the corresponding elements.
  • the organic EL element driving unit 12o and the MIM light emitting element driving unit 12m are white or the like according to a color mixture of light emission of a predetermined luminance of each corresponding element of various lighting modes of the organic EL device according to the luminance designation signal of each color from the control unit 11. Tones the light source color (light color).
  • the light color white light is “color temperature” when the chromaticity is on the black body radiation locus indicated by the XYZ color system of the CIE chromaticity diagram, and “correlated color temperature” when the chromaticity is not within that range. Is represented.
  • the operation unit 13 is a device such as a remote controller including an open / close switch or a wired module attached in the room.
  • the operation unit 13 supplies an operation command such as a command to turn on or off the mirror device by the user and a command to switch to a lighting mode such as normal illumination or nightlight to the control unit 11.
  • color temperature luminance data of luminance values for each element group of the organic EL device white light is emitted even if the normal lighting luminance of the entire mirror device is constant due to light emission color mixing of the R, G, B organic EL element groups.
  • the color temperature can be controlled to change.
  • the color temperature luminance data includes a red driving unit 12Ro, a green driving unit 12Go, and a blue driving unit for emitting white light of various color temperatures of the organic EL device by mixing each corresponding element with light having a specific luminance. 12Bo and table data of luminance values (luminance designation signal) for each element group sent to the red driving unit 12Rm, the green driving unit 12Gm, and the blue driving unit 12Bm.
  • the control unit 11 Based on the acquired color temperature luminance data, the control unit 11 changes the luminance of each corresponding element at a predetermined timing of compensation for the user's operation timing or aging change of the element group from the lower one of the color temperature steps to the higher one.
  • the value is sent as a luminance designation signal to each of the red drive unit 12Ro, the green drive unit 12Go and the blue drive unit 12Bo, the red drive unit 12Rm, the green drive unit 12Gm, and the blue drive unit 12Bm.
  • the control unit 11 sends the luminance designation signals that define white light having a desired color temperature to the red driving unit 12Ro, the green driving unit 12Go, the blue driving unit 12Bo, the red driving unit 12Rm, the green driving unit 12Gm, and the blue driving unit, respectively. It sends to the drive part 12Bm and controls the brightness
  • the control unit 11 controls the light color and color temperature of the organic EL device by individually adjusting the light emission intensity (luminance) of each element group of the organic EL device, for example, a light bulb according to a user's operation.
  • White light such as color and daylight color can be emitted, or white light can be finely corrected at a predetermined timing for compensating for secular change of a group of elements such as a ROM.
  • the organic EL device having the above configuration, by combining the luminescent colors, it is possible to perform toning that can stabilize the colors of various luminescent colors in addition to the change from warm white to cool white.
  • a signal is output from the control unit to the organic EL element driving unit 12o and the MIM light emitting element driving unit 12m.
  • the color ratio can be changed.
  • the user can select the desired brightness, hue, softness and hardness of the light emission at that time with a very thin light emitting mirror device.
  • FIG. 7 shows a second embodiment having the same configuration as that of the first embodiment except that the MIM light emitting element is not formed on the translucent electrode 1 and the MIM light emitting element MIM is arranged in the upper recess of the transparent bank BK. Show. According to this, since the element is arranged inside the recess of the bank BK, the bus line MBL electrically connected to the translucent electrode 2 and the metal thin film MF of the cathode of the MIM light emitting element connected to the bus line MBL are connected to the bank. Can be protected with material. Furthermore, the metal thin film MF can be filled with an insulating material.
  • the MIM light emitting element is constructed on or in the transparent bank BK, the degree of freedom in selecting the MIM light emitting element driving power source is increased.
  • the MIM light emitting element can be brought close to the organic EL element when viewed from the front.
  • FIG. 8 shows a third embodiment having the same configuration as that of the first embodiment except that the organic EL element and the MIM light emitting element are arranged in a checkered pattern, that is, in a matrix shape instead of a stripe shape. Show. That is, in one direction (lateral), the red organic EL element Ro, the blue MIM light emitting element Bm, the green organic EL element Go, the red MIM light emitting element Rm, the blue organic EL element Bo, and the green MIM light emitting element Gm In the direction (vertical) intersecting the direction, the elements are arranged so as to have the same color when all light is emitted.
  • the horizontal direction is the vertical direction when the organic EL element and the MIM light emitting element emit light separately or at the same time, and the vertical direction is the simultaneous direction.
  • the colors are aligned.
  • the light emitters of the organic EL element and the MIM light emitting element are alternately arranged.
  • the organic EL elements and the MIM light emitting elements juxtaposed in a matrix or stripe form are arranged so that they emit light at equal intervals, whether they emit light separately or simultaneously. Therefore, it is very easy to see the effect when facing the mirror device.
  • Each element is not limited to a rectangular shape, and may be configured to have various shapes such as a circle and an ellipse.
  • the organic EL elements and the MIM elements are always arranged alternately.
  • two organic EL elements Ro, Ro
  • a group of MIM light emitting elements and a group of organic EL elements are alternately arranged, such as two MIM elements (Bm, Bm) and then two organic EL elements (Go, Go). They may be arranged alternately in a group configuration.
  • a predetermined rule for example, every two rows, two organic EL elements are diagonally arranged (Ro, Ro), and then two MIM elements are diagonally arranged (Bm, Bm). ) After that, two organic EL elements may be arranged diagonally (Go, Go).
  • the organic EL element and the MIM element may be randomly arranged.
  • FIG. 11 shows a mirror device including a transparent bank BK having a so-called reverse taper structure in which the taper of the transparent bank BK is narrowed toward the translucent electrode 1 instead of the forward taper structure of the bank.
  • Elements indicated by the same reference numerals as those in the second embodiment having a so-called forward taper structure in which the taper of the transparent bank BK is widened toward the translucent electrode 1 are the same, and the description thereof is omitted.
  • a quartz or glass plate, a metal plate or metal foil, a bent resin substrate, a plastic film, a sheet, or the like is used as the translucent substrate 1.
  • a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL device may be deteriorated by outside air that has passed through the substrate, which is not preferable. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • a light extraction film (not shown) may be attached to the front surface of the substrate 1 so as to cover the light emitting portion.
  • the organic layer is a light emitting laminate, but the light emitting laminate can also be configured by laminating inorganic material films.
  • the bank and the organic EL elements Ro, Go and Bo, and the MIM light emitting elements Rm, Gm and Sealing may be performed by adhering a sealing material (not shown) such as a cap made of metal or glass covering Bm.
  • a desiccant (not shown) may be attached to the inner wall of the cap, or hermetic sealing with an inert gas is possible.
  • liquid sealing using a light diffusing material such as oil that diffuses light by dispersing a plurality of fine particles in a liquid phase is also possible.
  • a so-called solid sealing may be performed by forming a sealing film (not shown) made of an organic compound or an inorganic compound so as to cover these constituent members.
  • the above embodiment has been described with a bottom emission structure light emitting element, in other embodiments, the same configuration as the above embodiment except that the light extraction direction is not the substrate side but the MIM light emitting element and organic EL element side.
  • the top emission structure light emitting device shown in FIG. since the element shown with the same referential mark as said Example is the same, those description is abbreviate
  • the light emitting element can be formed on an opaque substrate in addition to the light transmitting substrate.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A mirror device having a plurality of light-emitting elements supported upon a substrate. The plurality of light-emitting elements are a plurality of MIM light-emitting elements and a plurality of organic EL elements. Each of the MIM light-emitting elements and organic EL elements or both a group of the MIM light-emitting elements and a group of the organic EL elements are arranged alternately upon the rear surface of a light-transmitting substrate.

Description

ミラー装置Mirror device
 本発明は、有機エレクトロルミネッセンス素子を含む発光機能を有するミラー装置に関する。 The present invention relates to a mirror device having a light emitting function including an organic electroluminescence element.
 有機エレクトロルミネッセンス素子は、例えば、透明ガラス基板上に陽極、発光層を含む有機層及び陰極を順次積層して構成され、陽極及び陰極を介して有機層への電流注入することにより、エレクトロルミネッセンス(以下、ELと称する)を発現する発光素子である。有機EL素子は、自己発光型の面発光デバイスであり、表示装置や照明装置に利用されている。 An organic electroluminescent element is configured by, for example, sequentially laminating an organic layer including an anode, a light emitting layer, and a cathode on a transparent glass substrate. By injecting current into the organic layer through the anode and the cathode, the electroluminescence ( Hereinafter, the light-emitting element expresses EL). An organic EL element is a self-luminous surface-emitting device, and is used for a display device or a lighting device.
 鏡の周囲に枠状に有機EL素子を配置して、使用者の顔等の対象物を鏡に映し出すことが可能なEL照明内蔵鏡がある(特許文献1参照)。 There is an EL illumination built-in mirror that can arrange an organic EL element in a frame shape around the mirror and project an object such as a user's face on the mirror (see Patent Document 1).
 陽極及び陰極のうち一方の電極(光取り出し電極)から光を取り出す為に、光取り出し電極として、電気伝導率、可視光域の透過率が高い金属である銀薄膜を用いた所謂、金属-誘電体-金属発光素子(以下、MIM発光素子と称する)構造の有機EL素子が提案されている(特許文献2及び非特許文献1参照)。 In order to extract light from one of the anode and the cathode (light extraction electrode), a so-called metal-dielectric using a silver thin film that is a metal having high electrical conductivity and high transmittance in the visible light region as the light extraction electrode. An organic EL element having a body-metal light emitting element (hereinafter referred to as MIM light emitting element) structure has been proposed (see Patent Document 2 and Non-Patent Document 1).
特開2003-217868号公報Japanese Patent Laid-Open No. 2003-217868 特開2011-165653号公報JP 2011-165653 A
 特許文献1に記載のミラー装置では、光源が鏡の周囲に配置されている故に、使用者が見たい顔の一部に的確に照明を与えるものではないという欠点があった。 The mirror device described in Patent Document 1 has a drawback in that it does not accurately illuminate a part of the face that the user wants to see because the light source is arranged around the mirror.
 特許文献2に記載の有機EL素子で赤緑青の発光色を使って混色により白色を得る場合は、MIM発光素子では各色のスペクトル分布幅が狭い故に人工的な光になり易く、演色性を高めることが難しいという問題がある。 When the organic EL device described in Patent Document 2 obtains white color by using red, green, and blue emission colors, the MIM light emitting device is likely to be artificial light because the spectral distribution width of each color is narrow, and improves color rendering. There is a problem that it is difficult.
 そこで、本発明は、発光色の色味を安定化できる調色可能な有機ELデバイスであるとともに非発光時に鏡として機能するミラー装置を提供することを課題の一例とするものである。 Therefore, an object of the present invention is to provide a mirror device that can be toned and can function as a mirror when not emitting light, as well as an organic EL device capable of stabilizing the color of the emitted light.
 本発明のミラー装置は、基板上に担持された複数の発光素子を有するミラー装置であって、
 前記複数の発光素子は複数の金属-誘電体-金属発光素子(MIM発光素子)及び複数の有機EL素子であり、前記MIM発光素子及び前記有機EL素子の各々又は前記MIM発光素子の内の一群及び前記有機EL素子の内の一群の各々は前記基板上にて交互に配置されている。
The mirror device of the present invention is a mirror device having a plurality of light emitting elements carried on a substrate,
The plurality of light emitting elements are a plurality of metal-dielectric-metal light emitting elements (MIM light emitting elements) and a plurality of organic EL elements, each of the MIM light emitting elements and the organic EL elements or a group of the MIM light emitting elements. And each group of the organic EL elements is alternately arranged on the substrate.
 以上の構成のミラー装置によれば、有機EL素子及びMIM発光素子毎の輝度を変化させて調色が可能となり、手鏡やバニティミラーなど照明付鏡として利用でき、さらに、広告用ボードや、店舗内の空間を広く見せるために柱、天井などに取り付ける鏡兼照明として利用できる。 According to the mirror device configured as described above, it is possible to perform color adjustment by changing the luminance of each organic EL element and MIM light emitting element, and it can be used as a mirror with illumination such as a hand mirror or a vanity mirror. It can be used as a mirror / illuminator attached to a pillar, ceiling, etc. to make the interior space look wider.
図1は本発明の実施例の有機ELデバイスの一部切り欠いた正面図である。FIG. 1 is a partially cutaway front view of an organic EL device according to an embodiment of the present invention. 図2は図1中のC-C線に沿った部分断面図である。FIG. 2 is a partial sectional view taken along the line CC in FIG. 図3は実施例の有機ELデバイスの有機EL素子を示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing an organic EL element of the organic EL device of the example. 図4は実施例の有機ELデバイスのMIM発光素子を示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view showing the MIM light emitting element of the organic EL device of the example. 図5は本発明の実施例の有機ELデバイスの光子エネルギーに対する光取り出し効率の変化を示すグラフである。FIG. 5 is a graph showing a change in light extraction efficiency with respect to photon energy of the organic EL device of the example of the present invention. 図6は本発明の実施例の有機ELデバイスの概略構成を示すブロック図である。FIG. 6 is a block diagram showing a schematic configuration of an organic EL device according to an embodiment of the present invention. 図7は本発明の他の実施例である有機ELデバイスの断面図である。FIG. 7 is a sectional view of an organic EL device which is another embodiment of the present invention. 図8は本発明の他の実施例である有機ELデバイスの一部切り欠いた正面図である。FIG. 8 is a partially cutaway front view of an organic EL device according to another embodiment of the present invention. 図9は本発明の他の実施例である有機ELデバイスの一部切り欠いた正面図である。FIG. 9 is a partially cutaway front view of an organic EL device which is another embodiment of the present invention. 図10は本発明の他の実施例である有機ELデバイスの一部切り欠いた正面図である。FIG. 10 is a partially cutaway front view of an organic EL device which is another embodiment of the present invention. 図11は本発明の他の実施例の有機ELデバイスの有機EL素子を示す拡大断面図である。FIG. 11 is an enlarged cross-sectional view showing an organic EL element of an organic EL device according to another embodiment of the present invention. 図12は本発明の他の実施例である発光素子の構成を模式的に示す概略断面図である。FIG. 12 is a schematic cross-sectional view schematically showing a configuration of a light-emitting element according to another embodiment of the present invention.
 以下、本発明の実施例について添付の図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 <第1の実施例>
 図1には、本発明の実施例である有機ELデバイスであるミラー装置の有機ELパネルの構成が示されている。有機ELパネルOELDは、ガラスや樹脂などの光透過性平板の基板1上に非発光部である透光性のバンクBKによって区画された複数の有機EL素子OELと、MIM発光素子MIMを含んでいる。有機ELパネルOELDは、図1に示すように、有機EL素子OELとMIM発光素子MIMの各々が透光性基板の背面1上にて交互に配置されているボトムエミッション型の有機ELパネルであるとともに、MIM発光素子が鏡面として機能するのでミラー装置でもある。バンクBKは例えば光学ガラスや光学樹脂などの透光性誘電体材料から形成される。
<First embodiment>
FIG. 1 shows the configuration of an organic EL panel of a mirror apparatus that is an organic EL device according to an embodiment of the present invention. The organic EL panel OELD includes a plurality of organic EL elements OEL partitioned by a light-transmitting bank BK which is a non-light-emitting portion on a light-transmitting flat substrate 1 such as glass or resin, and an MIM light-emitting element MIM. Yes. As shown in FIG. 1, the organic EL panel OELD is a bottom emission type organic EL panel in which each of the organic EL elements OEL and the MIM light emitting elements MIM are alternately arranged on the back surface 1 of the translucent substrate. At the same time, since the MIM light emitting element functions as a mirror surface, it is also a mirror device. The bank BK is made of a translucent dielectric material such as optical glass or optical resin.
 有機EL素子OELとMIM発光素子MIMは、それぞれが基板1のxy主面のy方向に伸長するストリップ形状の発光部であり、透光性基板1の前面1aから光を放射する。有機EL素子OELは赤色発光、緑色発光及び青色発光の有機EL素子Ro、Go及びBoを含み、これらは平行に並置され、それぞれ赤色発光R、緑色発光G及び青色発光Bの発光色の光を放射する。MIM発光素子MIMも赤色発光、緑色発光及び青色発光のMIM発光素子Rm、Gm及びBmを含み、これらは平行に並置され、それぞれ赤色発光R、緑色発光G及び青色発光Bの発光色の光を放射する。RGB発光色の素子を一組としてx方向に組毎に並べられているが、有機EL素子OELとMIM発光素子MIMの同じ発光色の素子は近接させないように、配置する。これは、同じ発光色の線などの部位が太くなり、色むらが生じるためである。 Each of the organic EL element OEL and the MIM light emitting element MIM is a strip-shaped light emitting portion that extends in the y direction of the xy main surface of the substrate 1, and emits light from the front surface 1 a of the translucent substrate 1. The organic EL element OEL includes red light emitting, green light emitting and blue light emitting organic EL elements Ro, Go and Bo, which are juxtaposed in parallel to emit light of emission colors of red light emitting R, green light emitting G and blue light emitting B, respectively. Radiate. The MIM light emitting element MIM also includes MIM light emitting elements Rm, Gm, and Bm that emit red light, green light, and blue light, which are juxtaposed in parallel, and emit light of red, green, and blue light emission colors, respectively. Radiate. Although the elements of RGB emission color are arranged in groups in the x direction as a set, the organic EL element OEL and the MIM light emitting element MIM are arranged so as not to be close to each other. This is because portions such as lines of the same emission color become thick and color unevenness occurs.
 このように、赤、緑、青の発光色をそれぞれ発する有機EL素子Ro、Go及びBoとMIM発光素子Rm、Gm及びBmは、均等な間隔になるように一定順序で平行に繰り返しストライプ状に配置されてある。素子の輝度を調節することにより、光取り出し面となる基板1の前面からは、赤、緑、青の光が任意の割合で混色されて単一の発光色として認識される光が放出される。 As described above, the organic EL elements Ro, Go, and Bo that emit red, green, and blue emission colors, respectively, and the MIM light emitting elements Rm, Gm, and Bm are repeatedly striped in parallel in a predetermined order so as to be evenly spaced. It is arranged. By adjusting the luminance of the element, light that is recognized as a single emission color is emitted from the front surface of the substrate 1 serving as a light extraction surface by mixing red, green, and blue light at an arbitrary ratio. .
 なお、図示していないが、有機EL素子Ro、Go及びBoはそれぞれ有機EL素子駆動部へ接続されており、MIM発光素子Rm、Gm及びBmもそれぞれMIM発光素子駆動部へ接続されている。 Although not shown, the organic EL elements Ro, Go and Bo are each connected to the organic EL element driving unit, and the MIM light emitting elements Rm, Gm and Bm are also connected to the MIM light emitting element driving unit.
 図2に示すように、有機EL素子OELの各々は、バンクBK間の基板1の背面1b上に、透光性電極2、発光層を含む有機層3o、反射電極4が積層されて構成される。また、MIM発光素子MIMの各々は、バンクBK間の基板1の背面1b上に、透光性電極2、金属薄膜MF、発光層を含む誘電体層3m、反射電極4が積層されて構成される。 As shown in FIG. 2, each of the organic EL elements OEL is configured by laminating a translucent electrode 2, an organic layer 3o including a light emitting layer, and a reflective electrode 4 on the back surface 1b of the substrate 1 between the banks BK. The Each of the MIM light emitting elements MIM is configured by laminating a translucent electrode 2, a metal thin film MF, a dielectric layer 3m including a light emitting layer, and a reflective electrode 4 on the back surface 1b of the substrate 1 between the banks BK. The
 陽極を構成する透光性電極2は、基板1上においてxy方向に沿って伸長して共通電極として形成されている。透光性電極2の上には、透光性電極2に電源電圧を供給する為に電気的に接続されたバスラインMBLがy方向に沿って伸長して互いに一定間隔おいて素子ごとにx方向に平行に形成されている。 The translucent electrode 2 constituting the anode extends along the xy direction on the substrate 1 and is formed as a common electrode. On the translucent electrode 2, a bus line MBL electrically connected to supply the power supply voltage to the translucent electrode 2 extends in the y direction and is arranged at a predetermined interval for each element x. It is formed parallel to the direction.
 透光性電極2のバスラインMBL上にはこれらを覆うようにバンクBKがy方向に沿って伸長して形成されている。バンクBKは、分離するスロットSLを除き反射電極4により覆われている。また反射電極4は、バンクBKをすべて露出させるように形成されてもよい。すなわち、陰極を構成するストリップ形状の反射電極4は、それぞれ基板1上においてy方向に沿って伸長し、互いに一定間隔おいて素子ごとにx方向に平行に並置されている。 On the bus line MBL of the translucent electrode 2, a bank BK is formed extending along the y direction so as to cover them. The bank BK is covered with the reflective electrode 4 except for the slot SL to be separated. The reflective electrode 4 may be formed so as to expose all the banks BK. In other words, the strip-shaped reflective electrodes 4 constituting the cathode each extend along the y direction on the substrate 1 and are juxtaposed in parallel in the x direction for each element at a constant interval.
 図3に示すように、有機EL素子の各々OELは、バンクの間の透光性電極2の上に、有機層3oとして、例えば正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d及び電子注入層3eが順に積層されて構成され得る。透光性電極2と反射電極4の間に挟持された有機層3oは発光積層体であり、これら積層構成に限定されることなく、例えば発光層3cと電子輸送層3dの間に正孔阻止層(図示せず)を追加するなど、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む積層構成であってもよい。有機層3oは、上記積層構造から正孔輸送層3bを省いて構成しても、正孔注入層3aを省いて構成しても、正孔注入層3aと電子輸送層3dを省いて構成してもよい。 As shown in FIG. 3, each OEL of the organic EL element has, as an organic layer 3 o, for example, a hole injection layer 3 a, a hole transport layer 3 b, a light emitting layer 3 c, on the translucent electrode 2 between the banks. The electron transport layer 3d and the electron injection layer 3e may be stacked in order. The organic layer 3o sandwiched between the translucent electrode 2 and the reflective electrode 4 is a light emitting laminated body, and is not limited to these laminated structures, for example, hole blocking between the light emitting layer 3c and the electron transporting layer 3d. A layered structure including at least a light-emitting layer or a charge transport layer that can also be used, such as adding a layer (not shown), may be used. The organic layer 3o may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
 発光層3cまでの機能層に正孔を供給する陽極の透光性電極2は、ITO(Indium-tin-oxide)やZnO、ZnO-Al(所謂、AZO)、In-ZnO(所謂、IZO)、SnO-Sb(所謂、ATO)、RuOなどにより構成され得る。さらに、透光性電極2は、発光層から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。透光性電極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The anode translucent electrode 2 for supplying holes to the functional layers up to the light emitting layer 3c includes ITO (Indium-tin-oxide), ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 −. It may be composed of ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2 or the like. Furthermore, for the translucent electrode 2, it is preferable to select a material having a transmittance of at least 10% at the emission wavelength obtained from the light emitting layer. The translucent electrode 2 usually has a single-layer structure, but may have a laminated structure made of a plurality of materials as desired.
 発光層3cまでの機能層に電子を供給する陰極の反射電極4には、限定されないが、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The cathode reflective electrode 4 that supplies electrons to the functional layers up to the light emitting layer 3c is not limited, and for example, metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 反射電極4の材料としては、効率良く電子注入を行う為に仕事関数の低い金属が含まれることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。反射電極4はスパッタ法や真空蒸着法などにより有機層3o上に、単層膜、又は多層膜として形成され得る。なお、反射電極4の反射作用を維持する厚さであれば膜厚は限定されない。 The material of the reflective electrode 4 preferably includes a metal having a low work function in order to efficiently inject electrons. For example, a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof. Is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy. The reflective electrode 4 can be formed as a single layer film or a multilayer film on the organic layer 3o by sputtering or vacuum deposition. The thickness of the reflective electrode 4 is not limited as long as the reflective action of the reflective electrode 4 is maintained.
 図4に示すように、MIM発光素子MIMの各々は、バンクの間の透光性電極2上に形成された金属薄膜MF上に、誘電体層3mとして、例えば正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d及び電子注入層3eが順に積層されて構成され得る。この誘電体層3mは、上記有機EL素子の各々OELの有機層3oと同様の材料から選択されて構成される。MIM発光素子MIMの各々は、第1金属電極である金属薄膜MF、誘電体層3m及び第2金属電極である反射電極4からなり、透光性電極2は金属薄膜MFへの電力供給配線である。 As shown in FIG. 4, each of the MIM light emitting elements MIM includes, for example, a hole injection layer 3a and a hole as a dielectric layer 3m on the metal thin film MF formed on the translucent electrode 2 between the banks. The transport layer 3b, the light emitting layer 3c, the electron transport layer 3d, and the electron injection layer 3e may be stacked in order. The dielectric layer 3m is configured by being selected from the same material as that of the OEL organic layer 3o of each of the organic EL elements. Each of the MIM light emitting elements MIM includes a metal thin film MF as a first metal electrode, a dielectric layer 3m, and a reflective electrode 4 as a second metal electrode. The translucent electrode 2 is a power supply wiring to the metal thin film MF. is there.
 他の変形例では、透光性電極2と金属薄膜MFの間にSiOなどの透明絶縁層(図示せず)を入れ、金属薄膜MFへ別個の電力供給配線を設けてもよい。この変形例では、有機EL素子とは別の電源をMIM発光素子のために使用することができ、自由度が高くなる。 In another modification, a transparent insulating layer (not shown) such as SiO 2 may be inserted between the translucent electrode 2 and the metal thin film MF, and a separate power supply wiring may be provided to the metal thin film MF. In this modification, a power supply different from the organic EL element can be used for the MIM light emitting element, and the degree of freedom is increased.
 金属薄膜MFの材料としては、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などが挙げられる。金属薄膜MFの膜厚20nmの銀薄膜は透過率50%を有する。同金属薄膜としての膜厚10nmのAl膜は透過率50%を有する。同金属薄膜としての膜厚20nmのMgAg合金膜は透過率50%を有する。なお、金属薄膜MFを構成する場合、材料や製膜方法、条件にも依存するが、その膜厚の下限値は5nmあれば導電性を確保することができる。金属薄膜MFはスパッタ法や真空蒸着法などにより有機層3o上に、単層膜、又は多層膜として形成され得る。 As a material of the metal thin film MF, for example, an appropriate metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof is used. Specific examples include a magnesium-silver alloy, a magnesium-indium alloy, and an aluminum-lithium alloy. The silver thin film with a thickness of 20 nm of the metal thin film MF has a transmittance of 50%. An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%. The 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%. In addition, when comprising the metal thin film MF, although depending on material, a film forming method, and conditions, if the lower limit of the film thickness is 5 nm, conductivity can be ensured. The metal thin film MF can be formed as a single layer film or a multilayer film on the organic layer 3o by sputtering or vacuum deposition.
 斯かる構成により、図1に示す有機EL素子Ro、Go及びBoは、互いに対向する透光性電極2及び反射電極4の間に挟持された有機層3oの各々が、挟持する電極間の印加電圧に応じて第1スペクトル分布で発光して透光性電極2及び透光性基板1を介して斯かる発光を放射する。また、図1に示すMIM発光素子Rm、Gm及びBmにおいては、互いに対向する金属薄膜MF及び反射電極4の間に挟持された誘電体層3mの各々が、挟持する電極間の印加電圧に応じて第2スペクトル分布で発光して金属薄膜MF、透光性電極2及び透光性基板1を介して斯かる発光を放射する。いずれの素子の発光光は発光層から取り出し面へ向かい、透光性電極、ガラス基板を介して空気中に出る。途中、透光性電極ガラス界面やガラス空気界面での所定の臨界角以上で全反射が生じる。全反射した光と発光層から取り出し面とは逆の方向に向かった光は反射電極で、反射し光取り出し側へ向かう。なお、第1及び第2スペクトル分布はそれぞれ第1及び第2波長帯域を有している。 With such a configuration, the organic EL elements Ro, Go and Bo shown in FIG. 1 are applied between the electrodes sandwiched between the organic layers 3o sandwiched between the translucent electrode 2 and the reflective electrode 4 facing each other. The light is emitted with the first spectral distribution according to the voltage, and the emitted light is emitted through the translucent electrode 2 and the translucent substrate 1. In the MIM light emitting elements Rm, Gm, and Bm shown in FIG. 1, each of the dielectric layers 3m sandwiched between the metal thin film MF and the reflective electrode 4 facing each other corresponds to the applied voltage between the sandwiched electrodes. Then, light is emitted with the second spectral distribution, and the emitted light is emitted through the metal thin film MF, the translucent electrode 2 and the translucent substrate 1. The light emitted from any of the elements travels from the light emitting layer to the extraction surface and exits into the air through the translucent electrode and the glass substrate. In the middle, total reflection occurs above a predetermined critical angle at the translucent electrode glass interface or glass air interface. The totally reflected light and the light directed from the light emitting layer in the direction opposite to the extraction surface are reflected by the reflective electrode and travel toward the light extraction side. The first and second spectral distributions have first and second wavelength bands, respectively.
 MIM発光素子においては、陽極の金属薄膜と陰極の反射電極でプラズモン結合が生じ、発光が増強される性質がある。またMIM発光素子では陽極と陰極の金属が平行なこともあり、取り出し面に垂直な光の割合が多く、有機EL素子より発光波長の帯域が狭いことが知られている。 The MIM light emitting element has a property that plasmon coupling occurs between the metal thin film of the anode and the reflective electrode of the cathode, thereby enhancing the light emission. In addition, it is known that in the MIM light emitting device, the anode and cathode metals are parallel, and the ratio of light perpendicular to the extraction surface is large, and the emission wavelength band is narrower than that of the organic EL device.
 発光色を略同色とする有機EL素子及びMIM発光素子を設定する場合、それぞれの第1及びの第2スペクトル分布のスペクトル成分が重複していて、ピーク波長が近接して、更に、スペクトル分布の幅が互いに異なるものとなるように、各発光部は、異なる発光材料を含む素子群として形成されている。ピーク波長が近接していても、MIM発光素子のスペクトル分布の半値全幅は、有機EL素子のスペクトル分布の半値全幅よりも狭い。 When setting an organic EL element and an MIM light emitting element having substantially the same luminescent color, the spectral components of the first and second spectral distributions overlap, the peak wavelengths are close, and the spectral distribution Each light emitting portion is formed as an element group including different light emitting materials so that the widths are different from each other. Even if the peak wavelengths are close, the full width at half maximum of the spectrum distribution of the MIM light emitting element is narrower than the full width at half maximum of the spectrum distribution of the organic EL element.
 以下に、誘電体層3mとしても形成され得る有機層3oを説明する。 Hereinafter, the organic layer 3o that can also be formed as the dielectric layer 3m will be described.
 [正孔注入層]
 正孔注入層3aは、電子受容性化合物(所謂、正孔輸送性化合物)を含有する層とすることが好ましい。
[Hole injection layer]
The hole injection layer 3a is preferably a layer containing an electron accepting compound (so-called hole transporting compound).
 湿式塗布法で形成する場合、正孔注入層形成用組成物は通常、正孔注入層の構成材料として正孔輸送性化合物及び溶媒を含有する。溶媒としては、限定されるものではないが、例えば、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、アミド系溶媒などが挙げられる。エーテル系溶媒としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテルアセテート(所謂、PGMEA)などの脂肪族エーテル、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソールなどの芳香族エーテル、などが挙げられる。 When forming by a wet coating method, the composition for forming a hole injection layer usually contains a hole transporting compound and a solvent as a constituent material of the hole injection layer. Examples of the solvent include, but are not limited to, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents, and the like. Examples of ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether acetate (so-called PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, and phenetole. , Aromatic ethers such as 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, and 2,4-dimethylanisole.
 エステル系溶媒としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチルなどの芳香族エステル、などが挙げられる。 Examples of the ester solvent include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
 芳香族炭化水素系溶媒としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イロプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレンなどが挙げられる。 Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3- isopropylpropylphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, methylnaphthalene and the like. Can be mentioned.
 アミド系溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、などが挙げられる。その他、ジメチルスルホキシド、なども用いることができる。これらの溶媒は1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。 Examples of the amide solvent include N, N-dimethylformamide and N, N-dimethylacetamide. In addition, dimethyl sulfoxide and the like can also be used. These solvent may use only 1 type and may use 2 or more types by arbitrary combinations and a ratio.
 正孔輸送性化合物は、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、低分子化合物であることが好ましい。 The hole transporting compound may be a polymer compound such as a polymer or a low molecular compound such as a monomer, but is preferably a low molecular compound.
 正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン誘導体、フタロシアニン銅(所謂、CuPc)に代表されるフタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボンなどが挙げられる。ここで誘導体とは、例えば、芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。 The hole transporting compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole injection layer. Examples of the hole transporting compound include aromatic amine derivatives, phthalocyanine derivatives typified by phthalocyanine copper (so-called CuPc), porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, tertiary amines with fluorene groups. Examples include linked compounds, hydrazone derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, and carbon. Here, the derivative includes, for example, an aromatic amine derivative, and includes an aromatic amine itself and a compound having an aromatic amine as a main skeleton. There may be.
 また、正孔輸送性化合物としては、ポリチオフェンの誘導体である3,4-エチレンジオキシチオフェンを高分子量ポリスチレンスルホン酸中で重合してなる導電性ポリマー(所謂、PEDOT/PSS)もまた好ましい。さらに、PEDOT/PSSのポリマーの末端をメタクリレートなどでキャップしたものであってもよい。 As the hole transporting compound, a conductive polymer obtained by polymerizing 3,4-ethylenedioxythiophene, which is a polythiophene derivative, in high molecular weight polystyrene sulfonic acid (so-called PEDOT / PSS) is also preferable. Furthermore, the end of the polymer of PEDOT / PSS may be capped with methacrylate or the like.
 正孔注入層の材料として用いられる正孔輸送性化合物は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送性化合物を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物1種又は2種以上と、その他の正孔輸送性化合物1種又は2種以上とを併用することもできる。非晶質性、可視光の透過率の点から、正孔注入層には芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。 The hole transporting compound used as the material for the hole injection layer may contain any one of these compounds alone, or may contain two or more. In the case of containing two or more kinds of hole transporting compounds, the combination is arbitrary, but one or more kinds of aromatic tertiary amine polymer compounds and one or two kinds of other hole transporting compounds. The above can also be used together. From the viewpoints of amorphousness and visible light transmittance, an aromatic amine compound is preferable for the hole injection layer, and an aromatic tertiary amine compound is particularly preferable. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
 正孔注入層形成用組成物中の、正孔輸送性化合物の濃度は、膜厚の均一性の点で通常0.01重量%以上、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、また、通常70重量%以下、好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度が高すぎると膜厚ムラが生じる可能性があり、また、低すぎると成膜された正孔注入層に欠陥が生じる可能性がある。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is usually 0.01% by weight or more, preferably 0.1% by weight or more, and more preferably 0.00% by weight in terms of film thickness uniformity. 5% by weight or more, usually 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less. If this concentration is too high, film thickness unevenness may occur, and if it is too low, defects may occur in the formed hole injection layer.
 正孔注入層形成用組成物は電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。その他の成分の例としては、各種の有機EL材料、バインダー樹脂、塗布性改良剤などが挙げられる。なお、その他の成分は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition to the electron-accepting compound, the composition for forming a hole injection layer may further contain other components. Examples of other components include various organic EL materials, binder resins, coatability improvers, and the like. In addition, only 1 type may be used for another component and it may use 2 or more types together by arbitrary combinations and ratios.
 湿式塗布法により正孔注入層を形成する場合、通常は、正孔注入層を構成する材料を適切な溶媒と混合して成膜用の組成物を調製し、この正孔注入層形成用組成物を適切な手法により、陽極上に塗布して成膜し、乾燥することにより正孔注入層を形成する。 When forming a hole injection layer by a wet coating method, usually, a material for forming the hole injection layer is mixed with an appropriate solvent to prepare a film-forming composition, and this hole injection layer forming composition The hole injection layer is formed by applying the material onto the anode by an appropriate technique, forming a film, and drying.
 正孔注入層の膜厚は、通常5nm以上、好ましくは10nm以上、また、通常1000nm以下、好ましくは500nm以下の範囲である。 The film thickness of the hole injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
 [正孔輸送層]
 正孔輸送層3bの材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、例えば、前述の正孔注入層に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体などが挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
[Hole transport layer]
The material of the hole transport layer 3b may be any material conventionally used as a constituent material of the hole transport layer. For example, the hole transport layer is exemplified as the hole transport compound used in the hole injection layer described above. Things. In addition, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives, oligothiophene derivatives, condensed polycyclic aromatics Group derivatives, metal complexes and the like. In addition, for example, polyvinylcarbazole derivatives, polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes Derivatives, poly (p-phenylene vinylene) derivatives, and the like. These may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer. Further, it may be a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer.
 湿式塗布法で正孔輸送層を形成する場合は、正孔注入層の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、乾燥させる。 When the hole transport layer is formed by a wet coating method, a composition for forming a hole transport layer is prepared in the same manner as the formation of the hole injection layer, and then dried after wet film formation.
 正孔輸送層形成用組成物に、正孔輸送性化合物の他、溶媒を含有する。用いる溶媒は正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、乾燥条件なども正孔注入層の形成の場合と同様である。 In addition to the hole transporting compound, the hole transporting layer forming composition contains a solvent. The solvent used is the same as that used for the composition for forming the hole injection layer. The film forming conditions, the drying conditions, and the like are the same as in the case of forming the hole injection layer.
 正孔輸送層は、正孔輸送性化合物の他、各種の有機EL材料、バインダー樹脂、塗布性改良剤などを含有していてもよい。 The hole transport layer may contain various organic EL materials, a binder resin, a coating property improving agent and the like in addition to the hole transporting compound.
 正孔輸送層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 上記したように少なくとも正孔注入層3a又は正孔輸送層3bは厚く塗布されることが好ましいので、陽極2から発光層3cまでの正孔注入層3a及び/又は正孔輸送層3bの膜厚の合計は少なくとも100nmであることが好ましい。 As described above, since at least the hole injection layer 3a or the hole transport layer 3b is preferably applied thick, the film thickness of the hole injection layer 3a and / or the hole transport layer 3b from the anode 2 to the light emitting layer 3c. Is preferably at least 100 nm.
 [発光層]
 発光層3cは赤、緑及び青発光の独立した発光層であってもそれらの混合発光層であってもよい、また、正孔輸送の性質を有する化合物(正孔輸送性化合物)、或いは、電子輸送の性質を有する化合物(電子輸送性化合物)を含有させることもできる。有機EL材料をドーパント材料として使用し、正孔輸送性化合物や電子輸送性化合物などをホスト材料として適宜使用してもよい。有機EL材料については特に限定はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。
[Light emitting layer]
The light emitting layer 3c may be a red, green and blue light emitting independent light emitting layer or a mixed light emitting layer thereof, a compound having a property of transporting holes (hole transporting compound), or A compound having an electron transporting property (electron transporting compound) can also be contained. An organic EL material may be used as a dopant material, and a hole transporting compound, an electron transporting compound, or the like may be appropriately used as a host material. There is no particular limitation on the organic EL material, and a substance that emits light at a desired emission wavelength and has good emission efficiency may be used.
 有機EL材料としては、任意の公知の材料を適用可能である。例えば、蛍光材料であってもよく、燐光材料であってもよいが、内部量子効率の観点から燐光材料を用いることが好ましい。発光層は単層構造としても、或いは所望により複数の材料からなる多層構造とすることもできる。例えば、青色発光層は蛍光材料を用い、緑色や赤色の発光層は燐光材料を用いるなど、様々な組み合わせで用いてもよい。また、発光層の間に拡散防止層を設けることもできる。 Any known material can be applied as the organic EL material. For example, it may be a fluorescent material or a phosphorescent material, but it is preferable to use a phosphorescent material from the viewpoint of internal quantum efficiency. The light emitting layer may have a single layer structure or a multilayer structure made of a plurality of materials as desired. For example, a fluorescent material may be used for the blue light emitting layer, and a phosphorescent material may be used for the green and red light emitting layers. Further, a diffusion preventing layer can be provided between the light emitting layers.
 青色発光を与える蛍光材料(青色蛍光色素)としては、例えば、ナフタレン、ペリレン、ピレン、クリセン、アントラセン、クマリン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体などが挙げられる。 Examples of fluorescent materials (blue fluorescent dyes) that emit blue light include naphthalene, perylene, pyrene, chrysene, anthracene, coumarin, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
 緑色発光を与える蛍光材料(緑色蛍光色素)としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。 Examples of the fluorescent material (green fluorescent dye) that emits green light include aluminum complexes such as quinacridone derivatives, coumarin derivatives, and Alq3 (tris (8-hydroxy-quinoline) aluminum).
 黄色発光を与える蛍光材料(黄色蛍光色素)としては、例えば、ルブレン、ペリミドン誘導体などが挙げられる。 Examples of fluorescent materials that give yellow light emission (yellow fluorescent dyes) include rubrene and perimidone derivatives.
 赤色発光を与える蛍光材料(赤色蛍光色素)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテンなどが挙げられる。 Examples of fluorescent materials that give red light emission (red fluorescent dyes) include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzoates. Examples thereof include thioxanthene derivatives and azabenzothioxanthene.
 燐光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を含む有機金属錯体が挙げられる。周期表第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金などが挙げられる。錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。 The phosphorescent material is selected from, for example, the long-period periodic table (hereinafter referred to as the long-period periodic table when referring to “periodic table” unless otherwise specified). An organometallic complex containing a metal can be given. Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold. As the ligand of the complex, a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand and a pyridine, pyrazole, phenanthroline, or the like is connected is preferable. A pyridine ligand and a phenylpyrazole ligand are preferable. Here, (hetero) aryl represents an aryl group or a heteroaryl group.
 燐光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(所謂、Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム、オクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリンなどが挙げられる。 Specific examples of phosphorescent materials include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, and bis (2-phenyl). Pyridine) platinum, tris (2-phenylpyridine) osmium, tris (2-phenylpyridine) rhenium, octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethyl palladium porphyrin, octaphenyl palladium porphyrin, and the like.
 有機EL材料として用いる化合物の分子量は、通常10000以下、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3000以下、また、通常100以上、好ましくは200以上、より好ましくは300以上、更に好ましくは400以上の範囲である。有機EL材料の分子量が小さ過ぎると、耐熱性が著しく低下したり、ガス発生の原因となったり、膜を形成した際の膜質の低下を招いたり、或いはマイグレーションなどによる機能層のモルフォロジー変化を招来する場合がある。一方、有機EL材料の分子量が大き過ぎると、有機化合物の精製が困難となってしまったり、湿式塗布法で形成する場合の溶媒に溶解させる際に時間を要したりする傾向がある。 The molecular weight of the compound used as the organic EL material is usually 10,000 or less, preferably 5000 or less, more preferably 4000 or less, still more preferably 3000 or less, and usually 100 or more, preferably 200 or more, more preferably 300 or more, still more preferably. Is in the range of 400 or more. If the molecular weight of the organic EL material is too small, the heat resistance will be significantly reduced, gas generation will be caused, the film quality will be deteriorated when the film is formed, or the morphology of the functional layer will be changed due to migration, etc. There is a case. On the other hand, if the molecular weight of the organic EL material is too large, it tends to be difficult to purify the organic compound, or it may take time to dissolve the organic EL material in a solvent when formed by a wet coating method.
 なお、有機EL材料は、いずれか1種のみを用いてもよく、2種以上を任意の組み合わせと比率で併用してもよい。発光層における有機EL材料の割合は、通常0.05重量%以上、通常35重量%以下である。有機EL材料が少なすぎると発光ムラを生じる可能性があり、多すぎると発光効率が低下する可能性がある。なお、2種以上の有機EL材料を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。発光層における含有量が最も多い成分をホスト材料とより少ない成分をゲスト材料と呼ぶ。 In addition, only 1 type may be used for an organic EL material, and 2 or more types may be used together by arbitrary combinations and a ratio. The proportion of the organic EL material in the light emitting layer is usually 0.05% by weight or more and usually 35% by weight or less. If the amount of the organic EL material is too small, uneven light emission may occur, and if the amount is too large, the light emission efficiency may be reduced. In addition, when using together 2 or more types of organic EL material, it is made for the total content of these to be contained in the said range. The component having the highest content in the light emitting layer is called a host material, and the component having a smaller content is called a guest material.
 発光層には、その構成材料として、正孔輸送性化合物を含有させてもよい。ここで、正孔輸送性化合物のうち、低分子量の正孔輸送性化合物の例としては、前述の正孔注入層3aにおける正孔輸送性化合物として例示した各種の化合物のほか、例えば、ジフェニルナフチルジアミン(所謂、α-NPD)に代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン類や、4,4’,4”-トリス(1-ナフチルフェニルアミノ)トリフェニルアミンなどのスターバースト構造を有する芳香族アミン化合物や、トリフェニルアミンの四量体から成る芳香族アミン化合物や、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレンなどのスピロ化合物などが挙げられる。 The light emitting layer may contain a hole transporting compound as a constituent material. Here, among the hole transporting compounds, examples of the low molecular weight hole transporting compound include various compounds exemplified as the hole transporting compound in the hole injection layer 3a described above, for example, diphenylnaphthyl. Aromatic diamines represented by diamines (so-called α-NPD), including two or more tertiary amines and having two or more condensed aromatic rings substituted with nitrogen atoms, or 4,4 ′, 4 ″- Aromatic amine compounds having a starburst structure such as tris (1-naphthylphenylamino) triphenylamine, aromatic amine compounds composed of tetramers of triphenylamine, and 2,2 ′, 7,7′-tetrakis And spiro compounds such as-(diphenylamino) -9,9'-spirobifluorene.
 なお、発光層において、正孔輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, in a light emitting layer, only 1 type may be used for a hole transportable compound, and it may use 2 or more types together by arbitrary combinations and a ratio.
 発光層における正孔輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。正孔輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の正孔輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 The proportion of the hole transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the hole transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of hole transportable compounds, it is made for the total content of these to be contained in the said range.
 発光層には、その構成材料として、電子輸送性化合物を含有させてもよい。ここで、電子輸送性化合物のうち、低分子量の電子輸送性化合物の例としては、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(所謂、BND)や、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(所謂、PyPySPyPy)や、バソフェナントロリン(所謂、BPhen)や、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(所謂、BCP、バソクプロイン)、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(所謂、tBu-PBD)や、4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル(所謂、CBP)などが挙げられる。なお、発光層において、電子輸送性化合物は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The light emitting layer may contain an electron transporting compound as a constituent material. Here, among the electron transporting compounds, examples of low molecular weight electron transporting compounds include 2,5-bis (1-naphthyl) -1,3,4-oxadiazole (so-called BND), 2 , 5-bis (6 ′-(2 ′, 2 ″ -bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (so-called PyPySPyPy), bathophenanthroline (so-called BPhen), 2,9 -Dimethyl-4,7-diphenyl-1,10-phenanthroline (so-called BCP, bathocuproin), 2- (4-biphenylyl) -5- (p-tertiarybutylphenyl) -1,3,4-oxadiazole (So-called tBu-PBD), 4,4′-bis (9H-carbazol-9-yl) biphenyl (so-called CBP), etc. In the light-emitting layer, an electron-transporting compound is included. , It may be used alone, or as a combination of two or more kinds in any combination and in any ratio.
 発光層における電子輸送性化合物の割合は、通常0.1重量%以上、通常65重量%以下である。電子輸送性化合物が少なすぎると短絡の影響を受けやすくなる可能性があり、多すぎると膜厚ムラを生じる可能性がある。なお、2種以上の電子輸送性化合物を併用する場合には、これらの合計の含有量が上記範囲に含まれるようにする。 The proportion of the electron transporting compound in the light emitting layer is usually 0.1% by weight or more and usually 65% by weight or less. If the amount of the electron transporting compound is too small, it may be easily affected by a short circuit, and if it is too large, the film thickness may be uneven. In addition, when using together 2 or more types of electron transport compounds, it is made for the total content of these to be contained in the said range.
 湿式塗布法で形成する場合、発光層は、上記発光層材料を適切な溶媒に溶解させて発光層形成用組成物を調製し、それを用いて湿式成膜後、乾燥させ、溶媒を除去することにより、形成される。よって、湿式塗布法で形成する場合、発光層塗布液には、発光層となるべき少なくとも2種類の固形分(ホスト材料とゲスト材料)が溶質として溶媒に分散又は溶解されて、調製される。用いる溶媒は正孔注入層形成用組成物に用い得る上記溶媒から選択され得る。 In the case of forming by a wet coating method, the light emitting layer is prepared by dissolving the above light emitting layer material in an appropriate solvent to prepare a composition for forming a light emitting layer. Is formed. Therefore, in the case of forming by a wet coating method, the light emitting layer coating solution is prepared by dispersing or dissolving at least two kinds of solid contents (host material and guest material) to be the light emitting layer as a solute in a solvent. The solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
 発光層を形成するための発光層形成用組成物に対する発光層用溶媒の比率は、通常0.01重量%以上、通常70重量%以下、である。なお、発光層用溶媒として2種以上の溶媒を混合して用いる場合には、これらの溶媒の合計がこの範囲を満たすようにする。 The ratio of the light emitting layer solvent to the light emitting layer forming composition for forming the light emitting layer is usually 0.01% by weight or more and usually 70% by weight or less. In addition, when using 2 or more types of solvents mixed as a solvent for light emitting layers, it is made for the sum total of these solvents to satisfy | fill this range.
 発光層の膜厚は通常3nm以上、好ましくは5nm以上、また、通常200nm以下、好ましくは100nm以下の範囲である。発光層の膜厚が、薄すぎると膜に欠陥が生じる可能性があり、厚すぎると駆動電圧が上昇する可能性がある。 The film thickness of the light emitting layer is usually 3 nm or more, preferably 5 nm or more, and usually 200 nm or less, preferably 100 nm or less. If the light emitting layer is too thin, defects may occur in the film, and if it is too thick, the driving voltage may increase.
 [電子輸送層]
 電子輸送層3dは、有機EL素子の発光効率を更に向上させることを目的として設けられるもので、電界を与えられた電極間において陰極から注入された電子を効率よく発光層の方向に輸送することができる電子輸送性化合物より形成される。
[Electron transport layer]
The electron transport layer 3d is provided for the purpose of further improving the light emission efficiency of the organic EL element, and efficiently transports electrons injected from the cathode between the electrodes to which an electric field is applied in the direction of the light emitting layer. It is formed from an electron transporting compound capable of forming
 電子輸送層に用いられる電子輸送性化合物としては、通常、陰極の導電性膜MF又は電子注入層3eからの電子注入効率が高く、且つ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。このような条件を満たす化合物としては、例えば、Alq3や10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン、キノキサリン化合物、フェナントロリン誘導体、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 As the electron transporting compound used for the electron transporting layer, usually, the electron injection efficiency from the cathode conductive film MF or the electron injection layer 3e is high, and the injected electrons with high electron mobility are efficiently used. A compound that can be transported is used. Examples of compounds that satisfy such conditions include metal complexes of Alq3 and 10-hydroxybenzo [h] quinoline, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, and 5-hydroxyflavones. Metal complex, benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene, quinoxaline compound, phenanthroline derivative, 2-t-butyl-9,10-N, N′-dicyanoanthraquinonediimine, n-type hydrogenated amorphous Quality silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like.
 なお、電子輸送層の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, only 1 type may be used for the material of an electron carrying layer, and 2 or more types may be used together by arbitrary combinations and a ratio.
 電子輸送層の形成方法に制限はなく、湿式塗布法または乾式塗布法で形成することができる。湿式塗布法で形成する場合、電子輸送層は、上記電子輸送層材料を適切な溶媒に溶解させて電子輸送層形成用組成物を調製し、それを用いて湿式成膜後、乾燥させ、溶媒を除去することにより、形成される。用いる溶媒は正孔注入層形成用組成物に用い得る上記溶媒から選択され得る。 The formation method of the electron transport layer is not limited, and can be formed by a wet coating method or a dry coating method. In the case of forming by a wet coating method, the electron transport layer is prepared by dissolving the electron transport layer material in an appropriate solvent to prepare a composition for forming an electron transport layer. It is formed by removing. The solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
 電子輸送層の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常300nm以下、好ましくは100nm以下の範囲である。 The film thickness of the electron transport layer is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 [電子注入層]
 電子注入層3eは、陰極から注入された電子を効率良く電子輸送層や発光層へ注入する役割を果たす。例えば、電子注入層3eには、バソフェナントロリンなどの含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送化合物が挙げられる。また、有機電子輸送化合物の電子注入層3eに電子供与性材料をドープすることにより、電子注入効率を高めることができる。電子供与性材料には、例としては、ナトリウムやセシウムなどのアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属、それらの化合物(CsF、CsCO、LiO、LiF)や、ナトリウム、カリウム、セシウム、リチウム、ルビジウムなどのアルカリ金属などが用いられる。電子注入層3eの膜厚は、通常、5nm以上、中でも10nm以上が好ましく、また、通常200nm以下、中でも100nm以下が好ましい。
[Electron injection layer]
The electron injection layer 3e plays a role of efficiently injecting electrons injected from the cathode into the electron transport layer and the light emitting layer. For example, the electron injection layer 3e includes organic electron transport compounds represented by metal complexes such as nitrogen-containing heterocyclic compounds such as bathophenanthroline and aluminum complexes of 8-hydroxyquinoline. Further, the electron injection efficiency can be increased by doping the electron injection layer 3e of the organic electron transport compound with an electron donating material. Examples of the electron donating material include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, compounds thereof (CsF, Cs 2 CO 3 , Li 2 O, LiF), sodium, Alkali metals such as potassium, cesium, lithium and rubidium are used. The thickness of the electron injection layer 3e is usually 5 nm or more, preferably 10 nm or more, and is usually 200 nm or less, preferably 100 nm or less.
 電子注入層の形成方法に制限はなく、湿式塗布法または乾式塗布法で形成することができる。湿式塗布法で形成する場合、電子注入層は、上記電子注入層材料を適切な溶媒に溶解させて電子注入層形成用組成物を調製し、それを用いて湿式成膜後、乾燥させ、溶媒を除去することにより、形成される。用いる溶媒は正孔注入層形成用組成物に用い得る上記溶媒から選択され得る。 The formation method of the electron injection layer is not limited, and can be formed by a wet coating method or a dry coating method. In the case of forming by a wet coating method, the electron injection layer is prepared by dissolving the electron injection layer material in a suitable solvent to prepare a composition for forming an electron injection layer. It is formed by removing. The solvent to be used can be selected from the solvents that can be used for the composition for forming a hole injection layer.
 [有機EL素子及びMIM発光素子の例]
 有機EL素子として、ITOの透光性電極(110nm厚)上に、α-NPDの正孔輸送層(30nm厚)、CBPをホスト材料としてゲスト材料に燐光材料をドープした発光層(35nm厚)、BCPの正孔阻止層(10nm厚)、Alq3の電子輸送層(40nm厚)及びAlの反射電極を順に積層して作成し、その発光特性を調べた。MIM発光素子として、上記の有機EL素子のITOの透光性電極(110nm厚)とα-NPDの正孔輸送層(30nm厚)との間にAgの金属薄膜(40nm厚)を積層した以外、上記の有機EL素子と同一構成の素子を作成し、その発光特性を調べた。
[Examples of organic EL element and MIM light emitting element]
As an organic EL device, an α-NPD hole transport layer (30 nm thickness) on an ITO transparent electrode (110 nm thickness), and a light emitting layer (35 nm thickness) doped with a phosphorescent material as a guest material using CBP as a host material A BCP hole blocking layer (10 nm thick), an Alq3 electron transporting layer (40 nm thick), and an Al reflective electrode were laminated in order, and the emission characteristics were examined. As an MIM light emitting element, except that an Ag metal thin film (40 nm thickness) is laminated between the ITO translucent electrode (110 nm thickness) of the organic EL element and the α-NPD hole transport layer (30 nm thickness). Then, an element having the same configuration as that of the organic EL element was prepared, and the light emission characteristics were examined.
 図5は、調べた有機EL素子及びMIM発光素子が全発光パワーに対して素子外部にどれだけパワーを取り出せるかを示すもので、光子エネルギー(波長)に対する光取り出し効率の波長依存性を示す有機EL素子及びMIM発光素子EL及びMIMのスペクトル分布のグラフである。 FIG. 5 shows how much power the extracted organic EL element and MIM light-emitting element can extract outside the element with respect to the total emission power, and shows the wavelength dependence of the light extraction efficiency with respect to photon energy (wavelength). It is a graph of the spectrum distribution of EL element and MIM light emitting element EL and MIM.
 図5から分かるように、幅広いスペクトル分布を示すITO電極を用いた有機EL素子ELでは最大でも全発光パワーの40%程度しか外部に取り出せないが、銀の金属薄膜を用いたMIM発光素子MIMでは、スペクトル分布の先鋭化が発現し発光が約2.5eV付近に集中的に現れ、ピーク波長では光取り出し効率が60%を超えるという結果になっている。このように、有機EL素子の特徴の一つはブロードなスペクトル分布(自然な光)が挙げられ、一方、MIM発光素子の特徴は高効率と非常に狭いスペクトル分布(人工的な光)である。 As can be seen from FIG. 5, in the organic EL element EL using the ITO electrode having a wide spectrum distribution, only about 40% of the total light emission power can be taken out to the outside, but in the MIM light emitting element MIM using the silver metal thin film, As a result, sharpening of the spectral distribution appears, and light emission appears intensively in the vicinity of about 2.5 eV, and the light extraction efficiency exceeds 60% at the peak wavelength. As described above, one of the characteristics of the organic EL element is a broad spectrum distribution (natural light), while the characteristic of the MIM light emitting element is high efficiency and a very narrow spectrum distribution (artificial light). .
 本実施例は両者の素子群を同一面上に配置し、発光色ごとに互いに重複し且つ異なるブロードなスペクトル分布と非常に狭いスペクトル分布のそれぞれの強度を調整して鏡面から出すことを特徴としている。よって本実施例によれば光学的に違和感がなく、柔らかい光から硬い光まで自在に調色でき演色性を高めることができる。 The present embodiment is characterized in that both element groups are arranged on the same plane, and are arranged on the same plane and adjusted from the mirror surface by adjusting the intensities of different broad spectrum distributions and very narrow spectrum distributions for each emission color. Yes. Therefore, according to the present embodiment, there is no optical incongruity, and the color rendering can be enhanced by freely adjusting colors from soft light to hard light.
 図1に示すように有機EL素子のRGBストライプと鏡面をなすMIM発光素子のRGBのストライプの位置を、赤有機EL素子Ro、赤MIM発光素子Rm、青有機EL素子Bo、青MIM発光素子Bm、緑有機EL素子Go、緑MIM発光素子Gmではなく、赤有機EL素子Ro、青MIM発光素子Bm、緑有機EL素子Go、赤MIM発光素子Rm、青有機EL素子Bo、緑MIM発光素子Gmとしてある故に、すべての素子が発光したときに特定色発光素子による線が太くならない効果が得られる。 As shown in FIG. 1, the positions of the RGB stripes of the MIM light-emitting elements that are mirror-finished with the RGB stripes of the organic EL elements are defined as red organic EL elements Ro, red MIM light-emitting elements Rm, blue organic EL elements Bo, and blue MIM light-emitting elements Bm , Green organic EL element Go, green MIM light emitting element Gm, red organic EL element Ro, blue MIM light emitting element Bm, green organic EL element Go, red MIM light emitting element Rm, blue organic EL element Bo, green MIM light emitting element Gm Therefore, when all the elements emit light, an effect that the line by the specific color light emitting element does not become thick can be obtained.
 [ミラー装置の制御]
 図6は本発明の実施例である有機ELデバイスのミラー装置の概略構成を示すブロック図である。このミラー装置は、制御部11と、これに接続された有機EL素子駆動部12o及びMIM発光素子駆動部12mとこれら駆動部に接続された例えば図1に示す有機ELパネルとを含む。さらに、ミラー装置は、制御部11に接続された操作部13を含む。
[Control of mirror device]
FIG. 6 is a block diagram showing a schematic configuration of a mirror device of an organic EL device according to an embodiment of the present invention. The mirror device includes a control unit 11, an organic EL element driving unit 12o and an MIM light emitting element driving unit 12m connected to the control unit 11, and an organic EL panel shown in FIG. 1 connected to these driving units. Further, the mirror device includes an operation unit 13 connected to the control unit 11.
 斯かる有機ELデバイスのパネルOELDは、有機EL素子Ro、Go及びBoの青発光素子群、赤発光素子群及び緑発光素子群と、MIM発光素子Rm、Gm及びBmの青発光素子群、赤発光素子群及び緑発光素子群の組の複数と、を備えている。有機EL素子の部分と、MIM発光素子の部分が同一背面内に配置されている。 A panel OELD of such an organic EL device includes a blue light emitting element group of organic EL elements Ro, Go and Bo, a red light emitting element group and a green light emitting element group, a blue light emitting element group of MIM light emitting elements Rm, Gm and Bm, and a red light. A plurality of sets of light emitting element groups and green light emitting element groups. The portion of the organic EL element and the portion of the MIM light emitting element are disposed in the same back surface.
 制御部11は輝度指定信号を含む各種信号を生成する処理手順などのプログラムコードを実行するCPU、ROM、RAM、内部タイマなどから構成されるマイクロコンピュータを備え、有機ELデバイスの各素子群の輝度及び点灯/消灯の制御を司る点灯制御ルーティンを実行する。制御部11は各素子群の駆動のための各色の輝度指定信号を生成し有機EL素子駆動部12o及びMIM発光素子駆動部12mへ供給する。 The control unit 11 includes a microcomputer including a CPU, a ROM, a RAM, an internal timer, and the like that execute program codes such as processing procedures for generating various signals including a luminance designation signal, and the luminance of each element group of the organic EL device. And a lighting control routine for controlling lighting / extinguishing. The control unit 11 generates a luminance designation signal for each color for driving each element group, and supplies it to the organic EL element driving unit 12o and the MIM light emitting element driving unit 12m.
 有機EL素子駆動部12o及びMIM発光素子駆動部12mは、それぞれの対応素子に接続されたRGB発光用の駆動回路である赤駆動部12Ro、緑駆動部12Go及び青駆動部12Boと赤駆動部12Rm、緑駆動部12Gm及び青駆動部12Bmを含む。制御部11から供給される輝度指定信号に応じて、赤駆動部12Ro、緑駆動部12Go及び青駆動部12Boと赤駆動部12Rm、緑駆動部12Gm及び青駆動部12Bmはそれぞれの対応素子へ個別に若しくはR群、G群、B群ごとに駆動電力を供給し、それぞれ指定輝度で発光させる。有機EL素子駆動部12o及びMIM発光素子駆動部12mは、制御部11からの各色の輝度指定信号に応じて有機ELデバイスの各種点灯モードのそれぞれの対応素子の所定輝度の発光の混色により白色などの光源色(光色)を調色する。なお、光色の白色光は、その色度がCIE色度図のXYZ表色系で示される黒体放射軌跡上にある場合には「色温度」で、それから外れる場合には「相関色温度」で表される。 The organic EL element driving unit 12o and the MIM light emitting element driving unit 12m are a red driving unit 12Ro, a green driving unit 12Go, a blue driving unit 12Bo, and a red driving unit 12Rm, which are driving circuits for RGB light emission connected to the corresponding elements. , A green driving unit 12Gm and a blue driving unit 12Bm. According to the luminance designation signal supplied from the control unit 11, the red driving unit 12Ro, the green driving unit 12Go, the blue driving unit 12Bo, the red driving unit 12Rm, the green driving unit 12Gm, and the blue driving unit 12Bm are individually assigned to the corresponding elements. Alternatively, driving power is supplied to each of the R group, the G group, and the B group, and each of them emits light with a designated luminance. The organic EL element driving unit 12o and the MIM light emitting element driving unit 12m are white or the like according to a color mixture of light emission of a predetermined luminance of each corresponding element of various lighting modes of the organic EL device according to the luminance designation signal of each color from the control unit 11. Tones the light source color (light color). The light color white light is “color temperature” when the chromaticity is on the black body radiation locus indicated by the XYZ color system of the CIE chromaticity diagram, and “correlated color temperature” when the chromaticity is not within that range. Is represented.
 操作部13は、開閉スイッチを含むリモコンや部屋内に取り付けられる有線モジュールなどの装置である。操作部13は、使用者によるミラー装置の点灯又は消灯指令などの操作指令や、通常照明や常夜灯などの点灯モードへ切り替え指令を制御部11へ供給する。 The operation unit 13 is a device such as a remote controller including an open / close switch or a wired module attached in the room. The operation unit 13 supplies an operation command such as a command to turn on or off the mirror device by the user and a command to switch to a lighting mode such as normal illumination or nightlight to the control unit 11.
 例えば、有機ELデバイスの素子群毎の輝度値の色温度輝度データを用いて、R,G,B有機EL素子群の発光混色により、ミラー装置全体の通常点灯輝度が一定であっても白色光の色温度のみが変化するように制御できる。 For example, by using color temperature luminance data of luminance values for each element group of the organic EL device, white light is emitted even if the normal lighting luminance of the entire mirror device is constant due to light emission color mixing of the R, G, B organic EL element groups. The color temperature can be controlled to change.
 色温度輝度データは、それぞれの対応素子をそれぞれの特定の輝度で発光させて有機ELデバイスの様々な色温度の白色光を混色で得るための赤駆動部12Ro、緑駆動部12Go及び青駆動部12Boと赤駆動部12Rm、緑駆動部12Gm及び青駆動部12Bmへ送る素子群毎の輝度値(輝度指定信号)の表データである。 The color temperature luminance data includes a red driving unit 12Ro, a green driving unit 12Go, and a blue driving unit for emitting white light of various color temperatures of the organic EL device by mixing each corresponding element with light having a specific luminance. 12Bo and table data of luminance values (luminance designation signal) for each element group sent to the red driving unit 12Rm, the green driving unit 12Gm, and the blue driving unit 12Bm.
 制御部11は、取り込んだ色温度輝度データに基づいて、色温度段階の低い方から高い方へ、使用者の操作タイミング或いは素子群の経年変化の補償の所定タイミングでそれぞれの対応素子毎の輝度値を輝度指定信号として赤駆動部12Ro、緑駆動部12Go及び青駆動部12Boと赤駆動部12Rm、緑駆動部12Gm及び青駆動部12Bmのそれぞれへ送る。このように、制御部11は、所望の色温度の白色光を規定する輝度指定信号をそれぞれ赤駆動部12Ro、緑駆動部12Go及び青駆動部12Boと赤駆動部12Rm、緑駆動部12Gm及び青駆動部12Bmへ送り、それぞれの対応素子の輝度を制御する。よって、制御部11は、複数のMIM発光素子の輝度と複数の有機EL素子の輝度を相対的に変化させ得るので、有機EL素子の自然な光とMIM発光素子の人工的な光を織り交ぜて、有機ELデバイスの光色を調色することができる。制御部11は、有機ELデバイスの各素子群の発光強度(輝度)を個別に調整することにより、有機ELデバイスの光色、色温度を制御して、例えば、使用者の操作に応じて電球色、昼光色などの白色光を発光させたり、ROMなどの記憶されている素子群の経年変化の補償の所定タイミングで白色光を微妙に補正することができる。 Based on the acquired color temperature luminance data, the control unit 11 changes the luminance of each corresponding element at a predetermined timing of compensation for the user's operation timing or aging change of the element group from the lower one of the color temperature steps to the higher one. The value is sent as a luminance designation signal to each of the red drive unit 12Ro, the green drive unit 12Go and the blue drive unit 12Bo, the red drive unit 12Rm, the green drive unit 12Gm, and the blue drive unit 12Bm. In this way, the control unit 11 sends the luminance designation signals that define white light having a desired color temperature to the red driving unit 12Ro, the green driving unit 12Go, the blue driving unit 12Bo, the red driving unit 12Rm, the green driving unit 12Gm, and the blue driving unit, respectively. It sends to the drive part 12Bm and controls the brightness | luminance of each corresponding | compatible element. Therefore, the control unit 11 can relatively change the luminance of the plurality of MIM light emitting elements and the luminance of the plurality of organic EL elements, so that the natural light of the organic EL element and the artificial light of the MIM light emitting element are interwoven. Thus, the light color of the organic EL device can be adjusted. The control unit 11 controls the light color and color temperature of the organic EL device by individually adjusting the light emission intensity (luminance) of each element group of the organic EL device, for example, a light bulb according to a user's operation. White light such as color and daylight color can be emitted, or white light can be finely corrected at a predetermined timing for compensating for secular change of a group of elements such as a ROM.
 以上の構成の有機ELデバイスによれば、発光色を組み合わせることで、ウォームホワイトからクールホワイトの変化以外にも、様々な発光色の色味を安定化できる調色が可能となる。 According to the organic EL device having the above configuration, by combining the luminescent colors, it is possible to perform toning that can stabilize the colors of various luminescent colors in addition to the change from warm white to cool white.
 本実施例においては図6の構成図のように、制御部から信号が有機EL素子駆動部12oとMIM発光素子駆動部12mへ出力されており、有機EL素子とMIM発光素子を別々に輝度と色の割合を変えることができる。その結果、使用者は、きわめて薄い発光ミラー装置で、その時その時で所望の発光の輝度、色合い、光の軟らかさ、硬さを選択することができる。 In this embodiment, as shown in the configuration diagram of FIG. 6, a signal is output from the control unit to the organic EL element driving unit 12o and the MIM light emitting element driving unit 12m. The color ratio can be changed. As a result, the user can select the desired brightness, hue, softness and hardness of the light emission at that time with a very thin light emitting mirror device.
 <第2の実施例>
 以下、第2の実施例について図7によって第1の実施例と異なる部分について主に説明する。第1の実施例と同一の参照符号で示す要素は同様であるのでそれらの説明を省略する。
<Second embodiment>
In the following, the second embodiment will be described mainly with respect to the differences from the first embodiment with reference to FIG. Elements indicated by the same reference numerals as those in the first embodiment are the same, and thus description thereof is omitted.
 図7は、MIM発光素子を透光性電極1上に形成せずに透明バンクBKの上部凹部にMIM発光素子MIMを配置した以外、第1の実施例と同一構成の第2の実施例を示す。これによれば、素子をバンクBKの凹部内部に配置するので、透光性電極2に電気的に接続されたバスラインMBLとこれに接続されたMIM発光素子の陰極の金属薄膜MFとがバンク材料で保護できる。さらに、金属薄膜MFの上を絶縁材料で埋めることもできる。透明バンクBKの上または中にMIM発光素子を構築したので、MIM発光素子駆動電源の選択の自由度が高くなる。また、第2の実施例の場合、前面から見てMIM発光素子を有機EL素子と重なる程度まで近づけることができる。 FIG. 7 shows a second embodiment having the same configuration as that of the first embodiment except that the MIM light emitting element is not formed on the translucent electrode 1 and the MIM light emitting element MIM is arranged in the upper recess of the transparent bank BK. Show. According to this, since the element is arranged inside the recess of the bank BK, the bus line MBL electrically connected to the translucent electrode 2 and the metal thin film MF of the cathode of the MIM light emitting element connected to the bus line MBL are connected to the bank. Can be protected with material. Furthermore, the metal thin film MF can be filled with an insulating material. Since the MIM light emitting element is constructed on or in the transparent bank BK, the degree of freedom in selecting the MIM light emitting element driving power source is increased. In the case of the second embodiment, the MIM light emitting element can be brought close to the organic EL element when viewed from the front.
 <第3の実施例>
 以下、第3の実施例について図8によって第1の実施例と異なる部分について主に説明する。第1の実施例と同一の参照符号で示す要素は同様であるのでそれらの説明を省略する。
<Third embodiment>
In the following, the third embodiment will be described mainly with respect to the differences from the first embodiment with reference to FIG. Elements indicated by the same reference numerals as those in the first embodiment are the same, and thus description thereof is omitted.
 図8は、有機EL素子とMIM発光素子を、ストライプ形状でなく矩形形状として、市松模様状すなわちマトリクス状になるように配置した以外、第1の実施例と同一構成の第3の実施例を示す。すなわち、一方の方向(横)には、赤有機EL素子Ro、青MIM発光素子Bm、緑有機EL素子Go、赤MIM発光素子Rm、青有機EL素子Bo、緑MIM発光素子Gmが、一方の方向に交差する方向(縦)には全発光のとき素子が同じ色になるように配置される。これによれば、市松模様のときは横方向が有機EL素子とMIM発光素子が別々に発光しても、同時に発光しても均等な間隔で発光し、縦方向は同時発光のとき、縦方向に色が揃う。ここにおいても有機EL素子とMIM発光素子の発光体が交互に配置される。マトリクス状又はストライプ状に並置された有機EL素子とMIM発光素子は、別々に発光しても、同時に発光しても、それぞれが均等な間隔で発光するように、配置されている。よって、ミラー装置を臨むときに、非常に見やすい効果が得られる。なお、各素子は矩形形状に限定されず、円形、楕円どの様々な形状を有するように構成してもよい。 FIG. 8 shows a third embodiment having the same configuration as that of the first embodiment except that the organic EL element and the MIM light emitting element are arranged in a checkered pattern, that is, in a matrix shape instead of a stripe shape. Show. That is, in one direction (lateral), the red organic EL element Ro, the blue MIM light emitting element Bm, the green organic EL element Go, the red MIM light emitting element Rm, the blue organic EL element Bo, and the green MIM light emitting element Gm In the direction (vertical) intersecting the direction, the elements are arranged so as to have the same color when all light is emitted. According to this, when the checkerboard pattern is used, the horizontal direction is the vertical direction when the organic EL element and the MIM light emitting element emit light separately or at the same time, and the vertical direction is the simultaneous direction. The colors are aligned. Also in this case, the light emitters of the organic EL element and the MIM light emitting element are alternately arranged. The organic EL elements and the MIM light emitting elements juxtaposed in a matrix or stripe form are arranged so that they emit light at equal intervals, whether they emit light separately or simultaneously. Therefore, it is very easy to see the effect when facing the mirror device. Each element is not limited to a rectangular shape, and may be configured to have various shapes such as a circle and an ellipse.
 上記実施例では有機EL素子とMIM素子の各々が必ず交互に配置したが、他の実施例では図9のように、或る一列ごとで、有機EL素子が2つ(Ro、Ro)並びそのあとMIM素子が2つ(Bm、Bm)並びそのあと有機EL素子が2つ(Go、Go)並ぶなどMIM発光素子の内の一群及び有機EL素子の内の一群の各々が交互に配置された群構成で交互配置されてもよい。 In the above embodiment, the organic EL elements and the MIM elements are always arranged alternately. However, in the other embodiments, two organic EL elements (Ro, Ro) are arranged in a certain row as shown in FIG. A group of MIM light emitting elements and a group of organic EL elements are alternately arranged, such as two MIM elements (Bm, Bm) and then two organic EL elements (Go, Go). They may be arranged alternately in a group configuration.
 また、他の実施例では図10のように、所定の法則例えば、二列毎で、有機EL素子が斜めに2つ(Ro、Ro)並びそのあとMIM素子が斜めに2つ(Bm、Bm)並びそのあと有機EL素子が斜めに2つ(Go、Go)並ぶように配置しても良い。 In another embodiment, as shown in FIG. 10, a predetermined rule, for example, every two rows, two organic EL elements are diagonally arranged (Ro, Ro), and then two MIM elements are diagonally arranged (Bm, Bm). ) After that, two organic EL elements may be arranged diagonally (Go, Go).
 図示しないが、有機EL素子とMIM素子からなる発光面積に比べそれぞれの発光素子の面積が十分小さい場合は有機EL素子とMIM素子はランダムに配置されてもよい。 Although not shown, when the area of each light emitting element is sufficiently smaller than the light emitting area composed of the organic EL element and the MIM element, the organic EL element and the MIM element may be randomly arranged.
 <第4の実施例>
 以下、第4の実施例について図11によって第2の実施例と異なる部分について主に説明する。
<Fourth embodiment>
In the following, the fourth embodiment will be described mainly with respect to the differences from the second embodiment with reference to FIG.
 図11は、バンクの順テーパー構造に代えて、透明バンクBKのテーパーを透光性電極1側に狭くした所謂、逆テーパー構造を有する透明バンクBKを含むミラー装置を示す。透明バンクBKのテーパーを透光性電極1側に広くした所謂、順テーパー構造を有する第2の実施例と同一の参照符号で示す要素は同様であるのでそれらの説明を省略する。 FIG. 11 shows a mirror device including a transparent bank BK having a so-called reverse taper structure in which the taper of the transparent bank BK is narrowed toward the translucent electrode 1 instead of the forward taper structure of the bank. Elements indicated by the same reference numerals as those in the second embodiment having a so-called forward taper structure in which the taper of the transparent bank BK is widened toward the translucent electrode 1 are the same, and the description thereof is omitted.
 なお、上記の何れの実施例では、透光性基板1として、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの合成樹脂の透明板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機ELデバイスが劣化することがあるので好ましくない。よって、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。 In any of the above-described embodiments, a quartz or glass plate, a metal plate or metal foil, a bent resin substrate, a plastic film, a sheet, or the like is used as the translucent substrate 1. In particular, a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL device may be deteriorated by outside air that has passed through the substrate, which is not preferable. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
 なお、出力光の取り出し効率を上げるために、基板1の前面に、発光部を覆うように、これを超える面積で光取り出しフィルム(図示せず)を取り付けてもよい。 In order to increase the output light extraction efficiency, a light extraction film (not shown) may be attached to the front surface of the substrate 1 so as to cover the light emitting portion.
 さらに、上記の何れの実施例では有機層を発光積層体としているが、無機材料膜の積層によっても発光積層体を構成できる。 Furthermore, in any of the above-described embodiments, the organic layer is a light emitting laminate, but the light emitting laminate can also be configured by laminating inorganic material films.
 いずれの実施例においても、反射電極4の成膜後に、大気中の酸素や水分から保護する目的で、封止構造体としてバンク並びに有機EL素子Ro、Go及びBo及びMIM発光素子Rm、Gm及びBmを覆う金属やガラスなどからなるキャップなどの封缶材(図示せず)を接着して封止が施されてもよい。この時、キャップ内壁に乾燥剤(図示せず)を取り付けてもよく、或いは不活性ガスによる気密封止も可能である。また、不活性ガスによる封止に代えて、液相に複数微粒子を分散させて光を拡散させるオイルなどの光拡散材を用いた液体封止も可能である。また、これら構成部材を被覆するように有機化合物もしくは無機化合物からなる封止膜(図示せず)を形成して、所謂固体封止を施してもよい。 In any of the embodiments, for the purpose of protecting from oxygen and moisture in the atmosphere after the reflective electrode 4 is formed, the bank and the organic EL elements Ro, Go and Bo, and the MIM light emitting elements Rm, Gm and Sealing may be performed by adhering a sealing material (not shown) such as a cap made of metal or glass covering Bm. At this time, a desiccant (not shown) may be attached to the inner wall of the cap, or hermetic sealing with an inert gas is possible. Further, instead of sealing with an inert gas, liquid sealing using a light diffusing material such as oil that diffuses light by dispersing a plurality of fine particles in a liquid phase is also possible. Further, a so-called solid sealing may be performed by forming a sealing film (not shown) made of an organic compound or an inorganic compound so as to cover these constituent members.
 上記実施例はボトムエミッション構造発光素子で説明したが、他の実施例では、光取り出し方向を基板側ではなくMIM発光素子及び有機EL素子側となるように構成した以外上記実施例と同様な構成を有する図12に示すトップエミッション構造発光素子でも効果はかわらない。なお、上記の実施例と同一の参照符号で示す要素は同様であるのでそれらの説明を省略する。トップエミッション構造発光素子の場合、透光性基板以外にも不透明基板上に発光素子を形成することができる。 Although the above embodiment has been described with a bottom emission structure light emitting element, in other embodiments, the same configuration as the above embodiment except that the light extraction direction is not the substrate side but the MIM light emitting element and organic EL element side. The top emission structure light emitting device shown in FIG. In addition, since the element shown with the same referential mark as said Example is the same, those description is abbreviate | omitted. In the case of a top emission structure light emitting element, the light emitting element can be formed on an opaque substrate in addition to the light transmitting substrate.
1  基板
2  透光性電極
3a  正孔注入層
3b  正孔輸送層
3c  発光層
3d  電子輸送層
3e  電子注入層
3m  誘電体層
3o  有機層
4  反射電極
11  制御部
12  駆動部
13  操作部
BK  バンク
MBL  バスライン
MF  金属薄膜
Ro、Go、Bo  有機EL素子
Rm、Gm、Bm  MIM発光素子
DESCRIPTION OF SYMBOLS 1 Substrate 2 Translucent electrode 3a Hole injection layer 3b Hole transport layer 3c Light emitting layer 3d Electron transport layer 3e Electron injection layer 3m Dielectric layer 3o Organic layer 4 Reflective electrode 11 Control unit 12 Drive unit 13 Operation unit BK Bank MBL Bus line
MF Metal thin film Ro, Go, Bo Organic EL element Rm, Gm, Bm MIM light emitting element

Claims (8)

  1.  基板上に担持された複数の発光素子を有するミラー装置であって、
     前記複数の発光素子は複数の金属-誘電体-金属発光素子(MIM発光素子)及び複数の有機EL素子であり、前記MIM発光素子及び前記有機EL素子の各々又は前記MIM発光素子の内の一群及び前記有機EL素子の内の一群の各々は前記基板上にて交互に配置されていることを特徴とするミラー装置。
    A mirror device having a plurality of light emitting elements carried on a substrate,
    The plurality of light emitting elements are a plurality of metal-dielectric-metal light emitting elements (MIM light emitting elements) and a plurality of organic EL elements, each of the MIM light emitting elements and the organic EL elements or a group of the MIM light emitting elements. And each of a group of the organic EL elements is alternately arranged on the substrate.
  2.  前記有機EL素子の各々は透光性電極及び反射電極の間に挟持された有機層を含み、電界印加時に第1スペクトル分布で発光し、
     前記MIM発光素子の各々は第1金属電極及び第2金属電極の間に挟持された有機層を含み、電界印加時に前記第1スペクトル分布と重複し且つ異なる第2スペクトル分布で発光することを特徴とする請求項1に記載のミラー装置。
    Each of the organic EL elements includes an organic layer sandwiched between a translucent electrode and a reflective electrode, and emits light with a first spectral distribution when an electric field is applied,
    Each of the MIM light emitting elements includes an organic layer sandwiched between a first metal electrode and a second metal electrode, and emits light with a second spectral distribution different from the first spectral distribution when an electric field is applied. The mirror device according to claim 1.
  3.  前記第2スペクトル分布は前記第1スペクトル分布より狭い波長帯域幅を有していることを特徴とする請求項2に記載のミラー装置。 3. The mirror device according to claim 2, wherein the second spectral distribution has a narrower wavelength bandwidth than the first spectral distribution.
  4.  前記MIM発光素子及び前記有機EL素子の各々はストリップ形状を有し、前記複数のMIM発光素子及び前記複数の有機EL素子はそれぞれ一定の間隔でストライプ状に並置されていることを特徴とする請求項2に記載のミラー装置。 Each of the MIM light emitting element and the organic EL element has a strip shape, and the plurality of MIM light emitting elements and the plurality of organic EL elements are juxtaposed in a stripe shape at regular intervals. Item 3. The mirror device according to Item 2.
  5.  前記MIM発光素子及び前記有機EL素子の各々が複数の発光色を呈する場合、前記複数のMIM発光素子及び前記複数の有機EL素子はそれぞれ一定の間隔でマトリクス状に並置され、前記MIM発光素子及び前記有機EL素子の内のマトリクス状に並置された一方の方向には異なる発光色になるように交互に配置され、前記一方の方向に交差する方向には同じ発光色になるように配置されていることを特徴とする請求項2に記載のミラー装置。 When each of the MIM light emitting element and the organic EL element exhibits a plurality of light emission colors, the plurality of MIM light emitting elements and the plurality of organic EL elements are juxtaposed in a matrix at regular intervals, The organic EL elements are alternately arranged so as to have different emission colors in one direction juxtaposed in a matrix, and are arranged so as to have the same emission color in a direction crossing the one direction. The mirror device according to claim 2, wherein:
  6.  前記複数のMIM発光素子及び前記複数の有機EL素子をそれぞれ駆動する有機EL素子駆動部及びMIM発光素子駆動部と、前記有機EL素子駆動部及び前記MIM発光素子駆動部をそれぞれ制御する制御部と、をさらに有し、前記制御部が前記複数のMIM発光素子の輝度と前記複数の有機EL素子の輝度を相対的に変化させることを特徴とする請求項2に記載のミラー装置。 An organic EL element driving section and an MIM light emitting element driving section for driving the plurality of MIM light emitting elements and the plurality of organic EL elements, respectively; a control section for controlling the organic EL element driving section and the MIM light emitting element driving section; The mirror apparatus according to claim 2, further comprising: the control unit relatively changing a luminance of the plurality of MIM light emitting elements and a luminance of the plurality of organic EL elements.
  7.  前記透光性電極上に形成され且つ前記MIM発光素子と前記有機EL素子の各々を区画する絶縁性且つ透光性のバンクを有することを特徴とする請求項2に記載のミラー装置。 3. The mirror device according to claim 2, further comprising an insulating and translucent bank formed on the translucent electrode and partitioning each of the MIM light emitting element and the organic EL element.
  8.  前記バンク上に前記MIM発光素子の各々が形成されていることを特徴とする請求項7に記載のミラー装置。 The mirror device according to claim 7, wherein each of the MIM light emitting elements is formed on the bank.
PCT/JP2012/068200 2012-07-18 2012-07-18 Mirror device WO2014013566A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/068200 WO2014013566A1 (en) 2012-07-18 2012-07-18 Mirror device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/068200 WO2014013566A1 (en) 2012-07-18 2012-07-18 Mirror device

Publications (1)

Publication Number Publication Date
WO2014013566A1 true WO2014013566A1 (en) 2014-01-23

Family

ID=49948421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068200 WO2014013566A1 (en) 2012-07-18 2012-07-18 Mirror device

Country Status (1)

Country Link
WO (1) WO2014013566A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232295A (en) * 1987-03-20 1988-09-28 富士通株式会社 Light emitting device
JPH04196001A (en) * 1990-11-28 1992-07-15 Casio Comput Co Ltd Light emitting element
JP2003175769A (en) * 2001-08-24 2003-06-24 Siemens Ag Vehicle mirror
JP2004288635A (en) * 2003-03-20 2004-10-14 ▲らい▼宝科技股▲分▼有限公司 Display mirror
JP2004357103A (en) * 2003-05-30 2004-12-16 Pioneer Electronic Corp Mirror device with display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232295A (en) * 1987-03-20 1988-09-28 富士通株式会社 Light emitting device
JPH04196001A (en) * 1990-11-28 1992-07-15 Casio Comput Co Ltd Light emitting element
JP2003175769A (en) * 2001-08-24 2003-06-24 Siemens Ag Vehicle mirror
JP2004288635A (en) * 2003-03-20 2004-10-14 ▲らい▼宝科技股▲分▼有限公司 Display mirror
JP2004357103A (en) * 2003-05-30 2004-12-16 Pioneer Electronic Corp Mirror device with display device

Similar Documents

Publication Publication Date Title
JP5703080B2 (en) Organic electroluminescent element, display device and lighting device
US20150279909A1 (en) Organic electroluminescence element and illumination device
US10109819B2 (en) Light-emitting device
US10090488B2 (en) Mirror device having a light-transmissive substrate
US9236580B2 (en) Organic electronic device for lighting
US20140252340A1 (en) Organic electronic device for lighting
JP5912174B2 (en) Organic electroluminescence panel and manufacturing method thereof
JP6433963B2 (en) Mirror device
Li et al. Color tunable organic light emitting diodes using Eu complex doping
Jeong et al. Four-wavelength white organic light-emitting diodes using 4, 4′-bis-[carbazoyl-(9)]-stilbene as a deep blue emissive layer
WO2014013566A1 (en) Mirror device
JP6185109B2 (en) Organic electroluminescence panel and manufacturing method thereof
WO2013150593A1 (en) Organic electroluminescent panel and method for producing same
JP6340404B2 (en) Light emitting device
WO2014073072A1 (en) Mirror device
JP2023052941A (en) Light-emitting device
JP2018139223A (en) Light emitting device
US20140231796A1 (en) Organic electronic device for lighting
JP6560956B2 (en) White light emitting organic EL element and white light emitting organic EL panel including the same
JP2014182933A (en) Organic el light-emitting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881179

Country of ref document: EP

Kind code of ref document: A1