WO2014012167A1 - Media bed filters for filtering fine particles from a raw liquid flow and method of using the same - Google Patents
Media bed filters for filtering fine particles from a raw liquid flow and method of using the same Download PDFInfo
- Publication number
- WO2014012167A1 WO2014012167A1 PCT/CA2013/000648 CA2013000648W WO2014012167A1 WO 2014012167 A1 WO2014012167 A1 WO 2014012167A1 CA 2013000648 W CA2013000648 W CA 2013000648W WO 2014012167 A1 WO2014012167 A1 WO 2014012167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- media
- tank
- raw liquid
- top portion
- filtering
- Prior art date
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 211
- 239000007788 liquid Substances 0.000 title claims abstract description 163
- 239000010419 fine particle Substances 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims description 24
- 239000012530 fluid Substances 0.000 claims abstract description 29
- 238000004891 communication Methods 0.000 claims abstract description 20
- 230000001788 irregular Effects 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 239000004576 sand Substances 0.000 description 23
- 239000002245 particle Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- 239000011435 rock Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000011045 prefiltration Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 235000012206 bottled water Nutrition 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D24/00—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
- B01D24/02—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
- B01D24/10—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
- B01D24/105—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container downward filtration without specifications about the filter material supporting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D24/00—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
- B01D24/02—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
- B01D24/10—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
- B01D24/14—Downward filtration, the container having distribution or collection headers or pervious conduits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D24/00—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
- B01D24/38—Feed or discharge devices
- B01D24/40—Feed or discharge devices for feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D24/00—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
- B01D24/46—Regenerating the filtering material in the filter
- B01D24/4668—Regenerating the filtering material in the filter by moving the filtering element
- B01D24/4678—Regenerating the filtering material in the filter by moving the filtering element using free vortex flow
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D24/00—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
- B01D24/02—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
- B01D24/10—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
- B01D24/14—Downward filtration, the container having distribution or collection headers or pervious conduits
- B01D2024/145—Downward filtration, the container having distribution or collection headers or pervious conduits spray heads specially adapted therefor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
Definitions
- the subject matter disclosed generally relates to filtering apparatus and methods of using the same. More particularly, the subject matter relates to media bed filters for filtering fine particles from a raw liquid flow.
- Media bed filters work by providing the solid particles with many opportunities to be captured on the surface and within a filtering media bed. As fluid is evenly distributed at the top of the filter, it gently flows through the porous sand (i.e., filtering media) along a tortuous route, the particles come close and in contact with the media bed. They can be captured by one of several mechanisms such as, direct collision, Van der Waals or London force attraction, surface charge attraction, diffusion, and the like.
- solid particles can be prevented from being captured by surface charge repulsion if the surface charge of the filtering media is of the same sign (i.e., positive or negative) as that of the particulate solid. Furthermore, it is possible to dislodge captured solid particles although they may be recaptured at a greater depth within the media bed.
- Filtering media beds can be operated either with upward flowing fluids or downward flowing fluids the latter being much more usual.
- the fluid can flow under pressure or by gravity alone.
- Pressure media bed filters tend to be used in industrial applications. Gravity fed units are used in water purification especially in large application such as drinking water.
- filtering media beds such as, without limitation, gravity media bed filters, pressure media bed filters, upflow media bed filters, slow media bed filters, multimedia bed filters and the like.
- a media bed filter designed to provide an improved filtration for fine particles down to 0.5 microns.
- a traditional multilayers media bed filter having 3 layers including garnet is able to filter particles only down to 10 or 20 microns.
- filters are already known in many applications, such as, without limitation, chilled and hot water loops, condensate return, cooling tower make up, iron removal, ion exchange resin pre-filtration, membrane pre-filtration, potable water and beverage filtration, process rinse water, process water intake, water reuse, welder water loops and the like.
- the typical single injector located at a significant distance from the apex of the tank, does not allow for a good capture of the particles (or fine particles) to be removed as this design does not allow for a plug flow removal process. It is to be noted that the configuration as shown in Fig. 1 B would not result in a good hydraulic flow.
- the media bed, and more particularly the filtering media is significantly deformed by the water flow which enters the tank at a significant distance from the apex of the tank.
- open-tank media bed filters include a raw liquid flow inlet which is configured so to lead the water gently above the filtering media so that the particles flow gently within the filtering media, and the filtering media surface is not in motion nor disturbed.
- a media bed filter for filtering fine particles from a raw liquid flow
- the media bed filter comprising: a tank having: a top portion; a bottom portion defining a bottom surface for receiving a media bed, the media bed having a supporting media to be disposed on the bottom surface and a filtering media for covering the supporting media, the top portion of the tank being above the filtering media of the media bed; a raw liquid inlet in fluid communication with a nozzle configuration located in the top portion of the tank for providing the raw liquid flow in the tank in the form of a plurality of jets at a directional velocity substantially equal or greater to a disengagement velocity of the filtering media.
- the nozzle configuration comprises a plurality of nozzles, each one of the plurality of nozzles for providing the raw liquid flow in the tank in the form of a respective one of the plurality of jets at the directional velocity towards the filtering media.
- the plurality of nozzles is oriented in opposite directions.
- the top portion of the tank defines a top portion surface and further wherein the nozzle configuration is oriented for providing the plurality of jets towards the top portion surface of the tank, thereby providing the raw liquid flow in the tank at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media.
- the nozzle configuration is one of: located above the raw liquid inlet within the top portion of the tank and located below the raw liquid inlet within the top portion of the tank.
- the nozzle configuration is oriented for providing the plurality of jets perpendicularly towards the filtering media of the media bed.
- the media bed filter further comprises a baffle located in the top portion of the tank and between the nozzle configuration and the filtering media.
- the baffle is located substantially above the filtering media, thereby providing the raw liquid flow in the tank at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media.
- the raw liquid inlet comprises a plurality of raw liquid inlets, each one of the plurality of raw liquid inlets being in fluid communication with a respective nozzle configuration.
- the nozzle configuration is one of: oriented in an upward direction for providing the plurality of jets to enter the tank in an upwardly direction and oriented in a downwardly direction for providing the plurality of jets to enter the tank in a downwardly direction.
- the nozzle configuration is oriented for providing the plurality of jets horizontally towards the filtering media of the media bed, the nozzle configuration being located in the top portion of the tank at substantially the same level of the filtering media.
- each one of the plurality of nozzles defines a shape comprising at least one of: an elbow-like shape, a straight-like shape, a curved-like shape, a regular polygonal-like shape, a segmented-like shape, an irregular polygonal-like shape, a circular-like shape, an angular-like shape and any combination thereof.
- the media bed filter of claim 1 further comprising a baffle within the top portion of the tank for receiving the plurality of jets, thereby providing the raw liquid flow in the tank at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media.
- the baffle comprises a plurality of baffles, each one of the plurality of baffles being located substantially above the filtering media, parallel and laterally distant from another one of the plurality of baffles.
- the plurality of baffles comprises displaceable baffles.
- a method for filtering fine particles from a raw liquid flow in a tank supporting a filtering media, the tank having a top portion comprising the steps of: receiving the raw liquid flow with fine particles; and providing the raw liquid flow in the top portion of the tank in the form of a plurality of jets at a directional velocity substantially equal or greater to a disengagement velocity of the filtering media.
- the providing the raw liquid flow in the top portion of the tank in the form of a plurality of jets comprises providing the raw liquid flow in the top portion of the tank in the form of a plurality of jets oriented in opposite directions, thereby providing the raw liquid flow in the tank at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media.
- the providing the raw liquid flow in the top portion of the tank in the form of a plurality of jets comprises providing the raw liquid flow in the top portion of the tank in the form of a plurality of jets towards a top portion surface of the tank, thereby providing the raw liquid flow in the tank at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media.
- the providing the raw liquid flow in the top portion of the tank in the form of a plurality of jets comprises providing the plurality of jets perpendicularly towards the filtering media of the media bed.
- the providing the raw liquid flow in the top portion of the tank in the form of a plurality of jets comprises providing the raw liquid flow in the top portion of the tank in the form of a plurality of jets at substantially the same level of the filtering media, thereby providing the raw liquid flow in the tank at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media.
- top portion of the tank is intended to mean the portion defined by the tank which is above the filtering media of the media bed.
- bottom portion of the tank is intended to mean the portion defined by the tank from the bottom surface of the tank to the filtering media of the media bed.
- filtering media is intended to mean the fine granular filtering media covering the supporting media and/or in movement inside the tank and above the media bed.
- fine particle is intended to mean the particles in the raw liquid flow to be filtered by the media bed filter.
- the term "media bed” is intended to mean a bed which includes the filtering media of the media bed filter which covers the supporting media and the supporting media.
- the term "supporting media” is intended to mean a portion of the supporting media bed which supports the filtering media of the media bed filter or which is covered by the filtering media of the media bed.
- the supporting media may be a rigid bottom compact media, such as a metallic supporting bed with openings or the supporting media may include a plurality of layers of granular materials including, without limitations rock, sand, river sand and/or rocks, and the like.
- the "supporting media” may also include a false floor to be installed above the bottom surface of the tank.
- nozzle configuration is intended to mean an end portion of the raw liquid inlet which is located in the top portion the tank and which forms a plurality of jets to enter the tank.
- the nozzle configuration may include a plurality of nozzles.
- the nozzle configuration may allow the plurality of jets to circulate towards a top portion surface of the tank, towards the filtering media of the media bed and/or towards a baffle which is located in the tank (or the like).
- FIG. 1 A illustrates the media bed of a sand filter in accordance with the prior art
- FIG. 1 B illustrates the media bed of a sand filter in accordance with the prior art
- Fig. 1 C illustrates a sand filter in accordance with the prior art which includes one and only one raw liquid inlet located in the top portion of the tank;
- Fig. 1 D illustrates a sand filter in accordance with the prior art which includes one and only one raw liquid inlet located in the top portion of the tank;
- Fig. 1 E illustrates a top view of the sand filter of Fig. 1 C
- FIG. 2A is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with an embodiment
- FIG. 2B is another perspective view of the media bed filter of Fig. 2A;
- Fig. 2C is a top plan view of the media bed filter of Fig. 2A;
- Fig. 2D is a side elevation view of the media bed filter of Fig. 2A;
- FIG. 3A is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- FIG. 3B is another perspective view of the media bed filter of Fig. 3A;
- Fig. 3C is an elevation view of the media bed filter of Fig. 3A;
- Fig. 3D is a top plan view of the media bed filter of Fig. 3A;
- Fig. 4A is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- FIG. 4B is another perspective view of the media bed filter of Fig. 4A;
- Fig. 4C is an elevation view of the media bed filter of Fig. 4A;
- Fig. 4D is a top plan view of the media bed filter of Fig. 4A;
- Fig. 5A is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- FIG. 5B is another perspective view of the media bed filter of Fig. 5A;
- Fig. 5C is an elevation view of the media bed filter of Fig. 5A;
- Fig. 5D is a top plan view of the media bed filter of Fig. 5A;
- FIG. 6A is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- FIG. 6B is another perspective view of the media bed filter of Fig. 6A;
- Fig. 6C is an elevation view of the media bed filter of Fig. 6A;
- Fig. 6D is a top plan view of the media bed filter of Fig. 6A;
- Fig. 7A is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment;
- Fig. 7B is another perspective view of the media bed filter of Fig. 7A;
- Fig. 7C is an elevation view of the media bed filter of Fig. 7A;
- Fig. 7D is another elevation view of the media bed filter of Fig. 7A;
- Fig. 7E is a side elevation view of the media bed filter of Fig. 7A;
- FIG. 8 is a side elevation view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- FIG. 9 is a side view of a media bed filter for filtering fine particles from a raw liquid flow showing the supporting media bed as a rigid bed with openings in accordance with another embodiment
- FIG. 10 is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- FIG. 1 1 is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- Fig. 12A is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- Fig. 12B is a top plan view of the media bed filter of Fig. 12A;
- Fig. 12C is a side plan view of the media bed filter of Fig. 12A;
- Fig. 13 is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment;
- FIG. 14 is a perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment, where the tank is an open-tank;
- FIG. 15 is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment, where the tank is an open-tank;
- FIG. 16 is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment, where the tank is an open-tank
- FIG. 17 is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment, where the tank is an open-tank
- FIG. 18 is a schematic perspective view of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment, where the tank is an open-tank;
- Fig. 19 is a schematic elevation view of a nozzle configuration of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- FIG. 20 is a schematic elevation view of a nozzle configuration of a media bed filter for filtering fine particles from a raw liquid flow in accordance with another embodiment
- Fig. 21 is a graph showing elution for a media bed filter which includes four nozzles in accordance with another embodiment compared with a media bed filter system which includes one and only one nozzle; and [0091] Fig. 22 is a graph which illustrates flow speeds (cm/s) of particles of the filtering media according to the diameter of these particles in accordance with another embodiment.
- media bed filters for filtering fine particles from a raw liquid flow and method of filtering fine particles from a raw liquid flow.
- the media bed filters 10 each includes a tank 16 which has a top portion 18 and a bottom portion 20.
- the bottom portion 20 defines a bottom surface 22 for receiving a media bed 24.
- the media bed 24 includes a supporting media 28 to be disposed on the bottom surface 22 and a filtering media 26 for covering the supporting media 28. It is to be noted, as described above, that the top portion 18 of the tank 16 is being above the filtering media 26 of the media bed 24.
- the media bed filter 10 further includes a raw liquid inlet 30 in fluid communication with a nozzle configuration 32 which is located in the top portion 18 of the tank 16.
- the nozzle configuration 32 provides the raw liquid flow in the tank 16 in the form of a plurality of jets (not shown) at a directional velocity substantially equal or greater to a disengagement velocity of the filtering media 26.
- the nozzle configuration 32 comprises a plurality of nozzles 33, where each one of the plurality of nozzles 33 is for providing the raw liquid flow in the tank 16 in the form of a respective one of the plurality of jets at the directional velocity towards the filtering media 26.
- the top portion 18 of the tank 16 defines a top portion surface 19 and that the nozzle configuration 32 is oriented for providing the plurality of jets towards the top portion surface 19 of the tank 16.
- This nozzle configuration 32 provides the raw liquid flow in the tank 16 at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- nozzle configuration 32 is located above the raw liquid inlet 30 within the top portion 18 of the tank 16 (Figs. 10 and 13) or located below the raw liquid inlet 30 within the top portion 18 of the tank 16 (Figs. 2A-2D, 3A-3D, 4A-4D, 5A-5D, 6A-6D, 8, 9, 1 1 and 15-20).
- nozzle configuration 32 of the media bed filter 10 is oriented for providing the plurality of jets perpendicularly towards the filtering media 26 of the media bed 24.
- the media bed filter 10 includes a baffle 90 located in the top portion 18 of the tank 16 and between the nozzle configuration 32 and the filtering media 26. More particularly, the baffle 90 is located substantially above the filtering media 26. This configuration of the nozzle configuration 32 and the baffle 90 provides the raw liquid flow to enter the tank 16 at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the media bed filter 10 includes a plurality of raw liquid inlets 30. Each one of the plurality of raw liquid inlets 30 is in fluid communication with a respective nozzle configuration 32.
- nozzle configuration 32 of the media bed filter 10 is oriented in an upward direction for providing the plurality of jets to enter the tank 16 in an upwardly direction and/or oriented in a downwardly direction for providing the plurality of jets to enter the tank 16 in a downwardly direction (Figs. 3A-3D, 4A- 4D, 5A-5D and 9).
- nozzle configuration 32 of the media bed filter 10 is oriented for providing the plurality of jets horizontally towards the filtering media 26 of the media bed 24. Indeed, the nozzle configuration 32 is located in the top portion 18 of the tank 16 at substantially the same level of the filtering media 26.
- the nozzles 33 may define a shape which includes at least one of, without limitation, an elbow-like shape, a straightlike shape, a curved-like shape, a regular polygonal-like shape, a segmented-like shape, an irregular polygonal-like shape, a circular-like shape, an angular-like shape, any combination and the like.
- the media bed filter 10 includes one or more baffles 90 within the top portion 18 of the tank 16 for receiving the plurality of jets.
- the configuration of the baffle(s) 90 and of the nozzle configuration 32 thereby provides the raw liquid flow in the tank 16 at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the baffles 90 of the media bed filter 10 are located substantially above the filtering media 26, parallel and laterally distant from each other.
- the plurality of baffles 90 are displaceable baffles (i.e., electrically displaceable).
- Figs. 2A-2D show a media bed filter 10 which includes two raw liquid inlets 30.
- Each one of the raw liquid inlets 30 is in fluid communication with a respective nozzle configuration 32.
- the nozzle configurations 32 are oriented in the same direction and substantially towards the top portion surface 19 of the tank 16. This configuration may allow the plurality of jets to circulate towards the top portion surface 19 of the tank 16, then to circulate along the top portion surface 19, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 24.
- the nozzles 33 define a curved-like shape for allowing the raw liquid flow to circulate towards the top portion surface 19.
- Figs. 3A-3D show a media bed filter 10 which includes four raw liquid inlets 30.
- Each one of the raw liquid inlets 30 is in fluid communication with a respective nozzle configuration 32.
- the nozzle configurations 30 are oriented in the same direction and substantially towards the filtering media 26 of the tank 16 at a specific distance (i.e., a distance such that the plurality of jets will not dig into the filtering media 26) from the filtering media 26.
- This configuration may allow the plurality of jets to circulate towards the filtering media 26 of the tank 16, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the nozzles 33 define a straight-like shape for allowing the raw liquid flow to circulate towards the filtering media 26.
- Figs. 4A-4D show a media bed filter 10 which includes one raw liquid inlet 30.
- the raw liquid inlet 30 is in fluid communication with a respective nozzle configuration 32.
- the nozzle configuration 32 includes three nozzles 33 which are oriented in opposite directions and substantially towards the top portion surface 19 of the tank 16. This configuration may allow the plurality of jets to circulate towards the top portion surface 19 of the tank 16, then to circulate along the top portion surface 19, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- nozzles 33 are substantially at the same level of the filtering media 26, this configuration may also allow the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26 when they exit the nozzles 33.
- the nozzles 33 define an angular-like shape for allowing the raw liquid flow to circulate towards the top portion surface 19 and/or the filtering media 26.
- Figs. 5A-5D show a media bed filter 10 which includes one raw liquid inlet 30.
- the raw liquid inlet 30 is in fluid communication with a respective nozzle configuration 32.
- the nozzle configuration 32 includes two nozzles 33 which are oriented in opposite directions and substantially towards the top portion surface 19 of the tank 16. This configuration may allow the plurality of jets to circulate towards the top portion surface 19 of the tank 16, then to circulate along the top portion surface 19, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- nozzles 33 are substantially at the same level of the filtering media 26, this configuration may also allow the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26 when they exit the nozzles 33.
- the nozzles 33 define an angular-like shape for allowing the raw liquid flow to circulate towards the top portion surface 19 and/or the filtering media 26.
- Figs. 6A-6D show a media bed filter 10 which includes a plurality of raw liquid inlets 30.
- the raw liquid inlets 30 are in fluid communication with a respective nozzle configuration 32.
- the nozzle configurations 32 are oriented in a direction such that it allows the raw liquid flow to circulate within a tank 16 having a donough-like shape.
- the nozzle configurations 32 are also substantially oriented towards the top portion surface 19 of the tank 16. This configuration may allow the plurality of jets to circulate towards the top portion surface 19 of the tank 16, then to circulate along the top portion surface 19, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- this configuration may also allow the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26 when they exit the nozzle configurations 32.
- the nozzles 33 define a straight-like shape for allowing the raw liquid flow to circulate towards the top portion surface 19 and/or the filtering media 26.
- Figs. 7A-7E show a media bed filter 10 which includes one raw liquid inlet 30.
- the raw liquid inlet 30 is in fluid communication with a respective nozzle configuration 32. Since the nozzle configuration 32 is substantially at the same level of the filtering media 26, this configuration may also allow the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26 when they exit the nozzle configuration 32.
- the nozzles 33 define a straightlike shape for allowing the raw liquid flow to circulate along the filtering media 26. It is to be noted that the filtering media 26 that is utilized in this filtering media filter 10 may be recycled via an adapted piping system. It is to be noted that on Fig.
- the filtering media 26 adopts a longitudinal movement in the tank 16.
- the filtering media 26 i.e., micro sand
- the filtering media 26 may be recuperated at the end of the tank 16 via a hydraulic mechanism or a mechanic mechanism (not shown).
- the filtering media 26 is brought back to another filtering media inlet.
- Fig. 8 shows a media bed filter 10 which includes two raw liquid inlets 30.
- the raw liquid inlets 30 are in fluid communication with a respective nozzle configuration 32.
- the nozzle configurations 32 are oriented in opposite directions and substantially towards the top portion surface 19 of the tank 16. This configuration may allow the plurality of jets to circulate towards the top portion surface 19 of the tank 16, then to circulate along the top portion surface 19, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the nozzles define an angular-like shape for allowing the raw liquid flow to circulate towards the top portion surface 19 and/or the filtering media 26.
- Fig. 9 shows a media bed filter 10 which includes two raw liquid inlets 30.
- the raw liquid inlets 30 are in fluid communication with a respective nozzle configuration 32.
- the nozzle configurations 32 are oriented in opposite directions and substantially towards the top portion surface 19 of the tank 16. This configuration may allow the plurality of jets to circulate towards the top portion surface 19 of the tank, then to circulate along the top portion surface 19, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the nozzles 33 define an angular-like shape for allowing the raw liquid flow to circulate towards the top portion surface 19 and/or the filtering media 26.
- baffles 90 for allowing the filtering media 26 to move in an optimized manner for allowing filtration of the fine particles and venturi portions 80 around at least a portion of the nozzle configurations 32.
- the venturi portions 80 may recycle the filtering media faster and/or more efficiently (i.e., the venturi portions 80 may optimize recycling of the filtering media 26).
- the supporting media 28 is a rigid supporting layer defining openings (i.e., such as a false floor).
- Figs. 10 and 1 1 shows media bed filters 10 which includes one raw liquid inlet 30.
- the raw liquid inlet 30 is in fluid communication with a respective nozzle configuration 32.
- the nozzle configuration 32 includes four upwardly (Fig. 10) or downwardly (Fig. 1 1 ) oriented nozzles 33 which are oriented in opposite directions and substantially towards the top portion surface 19 of the tank 16. This configuration may allow the plurality of jets to circulate towards the top portion surface 19 of the tank 16, then to circulate along the top portion surface 19, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the nozzles 33 define a straight-like shape for allowing the raw liquid flow to circulate towards the top portion surface 19 and/or the filtering media 26. Additionally, since the nozzle configuration 33 is substantially at the same level of the filtering media 26, this configuration may also allow the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26 when they exit the nozzle configuration 32.
- Figs. 12A-12C show a media bed filter 10 which includes one raw liquid inlet 30.
- the raw liquid inlet 30 is in fluid communication with a respective nozzle configuration 32.
- the nozzle configuration 32 includes two nozzles 33 which are oriented in opposite directions and substantially towards the top portion surface 19 of the tank 16. This configuration may allow the plurality of jets to circulate towards the top portion surface 19 of the tank 16, then to circulate along the top portion surface 19, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the nozzles 33 define a straight-like shape for allowing the raw liquid flow to circulate towards the top portion surface 19 and/or the filtering media 26.
- Fig. 13 shows a media bed filter 10 which includes one raw liquid inlet 30.
- the raw liquid inlet 30 is in fluid communication with a respective nozzle configuration 32.
- the nozzle configuration 32 includes two upwardly oriented nozzles 33 which are oriented in opposite directions and substantially towards the top portion surface 19 of the tank 16. This configuration may allow the plurality of jets to circulate towards the top portion surface 19 of the tank 16, then to circulate along the top portion surface 19, which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the nozzles 33 define a straight-like shape for allowing the raw liquid flow to circulate towards the top portion surface 19 and/or the filtering media 26.
- Fig. 14 shows a media bed filter 10 which includes an opened tank 16.
- the media bed filter 10 includes one raw liquid inlet 30.
- the raw liquid inlet 30 is in fluid communication with a respective nozzle configuration 32.
- the nozzle configuration 32 is oriented substantially towards the top portion surface 19 of the tank 16.
- the media bed filter 10 further includes a plurality of baffles 90. Each one of the plurality of baffles 90 are located substantially above the filtering media 26, parallel, and laterally distant from each other.
- This configuration may allow the plurality of jets to circulate towards the baffles 90 of the tank 16, then to circulate along the baffle walls 91 , which thereby allows at least a portion of the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- Figs. 15-18 show media bed filters 10 which include one raw liquid inlet 30.
- the raw liquid inlet 30 is in fluid communication with a plurality of nozzle configurations 32.
- the nozzles 33 are oriented in the same direction and substantially at the same level of the filtering media 26. This configuration may also allow the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26 when they exit the nozzles 33.
- the nozzles 33 are oriented in opposite directions and substantially at the same level of the filtering media 26.
- This configuration may also allow the plurality of jets to circulate at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26 when they exit the nozzles 33.
- the nozzles 33 are proximate to the filtering media 26.
- the nozzles 33 are proximate to the filtering media 26 and are arranged in the middle of the tank 16 such as to allow the plurality of jets to circulate towards opposite directions.
- the nozzles 33 are proximate to the filtering media 26 and are arranged in the middle of the tank 16 and along the length of the tank 16 such as to allow the plurality of jets to circulate towards opposite directions and along the length of the tank 16.
- the nozzles 33 are proximate to the filtering media 26 and are arranged in the middle of the tank 16 such as to allow the plurality of jets to circulate towards a plurality of directions (i.e., the nozzle configurations 32 includes circular nozzles 33).
- the media bed filter includes a baffle 90 located in the top portion of the tank and between the nozzle configuration 32 and the filtering media 26. More particularly, the baffle 90 is located substantially above the filtering media 26 for providing the raw liquid flow in the tank 16 at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the filter media filter 10 as described above includes one or a plurality of a filtered liquid outlets 34.
- the filtered liquid outlets 34 are located in proximity to the bottom portion 20 of the tank 16 and allow a filtered liquid flow to exit the tank 16.
- the media bed filter 10 may further include at least one backwash liquid outlet 99 which is located in the top portion 18 of the tank 16 for removing the fines particles from the tank 16 during a backwash sequence.
- the backwash liquid outlet 99 and the raw liquid inlet 30 may be the same for allowing the raw liquid inlets 30 to provide the plurality of jets in the tank 16 and also to remove the fine particles from the tank 16 during the backwash sequence (Figs. 2A-2D, 3A-3D, 4A-4D, 5A-5B, 6A-6B, 8, 9, 10, 12A-12B and 13).
- a method for filtering fine particles from a raw liquid flow in a tank 16 supporting a filtering media 26 includes the steps of 1 - receiving the raw liquid flow with fine particles; and 2- providing the raw liquid flow in the top portion 18 of the tank 16 in the form of a plurality of jets at a directional velocity substantially equal or greater to a disengagement velocity of the filtering media 26.
- the step of providing the raw liquid flow in the top portion 18 of the tank 16 in the form of a plurality of jets comprises the step of providing the raw liquid flow in the top portion 18 of the tank 16 in the form of a plurality of jets oriented in opposite directions, thereby providing the raw liquid flow in the tank 16 at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the step of the providing the raw liquid flow in the top portion 18 of the tank 16 in the form of a plurality of jets comprises the step of providing the raw liquid flow in the top portion 18 of the tank 16 in the form of a plurality of jets towards a top portion surface 19 of the tank 16, thereby providing the raw liquid flow in the tank 16 at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the step of providing the raw liquid flow in the top portion 18 of the tank 16 in the form of a plurality of jets comprises the step of providing the plurality of jets perpendicularly towards the filtering media 26 of the media bed 24.
- the step of the providing the raw liquid flow in the top portion 18 of the tank 16 in the form of a plurality of jets comprises the step of providing the raw liquid flow in the top portion 18 of the tank 16 in the form of a plurality of jets at substantially the same level of the filtering media 26, thereby providing the raw liquid flow in the tank 16 at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- these configurations of the media bed filters 10 may provide a surface filtration which keeps the fine particles above the filtering media 26 of the media bed 24 without exposing the supporting media 28. It is to be noted that the filtering media 26 is returning more rapidly towards the bottom portion 20 of the tank 16 than the fine particles themselves for allowing an optimized filtration of the raw liquid flow and to allow suspension of the fine particles to facilitate their removal.
- the media bed filters 10 as described above further allow a suspension of a part of the fine particles which are removed from the tank 16 during the backwash sequence.
- the media bed 24 may include a supporting media 28 at the bottom surface 22 of the tank 16 for supporting the filtering media 26. It is to be noted that the supporting media 28 is below the filtering media 26. Additionally, the filtering media 26 and the supporting media 28 may each comprise an aggregate material.
- the aggregate material may be included in the group consisting of, without limitation, a rock material, a mesh particles material, a sand material, a course sand material, a fine sand material, a river sand, a garnet material (i.e., density of 4 for example), any combination of material and the like.
- the supporting media 28 may include a plurality of supporting media layers (not shown).
- the plurality of supporting media layers is disposed in layers from the bottom surface 22 of the tank 16 and with the coarser supporting media layer at the bottom surface 22 of the tank 16.
- a supporting media layer having a smaller diameter would be layered above another supporting media layer having a wider diameter.
- the filtering media 26 of the media bed 24 may comprise 0.15 mm silica sand (effective size).
- the media bed filter 10 may include two supporting media layers of different materials.
- the media bed filter 10 may filter fine particles down to submicron (about 0.25 micron - 1 micron) and keep them above the media bed 24 (i.e., at least in part) and in the tank 16. It is also to be noted that the media bed filter 10 may use fine media (i.e., or granular media) less than 0.3 mm for allowing filtering particles down to less than one micron, 0.5 microns for example.
- the tank 16 may define a vertical axis, an horizontal axis, a combination of axis or any other axis. Also, the tank 16 may define one of, without limitation, a spherical shape, a cylindrical shape, a prismatic shape, a regular polygonal prismatic shape, an irregular polygonal prismatic shape, an open tank shape, a doughnut-like shape, any combination, and the like.
- the media bed filter 10 may further include a control unit (not shown) for electrically controlling one of the velocity of the plurality of jets exiting the nozzle configurations 32 and the orientation of the nozzle configurations 32 and the raw liquid inlets 30. It is to be mentioned that other parameter within or outside the tank 16 may be controlled via the control unit of the media bed filter 10.
- the raw fluid flow to be filtered is a raw water flow, but it can be any other raw fluid flow depending on the application of the filtration.
- the media bed filter 10 may be used, without limitations, in chilled and hot water loops, in condensate return, in cooling tower make up, in iron removal, in water and wastewater treatment applications, in ion exchange resin pre-filtration, in membrane pre-filtration, in post clarifier discharge, in potable water treatments, in beverage treatments, in process rinse water, in process water intake, water reuse, welder water loops, and the like.
- the velocity and the disengagement velocity may be in the range of 0.4 to 1 .6 ft/s or greater depending on the disengagement velocity of the utilized filtering media 26 of the media bed 24.
- the media bed filters 10 described above provide the raw liquid flow to circulate towards to filtering media 26 at a parallel velocity substantially equal or greater to the disengagement velocity of the filtering media 26.
- the filtering media 26 of the media bed 24 can be used without clogging rapidly the media bed 24, and the filtered fluid flow which may be largely free of impurities, is then filtered through the media bed 24 and subsequently collected.
- Contaminants trapped above the media bed 24 may be removed using an automatic backwash sequence, which requires less water and a shorter operating time. The backwash time is therefore half of the normal time.
- the media bed filters 10 can remove down to sub-micron levels at 5 times the flow rate of other media filters, while requiring 50% less water during backwash sequences.
- the media bed filters 10 as described above may provide with a better utilization of the surface area of the filtering media 26 and with a larger surface of filtration (i.e., since the nozzle configurations 32 allow the plurality of jets to circulate at a directional velocity substantially equal or greater to the disengagement velocity of the filtering media 26).
- the flow of raw liquid entering the media bed filter 10 may then be improved and/or optimized and the slope of the media bed 24 would be reduced compared to the one created during filtration within a traditional media bed filter (i.e., a slope having an angle of about 40° and over for a traditional media bed filter compared to a slope having an angle of about less than 30° for the media bed filters 10 as described above).
- the media bed filters i.e., crossflow media bed filters
- use nozzle configurations i.e., injector designs
- the filtering media i.e., microsand
- the filtering media settles back on the filtration surface faster than the fine particles to be removed from the tank of the media bed filter. This surface sweeping action effect keeps the surface filtering media from plugging quickly and keeps a portion of the fine particles to be removed in the water above the filtering media.
- the nozzles or injectors are located and designed within the tank such as to allow for the returning filtering media (i.e., microsand) to settle back on the surface in an evenly manner, thereby avoiding the traditional slope found in larger traditional vortex bed filters.
- This concept allows for a greater efficiency and avoids hydraulic short-circuiting in the media bed.
- the surface of the filtering media (i.e., microsand) of the media bed filters as described above has minimal deformation with riddles at its surface instead of the traditional slope created by the traditional injector design.
- the media bed filter may define different angles of the filtering media depending on their diameter. For example, the angle of a 30" tank at its nominal raw water flow and water velocity injection is 40°.
- the media bed filter and method may be applied in different size and shape of tanks with the numbers of nozzles and media bed adapted to the tank condition and the filtration area.
- the media bed filter has to reflect the water velocity at the filtration surface.
- the media bed filter may use a 0.15 mm sand particle horizontal critic speed at a density of about 2,65 to adjust the process.
- the critical speed i.e., the disengagement velocity
- the critical speed at the filtration surface for the actual models, are in the range of 0.4 to 1.2 ft/s.
- the supporting media bed may consist of several layers (Media from bags). After installing a layer, it must be leveled and compacted before to proceed to the next layer: (A bag of 50 lbs. has a volume of 0.5 ft 3 )
- Performance of the media bed filter (Concentration of fine particles IN - Concentration of fine particles OUT) / Concentration of fine particles IN
- Fig. 21 is a graph showing elution for a media bed filter which includes four nozzles in accordance with another embodiment compared with a media bed filter system which includes one and only one nozzle.
- Fig. 22 is a graph which illustrates flow speeds (cm/s) of particles of the filtering media according to the diameter of these particles in accordance with another embodiment.
- Fig. 18 may be used to establish the disengagement velocity of the filtering media which covers the supporting media.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Filtration Of Liquid (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Filtering Materials (AREA)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380047612.XA CN104736220A (zh) | 2012-07-16 | 2013-07-16 | 用于过滤原料液体流中的微粒的介质床过滤器和其使用方法 |
MX2015000800A MX2015000800A (es) | 2012-07-16 | 2013-07-16 | Filtros de lecho de medios para filtrar particulas finas de un flujo de liquido no procesado y metodo para usar los mismos. |
KR1020157003509A KR20150036505A (ko) | 2012-07-16 | 2013-07-16 | 원액체 흐름에서 미세 미립자들을 여과하기 위한 메디아베드필터 및 그 것을 이용해 미세 미립자들을 여과하기 위한 방법 |
HK15112607.3A HK1211895A1 (en) | 2012-07-16 | 2013-07-16 | Media bed filters for filtering fine particles from a raw liquid flow and method of using the same |
AU2013293064A AU2013293064A1 (en) | 2012-07-16 | 2013-07-16 | Media bed filters for filtering fine particles from a raw liquid flow and method of using the same |
CA2878785A CA2878785C (en) | 2012-07-16 | 2013-07-16 | Media bed filters for filtering fine particles from a raw liquid flow and method of using the same |
US14/413,326 US9387418B2 (en) | 2012-07-16 | 2013-07-16 | Media bed filters for filtering fine particles from a raw liquid flow and method of using the same |
BR112015000866A BR112015000866A2 (pt) | 2012-07-16 | 2013-07-16 | filtro de leito de meio para filtração de partículas finas de um fluxo de líquido bruto, e, método para a filtração de partículas finas de um fluxo de líquido bruto |
JP2015521917A JP2015525672A (ja) | 2012-07-16 | 2013-07-16 | 原液流から微粒子を濾過するための媒体床フィルタおよびそれを使用する方法 |
EP13820254.4A EP2872236A4 (en) | 2012-07-16 | 2013-07-16 | PHASE BED FILTERS FOR FILTERING FINE PARTICLES FROM A FLUID FLUID FLOW AND METHOD OF USING THE SAME |
IL236715A IL236715A0 (en) | 2012-07-16 | 2015-01-14 | Media infrastructure filters for filtering tiny particles from a coarse liquid stream and a method for using it |
IN1218DEN2015 IN2015DN01218A (enrdf_load_stackoverflow) | 2012-07-16 | 2015-02-16 | |
US15/207,002 US20170001131A1 (en) | 2012-07-16 | 2016-07-11 | Media Bed Filters for Filtering Fine Particles from a Raw Liquid Flow and Method of Using the Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261672098P | 2012-07-16 | 2012-07-16 | |
US61/672,098 | 2012-07-16 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/413,326 A-371-Of-International US9387418B2 (en) | 2012-07-16 | 2013-07-16 | Media bed filters for filtering fine particles from a raw liquid flow and method of using the same |
US15/207,002 Division US20170001131A1 (en) | 2012-07-16 | 2016-07-11 | Media Bed Filters for Filtering Fine Particles from a Raw Liquid Flow and Method of Using the Same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014012167A1 true WO2014012167A1 (en) | 2014-01-23 |
Family
ID=49913058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2013/000648 WO2014012167A1 (en) | 2012-07-16 | 2013-07-16 | Media bed filters for filtering fine particles from a raw liquid flow and method of using the same |
Country Status (13)
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016196594A1 (en) | 2015-06-02 | 2016-12-08 | Neptune-Benson, Llc | Multilayer media bed filter with improved backwash |
WO2020086781A1 (en) | 2018-10-24 | 2020-04-30 | Neptune-Benson, Llc | Multilayer media bed filter comprising glass bead micromedia |
FR3121673A1 (fr) | 2021-04-12 | 2022-10-14 | Suez Groupe | Installation et procede pour le traitement de l’eau |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5845535B2 (ja) * | 2011-07-25 | 2016-01-20 | 株式会社ナガオカ | 水処理装置の上層洗浄装置および水処理装置濾材層の洗浄方法 |
JP2015525672A (ja) | 2012-07-16 | 2015-09-07 | ソニテック−ボルティサンド テクノロジーズ インコーポレイテッド | 原液流から微粒子を濾過するための媒体床フィルタおよびそれを使用する方法 |
GB2542837A (en) * | 2015-10-01 | 2017-04-05 | Cupples Stephen | Media filter |
EP3429719B1 (en) * | 2016-03-18 | 2021-10-13 | Parkson Corporation | Improved method for cleaning filtration system media |
US11685678B2 (en) | 2016-11-06 | 2023-06-27 | Kyle Nap | Portable systems for high throughput liquid purification using dissolved air flotation |
US10913667B2 (en) | 2017-12-08 | 2021-02-09 | Westech Engineering, Inc. | Multi-media clarification systems and methods |
WO2019226725A1 (en) * | 2018-05-24 | 2019-11-28 | Nap Kyle | Portable modular filter system |
US11331616B2 (en) * | 2020-09-25 | 2022-05-17 | Mark Henderson | Pool filter assembly |
WO2023239601A1 (en) * | 2022-06-09 | 2023-12-14 | De Nora Water Technologies, LLC | Underdrain filtered water collection systems with winged screen diffusers |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002034677A2 (en) * | 2000-10-24 | 2002-05-02 | Tadayoshi Nagaoka | Water treatment device |
US20030080039A1 (en) * | 2001-10-26 | 2003-05-01 | Skender Cocoli | Filter surface washer |
WO2003105987A1 (en) * | 2002-06-14 | 2003-12-24 | Tadayoshi Nagaoka | Water treatment device and water treatment method |
US7097766B2 (en) * | 2003-05-30 | 2006-08-29 | Griswold Controls | Sand filter with rotating vanes |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB268576A (en) * | 1926-05-25 | 1927-04-07 | Ernest Hartley | Improvements in circular sewage distributors |
US2445287A (en) * | 1944-12-29 | 1948-07-13 | Clayton W Woods | Liquid filtering mechanism |
US3493116A (en) * | 1969-02-10 | 1970-02-03 | Swimrite Mfg Co Inc | Swimming pool filter |
GB1342082A (en) | 1970-02-27 | 1973-12-25 | Stage Stirling Ltd | Filters for liquids |
DE2030824C3 (de) * | 1970-06-23 | 1975-03-20 | Heimo 8023 Pullach Herlt | Mehrstufenfilter |
US3925202A (en) * | 1974-04-25 | 1975-12-09 | Hydromation Filter Co | Method of and apparatus for filtering water |
JPS5328849A (en) * | 1976-08-31 | 1978-03-17 | Nippon Filcon Kk | Filter system |
NL7809262A (nl) * | 1978-09-12 | 1980-03-14 | Esmil B V Stationsstraat 48 | Inrichting voor het behandelen van vloeistoffen met behulp van een korrelbed. |
US4668405A (en) * | 1985-06-19 | 1987-05-26 | Process Development, Inc. | Downflow filter with high velocity backflush |
US5240598A (en) * | 1990-09-18 | 1993-08-31 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Microbubble generator for the transfer of oxygen to microbial inocula and microbubble generator immobilized cell reactor |
CN2351428Y (zh) * | 1997-01-27 | 1999-12-01 | 吴文仲 | 地下水除铁除锰净水设备 |
EP1329251A4 (en) * | 2000-09-29 | 2004-10-06 | Takara Thermistor Instr | FILTER AND METHOD FOR CLEANING A FILTER MEDIUM |
GB2408001B (en) * | 2001-10-18 | 2006-03-29 | Derek Colin Tolley | Filtration of liquid media |
JP2005230714A (ja) * | 2004-02-20 | 2005-09-02 | Ebara Corp | 圧力式液体処理塔 |
CA2689047C (en) | 2007-02-09 | 2013-01-08 | Exterran Holdings, Inc. | A method and device for cleaning non-fixed media filters |
US7914678B2 (en) * | 2008-05-30 | 2011-03-29 | Beggs Robert A | Backwashing unsaturated wastewater filter |
JP5201481B2 (ja) * | 2008-06-19 | 2013-06-05 | 株式会社ナガオカ | 水処理装置および水処理装置濾材層の洗浄方法 |
GB2461119B (en) | 2008-06-24 | 2011-11-23 | Stephen Cupples | A high efficiency media filter |
GB201116486D0 (en) | 2011-09-26 | 2011-11-09 | Cupples Stephen | A stabiliser for a media filter system |
JP2015525672A (ja) | 2012-07-16 | 2015-09-07 | ソニテック−ボルティサンド テクノロジーズ インコーポレイテッド | 原液流から微粒子を濾過するための媒体床フィルタおよびそれを使用する方法 |
-
2013
- 2013-07-16 JP JP2015521917A patent/JP2015525672A/ja active Pending
- 2013-07-16 AU AU2013293064A patent/AU2013293064A1/en not_active Abandoned
- 2013-07-16 CA CA2951572A patent/CA2951572C/en active Active
- 2013-07-16 KR KR1020157003509A patent/KR20150036505A/ko not_active Withdrawn
- 2013-07-16 EP EP13820254.4A patent/EP2872236A4/en not_active Withdrawn
- 2013-07-16 US US13/943,323 patent/US20140014598A1/en not_active Abandoned
- 2013-07-16 BR BR112015000866A patent/BR112015000866A2/pt not_active IP Right Cessation
- 2013-07-16 US US14/413,326 patent/US9387418B2/en not_active Expired - Fee Related
- 2013-07-16 WO PCT/CA2013/000648 patent/WO2014012167A1/en active Application Filing
- 2013-07-16 CN CN201380047612.XA patent/CN104736220A/zh active Pending
- 2013-07-16 CA CA2878785A patent/CA2878785C/en active Active
- 2013-07-16 MX MX2015000800A patent/MX2015000800A/es unknown
- 2013-07-16 HK HK15112607.3A patent/HK1211895A1/xx unknown
-
2015
- 2015-01-14 IL IL236715A patent/IL236715A0/en unknown
- 2015-02-16 IN IN1218DEN2015 patent/IN2015DN01218A/en unknown
-
2016
- 2016-07-11 US US15/207,002 patent/US20170001131A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002034677A2 (en) * | 2000-10-24 | 2002-05-02 | Tadayoshi Nagaoka | Water treatment device |
US20030080039A1 (en) * | 2001-10-26 | 2003-05-01 | Skender Cocoli | Filter surface washer |
WO2003105987A1 (en) * | 2002-06-14 | 2003-12-24 | Tadayoshi Nagaoka | Water treatment device and water treatment method |
US7097766B2 (en) * | 2003-05-30 | 2006-08-29 | Griswold Controls | Sand filter with rotating vanes |
Non-Patent Citations (1)
Title |
---|
See also references of EP2872236A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016196594A1 (en) | 2015-06-02 | 2016-12-08 | Neptune-Benson, Llc | Multilayer media bed filter with improved backwash |
WO2020086781A1 (en) | 2018-10-24 | 2020-04-30 | Neptune-Benson, Llc | Multilayer media bed filter comprising glass bead micromedia |
FR3121673A1 (fr) | 2021-04-12 | 2022-10-14 | Suez Groupe | Installation et procede pour le traitement de l’eau |
WO2022218939A1 (fr) | 2021-04-12 | 2022-10-20 | Suez International | Installation et procede pour le traitement de l'eau |
Also Published As
Publication number | Publication date |
---|---|
US20170001131A1 (en) | 2017-01-05 |
US20140014598A1 (en) | 2014-01-16 |
CA2878785C (en) | 2019-06-11 |
EP2872236A1 (en) | 2015-05-20 |
AU2013293064A1 (en) | 2015-03-05 |
CA2878785A1 (en) | 2014-01-23 |
EP2872236A4 (en) | 2016-03-30 |
IL236715A0 (en) | 2015-02-26 |
CA2951572A1 (en) | 2014-01-23 |
US9387418B2 (en) | 2016-07-12 |
US20150190738A1 (en) | 2015-07-09 |
IN2015DN01218A (enrdf_load_stackoverflow) | 2015-06-26 |
JP2015525672A (ja) | 2015-09-07 |
HK1211895A1 (en) | 2016-06-03 |
BR112015000866A2 (pt) | 2017-06-27 |
CN104736220A (zh) | 2015-06-24 |
MX2015000800A (es) | 2015-12-16 |
CA2951572C (en) | 2019-07-09 |
KR20150036505A (ko) | 2015-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9387418B2 (en) | Media bed filters for filtering fine particles from a raw liquid flow and method of using the same | |
CN102574031B (zh) | 具有多孔过滤介质的高速过滤装置及其反冲洗方法 | |
US20220176276A1 (en) | Multilayer Media Bed Filter with Improved Backwash | |
US7785474B2 (en) | Method for contacting liquid with ion exchange resin | |
CA3098186A1 (en) | Method for treating a fluid by upflow through a bed of adsorbent media and corresponding installation | |
AU2006222735B8 (en) | Multi-media clarifier or thickener | |
US5252230A (en) | Granulated filter for the filtration of fine graded suspensions | |
JPH0460682B2 (enrdf_load_stackoverflow) | ||
US20220288514A1 (en) | Systems and processes for filtering water with ultrafine granular media | |
JP2005125178A (ja) | 凝集沈澱装置及び当該装置を用いた被処理水の処理方法 | |
JP6450645B2 (ja) | シルト濾過装置及びシルト濾過方法 | |
IL282295B1 (en) | Multilayer media bed filter comprising glass bead micromedia | |
JPH10235106A (ja) | ろ過装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13820254 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 14413326 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2878785 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 236715 Country of ref document: IL Ref document number: P74/2015 Country of ref document: AE |
|
ENP | Entry into the national phase |
Ref document number: 2015521917 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/000800 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20157003509 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013820254 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013820254 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2013293064 Country of ref document: AU Date of ref document: 20130716 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015000866 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015000866 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150114 |