WO2014013201A1 - Dispostif de transfert thermique entre une canalisation de lubrification et une canalisation hydraulique de commande de verin de calage de pales de turbomachine - Google Patents

Dispostif de transfert thermique entre une canalisation de lubrification et une canalisation hydraulique de commande de verin de calage de pales de turbomachine Download PDF

Info

Publication number
WO2014013201A1
WO2014013201A1 PCT/FR2013/051732 FR2013051732W WO2014013201A1 WO 2014013201 A1 WO2014013201 A1 WO 2014013201A1 FR 2013051732 W FR2013051732 W FR 2013051732W WO 2014013201 A1 WO2014013201 A1 WO 2014013201A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
turbomachine
propeller
receiver
assembly
Prior art date
Application number
PCT/FR2013/051732
Other languages
English (en)
Inventor
Olivier Belmonte
Augustin CURLIER
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US14/414,343 priority Critical patent/US20150219014A1/en
Priority to BR112015000289A priority patent/BR112015000289A2/pt
Priority to GB1502799.8A priority patent/GB2519478A/en
Publication of WO2014013201A1 publication Critical patent/WO2014013201A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/38Blade pitch-changing mechanisms fluid, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/24Heat or noise insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/306Blade pitch-changing mechanisms specially adapted for contrarotating propellers
    • B64C11/308Blade pitch-changing mechanisms specially adapted for contrarotating propellers automatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • F01D17/22Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical
    • F01D17/26Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical fluid, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/067Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages having counter-rotating rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/10Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/306Blade pitch-changing mechanisms specially adapted for contrarotating propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D2027/005Aircraft with an unducted turbofan comprising contra-rotating rotors, e.g. contra-rotating open rotors [CROR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/072Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with counter-rotating, e.g. fan rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05D2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/20Purpose of the control system to optimize the performance of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/64Hydraulic actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/172Copper alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to the field of cooling the hydraulic control lines of cylinders to change the wedging in incidence of the blades of a turbomachine propeller.
  • turbomachine receiver propeller for example a counter-rotating propeller system, such as a pair of counter-rotating propellers of a turbomachine with unducted fans.
  • This type of turbomachine also known as an "open rotor" turbine engine, is for example known from document FR 2 942 203.
  • the invention could be applied to the control in incidence of propeller blades of another type, for example those of the propeller of a conventional turboprop.
  • the receiver with counter-rotating and unchanging propeller pairs is located in the rear continuity of the gas generator, namely in a very hot environment.
  • This receiver generally includes an exhaust casing of the turbomachine, whose arms running through the vein allow the passage of various elements such as hydraulic control lines of cylinders to change the wedging in incidence of the blades of one and / or either of the two propellers.
  • the invention therefore aims to at least partially overcome the disadvantages mentioned above, relating to the achievements of the prior art.
  • the subject of the invention is an assembly for an aircraft turbomachine comprising a lubricant circulation duct and a hydraulic control duct for a cylinder for changing the wedging at the incidence of the blades of a propeller.
  • the turbine engine the assembly further comprising thermal bridge means between said lubricant circulation pipe and said hydraulic pipe.
  • the invention provides an original, simple, effective and inexpensive solution to the problem encountered in the prior art. Indeed, the principle according to the invention breaks with conventional heat exchange technologies by providing for the use of an existing easement, in this case the adjacent lubrication pipe, to evacuate the heat accumulating in the hydraulic pipe of cylinder control.
  • the thermal bridge means arranged between the two Pipes thus serve to transfer the heat from one pipe to the other, this heat being then removed by the lubricant circulating usually with a large flow in its pipe, unlike the fluid of the hydraulic pipe control cylinder which is relatively static.
  • the hydraulic cylinder control line is no longer subject to the risk of coking, even when placed in a hot environment.
  • said thermal bridge means comprise a plurality of lamellae each having two ends respectively connected to said lubricant circulation pipe and to said hydraulic pipe. More generally, these means can take any form of solid means connected directly to each of the two pipes.
  • said thermal bridge means are made of copper or one of its alloys. This type of material promotes thermal conduction, and thus improves the heat dissipation effect through the lubrication pipe. Any other material having a high capacity to conduct heat can be envisaged, without departing from the scope of the invention.
  • the assembly comprises a thermal protection sheath covering the assembly formed by the thermal bridge means and the portions of the pipes connected by these same means.
  • This protection advantageously makes it possible to limit the impact of the thermal radiation of the surrounding hot elements, in the direction of the assembly according to the invention.
  • the invention also relates to an aircraft turbine engine receiver, comprising:
  • At least one propeller comprising blades
  • a casing comprising a hub and an outer shell connected by arms and defining between them a gas flow channel, said casing preferably being an exhaust casing; and at least one assembly as described above, arranged in one of said arms of the housing.
  • the hydraulic cylinder control pipe is essentially protected from the risks associated with the heat released by the casing it passes through, this radiant heat can be very high especially in the case of a crankcase. exhaust located behind the gas generator.
  • the receiver further comprises a mechanical transmission device forming a reducer and comprising an epicyclic gear, said device being supplied with lubricant by said lubricant circulation pipe.
  • the receiver further comprises at least one lubricated enclosure housing at least one rolling bearing, said enclosure being supplied with lubricant by said lubricant circulation pipe.
  • the receiver comprises a plurality of assemblies such as that described above, distributed in different arms of said housing. Several or even all of them are therefore equipped with at least one such set, and several of these sets can cross the same arm. It is also possible for the same hydraulic control cylinder line to be connected by thermal bridges to different lubrication lines without departing from the scope of the invention.
  • the receptor is a counter-rotating propeller system, and more preferably a pair of counter-rotating propellers.
  • the invention relates to a turbomachine for aircraft comprising a receiver as described above, preferably located downstream of a gas generator of this turbomachine.
  • FIG. 1 shows a simplified view in longitudinal section of a turbomachine type "open rotor" for integrating an assembly according to the invention
  • Figure 2 is a sectional view taken along the line 11-11 of Figure 1;
  • FIG. 3 is a more detailed sectional view of a part of the receiver of the turbomachine shown in FIG. 1;
  • FIG. 4 is a partially sectional view of an assembly according to a preferred embodiment of the invention, integrated in the receiver of the turbomachine shown in the preceding figures;
  • FIG. 5 is a perspective view of the assembly shown in FIG. 4.
  • the direction A corresponds to the longitudinal direction or axial direction, parallel to the longitudinal axis 2 of the turbomachine.
  • the direction B corresponds to the radial direction of the turbomachine.
  • the arrow 4 schematizes the direction of advance of the aircraft under the action of the thrust of the turbomachine 1, this advancement direction being contrary to the main flow direction of the gas within the turbomachine.
  • the terms "before” and “downstream” used in the remainder of the description are to be considered in relation to this direction of advancement 4.
  • the turbomachine has an air inlet 6 continuing towards the rear by a nacelle 8, which generally comprises an outer skin 10 and an inner skin 12, both centered on the axis 2 and offset radially from each other.
  • the inner skin 12 forms an outer radial casing for a gas generator 14, conventionally comprising, from front to rear, a low pressure compressor 16, a high pressure compressor 18, a combustion chamber 20, a high turbine pressure 22, and an intermediate pressure turbine 24.
  • the compressor 16 and the turbine 24 are mechanically connected by a shaft 26, thus forming a body of low pressure, while the compressor 18 and the turbine 22 are mechanically connected by a shaft 28 , forming a higher pressure body. Therefore, the gas generator 14 preferably has a conventional double-body design.
  • a receiver 30 of the turbomachine Downstream of the intermediate pressure turbine 24, there is a receiver 30 of the turbomachine, this receiver forming a counter-rotating propeller system, and more specifically a pair of counter-rotating propellers.
  • the receiver 30 comprises a free power turbine 32, forming a low-pressure turbine and located just behind the gas generator 14. It comprises a rotor 32a constituting the inner part of the turbine, and a stator 32b constituting the external part of this turbine, which is fixedly connected to a fixed casing assembly 34 of this propeller system, centered on the longitudinal axis 2 of the system.
  • This stator 34 is in known manner intended to be integral with other casings of the turbomachine.
  • the receiver 30 is designed so that the propellers are devoid of outer radial fairing surrounding them, as can be seen in FIG.
  • the receiver 30 integrates a first helix 7 or downstream propeller, carrying blades 7a.
  • the system 30 comprises a second propeller 9 or upstream propeller, carrying blades 9a.
  • the propellers 7, 9 are offset from each other in the direction 4, and both located downstream of the free turbine 32.
  • the two propellers 7, 9 are intended to rotate in opposite directions around the axis 2 on which they are centered, the rotations being effected relative to the stator 34 remaining stationary.
  • a mechanical transmission device 13 forming a reducer and comprising in particular an epicyclic gear train 15.
  • the train 15 is provided with a sun gear 17 centered on the longitudinal axis 2, and carried by a sun shaft 19 of the same axis, connected integrally upstream to the rotor 32a, through A flange 38.
  • the rotor 32a directly drives the sun gear 17 in rotation, the latter taking the form of an externally toothed gear.
  • the train 15 also comprises a satellite 21, and preferably several as can be seen in FIG. 2, each of them meshing with the sun gear 17.
  • Each satellite 21 is carried by a satellite shaft 23 with an eccentric axis with respect to the 2 axis, and takes the form of a toothed wheel externally.
  • the train 15 is equipped with a planet carrier 25 centered on the longitudinal axis 2, and rotatably carrying each of the satellites 21, through the shafts 23, respectively.
  • the planet carrier 25 is carried by a planet carrier shaft 29 of the same axis, integral with the first propeller 7, as can be seen in FIG. 1, so as to be able to drive it directly in rotation.
  • the train 15 has a ring 31 centered on the axis 2 and carried by a crown shaft 33 of the same axis, this ring 31 meshing with each satellite 21.
  • the shaft 33 extends downstream in being secured to the second propeller 9, so as to be able to drive it directly in rotation.
  • this shaft 33 is located around the planet carrier shaft 29 with which it is concentric.
  • the ring 31 takes the form of a toothed wheel internally.
  • the epicyclic gear train 15 is located at the right and inside a housing 42 interposed between the free power turbine 32 and the propellers 7, 9.
  • This housing 42 also called exhaust casing or "static frame"
  • a motor attachment 44 intended to ensure the attachment of the turbomachine on the structure of the aircraft.
  • the mechanical transmission device is housed in the hub 43 of the housing 42, the latter also comprising an outer shell 47 connected at the hub by radial arms 45.
  • the outer shell 47 is in the rear continuity of the envelope of the stator 32b.
  • the casing 42 downstream of which are the propellers and upstream of which the power turbine 32 is located, comprises a casing extension 46 extending in the downstream direction relative to a central portion of this casing.
  • This extension 46 takes the form of a hollow cylinder centered on the axis 2, supporting in rotation a hub 48b of the second propeller, this hub 48b coinciding with the crown shaft 33, as can be seen in FIG.
  • This rotating support is effected by means of two rolling bearings 50 spaced from each other in the direction A, and interposed between the extension 46 and the hub 48b.
  • the second propeller 9 also comprises an outer shell 56b concentrically disposed at the hub 48b, and participating in the radially outward delimitation of a main annular vein 58, this vein being also delimited between the hub 43 and the outer shell 47 at the exhaust casing 42.
  • the connecting arms 60b also comprises a plurality of connecting arms 60b connecting the outer shell 56b to the hub 48b.
  • the connecting arms 60b carry a second intermediate ferrule 62b disposed between the hub 48b and the outer ferrule 56b, this ferrule 62b participating in the radially inward delimitation of the main annular groove 58.
  • each blade 9a is mounted so as to be driven / locked in incidence about its pivot axis 64b, by its locking system variable (not shown in Figure 1).
  • the crown shaft 33 takes the form of a hollow cylinder centered on the axis 2, rotating a hub 48a of the first propeller, this hub 48a coinciding with the planet carrier shaft 29, as is
  • This rotating support is effected by means of two rolling bearings 66 spaced from each other in the direction A, and interposed between the two hubs 48b, 48a.
  • the first propeller 7 also comprises an outer shell 56a concentrically disposed at the hub 48a, and participating in the radial delineation towards the outside of the main annular vein 58. It is located in the downstream aerodynamic extension of the outer shell 56b of the second propeller.
  • the connecting arms 60a of the first propeller carry a first intermediate shell 62a disposed between the hub 48a and the outer shell 56a, this shell 62a also participating in the radially inward delimitation of the main annular stream 58. is located in the downstream aerodynamic extension of the intermediate shell 62b of the second propeller.
  • the receiver comprises a lubrication circuit 70 for supplying lubricant to the transmission device, and more particularly its epicyclic taine 15.
  • a pipe 72 circulation a lubricant, preferably oil, passes through one of the arms 45 of the exhaust casing 42.
  • This duct 72 thus travels radially through one of the arms 45, over the entire length of the latter, for circulating the fresh lubricant coming radially from the outside of the housing 42 towards the elements to be cooled.
  • the pipe 72 is connected to a downstream part of the circuit 70 feeding on the one hand the train 15 for its cooling, via the section referenced 74, and feeding on the other hand one or more rolling bearing housings, via a Another section 76.
  • the two sections / conduits 74, 76 pass through the hub 42 before joining other elements of the circuit 70, as will be explained hereinafter.
  • FIG. 3 there is shown an embodiment in which the duct 76 travels downstream along a static portion 78 carried by the exhaust casing, this duct 76 opening in a known manner in a chamber lubricated 80 in which there is one of the rolling bearings 50 to cool.
  • Other lubricated enclosures may be fed similarly without departing from the scope of the invention.
  • the receiver comprises a hydraulic circuit 82 for controlling a cylinder to change the wedge in incidence of the blades of the propeller.
  • a hydraulic pipe 84 passes through the same arm 45 as the one traversed by the lubrication pipe 72. This pipe 84 thus travels radially through this arm 45, over the entire length of the latter, being filled with a fluid , preferably oil, for the control of the jack which will be mentioned below.
  • the pipe 84 is thus connected to a downstream portion of the circuit 82 supplying the control jack, via the section referenced 86 running through the hub 42, before joining the jack 88 as shown in FIG.
  • the duct 86 travels downstream along the static portion 78, this duct 86 opening in known manner into the annular chamber of the cylinder 88 internally defined by the same static portion 78.
  • the annular piston 90 of the jack 88 is mechanically connected, in a manner known per se, to a system 91 for wedging the blades 9a, the modification of the axial position of the piston 90 causing the blades 9a to rotate about their axes 64b , and thus changing the pitch of these blades.
  • the two pipes 72, 84 therefore run side by side over at least a portion of the length of the arm 45 through which they pass, the two adjacent portions preferably being parallel and not far from each other.
  • One of the peculiarities of the present invention lies in the fact of providing thermal bridging means between the two pipes 72, 84, in order to achieve an original heat exchange to evacuate the heat accumulating in the hydraulic pipe 84 relatively static.
  • the thermal bridge means arranged between the two pipes serve to transfer the heat from one pipe to the other, this heat being then removed by the lubricant circulating usually with a high flow in its pipe 72, unlike the fluid of the hydraulic cylinder control line 84 which is relatively static.
  • the thermal bridge means here take the form of a plurality of lamellae 94 each having two ends respectively connected to the two pipes 72, 84, preferably by welding.
  • the lamellae 94 are preferably made of copper or one of its alloys, to improve the heat transfer effect towards the lubrication line 72 through which heat is dissipated.
  • the lamellae 94 are spaced from each other in the radial direction B at which they are preferably orthogonal, and are preferably parallel to each other. Their number can be several tens.
  • the group of lamellae 94 extends along the pipes 72, 84 in a space whose radial length 95 corresponds preferably to the total radial length of the associated arm 45, possibly subtracted from the lengths necessary for the installation of connection bends at the ends.
  • the assembly 100 comprising the two pipes 72, 84 connected by the lamellae 9 further comprises a thermal protection sheath 96 covering at least the assembly formed by these lamellae 94 and the portions of the pipes 72, 84 connected by the lamellae.
  • the sheath 96 extending over substantially the entire length of the arm 45 through it. It is preferably insulated to allow to limit the impact of the thermal radiation of the crank arms, in the direction of the pipes 72, 84 the assembly 100.

Abstract

Ensemble (100) pour turbomachine (1) d'aéronef comprenant une canalisation de circulation d'un lubrifiant (72) ainsi qu'une canalisation hydraulique (84) de commande d'un vérin (88) pour changer le calage en incidence des pales (9a) d'une hélice (9) de la turbomachine, comportant de plus des moyens (94) formant pont thermique entre la canalisation de circulation du lubrifiant (72) et la canalisation hydraulique (84).

Description

DISPOSTIF DE TRANSFERT THERMIQUE ENTRE UNE CANALISATION DE LUBRIFICATION ET UNE CANALISATION HYDRAULIQUE DE COMMANDE DE VERIN DE CALAGE DE PALES
DE TURBOMACHINE
DESCRIPTION
DOMAINE TECHNIQUE
L'invention se rapporte au domaine du refroidissement des canalisations hydrauliques de commande de vérins pour changer le calage en incidence des pales d'une hélice de turbomachine.
Il s'agit de préférence d'une hélice de récepteur de turbomachine, par exemple un système d'hélices contrarotatives, tel qu'un doublet d'hélices contrarotatives d'une turbomachine à soufflantes non carénées. Ce type de turbomachine, également dit turbomachine à « open rotor », est par exemple connu du document FR 2 942 203.
Néanmoins, l'invention pourrait s'appliquer à la commande en incidence des pales d'hélices d'un autre type, par exemple celles de l'hélice d'un turbopropulseur conventionnel.
ETAT DE LA TECHNIQUE ANTERIEURE
Sur les turbomachines à open rotor conventionnelles, le récepteur à doublet d'hélices contrarotatives et non carénées se situe dans la continuité arrière du générateur de gaz, à savoir dans un environnement très chaud. Ce récepteur inclut généralement un carter d'échappement de la turbomachine, dont les bras cheminant à travers la veine permettent le passage d'éléments variés comme des canalisations hydrauliques de commande de vérins pour changer le calage en incidence des pales de l'une et/ou l'autre des deux hélices.
A travers ces canalisations hydrauliques, le fluide est considéré comme relativement statique, car il n'est pas constamment nécessaire de le faire circuler au travers de ces canalisations, puisque l'incidence des pales n'est pas modifiée en permanence.
Le caractère relativement statique et l'exposition à la chaleur du fluide entraînent un risque de cokéfaction important, susceptible de réduire voire d'obturer les sections d'alimentation requises pour le bon fonctionnement de la turbomachine. Ce risque est d'autant plus élevé que l'environnement des canalisations hydrauliques est chaud, ce qui est particulièrement le cas lorsque celles-ci transitent par les bras du carter d'échappement échauffé par sa position en sortie de générateur de gaz, ces canalisations étant en effet dans ce cas soumises au rayonnement thermique du carter.
I I peut donc, dans certaines circonstances comme celles décrites ci- dessus, être nécessaire de prévoir un refroidissement de ces canalisations hydrauliques, afin d'éviter la problématique mentionné ci-dessus. Néanmoins, les solutions conventionnelles pour effectuer un tel refroidissement apparaissent mal adaptées à un environnement déjà très dense, et sont par ailleurs particulièrement coûteuses. EXPOSÉ DE L'INVENTION
L'invention a donc pour but de remédier au moins partiellement aux inconvénients mentionnés ci-dessus, relatifs aux réalisations de l'art antérieur.
Pour ce faire, l'invention a pour objet un ensemble pour turbomachine d'aéronef comprenant une canalisation de circulation d'un lubrifiant ainsi qu'une canalisation hydraulique de commande d'un vérin pour changer le calage en incidence des pales d'une hélice de la turbomachine, l'ensemble comportant en outre des moyens formant pont thermique entre ladite canalisation de circulation du lubrifiant et ladite canalisation hydraulique.
L'invention apporte une solution originale, simple, efficace et peu coûteuse à la problématique rencontrée dans l'art antérieur. En effet, le principe selon l'invention rompt avec les technologies conventionnelles d'échange de chaleur en prévoyant d'utiliser une servitude existante, en l'occurrence la canalisation adjacente de lubrification, pour évacuer la chaleur s'accumulant dans la canalisation hydraulique de commande de vérin. Les moyens formant pont thermique agencés entre les deux canalisations servent donc à transférer la chaleur d'une canalisation à l'autre, cette chaleur étant ensuite évacuée par le lubrifiant circulant habituellement avec un débit important dans sa canalisation, contrairement au fluide de la canalisation hydraulique de commande de vérin qui est relativement statique.
Ainsi, grâce à la simple adjonction des moyens formant pont thermique propres à l'invention, la canalisation hydraulique de commande de vérin n'est plus soumise au risque de cokéfaction, même lorsqu'elle est placée dans un environnement chaud.
De préférence, lesdits moyens formant pont thermique comprennent une pluralité de lamelles présentant chacune deux extrémités respectivement raccordées à ladite canalisation de circulation du lubrifiant et à ladite canalisation hydraulique. Plus généralement, ces moyens peuvent prendre toute forme de moyens solides raccordés directement à chacune des deux canalisations.
De préférence, lesdits moyens formant pont thermique sont réalisés en cuivre ou dans l'un de ses alliages. Ce type de matériau favorise la conduction thermique, et améliore ainsi l'effet de dissipation thermique à travers la canalisation de lubrification. Tout autre matériau possédant une forte capacité à conduire la chaleur peut être envisagé, sans sortir du cadre de l'invention.
De préférence, l'ensemble comprend une gaine de protection thermique recouvrant l'assemblage formé par les moyens formant pont thermique et les portions des canalisations reliées par ces mêmes moyens. Cette protection permet avantageusement de limiter l'impact du rayonnement thermique des éléments chauds environnants, en direction de l'ensemble selon l'invention.
L'invention a également pour objet un récepteur de turbomachine d'aéronef, comprenant :
- au moins une hélice comprenant des pales ;
- un vérin pour changer le calage en incidence des pales de l'hélice ;
- un carter comprenant un moyeu et une virole extérieure reliés par des bras et définissant entre eux une veine d'écoulement des gaz, ledit carter étant de préférence un carter d'échappement ; et - au moins un ensemble tel que décrit ci-dessus, agencé dans l'un desdits bras du carter.
Dans ce cas de figure, la canalisation hydraulique de commande de vérin est essentiellement protégée des risques liés à la chaleur dégagée par le carter qu'elle traverse, cette chaleur rayonnante pouvant être très élevée en particulier lorsqu'il s'agit d'un carter d'échappement situé derrière le générateur de gaz.
De préférence, le récepteur comprend en outre un dispositif de transmission mécanique formant réducteur et comprenant un train épicycloïdal, ledit dispositif étant alimenté en lubrifiant par ladite canalisation de circulation du lubrifiant.
De préférence, le récepteur comprend en outre au moins une enceinte lubrifiée logeant au moins un palier à roulement, ladite enceinte étant alimentée en lubrifiant par ladite canalisation de circulation du lubrifiant.
De préférence, le récepteur comprend une pluralité d'ensembles tel que celui décrit ci-dessus, répartis dans différents bras dudit carter. Plusieurs bras, voire la totalité d'entre eux sont donc équipés d'au moins un tel ensemble, et plusieurs de ces ensembles peuvent traverser un même bras. Il est également possible qu'une même canalisation hydraulique de commande de vérin soit reliée par ponts thermiques à différentes canalisations de lubrification, sans sortir du cadre de l'invention.
De préférence, le récepteur est un système d'hélices contra rotatives, et plus préférentiellement un doublet d'hélices contrarotatives.
Enfin, l'invention concerne une turbomachine pour aéronef comprenant un récepteur tel que décrit ci-dessus, de préférence situé en aval d'un générateur de gaz de cette turbomachine.
D'autres avantages et caractéristiques de l'invention apparaîtront dans la description détaillée non limitative ci-dessous.
BRÈVE DESCRIPTION DES DESSINS
Cette description sera faite au regard des dessins annexés parmi lesquels ; - la figure 1 représente une vue épurée en coupe longitudinale d'une turbomachine du type à « open rotor », destinée à intégrer un ensemble selon l'invention ;
- la figure 2 est une vue en coupe prise le long de la ligne ll-ll de la figure 1 ;
- la figure 3 est une vue en coupe plus détaillée d'une partie du récepteur de la turbomachine montrée sur la figure 1 ;
- la figure 4 est une vue partiellement en coupe d'un ensemble selon un mode de réalisation préféré de l'invention, intégré au récepteur de la turbomachine montré sur les figures précédentes ; et
- la figure 5 est une vue en perspective de l'ensemble montré sur la figure 4.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PRÉFÉRÉS
En référence à la figure 1, on peut apercevoir une turbomachine 1 du type à « open rotor », destinée à intégrer un ensemble selon l'invention. Sur cette figure, certains éléments de la turbomachine ont volontairement été omis pour des raisons de clarté.
La direction A correspond à la direction longitudinale ou direction axiale, parallèle à l'axe longitudinal 2 de la turbomachine. La direction B correspond quant à elle à la direction radiale de la turbomachine. De plus, la flèche 4 schématise la direction d'avancement de l'aéronef sous l'action de la poussée de la turbomachine 1, cette direction d'avancement étant contraire au sens principal d'écoulement des gaz au sein de la turbomachine. Les termes « avant » et « aval » utilisés dans la suite de la description sont à considérer par rapport à cette direction d'avancement 4.
En partie avant, la turbomachine présente une entrée d'air 6 se poursuivant vers l'arrière par une nacelle 8, celle-ci comportant globalement une peau extérieure 10 et une peau intérieure 12, toutes les deux centrées sur l'axe 2 et décalées radialement l'une de l'autre. La peau intérieure 12 forme carter radial externe pour un générateur de gaz 14, comprenant de façon classique, de l'avant vers l'arrière, un compresseur basse pression 16, un compresseur haute pression 18, une chambre de combustion 20, une turbine haute pression 22, et une turbine de pression intermédiaire 24. Le compresseur 16 et la turbine 24 sont reliées mécaniquement par un arbre 26, formant ainsi un corps de faible pression, tandis que le compresseur 18 et la turbine 22 sont reliées mécaniquement par un arbre 28, formant un corps de pression plus élevée. Par conséquent, le générateur de gaz 14 présente de préférence une conception classique, dite à double corps.
En aval de la turbine de pression intermédiaire 24, se trouve un récepteur 30 de la turbomachine, ce récepteur formant un système d'hélices contra rotatives, et plus précisément un doublet d'hélices contrarotatives.
Le récepteur 30 comprend une turbine libre de puissance 32, formant turbine basse pression et se situant juste à l'arrière du générateur de gaz 14. Elle comporte un rotor 32a constituant la partie interne de la turbine, ainsi qu'un stator 32b constituant la partie externe de cette turbine, qui est reliée fixement à un ensemble de carter fixe 34 de ce système d'hélices, centré sur l'axe longitudinal 2 du système. Ce stator 34 est de façon connue destiné à être solidaire des autres carters de la turbomachine. Comme évoqué ci-dessus, il est indiqué que le récepteur 30 est conçu de sorte que les hélices soient dépourvues de carénage radial extérieur les entourant, comme cela est visible sur la figure 1.
De plus, en aval de la turbine contrarotative 32, le récepteur 30 intègre une première hélice 7 ou hélice aval, portant des pales 7a. De manière analogue, le système 30 comprend une seconde hélice 9 ou hélice amont, portant des pales 9a. Ainsi, les hélices 7, 9 sont décalées l'une de l'autre selon la direction 4, et toutes les deux situées en aval de la turbine libre 32.
Les deux hélices 7, 9 sont destinées à tourner dans des sens opposés autour de l'axe 2 sur lequel elles sont centrées, les rotations s'effectuant par rapport au stator 34 restant immobile. Pour l'entraînement en rotation de ces deux hélices 7, 9, il est prévu un dispositif de transmission mécanique 13, formant réducteur et comprenant notamment un train épicycloïdal 15.
En référence aux figures 1 et 2, le train 15 est muni d'un planétaire 17 centré sur l'axe longitudinal 2, et porté par un arbre planétaire 19 de même axe, relié solidairement vers l'amont au rotor 32a, par le biais d'une bride 38. Ainsi, le rotor 32a entraîne directement le planétaire 17 en rotation, ce dernier prenant la forme d'une roue dentée extérieurement.
Le train 15 comporte également un satellite 21, et de préférence plusieurs comme cela est visible sur la figure 2, chacun d'eux engrenant avec le planétaire 17. Chaque satellite 21 est porté par un arbre satellite 23 d'axe excentré par rapport à l'axe 2, et prend la forme d'une roue dentée extérieurement.
En outre, le train 15 est équipé d'un porte-satellites 25 centré sur l'axe longitudinal 2, et portant de manière rotative chacun des satellites 21, par l'intermédiaire des arbres 23, respectivement. Le porte-satellites 25 est porté par un arbre de porte- satellites 29 de même axe, solidaire de la première hélice 7, comme cela est visible sur la figure 1, de manière à pouvoir l'entraîner directement en rotation.
Enfin, le train 15 dispose d'une couronne 31 centrée sur l'axe 2 et portée par un arbre de couronne 33 de même axe, cette couronne 31 engrenant avec chaque satellite 21. L'arbre 33 s'étend vers l'aval en étant solidaire de la seconde hélice 9, de manière à pouvoir l'entraîner directement en rotation. Par exemple, cet arbre 33 se trouve situé autour de l'arbre de porte-satellites 29 avec lequel il est concentrique. La couronne 31 prend quant à elle la forme d'une roue dentée intérieurement.
Le train épicycloïdal 15 se situe au droit et à l'intérieur d'un carter 42 interposé entre la turbine libre de puissance 32 et les hélices 7, 9. Ce carter 42, également dénommé carter d'échappement ou encore « static frame », porte une attache moteur 44 destinée à assurer l'accrochage de la turbomachine sur la structure de l'aéronef. D'une façon générale, il est indiqué que le dispositif de transmission mécanique est logé dans le moyeu 43 du carter 42, ce dernier comprenant également une virole extérieure 47 reliée au moyeu par des bras radiaux 45. La virole extérieure 47 se situe dans la continuité arrière de l'enveloppe du stator 32b.
Le carter 42, à l'aval duquel se situent les hélices et à l'amont duquel se situe la turbine de puissance 32, comprend une extension de carter 46 s'étendant dans la direction aval par rapport à une portion centrale de ce carter. Cette extension 46 prend la forme d'un cylindre creux centré sur l'axe 2, supportant en rotation un moyeu 48b de la seconde hélice, ce moyeu 48b se confondant avec l'arbre de couronne 33, comme cela est visible sur la figure 1. Ce support en rotation s'effectue par l'intermédiaire de deux paliers à roulement 50 espacés l'un de l'autre selon la direction A, et interposés entre l'extension 46 et le moyeu 48b.
La seconde hélice 9 comporte également une virole extérieure 56b disposée concentriquement au moyeu 48b, et participant à la délimitation radiale vers l'extérieur d'une veine annulaire principale 58, cette veine étant également délimitée entre le moyeu 43 et la virole extérieure 47 au niveau du carter d'échappement 42.
De plus, elle comprend également une pluralité de bras de raccord 60b reliant la virole extérieure 56b au moyeu 48b. Les bras de raccord 60b portent une seconde virole intermédiaire 62b disposée entre le moyeu 48b et la virole extérieure 56b, cette virole 62b participant à la délimitation radiale vers l'intérieur de la veine annulaire principale 58.
En outre, comme le montre la figure 1 et comme cela sera plus détaillé en référence à la figure 3, chaque pale 9a est montée de manière à pouvoir être pilotée / calée en incidence autour de son axe de pivotement 64b, par son système de calage variable (non représenté sur la figure 1).
L'arbre de couronne 33 prend la forme d'un cylindre creux centré sur l'axe 2, supportant en rotation un moyeu 48a de la première hélice, ce moyeu 48a se confondant avec l'arbre de porte-satellites 29, comme cela est visible sur la figure 1. Ce support en rotation s'effectue par l'intermédiaire de deux paliers à roulement 66 espacés l'un de l'autre selon la direction A, et interposés entre les deux moyeux 48b, 48a.
La première hélice 7 comporte également une virole extérieure 56a disposée concentriquement au moyeu 48a, et participant à la délimitation radiale vers l'extérieur de la veine annulaire principale 58. Elle se situe dans le prolongement aérodynamique aval de la virole extérieure 56b de la seconde hélice.
De plus, elle comprend également une pluralité de bras de raccord 60a reliant la virole extérieure 56a au moyeu 48a. En outre, les bras de raccord 60a de la première hélice portent une première virole intermédiaire 62a disposée entre le moyeu 48a et la virole extérieure 56a, cette virole 62a participant aussi à la délimitation radiale vers l'intérieur de la veine annulaire principale 58. Elle se situe dans le prolongement aérodynamique aval de la virole intermédiaire 62b de la seconde hélice.
En référence à présent plus spécifiquement à la figure 2, il est montré que le récepteur comporte un circuit de lubrification 70 destiné à alimenter en lubrifiant le dispositif de transmission, et plus particulièrement son tain épicycloïdal 15. Pour ce faire, une canalisation 72 de circulation d'un lubrifiant, de préférence de l'huile, traverse l'un des bras 45 du carter d'échappement 42. Cette canalisation 72 chemine donc radialement à travers l'un des bras 45, sur toute la longueur de ce dernier, pour faire circuler le lubrifiant frais venant radialement de l'extérieur du carter 42 en direction des éléments à refroidir. En particulier, la canalisation 72 est raccordée à une partie aval du circuit 70 alimentant d'une part le train 15 pour son refroidissement, via la section référencée 74, et alimentant d'autre part une ou plusieurs enceintes de palier à roulement, via une autre section 76. Les deux sections / conduits 74, 76 cheminent à travers le moyeu 42 avant de rejoindre d'autres éléments du circuit 70, tel que cela sera expliqué ci-après.
En référence à la figure 3, il est montré un exemple de réalisation dans lequel le conduit 76 chemine vers l'aval le long d'une partie statique 78 portée par le carter d'échappement, ce conduit 76 débouchant de façon connue dans une enceinte lubrifiée 80 dans laquelle se trouve l'un des paliers à roulement 50 à refroidir. D'autres enceintes lubrifiées peuvent être alimentées de manière similaire, sans sortir du cadre de l'invention.
Le lubrifiant s'écoule donc en continue dans le circuit 70 à travers le train 15 et l'enceinte 80, en étant recirculé pour à nouveau être amené en amont de la canalisation 72 traversant le bras du carter d'échappement. Par ailleurs, de retour à la figure 2, il est montré que le récepteur comporte un circuit de hydraulique 82 destiné à la commande d'un vérin pour changer le calage en incidence des pales de l'hélice. Pour ce faire, une canalisation hydraulique 84 traverse le même bras 45 que celui traversé par la canalisation de lubrification 72. Cette canalisation 84 chemine donc radialement à travers ce bras 45, sur toute la longueur de ce dernier, en étant remplie d'un fluide, de préférence de l'huile, pour la commande du vérin qui sera évoqué ci-après. La canalisation 84 est ainsi raccordée à une partie aval du circuit 82 alimentant le vérin de commande, via la section référencée 86 cheminant à travers le moyeu 42, avant de rejoindre le vérin 88 comme cela est représenté sur la figure 3.
En effet, le conduit 86 chemine vers l'aval le long de la partie statique 78, ce conduit 86 débouchant de façon connue dans la chambre annulaire du vérin 88 définie intérieurement par cette même partie statique 78. A cet égard, il est noté que le piston annulaire 90 du vérin 88 est raccordé mécaniquement d'une manière connue en soi à un système 91 de calage en incidence des pales 9a, la modification de la position axiale de ce piston 90 entraînant une rotation des pales 9a autour de leurs axes 64b, et modifiant ainsi le pas de ces pales.
Les deux canalisations 72, 84 cheminent donc côte-à-côte sur au moins une partie de la longueur du bras 45 qu'elles traversent, les deux portions adjacentes étant de préférence parallèles, et peu éloignées l'une de l'autre. L'une des particularités de la présente invention réside dans le fait de prévoir des moyens formant pont thermique entre les deux canalisations 72, 84, afin d'aboutir à un échange thermique original permettant d'évacuer la chaleur s'accumulant dans la canalisation hydraulique 84 relativement statique. Les moyens formant pont thermique agencés entre les deux canalisations servent en effet à transférer la chaleur d'une canalisation à l'autre, cette chaleur étant ensuite évacuée par le lubrifiant circulant habituellement avec un débit important dans sa canalisation 72, contrairement au fluide de la canalisation hydraulique 84 de commande de vérin qui est relativement statique.
Les moyens formant pont thermique prennent ici la forme d'une pluralité de lamelles 94 présentant chacune deux extrémités respectivement raccordées à aux deux canalisations 72, 84, de préférence par soudage. Les lamelles 94 sont de préférence réalisées en cuivre ou dans l'un de ses alliages, pour améliorer l'effet de transfert thermique en direction de la canalisation de lubrification 72 à travers laquelle la chaleur est dissipée. Les lamelles 94 sont espacées les unes des autres selon la direction radiale B à la laquelle elles sont préférentiellement orthogonales, et sont de préférence parallèles entre elles. Leur nombre peut être de plusieurs dizaines. De préférence, le groupe de lamelles 94 s'étend le long des canalisations 72, 84 dans un espace dont la longueur radiale 95 correspond de préférence à la longueur radiale totale du bras 45 associé, éventuellement soustraite des longueurs nécessaires à la mise en place de coudes de raccordement situés aux extrémités.
Dans le mode de réalisation préféré qui est décrit et représenté, l'ensemble 100 comprenant les deux canalisations 72, 84 raccordées par les lamelles 9 comporte en outre une gaine de protection thermique 96 recouvrant au moins l'assemblage formé par ces lamelles 94 et les portions des canalisations 72, 84 reliées par les lamelles. Ici, la gaine 96 s'étant sur sensiblement toute la longueur du bras 45 qu'elle travers. Elle est de préférence calorifugée pour permettre de limiter l'impact du rayonnement thermique des bras de carter, en direction des canalisations 72, 84 l'ensemble 100.
Il est noté que plusieurs ensembles 100 peuvent être prévus au sein d'un même bras 45 de carter d'échappement, partageant ou non la même gaine 96. De plus, plusieurs des bras 45 sont équipés d'au moins un tel ensemble.
Bien entendu, diverses modifications peuvent être apportées par l'homme du métier à l'invention qui vient d'être décrite, uniquement à titre d'exemples non limitatifs.

Claims

REVENDICATIONS 1. Ensemble (100) pour turbomachine (1) d'aéronef comprenant une canalisation de circulation d'un lubrifiant (72) ainsi qu'une canalisation hydraulique (84) de commande d'un vérin (88) pour changer le calage en incidence des pales (9a) d'une hélice (9) de la turbomachine,
caractérisé en ce qu'il comporte des moyens (94) formant pont thermique entre ladite canalisation de circulation du lubrifiant (72) et ladite canalisation hydraulique (84).
2. Ensemble selon la revendication 1, caractérisé en ce que lesdits moyens formant pont thermique comprennent une pluralité de lamelles (94) présentant chacune deux extrémités respectivement raccordées à ladite canalisation de circulation du lubrifiant et à ladite canalisation hydraulique.
3. Ensemble selon la revendication 1 ou la revendication 2, caractérisé en ce que lesdits moyens formant pont thermique (94) sont réalisés en cuivre ou dans l'un de ses alliages.
4. Ensemble selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend une gaine de protection thermique (96) recouvrant l'assemblage formé par les moyens formant pont thermique (94) et les portions des canalisations (72, 84) reliées par ces mêmes moyens.
5. Récepteur (30) de turbomachine d'aéronef, comprenant :
- au moins une hélice (9) comprenant des pales (9a) ;
- un vérin (88) pour changer le calage en incidence des pales de l'hélice ; - un carter (42) comprenant un moyeu (43) et une virole extérieure (47) reliés par des bras (45) et définissant entre eux une veine (58) d'écoulement des gaz, ledit carter étant de préférence un carter d'échappement ; et
- au moins un ensemble (100) selon l'une quelconque des revendications précédentes, agencé dans l'un desdits bras (45) du carter.
6. Récepteur selon la revendication 5, caractérisé en ce qu'il comprend en outre un dispositif de transmission mécanique (13) formant réducteur et comprenant un train épicycloïdal (15), ledit dispositif étant alimenté en lubrifiant par ladite canalisation de circulation du lubrifiant (72).
7. Récepteur selon la revendication 5 ou la revendication 6, caractérisé en ce qu'il comprend en outre au moins une enceinte lubrifiée (80) logeant au moins un palier à roulement (50), ladite enceinte étant alimentée en lubrifiant par ladite canalisation de circulation du lubrifiant (72).
8. Récepteur selon l'une quelconque des revendications 5 à 7, caractérisé en ce qu'il comprend une pluralité d'ensembles (100) selon l'une quelconque des revendications 1 à 4, répartis dans différents bras (45) dudit carter.
9. Récepteur selon l'une quelconque des revendications 5 à 8, caractérisé en ce qu'il est un système d'hélices contra rotatives.
10. Turbomachine (1) pour aéronef comprenant un récepteur (30) selon l'une quelconque des revendications 5 à 9, de préférence situé en aval d'un générateur de gaz de cette turbomachine.
PCT/FR2013/051732 2012-07-20 2013-07-18 Dispostif de transfert thermique entre une canalisation de lubrification et une canalisation hydraulique de commande de verin de calage de pales de turbomachine WO2014013201A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/414,343 US20150219014A1 (en) 2012-07-20 2013-07-18 Device for the transfer of heat between a lubrication pipe and a turbomachine blade pitch actuator control hydraulic pipe
BR112015000289A BR112015000289A2 (pt) 2012-07-20 2013-07-18 receptor de uma turbomáquina para aeronave, e, turbomáquina para aeronave
GB1502799.8A GB2519478A (en) 2012-07-20 2013-07-18 Device for the transfer of heat between a lubrication pipe and a turbomachine blade pitch actuator control hydraulic pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1257075A FR2993607B1 (fr) 2012-07-20 2012-07-20 Dispostif de transfert thermique entre une canalisation de lubrification et une canalisation hydraulique de commande de verin de calage de pales de turbomachine
FR1257075 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014013201A1 true WO2014013201A1 (fr) 2014-01-23

Family

ID=46963916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051732 WO2014013201A1 (fr) 2012-07-20 2013-07-18 Dispostif de transfert thermique entre une canalisation de lubrification et une canalisation hydraulique de commande de verin de calage de pales de turbomachine

Country Status (5)

Country Link
US (1) US20150219014A1 (fr)
BR (1) BR112015000289A2 (fr)
FR (1) FR2993607B1 (fr)
GB (1) GB2519478A (fr)
WO (1) WO2014013201A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937510A1 (fr) * 2014-04-25 2015-10-28 Siemens Aktiengesellschaft Turbine à supports de refroidissement améliorés
WO2018037183A1 (fr) * 2016-08-26 2018-03-01 Safran Aircraft Engines Systeme de changement de pas equipe de moyens de lubrification d'un palier de transfert de charge
FR3055308A1 (fr) * 2016-08-26 2018-03-02 Safran Aircraft Engines Moyen de commande d'un systeme de changement de pas comprenant un dispositif anti-rotation, systeme de changement de pas equipe dudit moyen de commande et turbomachine correspondante
FR3066558A1 (fr) * 2017-05-18 2018-11-23 Safran Aircraft Engines Module de soufflante a pales a calage variable

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3036093B1 (fr) * 2015-05-12 2017-06-02 Snecma Dispositif a bras de levier pour la commande de l'orientation des pales de soufflante d'une turbomachine a soufflante non carenee
FR3059353B1 (fr) * 2016-11-29 2019-05-17 Safran Aircraft Engines Aube directrice de sortie pour turbomachine d'aeronef, comprenant une zone coudee de passage de lubrifiant presentant une conception amelioree
FR3066559B1 (fr) * 2017-05-18 2019-06-07 Safran Aircraft Engines Module de soufflante a pales a calage variable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11182207A (ja) * 1997-12-19 1999-07-06 Fuji Electric Co Ltd 蒸気タービンの制御油圧系の配管構造
GB2340890A (en) * 1998-08-18 2000-03-01 British Aerospace Combined environmental control and power system for aircraft
EP1329617A2 (fr) * 2002-01-22 2003-07-23 Hamilton Sundstrand Corporation Système d' écoulement de fluide pour un moteur à turbine à gaz
FR2935749A1 (fr) * 2008-09-11 2010-03-12 Hispano Suiza Sa Circuit de carburant de turbomachine aeronautique
FR2965021A1 (fr) * 2010-09-22 2012-03-23 Snecma Verin hydraulique pour systeme de commande de l'orientation des pales de soufflante d'un turbopropulseur.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782658A (en) * 1987-05-07 1988-11-08 Rolls-Royce Plc Deicing of a geared gas turbine engine
US4722666A (en) * 1987-06-29 1988-02-02 United Technologies Corporation Nose cowl mounted oil lubricating and cooling system
US7744827B2 (en) * 2004-02-13 2010-06-29 United Technologies Corporation Catalytic treatment of fuel to impart coking resistance
US7900438B2 (en) * 2006-07-28 2011-03-08 General Electric Company Heat transfer system and method for turbine engine using heat pipes
US7823374B2 (en) * 2006-08-31 2010-11-02 General Electric Company Heat transfer system and method for turbine engine using heat pipes
EP2072763B1 (fr) * 2007-12-21 2015-04-08 Techspace Aero S.A. Système d'échange de chaleur dans une turbomachine
US20090313999A1 (en) * 2008-05-13 2009-12-24 Scott Hunter Method and apparatus for controlling fuel in a gas turbine engine
US7984606B2 (en) * 2008-11-03 2011-07-26 Propulsion, Gas Turbine, And Energy Evaluations, Llc Systems and methods for thermal management in a gas turbine powerplant
FR2942203B1 (fr) * 2009-02-13 2011-04-22 Snecma Systeme d'helices contrarotatives a encombrement reduit
WO2010121255A1 (fr) * 2009-04-17 2010-10-21 Echogen Power Systems Système et procédé pour gérer des problèmes thermiques dans des moteurs à turbine à gaz
EP2336525B1 (fr) * 2009-12-21 2015-08-26 Techspace Aero S.A. Intégration d'un échangeur de chaleur air-liquide sur moteur
US8910465B2 (en) * 2009-12-31 2014-12-16 Rolls-Royce North American Technologies, Inc. Gas turbine engine and heat exchange system
EP2472067B1 (fr) * 2010-12-31 2013-09-25 Techspace Aero S.A. Intégration d'un échangeur de chaleur surfacique avec débit d'air régulé dans un moteur d'avion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11182207A (ja) * 1997-12-19 1999-07-06 Fuji Electric Co Ltd 蒸気タービンの制御油圧系の配管構造
GB2340890A (en) * 1998-08-18 2000-03-01 British Aerospace Combined environmental control and power system for aircraft
EP1329617A2 (fr) * 2002-01-22 2003-07-23 Hamilton Sundstrand Corporation Système d' écoulement de fluide pour un moteur à turbine à gaz
FR2935749A1 (fr) * 2008-09-11 2010-03-12 Hispano Suiza Sa Circuit de carburant de turbomachine aeronautique
FR2965021A1 (fr) * 2010-09-22 2012-03-23 Snecma Verin hydraulique pour systeme de commande de l'orientation des pales de soufflante d'un turbopropulseur.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937510A1 (fr) * 2014-04-25 2015-10-28 Siemens Aktiengesellschaft Turbine à supports de refroidissement améliorés
WO2018037183A1 (fr) * 2016-08-26 2018-03-01 Safran Aircraft Engines Systeme de changement de pas equipe de moyens de lubrification d'un palier de transfert de charge
FR3055308A1 (fr) * 2016-08-26 2018-03-02 Safran Aircraft Engines Moyen de commande d'un systeme de changement de pas comprenant un dispositif anti-rotation, systeme de changement de pas equipe dudit moyen de commande et turbomachine correspondante
FR3055309A1 (fr) * 2016-08-26 2018-03-02 Safran Aircraft Engines Systeme de changement de pas equipe de moyens de lubrification d'un palier de transfert de charge
US10648406B2 (en) 2016-08-26 2020-05-12 Safran Aircraft Engines Means for controlling a pitch change system comprising an anti-rotation device, a pitch change system equipped with said control means, and a corresponding turbine engine
US10940938B2 (en) 2016-08-26 2021-03-09 Safran Aircraft Engines Pitch-changing system equipped with means for lubricating a load-transfer bearing
FR3066558A1 (fr) * 2017-05-18 2018-11-23 Safran Aircraft Engines Module de soufflante a pales a calage variable
US10533573B2 (en) 2017-05-18 2020-01-14 Safran Aircraft Engines Fan module with variable pitch blades

Also Published As

Publication number Publication date
FR2993607A1 (fr) 2014-01-24
GB201502799D0 (en) 2015-04-08
FR2993607B1 (fr) 2014-08-22
GB2519478A (en) 2015-04-22
US20150219014A1 (en) 2015-08-06
BR112015000289A2 (pt) 2017-06-27

Similar Documents

Publication Publication Date Title
EP3575562B1 (fr) Système de transmission de puissance comprenant un dispositif de récupération d'huile de lubrification et turbomachine équipée d'un tel système de transmission de puissance
WO2014013201A1 (fr) Dispostif de transfert thermique entre une canalisation de lubrification et une canalisation hydraulique de commande de verin de calage de pales de turbomachine
EP2396525B1 (fr) Système d'hélices contrarotatives à encombrement réduit
CA2746569C (fr) Systeme d'helices contrarotatives entrainees par un train epicycloidal offrant une repartition de couple equilibree entre les deux helices
EP3377732B1 (fr) Partie avant de turbomachine d'aéronef
EP3137740B1 (fr) Assemblage pour turbomachine d'aeronef et son procede de montage
FR2991421A1 (fr) Reducteur a train epicycloidal avec axes de satellites montes sur roulements
EP4069944B1 (fr) Raccordement electrique d'une machine electrique dans une turbomachine d'aeronef
FR3022301A1 (fr) Turbomachine comprenant un systeme d'entrainement d'un equipement tel qu'un boitier d'accessoires
EP3137741A1 (fr) Turbomachine d'aeronef a prelevement de puissance mecanique ameliore
CA3099886A1 (fr) Ensemble propulsif pour aeronef muni d'un transformateur tournant d'alimentation des pales en energie electrique
EP4069946B1 (fr) Raccordement électrique d'une machine électrique dans une turbomachine d'aéronef
FR3075875A1 (fr) Circuit d'huile pour turbomachine a boucle d'huile auxiliaire
EP4069948B1 (fr) Module electrique pour une turbomachine d'aeronef
FR3087819A1 (fr) Turbomachine d'aeronef equipee d'une machine electrique
WO2020212666A1 (fr) Reducteur de vitesse d'une turbomachine
FR3110194A1 (fr) Turbomachine d’aeronef comprenant un dispositif de lubrification d’un palier
EP4069945A1 (fr) Barre rigide pour le raccordement electrique d'une machine dans une turbomachine d'aeronef
FR2969714A1 (fr) Recepteur de turbomachine d'aeronef a doublet d'helices contrarotatives non carenees, comprenant une turbine libre exterieure a maintien renforce
FR3086001A1 (fr) Systeme de propulsion d'aeronef a soufflante disposee a une extremite arriere du fuselage
FR3104207A1 (fr) Pressurisation d’enceintes de lubrification dans une turbomachine a turbine contrarotative
FR3065755A1 (fr) Recuperation d'huile dans une turbomachine
WO2022058672A1 (fr) Raccordement electrique d'une machine electrique dans une turbomachine d'aeronef
FR3071026A1 (fr) Pivot pour palier lisse et train d'engrenages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14414343

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1502799

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130718

WWE Wipo information: entry into national phase

Ref document number: 1502799.8

Country of ref document: GB

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015000289

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13747464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015000289

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150107