WO2014013559A1 - 石炭火力発電プラント - Google Patents

石炭火力発電プラント Download PDF

Info

Publication number
WO2014013559A1
WO2014013559A1 PCT/JP2012/068141 JP2012068141W WO2014013559A1 WO 2014013559 A1 WO2014013559 A1 WO 2014013559A1 JP 2012068141 W JP2012068141 W JP 2012068141W WO 2014013559 A1 WO2014013559 A1 WO 2014013559A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
boiler
gas
coal
transmission surface
Prior art date
Application number
PCT/JP2012/068141
Other languages
English (en)
French (fr)
Inventor
林 喜治
強 柴田
雅人 半田
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2012/068141 priority Critical patent/WO2014013559A1/ja
Publication of WO2014013559A1 publication Critical patent/WO2014013559A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/003Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/102Control of recirculation rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/12Recycling exhaust gases

Definitions

  • the present invention relates to a coal-fired power plant.
  • coal is widely distributed all over the world, and the price is cheap and stable. For this reason, coal-fired power generation is expected to continue to play an important role in the stable supply of electricity.
  • coal-fired power generation has the largest amount of carbon dioxide emissions per power generation compared to other types of thermal power generation using LNG, oil, or the like as a fuel, further improvement in efficiency is required.
  • a reheat system refers to a system in which steam heated to a high temperature in a boiler is sent to a steam turbine, and then the exhaust of the steam turbine is returned to the boiler again to be heated and sent to another steam turbine.
  • Two-stage reheating is a method in which two reheating systems are provided.
  • the heat exchanger for steam heating installed in the reheat system is called a reheater.
  • a first reheater and a second reheater are installed. Hot steam generated in the furnace and superheater is sent to a steam turbine. The steam turbine exhaust is then returned to the boiler, where hot steam is generated in the first reheater and sent to another steam turbine. The steam turbine exhaust is then returned to the boiler, which in turn generates hot steam in the second reheater and sends it to another steam turbine.
  • the above is the steam flow in the two-stage reheating.
  • the steam temperature can be raised. Increasing the steam temperature can be expected to improve the efficiency of the thermal cycle system and the internal efficiency of the steam turbine. In order to make the steam temperature higher than before, it is necessary to arrange many heat exchangers in the boiler and increase the heat transfer area.
  • FIG. 9 shows a coal-fired power plant having a boiler that adopts a two-stage reheating method for the current commercial boiler bank configuration, further increases the heat transfer area, and raises the steam temperature.
  • the example of a structure is shown.
  • the water supplied to the boiler 1 first enters the economizer 10 and then is sent to the water wall 11.
  • the water wall 11 is in the vicinity of the burner, has a high gas temperature, and has the largest heat recovery.
  • the steam heated by the water wall 11 is then sent to the primary superheater 12, the secondary superheater 13, the tertiary superheater 14, and the fourth superheater 15 in this order, and the temperature is raised.
  • a system from the economizer 10 to the fourth superheater 15 that generates steam to be sent to the ultrahigh pressure turbine 2 is referred to as a “main steam system”.
  • the steam from the fourth superheater 15 is sent to the super high pressure steam turbine 2.
  • the exhaust from the ultra high pressure steam turbine is sent to the high pressure primary reheater 16.
  • the steam reheated by the high pressure primary reheater 16 is sent to the high pressure secondary reheater 17.
  • the steam reheated by the two high pressure reheaters is sent to the high pressure turbine 3.
  • the exhaust from the high pressure turbine 3 is then sent to the low pressure primary reheater 18.
  • the steam heated by the low pressure primary reheater 18 is sent to the low pressure secondary reheater 19.
  • the steam reheated by the two low pressure reheaters is sent to the intermediate pressure turbine 4, and then sent to the low pressure turbine 5.
  • Exhaust gas from the low-pressure turbine 5 is sent to a condenser and circulates to the boiler as feed water.
  • the reheat system the system that takes in the exhaust of the steam turbine again into the boiler and heats it.
  • the reheat system two reheating systems for heating the exhaust of the ultrahigh pressure turbine 2 and the high pressure turbine 3 are installed.
  • the high pressure primary reheater 16 and the high pressure secondary reheater 17 that reheat the exhaust gas of the ultrahigh pressure turbine 2 are referred to as a “high pressure reheat system”.
  • the low-pressure primary reheater 18 and the low-pressure secondary reheater 19 that reheat the exhaust of the high-pressure turbine 3 are referred to as “low-pressure reheat system”.
  • the outlet steam of the fourth superheater 15, the high pressure secondary reheater 17, and the low pressure secondary reheater 19 are the super high pressure turbine 2, the high pressure turbine 3, and the intermediate pressure turbine, respectively. Therefore, the steam temperature is controlled to be constant. Specifically, the outlet steam temperature of the fourth superheater 15 is made constant by adjusting the spray (not shown) and the fuel flow rate. On the other hand, the outlet steam of the high pressure secondary reheater 17 and the low pressure secondary reheater 19 is controlled by the gas distribution damper 30 in the figure so that the steam temperature becomes constant.
  • the gas flow path is separated into three by the separation wall.
  • the gas distribution damper 30 adjusts the flow rate of gas flowing through the three gas flow paths.
  • the opening degree of the gas distribution damper 30 is manipulated so that the gas flow rate flowing to the high-pressure primary reheater 16 upstream thereof increases.
  • the opening of the gas distribution damper is manipulated so that the gas flow rate flowing to the low-pressure primary reheater 18 upstream thereof increases.
  • the role of the gas distribution damper 30 is to adjust the heat collection balance of the main steam system, high pressure reheat system, and low pressure reheat system of the boiler by changing the heat collection amount distribution of each bank separated by the separation wall of the rear transmission surface It is to be. Therefore, when the heat recovery of the entire boiler is insufficient, it is not possible to maintain each steam temperature constant only by operating the gas distribution damper. In such a case, it is necessary to control the fuel flow rate.
  • the outlet steam temperature of the quaternary superheater 15 which is the final superheater of the main steam system is lowered. Therefore, by increasing the fuel flow rate by fuel control, the amount of exhaust gas flowing through the primary superheater 12 is increased, and heat recovery of the entire boiler is maintained. As described above, by controlling both the gas distribution damper and the fuel flow rate, it is possible to control the heat collection of the entire boiler and the heat collection balance of each system.
  • a boiler with the primary superheater removed can be considered as a cost reduction measure based on an increase factor of the material cost and a boiler size reduction measure for reducing the installation area.
  • the gas flow path of the rear transmission surface is separated from the two flow paths flowing through the high pressure primary reheater 16 and the low pressure primary reheater 18. Composed.
  • both the high-pressure reheat system and the low-pressure reheat system are in a state of insufficient heat (that is, the high-pressure secondary reheater 17 and the low-pressure secondary reheat
  • both outlet steam temperatures of the vessel 19 are lower than a predetermined value
  • the role of the gas distribution damper 30 is to change the distribution of the heat collection amount of each bank separated by the separation wall, and cannot cope with the case where both heat collections are insufficient.
  • the primary superheater 12 if the primary superheater 12 is disposed on the rear transmission surface, the amount of heat collected by the primary superheater 12 is reduced by adjusting the gas flow distribution by the gas distribution damper 30, resulting in insufficient heat collection of the main steam system. .
  • the control for increasing the fuel flow rate works and the heat recovery amount of the entire boiler can be maintained.
  • the fuel control does not work because the outlet steam temperature of the main steam system does not change.
  • an object of the present invention is to control the outlet steam temperatures of the main steam system, the high pressure reheat system, and the low pressure reheat system to be constant in the two-stage reheat boiler from which the primary superheater is removed.
  • the present invention relates to a furnace provided with a furnace including a burner for burning coal, a rear transmission surface that guides combustion gas in the furnace to an exhaust gas purification device, and a separation wall that divides the rear transmission surface into two gas flow paths.
  • a main steam system composed of a heat exchanger in the boiler, an ultrahigh pressure turbine to which steam generated in the main steam system is supplied, and one gas flow path of the rear transmission surface,
  • a high-pressure reheat system that reheats exhaust from the ultrahigh-pressure turbine with combustion gas in the boiler, a high-pressure turbine that is supplied with steam heated in the high-pressure reheat system, and the other gas flow of the rear transmission surface
  • a low-pressure reheat system that is disposed in a passage and reheats exhaust from the high-pressure turbine with combustion gas in the boiler, and a gas distribution damper that can control distribution of gas flow flowing in the two gas passages of the rear transmission surface,
  • Exhaust gas discharged from the boiler Characterized in that it comprises an exhaust gas recirculation fan for
  • the outlet steam temperature of the main steam system, the high pressure reheat system, and the low pressure reheat system can be controlled to be constant in the two-stage reheat boiler without the primary superheater.
  • the present invention is directed to a coal-fired power plant having a two-stage reheat boiler for a coal-fired power plant having a coal boiler whose main steam temperature is increased.
  • a configuration of a coal-fired power plant that is one embodiment of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a schematic diagram showing the configuration of a coal-fired power plant that is an embodiment of the present invention.
  • a burner for burning coal is disposed in the furnace 1 a of the boiler 1.
  • the combustion gas generated in the furnace 1a is sent to the downstream rear transmission surface 1b.
  • a heat exchanger described later is installed on the rear transmission surface 1b.
  • an exhaust gas purification device is provided on the downstream side of the rear transmission surface 1b, and harmful substances and the like are removed from the exhaust gas.
  • the water supplied to the boiler 1 is first heated by the economizer 10 and then taken into the water wall 11. Since the water wall 11 is close to the burner and the gas temperature is high, the amount of heat collected is the largest.
  • the steam heated by the water wall 11 then flows in the order of the secondary superheater 13, the tertiary superheater 14, and the fourth superheater 15 and is heated.
  • the above-described economizer 10 to the fourth superheater 15 are referred to as “main steam system”.
  • the steam heated in the main steam system is sent to the ultra high pressure turbine 2.
  • the exhaust from the ultrahigh pressure turbine 2 is taken into the high pressure primary reheater 16 of the boiler 1 and heated again.
  • the steam heated by the high-pressure primary reheater 16 flows into the high-pressure secondary reheater 17 and is heated.
  • the high pressure primary reheater 16 to the high pressure secondary reheater 17 are referred to as a “high pressure reheat system”.
  • the steam heated in the high pressure reheating system is sent to the high pressure turbine 3.
  • the exhaust from the high-pressure turbine 3 is taken into the low-pressure primary reheater 18 of the boiler 1 and heated again.
  • the steam heated by the low-pressure primary reheater 18 flows to the low-pressure secondary reheater 19 and is heated.
  • the range from the low pressure primary reheater 18 to the low pressure secondary reheater 19 is referred to as a “low pressure reheat system”.
  • the steam heated in the low pressure reheating system flows through the intermediate pressure turbine 4 and then the low pressure turbine 5.
  • the exhaust from the low-pressure turbine 5 flows to the condenser and circulates again as feed water.
  • the steam flowing out from the outlet of the high-pressure reheat system (that is, the outlet of the high-pressure secondary reheater 17) and the outlet of the low-pressure reheat system (that is, the outlet of the low-pressure secondary reheater 19) is sent to each steam turbine. Flowing into. Therefore, the steam temperature at the outlet of the secondary reheater is controlled to be constant by the operation of the gas distribution damper 30 and the exhaust gas recirculation fan 31.
  • the gas distribution damper 30 is a damper for adjusting the ratio of the gas flow rate flowing in each flow path with respect to the two gas flow paths in which the rear transmission surface 1b of the boiler 1 is divided by a separation wall.
  • a high pressure primary reheater 16 (high pressure reheat system) and a low pressure primary reheater 18 (low pressure reheat system) are arranged in the two gas flow paths divided by the separation wall.
  • the gas distribution damper has a role of changing the distribution of the heat collection amount of each bank arranged with the separation wall.
  • the exhaust gas recirculation fan 31 is a fan for circulating and pushing the exhaust gas at the boiler outlet into the boiler 1.
  • the circulation exhaust gas increases, the gas temperature decreases in the furnace 1a of the boiler 1. Since radiant heat transfer is more dominant than convective heat transfer on the furnace side, the effect on the amount of heat collected due to changes in gas temperature is large.
  • the convective heat transfer is dominant on the rear transfer surface 1b, the influence of the gas flow rate on the heat recovery amount is large.
  • the exhaust gas recirculation fan has a role of changing the heat collection balance between the furnace side and the rear transmission side.
  • control of the gas distribution damper 30 and the exhaust gas recirculation fan 31 described above is performed by the control device 60 shown in FIG.
  • the control device 60 takes in the measured values of each sensor installed in the plant, calculates a control signal based on this, and outputs a control signal for operating each device installed in the plant.
  • the control logic implemented in the control device 60 is shown in FIGS. 2 and 3, respectively.
  • FIG. 2 shows the control logic of the gas distribution damper 30.
  • the difference between the measured value and the set value of the outlet steam temperature in the high pressure secondary reheater (signal 71), and the difference between the measured value and the set value of the outlet steam temperature in the low pressure secondary reheater ( Signal 72) is calculated, and then the difference (signal 73) is calculated. If the measured value of the outlet steam temperature in the high-pressure secondary reheater is smaller than the set value and the measured value of the outlet steam temperature in the low-pressure secondary reheater is larger than the set value, the value of the signal 73 is increased.
  • the value of the signal 73 is calculated by the PI controller and the signal limiter, and becomes the opening command value (signal 74) of the gas distribution damper on the high pressure reheater side.
  • the difference between the signal 74 and 100% is the opening command value (signal 75) of the gas distribution damper on the low pressure reheater side.
  • the opening command value is represented by the distribution between the high-pressure reheater side and the low-pressure reheater side based on 100%.
  • the value of the opening command value (signal 74) of the gas distribution damper on the high-pressure reheater side becomes large, while the low-pressure reheater
  • the value of the opening command value (signal 75) of the gas distribution damper on the side becomes smaller.
  • FIG. 3 shows the control logic of the exhaust gas recirculation fan 31.
  • the difference (signal 71) between the measured value and the set value of the outlet steam temperature in the high-pressure secondary reheater, and the difference (signal 72) between the measured value and the set value of the outlet steam temperature in the low-pressure secondary reheater Calculate. These signals are the same as the control logic of the gas distribution damper shown in FIG. Next, in the control logic of the exhaust gas recirculation fan, the signal 71 and the signal 72 are added (signal 83).
  • the value of the signal 83 becomes large. That is, as the value of the signal 83 is larger, the heat collection amount of both the high pressure and low pressure reheat systems is smaller than a predetermined value, indicating that it is necessary to increase the heat collection amounts of both the reheat systems.
  • the value of the signal 83 is calculated by the PI controller and the signal limiter, and becomes the gas flow rate command value (signal 84) of the exhaust gas recirculation fan.
  • the value of the gas flow rate command value (signal 84) of the exhaust gas recirculation fan becomes large.
  • the heat recovery amount of both the high-pressure and low-pressure reheat systems can be adjusted using the exhaust gas recirculation fan 31.
  • the gas distribution damper 30 and the exhaust gas recirculation fan 31 it is possible to adjust the amount of heat collected by the high pressure reheat system and the low pressure reheat system, respectively. Therefore, the outlet steam temperatures of the high pressure secondary reheater 17 and the low pressure secondary reheater 19 can be controlled to be constant.
  • the heat recovery amount of the main steam system is adjusted by controlling the fuel flow rate. That is, the fuel flow rate is adjusted according to the difference between the measured value and the set value of the outlet steam temperature of the fourth superheater 15 located at the outlet of the main steam system.
  • the fuel flow rate control method is the same as the control method employed in conventional boilers.
  • the heat recovery amount of the entire boiler depends on the fuel flow rate, and the heat recovery balance of the main steam system, the high pressure reheat system, and the low pressure reheat system depends on the gas distribution damper 30 and the exhaust gas recirculation. It can be controlled by the fan 31. Therefore, the temperature of the outlet steam of the main steam system, the high-pressure reheat system, and the low-pressure reheat system sent to the steam turbines 2, 3, and 4 can be controlled to be constant.
  • each outlet steam temperature of the heat system and the low pressure reheat system can be controlled to be constant. Moreover, it becomes possible to implement
  • FIG. 4 is a schematic diagram showing the configuration of a coal-fired power plant that is Embodiment 2 of the present invention.
  • the difference between the second embodiment and the first embodiment is that no exhaust gas recirculation fan is installed. Instead, a burner (tilting burner 42) having a drive device for operating the angle up and down is installed. It is a point. Therefore, only a different point from Example 1 is demonstrated in a present Example.
  • the tilting burner 42 can operate the burner angle up and down as described above. Thereby, it becomes possible to change the position of the flame in a furnace up and down.
  • the tilting burner angle is turned up and the flame position is moved up, the peak of the heat distribution in the furnace moves up, and the amount of exhaust gas flowing from the furnace to the rear transmission side also increases. . Therefore, the amount of heat collected by the primary high-pressure reheater 16 and the primary low-pressure reheater 18 disposed on the rear transmission surface can be increased by turning the tilting burner upward. That is, in Example 1, the same effect as when the gas flow rate of the exhaust gas recirculation fan is increased can be obtained.
  • the amount of heat collected by the primary high-pressure reheater 16 and the primary low-pressure reheater 18 can be reduced by turning the tilting burner downward. This is the same effect as in the case where the gas flow rate of the exhaust gas recirculation fan is reduced in the first embodiment.
  • the tilting burner 42 in this embodiment is an alternative device for the exhaust gas recirculation fan 31 of the first embodiment.
  • FIG. 5 shows a control method of the tilting burner. The control method is the same as that of the first embodiment shown in FIG. 3 described above, and the exhaust gas recirculation fan gas flow command value may be replaced with the tilting burner angle command value. Further, the fuel flow rate control and the gas distribution damper control may be the same method as in the first embodiment.
  • each outlet steam temperature of the low pressure reheat system can be controlled to be constant.
  • the installation area of the boiler can be reduced.
  • the tilting burner is used in the present embodiment, the in-house power can be reduced as compared with the exhaust gas recirculation fan, and the reduction of the power transmission end efficiency can be prevented.
  • FIG. 6 is a schematic diagram showing the configuration of a coal-fired power plant that is Embodiment 3 of the present invention.
  • the third embodiment differs from the second embodiment in that the air flow rate of the normal fixed burner 40 and the after-air port 41 installed on the upper side of the burner 40 is adjusted without using the tilting burner.
  • the same effect as in Examples 1 and 2 can be obtained. Therefore, only a different point from Example 2 is demonstrated in a present Example.
  • the after-air port is a port that is installed at the top of the burner and blows air.
  • the main purpose of installing the after-airport is to suppress the generation of nitrogen oxides (NOx), which are environmentally regulated substances.
  • NOx nitrogen oxides
  • Fuel pulverized coal
  • air are blown from the burner, but the amount of air blown from the burner is set to a small amount relative to the amount of air necessary for complete combustion of the fuel.
  • NOx tends to be generated in a high temperature region near the burner. Therefore, NOx generation can be suppressed by burning the fuel in a high-temperature region near the burner in a state of air shortage.
  • air is blown from the after-air port at the upper part of the burner to burn fuel that has not been completely burned.
  • the above combustion method is called two-stage combustion and is adopted in many boilers.
  • the same effect can be obtained by changing the air flow distribution between the burner and the after-airport as an alternative to the exhaust gas recirculation fan of Embodiment 1 and the tilting burner of Embodiment 2.
  • the air flow rate to the boiler is constant per fuel flow rate, and only the distribution of the air flow rate blown from the burner and after-air port is changed, if the air flow rate on the after-air port side is increased, the heat distribution peak in the furnace moves upward. To do. This is because the proportion of fuel combusted near the after airport increases. This corresponds to the case where the angle of the tilting burner is directed upward in the second embodiment.
  • the amount of heat of the exhaust gas flowing from the furnace to the rear transmission surface is increased by moving the heat collection distribution peak upward, and the amount of heat collected by the primary high-pressure reheater 16 and the primary low-pressure reheater 18 disposed on the rear transmission surface is reduced. Can be increased.
  • FIG. 7 shows a configuration for adjusting the air flow rate of the burner and the after-air port.
  • the air sent to the burner 40 and the after-air port 41 is heated in advance by an air preheater (not shown).
  • One is an air pipe 51 that feeds the coal to the mill 50, and the other is an air pipe 52 that does not pass through the mill.
  • the air sent to the mill 50 is called primary air
  • the air that does not pass through the mill 50 is called secondary air.
  • Primary air sent to the mill is used as conveying air for sending pulverized coal to the boiler, so it is necessary to give an upper temperature limit so that the pulverized coal does not ignite during conveyance. For this reason, the primary air and the secondary air have a separate air pipe. Usually, the temperature of the primary air sent from the air preheater is adjusted to be lower than the temperature of the secondary air. As shown in the figure, the primary air is sent to the mill 50 through the air pipe 51 and then sent to the burner 40 together with the pulverized coal.
  • the secondary air is branched and sent to the burner 40 or the after-air port 41 through the air pipe 52.
  • the distribution of the air flow rate sent to the burner 40 and the after-air port 41 is adjusted by the valve 54 and the valve 55.
  • the controller 60 changes the distribution of the air flow rate between the burner 40 and the after air port 41 by manipulating the opening degree of the valve 54 and the valve 55.
  • FIG. 8 shows control logic implemented in the control device 60.
  • the difference (signal 71) between the measured value and the set value of the outlet steam temperature in the high-pressure secondary reheater, and the difference (signal 72) between the measured value and the set value of the outlet steam temperature in the low-pressure secondary reheater are added (signal 83). If the measured value of the outlet steam temperature in the high-pressure secondary reheater is smaller than the set value and the measured value of the outlet steam temperature in the low-pressure secondary reheater is also smaller than the set value, the value of the signal 83 becomes large.
  • the control logic of the exhaust gas recirculation fan in the first embodiment is the same.
  • the value of the signal 83 is calculated by the PI controller and the signal limiter, and becomes the after air port air flow rate command value (signal 94).
  • the difference between the signal 94 and 100% is the burner air flow rate command value (signal 95).
  • the air flow rate command value is expressed as a ratio of the air flow rate distribution between the after air port and the burner based on 100%.
  • the outlet steam temperature of the main steam system, high pressure reheat system, and low pressure reheat system can be controlled to be constant.
  • the installation area of the boiler can be reduced.
  • the steam temperature of the main steam system, the high pressure reheat system, and the low pressure reheat system is controlled to a constant value in the two-stage reheat boiler with the primary superheater removed from the rear transmission surface. It becomes possible.

Abstract

 本発明では、一次過熱器を取り除いた二段再熱型ボイラにおいて、主蒸気系、高圧再熱系、低圧再熱系の各出口蒸気温度を一定に制御することを目的とする。 前記目的を解決するため、本発明は、石炭を燃焼させるバーナを備えた火炉、前記火炉内の燃焼ガスを排ガス浄化装置へ導く後部伝面、及び前記後部伝面を2つのガス流路に分割する分離壁を備えたボイラと、前記後部伝面の一方のガス流路に配置され、超高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する高圧再熱系と、前記高圧再熱系で加熱された蒸気が供給される高圧タービンと、前記後部伝面の他方のガス流路に配置され、前記高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する低圧再熱系と、前記後部伝面の2つのガス流路に流れるガス流量配分を制御できるガス分配ダンパと、前記ボイラから排出された排ガスを前記火炉に再循環させる排ガス再循環ファンを備えることを特徴とする。

Description

石炭火力発電プラント
 本発明は、石炭火力発電プラントに関する。
 発電プラントに使用される燃料の中で、石炭は世界中に広く分布し、価格も安く、安定している。このため、今後も石炭火力発電は電力の安定供給に重要な役割を果たすことが期待されている。しかしながら、石炭火力発電は、LNGや石油などを燃料とする他方式の火力発電に比べて、発電量当たりの二酸化炭素の排出量が最も多いことから、さらなる高効率化が求められている。
 このような状況を踏まえ、石炭火力ボイラの分野では、効率向上のための改良を行っている。効率向上のための一つの施策として、二段再熱方式の採用が挙げられる。現行のボイラには、主蒸気系統に加えて、再熱系統が設置されている。再熱系統とは、ボイラで高温に加熱した蒸気を蒸気タービンに送った後、その蒸気タービンの排気を再度ボイラに戻して加熱し、別の蒸気タービンに送る系統をいう。二段再熱とは、この再熱系統を二つ設けた方式である。再熱系統に設置された蒸気加熱用の熱交換器を再熱器と呼ぶ。例えば、特開昭58-217104号公報で示されている二段再熱型ボイラでは、第一再熱器と第二再熱器が設置されている。火炉及び過熱器で生成した高温の蒸気は、蒸気タービンに送られる。次いで、その蒸気タービンの排気をボイラに戻して、第一再熱器で高温の蒸気を生成し、別の蒸気タービンに送る。次いで、その蒸気タービンの排気をボイラに戻して、今度は第二再熱器で高温の蒸気を生成し、別の蒸気タービンに送る。以上が二段再熱における蒸気の流れである。
 また、二段再熱方式とは別の効率向上のための施策として、蒸気温度の高温化が挙げられる。蒸気温度を高温化することにより、熱サイクルシステムとしての効率向上、及び蒸気タービンの内部効率の向上が期待できる。蒸気温度を従来よりも高温化するためには、ボイラに多くの熱交換器を配置して、伝熱面積を増やす必要がある。
 以上の観点から、図9に、現行の商用ボイラのバンク構成に対して、二段再熱方式を採用し、さらに、伝熱面積を増やして蒸気温度を高温化したボイラを有する石炭火力発電プラントの構成例を示す。
 ボイラ1に供給される水は、最初に節炭器10に入り、次に水壁11に送られる。水壁11はバーナ近傍でありガス温度が高く、収熱量が最も大きい。水壁11で加熱された蒸気は、次に一次過熱器12、二次過熱器13、三次過熱器14、四次過熱器15に順に送られ昇温される。超高圧タービン2に送るための蒸気を生成する、節炭器10から四次過熱器15までの系統を「主蒸気系」と呼ぶ。
 四次過熱器15から出た蒸気は、超高圧蒸気タービン2に送られる。超高圧蒸気タービンの排気は、高圧一次再熱器16に送られる。高圧一次再熱器16で再加熱された蒸気は、高圧二次再熱器17に送られる。二つの高圧再熱器により再加熱された蒸気は、高圧タービン3に送られる。次いで、高圧タービン3からの排気は、低圧一次再熱器18に送られる。低圧一次再熱器18で加熱された蒸気は、低圧二次再熱器19に送られる。二つの低圧再熱器により再加熱された蒸気は、中圧タービン4に送られ、次いで、低圧タービン5に送られる。低圧タービン5の排気は復水器へ送られ、給水としてボイラへ循環する。
 ここで、蒸気タービンの排気をボイラに再度取り込んで加熱する系統を再熱系と呼ぶ。前記したボイラでは、超高圧タービン2及び高圧タービン3の排気を加熱する二つの再熱系が設置されている。超高圧タービン2の排気を再熱する高圧一次再熱器16と高圧二次再熱器17を「高圧再熱系」と呼ぶ。一方、高圧タービン3の排気を再熱する低圧一次再熱器18と低圧二次再熱器19を「低圧再熱系」と呼ぶ。
 前述の図9に示した構成図において、四次過熱器15、高圧二次再熱器17、低圧二次再熱器19の出口蒸気は、それぞれ超高圧タービン2、高圧タービン3、中圧タービン4に送られるため、蒸気温度が一定になるよう制御される。具体的には、四次過熱器15の出口蒸気温度は、スプレイ(図示していない)と燃料流量を調整することで温度を一定にする。一方、高圧二次再熱器17、及び低圧二次再熱器19の出口蒸気は、図中のガス分配ダンパ30によって蒸気温度が一定になるよう制御される。
 高圧一次再熱器16、低圧一次再熱器18、一次過熱器12、及び節炭器10を設置した後部伝面は、分離壁によりガス流路が3つに分離されている。ガス分配ダンパ30は、3つのガス流路を流れるガス流量を調整する。
 例えば、高圧二次再熱器17の出口蒸気温度を上昇させるには、その上流にある高圧一次再熱器16に流れるガス流量が増えるように、ガス分配ダンパ30の開度を操作する。また、低圧二次再熱器19の出口蒸気温度を上昇させるには、その上流にある低圧一次再熱器18に流れるガス流量が増えるように、ガス分配ダンパの開度を操作する。ガス分配ダンパ30の役割は、後部伝面の分離壁で隔てられた各バンクの収熱量配分を変えることにより、ボイラの主蒸気系、高圧再熱系、低圧再熱系の収熱バランスを調整することである。したがって、ボイラ全体の収熱が不足している場合、ガス分配ダンパの操作のみで各蒸気温度を一定に維持することはできない。このような場合には燃料流量の制御が必要となる。
 ボイラ全体の収熱が不足した状態では、高圧再熱系と低圧再熱系の出口蒸気温度が所定の値より低くなる。そのため、ガス分配ダンパ30の制御によって、(高圧再熱系の)高圧一次再熱器16及び(低圧再熱系の)低圧一次再熱器18に多くの排ガスを流し、高圧再熱系と低圧再熱系の出口蒸気温度を一定に維持する。その結果、燃料流量を変えなければ、一次過熱器12に流れる排ガスが少なくなり、一次過熱器12の収熱量が減少する。従って、主蒸気系の最終過熱器である四次過熱器15の出口蒸気温度は低下してしまう。そこで、燃料制御によって燃料流量を増やすことよって、一次過熱器12に流れる排ガス量を増やし、ボイラ全体の収熱が維持される。以上のように、ガス分配ダンパと燃料流量の両方の制御が動作することによって、ボイラ全体の収熱と各系統の収熱バランスを制御することができる。
特開昭58-217104号公報
 前述の背景技術で説明したボイラでは、効率向上のための施策として、蒸気温度を高温化している。このようなボイラでは、上流から下流までの各バンクにおける蒸気温度が上昇する。したがって、従来のボイラに比べて、各バンクに耐熱性に優れた材料を使用しなければならない。このため、蒸気温度を高温化したボイラでは、従来のボイラに比べて材料コストが大幅に上昇するため、材料コストを抑えられるバンク構成が望まれていた。
 材料コストの大幅な上昇をもたらす一つの要因は、物量の大きな一次過熱器に対して、従来よりも耐熱性の高い材料を使用することが挙げられる。一次過熱器は、蒸気流れ方向の後流側にある二次~四次過熱器に比べれば蒸気温度が低いので、二次~四次過熱器よりは低級の材料を使用できる。しかしながら、蒸気温度を高温化させると、ボイラ後部伝面を流れる排ガス温度も上昇するため、後部伝面に設置された一次過熱器も耐熱性の高い材料にしなければならない。そして、一次過熱器は物量が大きいため、従来よりも耐熱性の高い材料を用いて製造したときに、ボイラ全体の材料コストに与える影響が非常に大きいという課題がある。
 また、別の課題として、従来の二段再熱型ボイラでは、後部伝面に3つのガス流路を設置するため、後部伝面のサイズが大きくなり、ボイラ設置面積を広く取る必要があり、ボイラの建設個所が限定されるという問題があった。
 以上に述べた、材料コストの上昇要因に基づいた低コスト化策、及び、設置面積の削減のためのボイラサイズ縮小策として、一次過熱器を取り除いたボイラが考えられる。図9に示した二段再熱型ボイラにおいて、一次過熱器12を取り除くと、後部伝面のガス流路は、高圧一次再熱器16と低圧一次再熱器18を流れる二つの流路から構成される。ここで、ボイラ全体の収熱が不足し、高圧再熱系と低圧再熱系の収熱量の両方が足りない状態となった場合(すなわち、高圧二次再熱器17と低圧二次再熱器19の両方の出口蒸気温度が所定の値より低くなった場合)、ガス分配ダンパ30の操作のみで両方の蒸気温度を上昇させて一定に維持することはできない。なぜなら、前記したように、ガス分配ダンパ30の役割は、分離壁で隔てた各バンクの収熱量の配分を変えることであり、両方の収熱が不足している場合には対応できない。この場合、後部伝面に一次過熱器12が配置されていれば、ガス分配ダンパ30によるガス流量配分の調整によって、一次過熱器12の収熱量が減少し、主蒸気系の収熱不足をもたらす。この結果、主蒸気系の出口蒸気温度が所定の値より低下しようとするため、燃料流量を増やす制御が働いて、ボイラ全体の収熱量を維持できる。しかしながら、後部伝面から一次過熱器12を取り除いたバンク構成では、主蒸気系の出口蒸気温度は変わらないので燃料制御は働かない。また、この状態で燃料を増やしても、主蒸気系の収熱が増えるのみで、後部伝面にある高圧再熱系と低圧再熱系の収熱を増やすことはできない。このように、従来の二段再熱型ボイラから単純に一次過熱器を取り除いたバンク構成では、主蒸気系、高圧再熱系、低圧再熱系の各出口蒸気温度を一定に制御できないという課題があった。
 したがって、本発明では、一次過熱器を取り除いた二段再熱型ボイラにおいて、主蒸気系、高圧再熱系、低圧再熱系の各出口蒸気温度を一定に制御することを目的とする。
 本発明は、石炭を燃焼させるバーナを備えた火炉、前記火炉内の燃焼ガスを排ガス浄化装置へ導く後部伝面、及び前記後部伝面を2つのガス流路に分割する分離壁を備えたボイラと、前記ボイラ内の熱交換器で構成された主蒸気系と、前記主蒸気系で生成した蒸気が供給される超高圧タービンと、前記後部伝面の一方のガス流路に配置され、前記超高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する高圧再熱系と、前記高圧再熱系で加熱された蒸気が供給される高圧タービンと、前記後部伝面の他方のガス流路に配置され、前記高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する低圧再熱系と、前記後部伝面の2つのガス流路に流れるガス流量配分を制御できるガス分配ダンパと、前記ボイラから排出された排ガスを前記火炉に再循環させる排ガス再循環ファンを備えることを特徴とする。
 本発明によれば、一次過熱器を取り除いた二段再熱型ボイラにおいて、主蒸気系、高圧再熱系、低圧再熱系の各出口蒸気温度を一定に制御することを可能とする。
本発明の実施例1である石炭火力発電プラントを示す概略構成図である。 ガス分配ダンパの開度を制御するための制御ブロック図である。 排ガス再循環ファンのガス流量を制御するための制御ブロック図である。 本発明の実施例2である石炭火力発電プラントを示す概略構成図である。 チルチングバーナの角度を制御するための制御ブロック図である。 本発明の実施例3である石炭火力発電プラントを示す概略構成図である。 バーナ及びアフタエアポートの空気流量を調整する装置を示す概略構成図である。 バーナ及びアフタエアポートの空気流量を制御するための制御ブロック図である。 A-USCボイラを有する石炭火力発電プラントを示す概略構成図である。
 本発明は、主蒸気温度を高温化した石炭ボイラを有する石炭火力発電プラントを対象として、二段再熱型ボイラを有した石炭火力発電プラントを対象とする。本発明の一実施例である石炭火力発電プラントの構成について図面を参照して以下に説明する。
 図1は、本発明の一実施例である石炭火力発電プラントの構成を示す概略図である。ボイラ1の火炉1aには、石炭を燃焼させるバーナが配置されている。火炉1aで生成した燃焼ガスは、下流側の後部伝面1bに送られる。この後部伝面1bには、後述の熱交換器が設置されている。また、後部伝面1bの下流側には、排ガス浄化装置が設けられており、排ガスから有害物質等が除去される。
 ボイラ1に供給された水は、最初に節炭器10で加熱され、次いで、水壁11に取り込まれる。水壁11はバーナに近く、ガス温度が高いため、収熱量が最も大きい。水壁11で加熱された蒸気は、次いで二次過熱器13、三次過熱器14、四次過熱器15の順に流れて加熱される。以上の節炭器10から四次過熱器15までを「主蒸気系」と呼ぶ。
 主蒸気系で加熱された蒸気は、超高圧タービン2に送られる。次いで、超高圧タービン2の排気は、ボイラ1の高圧一次再熱器16に取り込まれて、再度加熱される。そして、高圧一次再熱器16で加熱された蒸気は、高圧二次再熱器17に流れて加熱される。高圧一次再熱器16から高圧二次再熱器17までを「高圧再熱系」と呼ぶ。
 高圧再熱系で加熱された蒸気は、高圧タービン3に送られる。次いで、高圧タービン3の排気は、ボイラ1の低圧一次再熱器18に取り込まれて、再度加熱される。次いで、低圧一次再熱器18で加熱された蒸気は、低圧二次再熱器19に流れて加熱される。低圧一次再熱器18から低圧二次再熱器19までを「低圧再熱系」と呼ぶ。
 低圧再熱系で加熱された蒸気は、中圧タービン4、次いで、低圧タービン5を流れる。低圧タービン5の排気は復水器へと流れて、再び、給水として循環する。
 高圧再熱系の出口(即ち、高圧二次再熱器17の出口)、及び、低圧再熱系の出口(即ち、低圧二次再熱器19の出口)から流出した蒸気は、各蒸気タービンに流れる。したがって、二次再熱器の出口における蒸気温度は、ガス分配ダンパ30、及び、排ガス再循環ファン31の操作によって一定になるよう制御される。
 ガス分配ダンパ30とは、ボイラ1の後部伝面1bを分離壁によって分けた2つのガス流路に対し、各流路に流れるガス流量の割合を調整するためのダンパである。分離壁によって分割された2つのガス流路には、それぞれ高圧一次再熱器16(高圧再熱系)と低圧一次再熱器18(低圧再熱系)が配置されている。ガス流量を多くした側のガス流路では、その流路に配置したバンクの収熱量は増加する。一方、ガス流量を少なくすれば、バンクの収熱量は減少する。以上のように、ガス分配ダンパは、分離壁で隔てて配置した各バンクの収熱量の配分を変える役割をもつ。
 排ガス再循環ファン31とは、ボイラ出口の排ガスをボイラ1に循環して押し込むためのファンである。循環排ガスが多くなると、ボイラ1の火炉1aでは、ガス温度が低下する。火炉側は対流伝熱より輻射伝熱の方が支配的であるため、ガス温度の変化による収熱量への影響が大きい。循環排ガスを多くすることによって、火炉1aにある水壁11、二次過熱器13の収熱量は低下する。一方、後部伝面1bでは対流伝熱が支配的であるため、ガス流量の変化による収熱量への影響が大きい。循環排ガスを多くすることによって、後部伝面1bにある高圧一次再熱器16、低圧一次再熱器18の収熱量は増える。以上のように、排ガス再循環ファンは、火炉側と後部伝面側との収熱バランスを変える役割をもつ。
 以上に説明したガス分配ダンパ30と排ガス再循環ファン31の制御は、図1に示した制御装置60で実施する。図示していないが、制御装置60にはプラントに設置した各センサの計測値を取り込み、これを基に制御信号を演算し、プラントに設置した各装置を操作するための制御信号を出力する。制御装置60で実装されている制御ロジックをそれぞれ図2、図3に示す。
 図2は、ガス分配ダンパ30の制御ロジックを示している。制御装置では、高圧二次再熱器における出口蒸気温度の計測値と設定値との差分(信号71)、及び、低圧二次再熱器における出口蒸気温度の計測値と設定値との差分(信号72)を演算し、次いで、これらの差分(信号73)を演算する。高圧二次再熱器における出口蒸気温度の計測値が設定値より小さく、かつ、低圧二次再熱器における出口蒸気温度の計測値が設定値より大きければ、信号73の値は大きくなる。つまり、信号73の値が大きいほど、高圧再熱系の収熱量が所定の値より小さく、一方、低圧再熱系の収熱量が所定の値より大きいため、高圧再熱系側の収熱量を増加させる必要があることを示す。信号73の値はPI制御器、及び、信号制限器で演算され、高圧再熱器側のガス分配ダンパの開度指令値(信号74)となる。一方、信号74と100%との差分は、低圧再熱器側のガス分配ダンパの開度指令値(信号75)となる。ここでの開度指令値は、100%を基準にした高圧再熱器側と低圧再熱器側の配分で表す。前記したように高圧再熱系側の収熱量を増加させる必要がある場合、高圧再熱器側のガス分配ダンパの開度指令値(信号74)の値は大きくなり、一方、低圧再熱器側のガス分配ダンパの開度指令値(信号75)の値は小さくなる。以上の方式により、ガス分配ダンパ30を用いて、高圧再熱系と低圧再熱系との間で収熱バランスを調整することができる。
 図3は、排ガス再循環ファン31の制御ロジックを示している。高圧二次再熱器における出口蒸気温度の計測値と設定値との差分(信号71)、及び、低圧二次再熱器における出口蒸気温度の計測値と設定値との差分(信号72)を演算する。これらの信号は、図2に示したガス分配ダンパの制御ロジックと同じである。次いで、排ガス再循環ファンの制御ロジックでは、信号71と信号72を加算する(信号83)。高圧二次再熱器における出口蒸気温度の計測値が設定値より小さく、同様に、低圧二次再熱器における出口蒸気温度の計測値も設定値より小さければ、信号83の値は大きくなる。つまり、信号83の値が大きいほど、高圧・低圧の両再熱系の収熱量が所定の値より小さく、両再熱系の収熱量を増加させる必要があることを示す。信号83の値はPI制御器、及び、信号制限器で演算され、排ガス再循環ファンのガス流量指令値(信号84)となる。前記したように、両再熱系の収熱量を増加させる必要がある場合、排ガス再循環ファンのガス流量指令値(信号84)の値は大きくなる。以上の方式により、排ガス再循環ファン31を用いて、高圧・低圧の両再熱系の収熱量を調整することができる。
 以上のように、ガス分配ダンパ30と排ガス再循環ファン31の両方を操作することによって、高圧再熱系と低圧再熱系の収熱量それぞれを調整できる。したがって、高圧二次再熱器17、低圧二次再熱器19の出口蒸気温度を一定に制御することが可能になる。一方、主蒸気系の収熱量は燃料流量を制御することで調整する。つまり、主蒸気系の出口に位置する四次過熱器15の出口蒸気温度の計測値と設定値との差に応じて、燃料流量が調整される。燃料流量の制御方式は、従来のボイラで採用されている制御方式と同様である。
 以上に述べた各制御方式が動作すると、ボイラ全体の収熱量は燃料流量によって、また、主蒸気系、高圧再熱系、低圧再熱系の収熱バランスは、ガス分配ダンパ30と排ガス再循環ファン31によって制御できる。したがって、蒸気タービン2、3、4に送る主蒸気系、高圧再熱系、低圧再熱系の出口蒸気の温度を一定に制御することができる。
 上述した本発明の実施例によれば、後部伝面から一次過熱器を取り除いた二段再熱型ボイラにおいて、ガス分配ダンパ、及び排ガス再循環ファンを操作することにより、主蒸気系、高圧再熱系、低圧再熱系の各出口蒸気温度を一定に制御できる。また、物量の大きい一次過熱器を取り除くことにより材料コストを低減したボイラを実現することが可能となる。さらに、後部伝面のサイズを縮小できるため、ボイラの設置面積を小さくすることができる。
 図4は、本発明の実施例2である石炭火力発電プラントの構成を示す概略図である。実施例2が実施例1と異なる点は、排ガス再循環ファンが設置されておらず、代わりに、角度を上下に操作するための駆動装置を備えたバーナ(チルチングバーナ42)が設置されている点である。したがって、本実施例では実施例1と異なる点のみを説明する。
 チルチングバーナ42は、前述したようにバーナの角度を上下に操作することができる。これにより、火炉内の火炎の位置を上下に変えることが可能となる。チルチングバーナの角度を上に向けて、火炎の位置を上に移動させた場合、火炉内の収熱分布のピークが上に移動し、火炉から後部伝面側に流れる排ガスの熱量も大きくなる。したがって、チルチングバーナを上に向けることにより、後部伝面に配置した一次高圧再熱器16及び一次低圧再熱器18の収熱量を増やすことができる。つまり、実施例1において、排ガス再循環ファンのガス流量を増やした場合と同じ効果が得られる。一方、チルチングバーナを下に向けることにより、一次高圧再熱器16及び一次低圧再熱器18の収熱量を減らすことができる。これは、実施例1において、排ガス再循環ファンのガス流量を減らした場合と同じ効果である。
 以上のように、本実施例におけるチルチングバーナ42は、実施例1の排ガス再循環ファン31の代替装置となる。図5は、チルチングバーナの制御方式を示す。制御方式についても、前述の図3に示した実施例1と同様であり、排ガス再循環ファンガス流量指令値を、チルチングバーナ角度指令値に置き換えればよい。また、燃料流量制御とガス分配ダンパ制御は、実施例1と同様の方式でよい。
 上述した本発明の実施例によれば、後部伝面から一次過熱器を取り除いた二段再熱型ボイラにおいて、ガス分配ダンパ及びチルチングバーナを操作することにより、主蒸気系、高圧再熱系、低圧再熱系の各出口蒸気温度を一定に制御できる。また、物量の大きい一次過熱器を取り除くことにより材料コストを低減したボイラを実現することが可能となる。さらに、後部伝面のサイズを縮小できるため、ボイラの設置面積を小さくすることができる。
 さらに、本実施例ではチルチングバーナを使用するため、排ガス再循環ファンに比べて所内動力を低下させることができ、送電端効率の低下を防ぐことができる。
 図6は、本発明の実施例3である石炭火力発電プラントの構成を示す概略図である。実施例3が実施例2と異なる点は、チルチングバーナを使用せずに、通常の固定式のバーナ40、及び、バーナ40の上部側に設置したアフタエアポート41の空気流量を調整することで、実施例1及び2と同様の効果を得られる点である。したがって、本実施例では実施例2と異なる点のみを説明する。
 アフタエアポートはバーナの上部に設置され、空気を吹き込むためのポートである。アフタエアポートを設置する主な目的は、環境規制物質である窒素酸化物(NOx)の発生を抑制することである。バーナからは、燃料(微粉炭)と空気が吹き込まれるが、バーナから吹き込まれる空気は、燃料を完全燃焼させるのに必要な空気量に対して、少ない量にしておく。NOxはバーナ近傍の高温領域で生成されやすい。そこで、バーナ近傍の高温領域において、空気不足の状態で燃料を燃焼させることにより、NOxの生成を抑えることができる。一方、バーナ上部にあるアフタエアポートから空気を吹き込み、まだ完全に燃焼していない燃料を燃焼させる。以上の燃焼方式は二段燃焼と呼ばれ、多くのボイラで採用されている。
 本実施例の装置では、実施例1の排ガス再循環ファン、実施例2のチルチングバーナの代替手段として、バーナとアフタエアポートの空気流量配分を変えることで同様の効果を得る。ボイラに投入する空気流量は燃料流量当たりで一定とし、バーナとアフタエアポートから吹き込む空気流量の配分のみを変える場合、アフタエアポート側の空気流量を多くすると、火炉内の収熱分布ピークは上に移動する。なぜなら、アフタエアポート付近で燃焼する燃料割合が多くなるためである。これは、実施例2において、チルチングバーナの角度を上に向けた場合に対応する。収熱分布ピークが上に移動することで、火炉から後部伝面に流れる排ガスの熱量が増加し、後部伝面に配置した一次高圧再熱器16、及び一次低圧再熱器18の収熱量を増やすことができる。
 一方、バーナ側の空気流量を多くすれば、火炉内の収熱分布のピークは下に移動する。このため、火炉から後部伝面に流れる排ガスの熱量は減少し、後部伝面に配置した一次高圧再熱器16及び一次低圧再熱器18の収熱量を減らすことができる。
 図7は、バーナとアフタエアポートの空気流量を調整するための構成を示した。バーナ40及びアフタエアポート41に送る空気は、あらかじめ空気予熱器(図示していない)で加熱される。空気予熱器からバーナ40及びアフタエアポート41に送られる空気配管は二種類ある。一つは石炭を粉砕するミル50に送る空気配管51であり、残る一つはミルを通らない空気配管52である。図示したようにミル50に送る空気は一次空気、ミル50を通らない空気は二次空気と呼ばれる。
 ミルに送る一次空気は、微粉炭をボイラに送る搬送空気として使用されるため、微粉炭が搬送中に着火しないように、温度上限を与える必要がある。このため、一次空気と二次空気では、空気配管を別にした構成としている。通常、空気予熱器から送られる一次空気の温度は、二次空気の温度よりも低く調整される。図に示すように、一次空気は空気配管51を通してミル50に送られた後、微粉炭と共にバーナ40に送られる。
 一方、二次空気は空気配管52を通して、バーナ40またはアフタエアポート41に分岐して送られる。このとき、バーナ40とアフタエアポート41に送られる空気流量の配分は、弁54及び弁55で調整される。制御装置60は、弁54及び弁55の開度を操作することにより、バーナ40とアフタエアポート41の空気流量の配分を変える。
 図8は制御装置60に実装する制御ロジックである。高圧二次再熱器における出口蒸気温度の計測値と設定値との差分(信号71)、及び、低圧二次再熱器における出口蒸気温度の計測値と設定値との差分(信号72)を演算し、次いで、信号71と信号72を加算する(信号83)。高圧二次再熱器における出口蒸気温度の計測値が設定値より小さく、かつ、低圧二次再熱器における出口蒸気温度の計測値も設定値より小さければ、信号83の値は大きくなる。つまり、信号83の値が大きいほど、高圧・低圧の両再熱系の収熱量が所定の値より小さく、これを増加させる必要があることを示す。ここまでは、実施例1における排ガス再循環ファンの制御ロジックと同様である。信号83の値はPI制御器、及び、信号制限器で演算され、アフタエアポートの空気流量指令値(信号94)となる。また、信号94と100%との差分は、バーナの空気流量指令値(信号95)となる。ここでの空気流量指令値は、100%を基準にしたアフタエアポートとバーナの空気流量配分の比率で表す。信号83の値が大きい場合(すなわち、高圧・低圧の両再熱系の収熱量を増加させる必要がある場合)には、アフタエアポートの空気流量を多くし、バーナの空気流量を少なくする指令値が演算される。制御装置60は、指令値に基づいて、弁55の開度を大きくしてアフタエアポート側の空気流量を増やし、弁54の開度を小さくしてバーナ側の空気流量を減らす。
 上述した本発明の実施例によれば、後部伝面から一次過熱器を取り除いた二段再熱型ボイラにおいて、ガス分配ダンパ、及び、バーナとアフタエアポートの空気流量の配分を調整することにより、主蒸気系、高圧再熱系、低圧再熱系の各出口蒸気温度を一定に制御できる。また、物量の大きい一次過熱器を取り除くことにより材料コストを低減したボイラを実現することが可能となる。さらに、後部伝面のサイズを縮小できるため、ボイラの設置面積を小さくすることができる。
 さらに、本実施例では、チルチングバーナを上下に駆動させるための動力が不要となり、バーナとアフタエアポートの空気流量を調整するための弁開度を操作するのみで同じ効果を得ることができる。
 本発明になる装置によれば、後部伝面から一次過熱器を取り除いた二段再熱型ボイラにおいて、主蒸気系、高圧再熱系、低圧再熱系の各蒸気温度を一定値に制御することが可能となる。
1 ボイラ
2 超高圧タービン
3 高圧タービン
4 中圧タービン
5 低圧タービン
10 節炭器
11 水壁
12 一次過熱器
13 二次過熱器
14 三次過熱器
15 四次過熱器
16 高圧一次再熱器
17 高圧二次再熱器
18 低圧一次再熱器
19 低圧二次再熱器 
30 ガス分配ダンパ
31 排ガス再循環ファン
40 バーナ
41 アフタエアポート
42 チルチングバーナ
50 ミル
51 空気配管
52 空気配管
54 弁
55 弁
60 制御装置

Claims (7)

  1.  石炭を燃焼させるバーナを備えた火炉、前記火炉内の燃焼ガスを排ガス浄化装置へ導く後部伝面、及び前記後部伝面を2つのガス流路に分割する分離壁を備えたボイラと、
     前記ボイラ内の熱交換器で構成された主蒸気系と、
     前記主蒸気系で生成した蒸気が供給される超高圧タービンと、
     前記後部伝面の一方のガス流路に配置され、前記超高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する高圧再熱系と、
     前記高圧再熱系で加熱された蒸気が供給される高圧タービンと、
     前記後部伝面の他方のガス流路に配置され、前記高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する低圧再熱系と、
     前記後部伝面の2つのガス流路に流れるガス流量配分を制御できるガス分配ダンパと、 前記ボイラから排出された排ガスを前記火炉に再循環させる排ガス再循環ファンを備えることを特徴とする石炭火力発電プラント。
  2.  石炭を燃焼させるバーナを備えた火炉、前記火炉内の燃焼ガスを排ガス浄化装置へ導く後部伝面、及び前記後部伝面を2つのガス流路に分割する分離壁を備えたボイラと、
     前記ボイラ内の熱交換器で構成された主蒸気系と、
     前記主蒸気系で生成した蒸気が供給される超高圧タービンと、
     前記後部伝面の一方のガス流路に配置され、前記超高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する高圧再熱系と、
     前記高圧再熱系で加熱された蒸気が供給される高圧タービンと、
     前記後部伝面の他方のガス流路に配置され、前記高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する低圧再熱系と、
     前記後部伝面の2つのガス流路に流れるガス流量配分を制御できるガス分配ダンパと、 前記バーナの角度を上下に駆動させる装置を備えることを特徴とする石炭火力発電プラント。
  3.  石炭を燃焼させるバーナ及び燃焼ガスの未燃分を燃焼させるアフタエアポートを備えた火炉、前記火炉内の燃焼ガスを排ガス浄化装置へ導く後部伝面、及び前記後部伝面を2つのガス流路に分割する分離壁を備えたボイラと、
     前記ボイラ内の熱交換器で構成された主蒸気系と、
     前記主蒸気系で生成した蒸気が供給される超高圧タービンと、
     前記後部伝面の一方のガス流路に配置され、前記超高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する高圧再熱系と、
     前記高圧再熱系で加熱された蒸気が供給される高圧タービンと、
     前記後部伝面の他方のガス流路に配置され、前記高圧タービンからの排気を前記ボイラ内の燃焼ガスで再熱する低圧再熱系と、
     前記後部伝面の2つのガス流路に流れるガス流量配分を制御できるガス分配ダンパと、 前記バーナと前記アフタエアポートの空気流量の配分を調整する制御装置を備えることを特徴とする石炭火力発電プラント。
  4.  請求項1記載の石炭火力発電プラントであって、
     前記高圧再熱系の出口蒸気温度における計測値と設定値との差、及び、前記低圧再熱系の出口蒸気温度における計測値と設定値との差を基に、前記排ガス再循環ファンを流れるガス流量を調整する制御装置を備えることを特徴とする石炭火力発電プラント。
  5.  請求項2記載の石炭火力発電プラントであって、
     前記高圧再熱系の出口蒸気温度における計測値と設定値との差、及び、前記低圧再熱系の出口蒸気温度における計測値と設定値との差を基に、前記バーナの角度を調整する制御装置を備えることを特徴とする石炭火力発電プラント。
  6.  請求項3記載の石炭火力発電プラントであって、
     前記高圧再熱系の出口蒸気温度における計測値と設定値との差、及び、前記低圧再熱系の出口蒸気温度における計測値と設定値との差を基に、前記バーナと前記アフタエアポートの空気流量の配分を調整する制御装置を備えることを特徴とする石炭火力発電プラント。
  7.  請求項4から6記載の石炭火力発電プラントであって、
     前記高圧再熱系の出口蒸気温度における計測値と設定値との差、及び、前記低圧再熱系の出口蒸気温度における計測値と設定値との差を基に、前記ガス分配ダンパを操作して二つのガス流路に流れるガス流量の配分を調整する制御装置を備えることを特徴とする石炭火力発電プラント。
PCT/JP2012/068141 2012-07-18 2012-07-18 石炭火力発電プラント WO2014013559A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/068141 WO2014013559A1 (ja) 2012-07-18 2012-07-18 石炭火力発電プラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/068141 WO2014013559A1 (ja) 2012-07-18 2012-07-18 石炭火力発電プラント

Publications (1)

Publication Number Publication Date
WO2014013559A1 true WO2014013559A1 (ja) 2014-01-23

Family

ID=49948414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068141 WO2014013559A1 (ja) 2012-07-18 2012-07-18 石炭火力発電プラント

Country Status (1)

Country Link
WO (1) WO2014013559A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104061565A (zh) * 2014-06-30 2014-09-24 章礼道 燃用准东煤的超超临界电站锅炉
US20150292732A1 (en) * 2012-08-03 2015-10-15 Shell Oil Company Process for recovering power

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452407A (ja) * 1990-06-19 1992-02-20 Babcock Hitachi Kk 再熱蒸気温度制御方法
JPH05157213A (ja) * 1991-12-06 1993-06-22 Babcock Hitachi Kk 燃焼装置
JPH07243611A (ja) * 1994-03-02 1995-09-19 Babcock Hitachi Kk 微粉炭の低NOx燃焼方法およびその装置
JP2006132811A (ja) * 2004-11-04 2006-05-25 Babcock Hitachi Kk 燃料燃焼用空気ポート、その製造方法及びボイラ
JP2010249050A (ja) * 2009-04-16 2010-11-04 Toshiba Corp 蒸気タービンおよび蒸気タービン設備
JP2011102540A (ja) * 2009-11-10 2011-05-26 Toshiba Corp 蒸気タービン発電設備およびその運転方法
JP2012092732A (ja) * 2010-10-27 2012-05-17 Hitachi Ltd 火力発電プラント
JP2012093002A (ja) * 2010-10-25 2012-05-17 Babcock Hitachi Kk ボイラシステム及びボイラシステムの運用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452407A (ja) * 1990-06-19 1992-02-20 Babcock Hitachi Kk 再熱蒸気温度制御方法
JPH05157213A (ja) * 1991-12-06 1993-06-22 Babcock Hitachi Kk 燃焼装置
JPH07243611A (ja) * 1994-03-02 1995-09-19 Babcock Hitachi Kk 微粉炭の低NOx燃焼方法およびその装置
JP2006132811A (ja) * 2004-11-04 2006-05-25 Babcock Hitachi Kk 燃料燃焼用空気ポート、その製造方法及びボイラ
JP2010249050A (ja) * 2009-04-16 2010-11-04 Toshiba Corp 蒸気タービンおよび蒸気タービン設備
JP2011102540A (ja) * 2009-11-10 2011-05-26 Toshiba Corp 蒸気タービン発電設備およびその運転方法
JP2012093002A (ja) * 2010-10-25 2012-05-17 Babcock Hitachi Kk ボイラシステム及びボイラシステムの運用方法
JP2012092732A (ja) * 2010-10-27 2012-05-17 Hitachi Ltd 火力発電プラント

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150292732A1 (en) * 2012-08-03 2015-10-15 Shell Oil Company Process for recovering power
US10309642B2 (en) * 2012-08-03 2019-06-04 Shell Oil Company Process for recovering power in a process for producing ethylene
CN104061565A (zh) * 2014-06-30 2014-09-24 章礼道 燃用准东煤的超超临界电站锅炉

Similar Documents

Publication Publication Date Title
AU2009296551B2 (en) Process temperature control in oxy/fuel combustion system
JP5210799B2 (ja) 酸素燃焼ボイラプラント及び酸素燃焼ボイラプラントの制御方法
JP6276647B2 (ja) 石炭焚ボイラおよびその運転制御方法
CN104676573B (zh) 一种720℃高效超超临界二次再热电站锅炉
CN105276611A (zh) 火电厂锅炉燃烧调整优化方法与系统
CN202032544U (zh) 适用于超高汽温蒸汽参数的倒置煤粉锅炉布置结构
CN103776020B (zh) 尾部三烟道双挡板加射流烟气再循环二次再热电站锅炉
CN102889570A (zh) 一种具有两次再热器的塔式锅炉
CN203869022U (zh) 锅炉系统及其温度调节装置
CN105805739A (zh) 调节过热蒸汽温度的循环流化床燃烧方法
US20080156236A1 (en) Pulverized coal combustion boiler
CN104061565A (zh) 燃用准东煤的超超临界电站锅炉
CN112682771B (zh) 一种w型火焰二次再热超超临界锅炉及汽温调节方法
CN103486563B (zh) 燃用准东煤的超临界直流炉
JP5665621B2 (ja) 排熱回収ボイラおよび発電プラント
CN104075309A (zh) 燃用准东煤的二次再热电站锅炉
EP2716880A1 (en) Steam Power Plant with Steam Turbine Extraction Control
CN104763997A (zh) 一种参数优化的超超临界二次再热电站锅炉
WO2014013559A1 (ja) 石炭火力発電プラント
CN103438418A (zh) 双∏型锅炉
WO2015083253A1 (ja) ボイラ
CN104214794A (zh) 煤粉锅炉燃烧器喷嘴上摆角度值确定方法及燃烧控制方法
JP2013130370A (ja) 再熱蒸気温度制御装置
CN109668144B (zh) 一种用于切圆煤粉锅炉宽负荷汽温优化调整的燃烧系统
JP2006242517A (ja) 再熱蒸気温度制御方法、制御装置およびこれを用いたボイラプラント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP