WO2014012362A1 - 超高精度模数转换的数据采集站 - Google Patents

超高精度模数转换的数据采集站 Download PDF

Info

Publication number
WO2014012362A1
WO2014012362A1 PCT/CN2013/000918 CN2013000918W WO2014012362A1 WO 2014012362 A1 WO2014012362 A1 WO 2014012362A1 CN 2013000918 W CN2013000918 W CN 2013000918W WO 2014012362 A1 WO2014012362 A1 WO 2014012362A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
analog
digital conversion
bit
bits
Prior art date
Application number
PCT/CN2013/000918
Other languages
English (en)
French (fr)
Inventor
郭建
Original Assignee
中国科学院地质与地球物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院地质与地球物理研究所 filed Critical 中国科学院地质与地球物理研究所
Publication of WO2014012362A1 publication Critical patent/WO2014012362A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/188Multi-path, i.e. having a separate analogue/digital converter for each possible range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus

Definitions

  • the present invention relates to a seismic data acquisition station, and more particularly to a data acquisition station for ultra-high precision analog-to-digital conversion.
  • BACKGROUND OF THE INVENTION In the field of geological exploration, the analog-to-digital conversion of data acquisition in exploration instruments currently uses high-precision 24-bit dedicated chips, and the main manufacturers are TI and Cirrus Logic. Due to the noise and stability problems of these devices, the low 4 bits are basically unstable, so an effective output of about 20 bits can be achieved, which means that the current geological exploration instrument can reach a dynamic range of about 120 dB. In seismic exploration, as the arrangement continues to lengthen, the dynamic range of the near and far shot signals has far exceeded 120 dB.
  • the present invention is directed to overcoming the above-discussed deficiencies of the prior art, and provides a data acquisition station capable of improving the dynamic range of a surveying instrument with a super-precision analog-to-digital conversion.
  • the data acquisition station of the ultra-high precision analog-to-digital conversion of the invention consists of five major units: sensor sensor, analog to digital conversion unit AtoD (Analog to Digital), data superimposing unit SU (Sum Unit) control module CM (Control Module And the power supply circuit PM (Power Module); the input end of the analog-to-digital conversion unit AtoD is connected to the sensor Sensor, and the output end is connected to the data superimposing unit SU; the control module CM is an embedded CPU, and the detection and control analog-to-digital conversion unit AtoD is completed.
  • the invention relates to oil, natural gas, coal field and mineral exploration, geological engineering survey, geological disaster monitoring and the like, and is a device for detecting artificial and natural seismic signals and converting them into digital signals, belonging to the field of seismic exploration and seismic detection. It has the advantages of improving the dynamic range of the exploration instrument and realizing ultra-high precision analog-to-digital conversion.
  • the analog-to-digital conversion unit AtoD utilizes two 24-bit analog-to-digital conversion devices, and adopts different combinations to realize analog-digital conversion of various precisions.
  • the analog-to-digital conversion unit AtoD consists of two 24-bit analog-to-digital conversion devices ADU (Analog to Digital Unit), one of which has a preamplifier gain set to 36dB, the low-order converter converts 1 to 24 bits of data, and the other has a preamplifier gain of 0dB, which converts 25 to 30 bits of data as a high-order converter.
  • the 1 to 24 bits are low order data
  • the 25 to 30 bits are high order data.
  • the analog-to-digital conversion accuracy commonly used in digital seismic instruments is 24 bits.
  • the device of the present invention realizes 30 by using two 24-bit analog-to-digital conversion devices.
  • the data superimposing unit SU superimposes and combines 1 to 24 bits of low order data and 25 to 30 bits of high order data of the analog to digital conversion unit AtoD.
  • S1 is 1 to 24 bits for low-end data
  • S2 is 25 to 30 bits for high-end data
  • the data S after the synthesis formula is: S - S1 + S2 X 2 24 .
  • the synthesized data is 30-bit binary data.
  • the analog-to-digital conversion unit AtoD and the data superimposing unit SU realize ultra-high-precision analog-digital conversion of 30 bits by using two 24-bit analog-to-digital conversion devices ADU.
  • the invention can be used for any data acquisition that requires ultra-high precision analog to digital conversion.
  • the data superimposing unit SU can be superimposed by a plurality of superimposing methods: for example, the low-order converter converts the data of 1 to 24-n bits with the 25-n to 30-bit data converted by the high-order converter.
  • n ⁇ 16 is based on the last 4 bits of instability of the analog to digital converter.
  • the sensor sensor may be a geophone such as a MEMS sensor or a moving coil detector.
  • the data superimposing units SU we separately list the data superimposing units SU, and in the actual circuit, the function of the data superimposing unit SU can be performed by the control module CM.
  • the data acquisition station of the ultra-high precision analog-to-digital conversion of the invention has the advantages of improving the dynamic range of the exploration instrument and realizing ultra-high precision analog-digital conversion.
  • FIG. 2 is a schematic block diagram of a data acquisition station for ultra-high precision analog-to-digital conversion of the present invention.
  • the data acquisition station of the ultra-high precision analog-to-digital conversion device of the device comprises five major units: a sensor sensor, an analog to digital conversion unit AtoD (Analogy to Digital), a data superimposing unit SU (Sum Unit), and a control module CM ( Control Module) and power supply circuit PM (Power Module).
  • the data acquisition station of the ultra-high precision analog-to-digital conversion of the invention realizes 30-bit ultra-high precision analog-to-digital conversion by using two 24-bit analog-to-digital conversion devices ADU (Analog to Digital Unit).
  • the analog-to-digital conversion unit AtoD in the ultra-high-precision analog-to-digital conversion data acquisition station of the present invention is composed of two 24-bit analog-to-digital conversion devices ADU, wherein one of the preamplifier gains is set to 36 dB, which is converted to 1 by the low-order converter. 24-bit data.
  • the other chip's preamplifier gain is set to 0dB, which converts 25 to 30 bits of data as a high-order converter.
  • the 1 to 24 bits are low order data, and the 25 to 30 bits are high order data.
  • the input end of the analog-to-digital conversion unit AtoD is connected to the sensor Sensor, and the output end is connected to the data superimposing unit SU.
  • the analog-to-digital conversion device ADU can use Cirrus Logic's A/D conversion kits CS3301A/CS3302A, CS5373A and CS5378 or the company's AD1282 chip, both of which are dedicated to seismic exploration and widely used in seismic exploration instruments.
  • the data superimposing unit SU in the data acquisition station of the ultra-high-precision analog-to-digital conversion of the present invention superimposes the 1-bit to 24-bit low-order data of the analog-to-digital conversion unit AtoD and the 25 to 30-bit high-order data (see Fig. 2).
  • S1 be 1 to 24 bits for low-end data
  • S2 for 25 to 30 bits for high-end data.
  • the data S after synthesizing formula is: S - S1 + S2 X 2 2
  • the synthesized data is 30-bit binary data.
  • the data superimposing unit SU in the data acquisition station of the ultra-high precision analog-to-digital conversion of the present invention can be superposed by various methods: for example, the low-order converter converts the data of 1 to 24-n bits with the 25-n to 30 bits of the high-order converter conversion. The data is superimposed (n ⁇ 16), and n ⁇ 16 is chosen to take into account the last 4 bits of instability of the analog to digital conversion device.
  • the control module CM in the data acquisition station of the ultra-high precision analog-to-digital conversion of the present invention is an embedded CPU, and completes the state of detecting and controlling the analog-to-digital conversion unit AtoD, the data superimposing unit SU, and the power supply circuit PM.
  • the power supply circuit PM in the data acquisition station of the ultra-high precision analog-to-digital conversion of the present invention provides power supply support for the sensor sensor analog-to-digital conversion unit AtoD, the data superimposing unit SU, and the control module CM.
  • the sensor sensor in the data acquisition station of the ultra-high precision analog-to-digital conversion of the present invention may be a geophone such as a MEMS sensor or a moving coil detector.
  • the analog-to-digital conversion unit AtoD in the ultra-high-precision analog-digital conversion data acquisition station of the present invention utilizes two 24-bit analog-to-digital conversion devices ADU, and adopts different combinations to realize analog-digital conversion of various precisions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

超高精度模数转换的数据采集站,由五大单元组成:传感器Sensor、模数转换单元AtoD、数据叠加单元SU、控制模块CM和供电电路PM;模数转换单元AtoD的输入端连接传感器Sensor,输出端连接数据叠加单元SU;所述控制模块CM为嵌入式CPU,完成检测和控制模数转换单元AtoD、数据叠加单元SU和供电电路PM的状态;所述供电电路PM为传感器Sensor、模数转换单元AtoD、数据叠加单元SU和控制模块CM提供电源支持。所述数据叠加单元SU的叠加方式为:低位转换器转换的1至24-n位的数据与高位转换器转换的25-n至30位的数据进行叠加,所述n<16。

Description

超高精度模数转换的数据采集站 技术领域 本发明涉及地震数据采集站, 特别是涉及一种超高精度模数转换的数据采集站。 背景技术 在地质勘探领域, 目前勘探仪器中数据采集的模数转换均采用高精度 24位专用芯片, 主要生产厂家有 TI公司和 Cirrus Logic公司。 由于这些器件本身的噪音和稳定性问题, 低 位的 4位基本是不稳定的, 所以可以实现大约 20位的有效输出, 也就是说目前的地质勘探 仪器可以达到 120dB左右的动态范围。 在地震勘探中, 由于排列不断加长, 近炮点和远炮点信号的动态范围己经远远超过 120dB, 目前仪器的动态范围已经无法满足要求。我们需要发明新技术提高勘探仪器的动态 范围。 发明内容 本发明目的在于克服现有技术的上述缺陷, 提供一种能提高勘探仪器动态范围的超髙 精度模数转换的数据采集站。 为实现上述目的, 本发明超高精度模数转换的数据采集站由五大单元组成: 传感器 Sensor, 模数转换单元 AtoD (Analog to Digital ), 数据叠加单元 SU (Sum Unit) 控制模块 CM (Control Module) 和供电电路 PM (Power Module); 模数转换单元 AtoD的输入端连接 传感器 Sensor, 输出端连接数据叠加单元 SU; 所述控制模块 CM为嵌入式 CPU, 完成检 测和控制模数转换单元 AtoD、数据叠加单元 SU和供电电路 PM的状态;所述供电电路 PM 为传感器 Sensor、 模数转换单元 AtoD、 数据叠加单元 SU和控制模块 CM提供电源支持。 本发明涉及石油、 天然气、 煤田及矿产勘探、 地质工程勘察、 地质灾害监测等方面, 是一 种检测人工或天然地震信号并将其转换成数字信号的装置,属于地震勘探与地震检测领域。 具有能提高勘探仪器动态范围, 实现超高精度模数转换的优点。 作为优化, 所述模数转换单元 AtoD利用两片 24位的模数转换器件, 采用不同的组合 方式, 可以实现多种精度的模数转换。 作为优化, 所述模数转换单元 AtoD 由两片 24位的模数转换器件 ADU (Analog to Digital Unit) 组成, 其中一片的前放增益设置为 36dB, 低位转换器转换 1至 24位的数据; 另一片的前放增益设置为 0dB, 作为高位转换器转换 25至 30位的数据。 所述 1至 24位为 低位数据, 25至 30位为高位数据。 目前数字地震仪器常用的模数转换精度均为 24位, 但 在很多使用环境下, 我们需要超过 24位的模数转换器件, 本发明装置利用两片 24位的模 数转换器件, 实现了 30位模数转换的高动态范围采集。 作为优化,所述数据叠加单元 SU把模数转换单元 AtoD的 1至 24位低位数据和 25至 30位高位数据进行叠加合成。 作为优化, 设 S1为 1至 24位为低端数据, S2为 25至 30位为高端数据, 则合成公式 后的数据 S为: S - S1 + S2 X 224。 合成后的数据为 30位二进制数据。 作为优化, 所述模数转换单元 AtoD和数据叠加单元 SU利用两片 24位的模数转换器 件 ADU, 实现了 30位的超高精度模数转换。 本发明可以用于任何需要超高精度模数转换 的数据采集。 作为优化, 所述数据叠加单元 SU可以由多种叠加方式: 如低位转换器转换 1至 24-n 位的数据与高位转换器转换的 25-n至 30位的数据迸行叠加。
作为优化, 所述 n<16。 选择 n<16是考虑到模数转换器件的最后 4位不稳定性。
作为优化, 所述传感器 Sensor可以是 MEMS传感器、 动圈式检波器等地震检波器。 作为优化, 为了容易说明, 我们把数据叠加单元 SU单独列出, 在实际电路中, 数据 叠加单元 SU的功能可以由控制模块 CM完成。 采用上述技术方案后, 本发明超高精度模数转换的数据采集站具有能提高勘探仪器动 态范围, 实现超高精度模数转换的优点。 附图说明 图 Ϊ是本发明超高精度模数转换的数据采集站原理框图; 图 2是本发明超高精度模数转换的数据采集站两个模数转换器件 ADU转换的低位数据 和高位数据叠加合成示意图。 具体实施方式 在地质勘探领域, 目前勘探仪器中数据采集的模数转换均采用高精度 24位专用芯片。 由于这些器件本身的噪音和稳定性问题, 低位的 4位基本是不稳定的, 所以可以实现大约 20位的有效输出, 也就是说目前的地质勘探仪器可以达到 120dB左右的动态范围。 在地震 勘探中, 由于排列不断加长, 近炮点和远炮点信号的动态范围已经远远超过 120dB, 目前 仪器的动态范围已经无法满足要求。 我们需要发明新技术提高勘探仪器的动态范围。 参见图 1, 本发明装置超高精度模数转换的数据采集站由五大单元组成: 包括传感器 Sensor、 模数转换单元 AtoD (Analogy to Digital )、 数据叠加单元 SU (Sum Unit), 控制模 块 CM (Control Module) 和供电电路 PM (Power Module)。 本发明超高精度模数转换的数据采集站利用两片 24位的模数转换器件 ADU (Analog to Digital Unit), 实现了 30位的超高精度模数转换。 本方法可以用于任何需要超高精度模数 转换的数据采集。 本发明的超高精度模数转换的数据采集站中的模数转换单元 AtoD由两片 24位的模数 转换器件 ADU组成,其中一片的前放增益设置为 36dB, 作为低位转换器转换 1至 24位的 数据。 另一片的前放增益设置为 0dB, 作为高位转换器转换 25至 30位的数据。 所述 1至 24位为低位数据, 25至 30位为高位数据。模数转换单元 AtoD的输入端连接传感器 Sensor, 输出端连接数据叠加单元 SU。 模数转换器件 ADU可以采用 Cirrus Logic公司的 A/D转换 套件 CS3301A/CS3302A、 CS5373A和 CS5378或 Ή公司的 AD1282芯片, 这两种芯片均 为地震勘探专用芯片, 广泛应用于地震勘探仪器。
本发明的超高精度模数转换的数据采集站中的数据叠加单元 SU把模数转换单元 AtoD的 1 至 24位低位数据和 25至 30位高位数据进行叠加合成 (见图 2)。 设 S1为 1至 24位为低 端数据, S2为 25至 30位为高端数据, 则合成公式后的数据 S为: S - S1 + S2 X 22 合成后的数据为 30位二进制数据。 为了容易说明, 我们把数据叠加单元 SU单独列出, 在实际电路中, 数据叠加单元 SU的功能可以由控制模块 CM完成。 本发明超高精度模数转换的数据采集站中的数据叠加单元 SU可以由多种叠加方式: 如 低位转换器转换 1 至 24-n 位的数据与高位转换器转换的 25-n至 30位的数据进行叠加 (n<16), 选择 n<16是考虑到模数转换器件的最后 4位不稳定性。 本发明的超高精度模数转换的数据采集站中的控制模块 CM为嵌入式 CPU, 完成检测 和控制模数转换单元 AtoD、 数据叠加单元 SU和供电电路 PM的状态。 本发明的超高精度模数转换的数据采集站中的供电电路 PM为传感器 Sensor 模数转换 单元 AtoD、 数据叠加单元 SU和控制模块 CM提供电源支持。 本发明的超高精度模数转换的数据采集站中的传感器 Sensor可以是 MEMS传感器、 动 圈式检波器等地震检波器。 本发明的超高精度模数转换的数据采集站中的模数转换单元 AtoD利用两片 24位的模 数转换器件 ADU, 采用不同的组合方式, 可以实现多种精度的模数转换。

Claims

1、一种超高精度模数转换的数据采集站,其特征在于由五大单元组成:传感器 SenSOr、 模数转换单元 At.oD、 数据叠加单元 SU、 控制模块 CM和供电电路 PM ; 模数转换单元 AtoD 的输入端连接传感器 Sensor,输出端连接数据叠加单元 SU;所述控制模块 CM为嵌入式 CPU, 完成检测和控制模数转换单元 AtoD、 数据叠加单元 SU和供电电路 PM的状态; 所述供电电 路 PM为传感器 Sensor 模数转换单元 AtoD、 数据叠加单元 SU和控制模块 CM提供电源支 持。
2、 根据权利要求 1采集站, 其特征在于所述模数转换单元 AtoD利用两片 24位的模 数转换器件, 采用不同的组合方式, 实现多种精度的模数转换。
3、 根据权利要求 2采集站, 其特征在于所述模数转换单元 AtoD由两片 24位的模数 转换器件 ADU 组成, 其中一片的前放增益设置为 36dB, 作为低位转换器转换 1至 24位的 数据: 另一片的前放增益设置为 0dB, 作为高位转换器转换 25至 30位的数据。 所述 1至 24位为低位数据, 25至 30位为高位数据。
4、 根据权利要求 3采集站, 其特征在于所述数据叠加单元 SL1把模数转换单元 AtoD 的 1至 24位低位数据和 25至 30位高位数据进行叠加合成。
5、 根据权利要求 4采集站, 其特征在于设 S1为 1至 24位为低端数据, S2为 25至 30位为高端数据, 则合成公式后的数据 S为: S - SI + S2 X 22 合成后的数据为 30位 二进制数据。
6、 根据权利要求 1采集站, 其特征在于所述模数转换单元 AtoD和数据叠加单元 SU 利用两片 24位的模数转换器件 AWJ, 实现了 30位的超高精度模数转换。
7、 根据权利要求 1采集站, 其特征在于所述数据叠加单元 SU可以由多种叠加方式: 如低位转换器转换 1至 24- n位的数据与高位转换器转换的 25- ti至 30位的数据进行叠加。
8、 根据权利要求 7采集站, 其特征在于所述 ri<16。
9、 根据权利要求 1或者 2或者 3或者 4或者 5或者 6或者 7或者 8采集站, 其特征 在于所述传感器 Sensor可以是 MEMS传感器、 动圈式检波器等地震检波器。
10、 根据权利要求 1或者 2或者 3或者 4或者 5或者 6或者 7或者 8采集站, 其特征 在于在实际电路中, 数据叠加单元 SU的功能可以由控制模块 CM完成。
PCT/CN2013/000918 2012-07-20 2013-08-06 超高精度模数转换的数据采集站 WO2014012362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210252247.3A CN102761336B (zh) 2012-07-20 2012-07-20 超高精度模数转换的数据采集站
CN201210252247.3 2012-07-20

Publications (1)

Publication Number Publication Date
WO2014012362A1 true WO2014012362A1 (zh) 2014-01-23

Family

ID=47055669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000918 WO2014012362A1 (zh) 2012-07-20 2013-08-06 超高精度模数转换的数据采集站

Country Status (2)

Country Link
CN (1) CN102761336B (zh)
WO (1) WO2014012362A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4198578A1 (en) * 2021-12-16 2023-06-21 PGS Geophysical AS Seismic data acquisition with extended dynamic range

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761336B (zh) * 2012-07-20 2015-09-16 中国科学院地质与地球物理研究所 超高精度模数转换的数据采集站
CN113285715A (zh) * 2021-04-29 2021-08-20 中震华创(深圳)技术有限公司 一种30位高动态范围数据采集器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152691A (en) * 1972-08-21 1979-05-01 Texas Instruments Incorporated Seismic recording method using separate recording units for each group
US5006851A (en) * 1988-07-18 1991-04-09 Matsushita Electric Industrial Co., Ltd. Analog-to-digital converting system
JPH05343993A (ja) * 1992-06-09 1993-12-24 Hitachi Shonan Denshi Co Ltd A/d変換装置
CN102761336A (zh) * 2012-07-20 2012-10-31 中国科学院地质与地球物理研究所 超高精度模数转换的数据采集站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201740874U (zh) * 2010-06-11 2011-02-09 国家海洋局第一海洋研究所 高分辨率数字采集单元

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152691A (en) * 1972-08-21 1979-05-01 Texas Instruments Incorporated Seismic recording method using separate recording units for each group
US5006851A (en) * 1988-07-18 1991-04-09 Matsushita Electric Industrial Co., Ltd. Analog-to-digital converting system
JPH05343993A (ja) * 1992-06-09 1993-12-24 Hitachi Shonan Denshi Co Ltd A/d変換装置
CN102761336A (zh) * 2012-07-20 2012-10-31 中国科学院地质与地球物理研究所 超高精度模数转换的数据采集站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4198578A1 (en) * 2021-12-16 2023-06-21 PGS Geophysical AS Seismic data acquisition with extended dynamic range

Also Published As

Publication number Publication date
CN102761336B (zh) 2015-09-16
CN102761336A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
WO2014012362A1 (zh) 超高精度模数转换的数据采集站
RU2015144973A (ru) Схема магнитной компенсации и способ компенсации выходного сигнала магнитного датчика, реагирующего на изменения первого магнитного поля
WO2010109354A3 (en) Data acquisition
CN201740874U (zh) 高分辨率数字采集单元
JP2014236225A (ja) 半導体装置及び半導体装置の動作方法
CN109143942B (zh) 一种姿态传感器控制系统
CN103281042B (zh) 远距离传输iepe型电荷放大器
CN114397696A (zh) 基于低功耗mems传感器的地震采集系统和传感器
Dragone et al. ePix: a class of front-end ASICs for second generation LCLS integrating hybrid pixel detectors
WO2016032598A2 (en) Low-power analog-to-digital converter for sensing geophone signals
CN105909242A (zh) 一种用于声波测井的集成化数据采集器
CN203337725U (zh) 用于光伏并网逆变器系统中网侧相电压的采样电路
CN110632536A (zh) 一种三分量磁通门传感器信号处理电路
CN202994894U (zh) 一种高精度高压信号隔离测量装置
CN202471097U (zh) 霍尔多圈绝对位置编码器
CN104034938A (zh) 电子式电压互感器中的电流检测电路
Circella et al. The construction of ANTARES, the first undersea neutrino telescope
CN103542960A (zh) 压力传感器
CN103389512A (zh) 用于气枪震源近场子波及辅助信号的数字采集传输电路
CN102607605A (zh) 霍尔多圈绝对位置编码器
CN204256433U (zh) 一种用于生产测井仪的新型信号处理系统
Liu et al. Design and achievement of the visible light Audio communication system
Li et al. A High Accuracy and Wide Input Voltage Range Current Sensor with Adaptive Amplification and Temperature Compensation
US9584082B1 (en) Systems and methods for supply-based gain control of an audio output signal
CN103323880A (zh) 一种用于海上工程勘察的水下数据采集传输电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13820619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13820619

Country of ref document: EP

Kind code of ref document: A1