WO2014010640A1 - Method for producing aptamer - Google Patents

Method for producing aptamer Download PDF

Info

Publication number
WO2014010640A1
WO2014010640A1 PCT/JP2013/068901 JP2013068901W WO2014010640A1 WO 2014010640 A1 WO2014010640 A1 WO 2014010640A1 JP 2013068901 W JP2013068901 W JP 2013068901W WO 2014010640 A1 WO2014010640 A1 WO 2014010640A1
Authority
WO
WIPO (PCT)
Prior art keywords
aptamer
sequence
base sequence
gene product
binds
Prior art date
Application number
PCT/JP2013/068901
Other languages
French (fr)
Japanese (ja)
Inventor
一典 池袋
吉田 亘
Original Assignee
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京農工大学 filed Critical 国立大学法人東京農工大学
Priority to JP2014524844A priority Critical patent/JP6517017B2/en
Publication of WO2014010640A1 publication Critical patent/WO2014010640A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised

Definitions

  • the present invention relates to an aptamer production method and an aptamer produced thereby.
  • Aptamers that are nucleic acid molecules that specifically bind to arbitrary molecules are known. Since an aptamer specifically binds to a desired target molecule, it has been proposed to detect and quantify the target molecule using the aptamer. So far, aptamers that specifically bind to insulin, luciferase, thyroglobulin, C-reactive protein, vascular endothelial growth factor (Patent Document 1) and the like have been reported.
  • aptamers that specifically bind to a desired target molecule are basically produced by a method called SELEX® (Systematic Evolution of Ligands by EXponential Enrichment) (Non-patent Document 1).
  • SELEX® Systematic Evolution of Ligands by EXponential Enrichment
  • a target molecule is immobilized on a carrier, a nucleic acid library consisting of nucleic acids having a large number of random base sequences is added to the target molecule, nucleic acids that bind to the target molecule are recovered, and this is amplified by PCR. Again, the target molecule is added to the immobilized carrier.
  • aptamers having high binding power to the target molecule are concentrated, the base sequence thereof is determined, and the aptamer that recognizes the target molecule is obtained.
  • the nucleic acid library can be easily prepared by binding nucleotides at random using an automatic nucleic acid synthesizer.
  • an aptamer that specifically binds to an arbitrary target substance can be produced by a method that actively uses chance by using a nucleic acid library having a random base sequence.
  • SELEX is an excellent method for producing an aptamer that specifically binds to an arbitrary target substance, but it requires considerable labor to produce an aptamer. In addition, since it is a method utilizing chance, even if SELEX is applied for a considerable time, an aptamer that specifically binds to a target substance with satisfactory affinity may not be obtained.
  • An object of the present invention is to provide a method for producing an aptamer that specifically binds to a target substance without using SELEX.
  • G-quadruplex structure exists in genomic DNA and takes a quadruplex structure
  • promoters containing the G-quadruplex structure are also known.
  • the present inventors have found that the gene product of the structural gene controlled by the promoter or the gene product downstream of the cascade in which the gene product is included in the G-quadruplex structure. I thought that it might be combined to inhibit feedback.
  • the new finding is that a single-stranded nucleic acid having the same base sequence as the G-quadruplex structure-containing region contained in the promoter can be used as it is as an aptamer that specifically binds to the substance to which the promoter binds.
  • the present inventors further considered that when a G-quadruplex structure is present in mRNA, the mRNA and the gene product encoded by the mRNA may bind to each other.
  • a new finding is that single-stranded nucleic acid having the same base sequence as the G-quadruplex structure-containing region contained in mRNA can be used as it is as an aptamer that specifically binds to the gene product encoded by the mRNA.
  • the present invention has a base sequence identical to a region containing a G-quadruplex structure that is present in a gene sequence encoding a target protein or a regulatory sequence thereof or a transcription product thereof, and relates to the target protein or the gene sequence.
  • An aptamer that binds to a gene product or an aptamer that has 90% or more sequence identity with the base sequence of the aptamer and includes a G-quadruplex structure, and binds to the target protein or the related gene product to which the aptamer binds There is provided a method for producing an aptamer, which comprises chemically synthesizing. Moreover, this invention provides the aptamer manufactured by the method of the said invention.
  • control sequence means a gene sequence that controls the expression of a gene encoding a target protein, such as a promoter, enhancer, silencer, insulator and the like.
  • the “gene sequence encoding the target protein” means a gene sequence including not only a cDNA sequence but also an intron in the case of genomic DNA.
  • transcription product includes not only mRNA but also mRNA precursor before splicing.
  • thymine in DNA and uracil in RNA both specifically pair with adenine, in the present invention, thymine in DNA and uracil in RNA are “the same base”. I understand. Therefore, in the present invention, a certain DNA sequence and an RNA sequence in which thymine in this DNA sequence is replaced with uracil are understood to have “the same base sequence”.
  • the structural gene having the same base sequence as the region containing the G-quadruplex structure present in the promoter and controlled by the promoter
  • An aptamer that binds to a gene product or a related gene product of the gene product, or that has a sequence identity of 90% or more with the base sequence of the aptamer and includes a G-quadruplex structure, and binds to the gene product to which the aptamer binds
  • a method for producing an aptamer which comprises chemically synthesizing an aptamer.
  • a gene having the same base sequence as a region containing a G-quadruplex structure present in mRNA and encoded by the mRNA An aptamer that binds to a product or a related gene product of the gene product, or has a nucleotide sequence of 90% or more with the base sequence of the aptamer, and includes a G-quadruplex structure, and binds to a gene product to which the aptamer binds
  • a method for producing an aptamer is provided that includes chemically synthesizing an aptamer.
  • the present invention provides for the first time a method for producing an aptamer that binds to a desired target substance without using SELEX, which requires laborious operations.
  • a nucleic acid having the same base sequence as the base sequence of the G-quadruplex structure-containing region in the promoter of the gene encoding the desired target protein can be chemically synthesized using a commercially available nucleic acid synthesizer without using SELEX. Since an aptamer that binds to a target substance can be produced by synthesis, an aptamer that binds to a desired target protein can be produced much more easily than conventional methods.
  • each curve shows the result of 5000 nM, 3000 nM, 1000 nM, 500 nM, 250 nM, 125 nM, and 62.5 nM from the top.
  • each curve shows the result of having analyzed the coupling
  • FIG. 4 shows the result of having analyzed the coupling
  • each curve shows the result of 5000 nM, 3000 nM, 1000 nM, 500 nM, 250 nM, 125 nM, and 62.5 nM from the top. It is a figure which shows the result of having analyzed in the following Examples 4-7 the analysis of the coupling
  • each curve shows the results of 1000 nM, 500 nM, 100 nM, 50 nM, and 10 nM from the top. It is a figure which shows the result of having analyzed by the SPR measurement about the coupling
  • the G-quadruplex (also called G quartet, G4, guanine quadruplex, etc.) structure has two or three guanine bases in a nucleic acid that are close to each other and form a tetramer by hydrogen bonding. It is a structure and is known for taking a quadruplex structure.
  • the G-quadruplex structure is known to exist in human telomeres and promoters.
  • the inventors of the present application use a single-stranded polynucleotide having the same base sequence as a region containing a G-quadruplex structure contained in a promoter (referred to as a “G-quadruplex structure-containing region”) as it functions as an aptamer.
  • the aptamer was found to bind to the gene product of the structural gene controlled by its promoter or a related gene product of the gene product.
  • the present invention is based on this new knowledge.
  • a “related gene product of a gene product” is, for example, a gene product upstream or downstream of a cascade in which the gene product is included, a protein that functions in cooperation with the gene product, and the like.
  • a related gene product of a gene product can be examined, for example, by co-occurrence analysis in the literature.
  • This co-occurrence analysis can be performed, for example, on the Jabion website published by the National Institute of Informatics, the National Institute of Genetics, and the like. According to the method provided on this website, the co-occurrence score is also known, so that a gene product strongly co-occurring with a certain gene product can be considered to be a highly related gene product.
  • VEGF vascular endothelial growth factor
  • a protein having high co-occurrence with vascular endothelial growth factor (VEGF) specifically tested in the following examples has high co-occurrence in the order of KDR, FLT1, and HIF1A, and with platelet-derived growth factor (PDGF),
  • PDGF platelet-derived growth factor
  • PDGFB platelet-derived growth factor
  • PDGFRA platelet-derived growth factor
  • RB-1 retinoblastoma-related protein
  • E2F1, CDKN2A, and TP53 have the highest co-occurrence.
  • G-quadruplex forming sequences in the promoters of these genes can be searched for by the method described later, and these sequences can be synthesized to confirm the binding ability.
  • the method of the present invention can be implemented as follows, for example. First, a promoter containing a G-quadruplex structure is selected. The human genome has already been decoded, and promoter sequences of various structural genes are also known. Among these various promoters, those containing a G-quadruplex structure can be used in the method of the present invention. Promoters known to contain a G-quadruplex structure can be used in the method of the present invention.
  • promoters known to contain a G-quadruplex structure include c-Kit87up, which is the promoter of the c-Kit gene, c-Myb gene promoter, Rb gene promoter, c-myc gene promoter, c-myc- 23456, BCL-2 gene promoter, HIF1 ⁇ gene promoter, PDGFR ⁇ gene promoter, KRAS gene promoter, TERT gene promoter, MYB gene promoter, and the like.
  • the promoters were selected from among the vascular endothelial growth factor (VEGF) promoter, platelet-derived growth factor (PDGF-A) promoter, and retinoblastoma-related protein (RB-1) promoter. It is also known that a G-quadruplex structure is included in the promoter of.
  • VEGF vascular endothelial growth factor
  • PDGF-A platelet-derived growth factor
  • RB-1 retinoblastoma-related protein
  • a promoter that is not known to contain a G-quadruplex structure contains a G-quadruplex structure can be examined as follows. In order for the promoter sequence to contain a G-quadruplex structure, it is necessary that four or more consecutive guanine sequences are included.
  • a promoter sequence that satisfies this requirement includes a G-quadruplex structure is analyzed by computer software (for example, Mapper of RAMAPOACOLLEGE published at http://bioinformatics.ramapo.edu/QGRS/analyze.php) (Nucleic Acids Research 2006 July; 34 (Web Server issue): W676-W682) or the actual G-quadruplex structure-containing region is chemically synthesized, for example, the known G-quadruplex structure described in Patent Document 3 It can be easily investigated by reacting with a detection reagent and examining whether or not it binds.
  • hepatocyte growth factor hepatocyte growth factor
  • HGF hepatocyte growth factor
  • Hparin-binding EGF heparin-binding EGF-like growth factor
  • platelet derived proteins having such heparin binding domains.
  • growth factors annexin II (Annexin II) or apolipoprotein E4 (ApoE4)
  • aptamers that bind to each of them were successfully created by the method of the present invention for any of these.
  • an aptamer having the same base sequence as the G-quadruplex structure-containing region of the selected promoter is chemically synthesized.
  • the G-quadruplex structure exists in the promoter, the G-quadruplex structure-containing region may straddle parts other than the promoter.
  • the size of the aptamer is not particularly limited, but is usually about 15 mer to 100 mer, preferably about 30 mer to 70 mer (mer represents the number of nucleotides).
  • the aptamer may be DNA or RNA, but is preferably chemically stable DNA. In addition, chemical synthesis of DNA and RNA can be easily performed using a commercially available automatic synthesizer.
  • RNA synthesis by in vitro transcription or DNA synthesis by a nucleic acid amplification method such as PCR is also included in “chemical synthesis” in the present invention.
  • the term “having a base sequence” means that bases are arranged in such a manner, for example, “an aptamer having a base sequence represented by SEQ ID NO: 1”. Means a 34-mer aptamer whose base sequence is arranged as shown in SEQ ID NO: 1.
  • the produced aptamer binds to the gene product of the structural gene controlled by the promoter.
  • This can be performed by gel shift assay or SPR measurement specifically described in the following examples. That is, in the gel shift assay, a label such as a fluorescent label is bound to the end of the aptamer, mixed with the gene product, subjected to gel electrophoresis, the label is detected, and the protein is detected by silver staining. If positive, it can be confirmed that the aptamer and the gene product are bound.
  • an aptamer and a gene product are immobilized by immobilizing the gene product on a chip for SPR measurement, bringing the gene product into contact with the aptamer, and measuring whether or not the aptamer binds to the gene product with a commercially available SPR measurement device. And can be confirmed.
  • the aptamer When it is confirmed that the aptamer binds to the gene product, the aptamer is produced by chemical synthesis. In general, it is known that there are not a few cases where the binding property to the target substance can be maintained even if the base sequence of the aptamer that binds to the target substance is changed slightly.
  • the aptamer base sequence confirmed to be may be modified while maintaining the binding property to the gene product.
  • the base sequence of the aptamer after modification has 90% or more sequence identity with the original base sequence, and preferably the sequence identity is 95% or more. In this case, the modified aptamer also needs to have a G-quadruplex structure.
  • sequence identity refers to aligning two sequences so that the bases of the two base sequences to be compared match as much as possible (by inserting a gap if necessary), and By dividing the number by the total number of bases, it means a numerical value expressed as a percentage. If the number of bases is different, divide by the longer base number.
  • Software for calculating sequence identity is well known and is also publicly available on the Internet.
  • thymine in DNA and uracil in RNA are interpreted as “the same base”. Therefore, when comparing the sequence identity of a DNA sequence and an RNA sequence, thymine and uracil are the same. Calculate as the base of.
  • the aptamer having the same base sequence as the G-quadruplex structure-containing region is subjected to the known in-computer evolution (in silico maturation) method, and the base sequence is modified to further increase the affinity with the gene product. It is possible.
  • the in-computer evolution method is a method invented by the joint inventor of the present application and is described in Non-Patent Document 2, Non-Patent Document 3, and Patent Document 2, and is also specifically described in Example 12 below. When this method is applied to an aptamer that has been confirmed to bind to a gene product, for example, a plurality of regions, for example, about 3 to 5 mer, which are not essential for maintaining a G-quadruplex structure, are obtained.
  • This in-computer evolution method uses computer support to perform SELEX, but since the original aptamer already has the ability to bind gene products, what is SELEX that starts from zero? Difficulty is different, and the ability to bind gene products can be further enhanced with high probability.
  • the in-computer evolution method is performed while confirming the binding ability with the gene product by experiment, the binding ability with the gene product is ensured even if the base sequence is considerably different from the original base sequence. Therefore, the sequence identity is not necessarily limited to 90% or more.
  • the in-computer evolution method introduces mutations in parts other than the G-quadruplex structure as described above, the G-quadruplex structure is maintained.
  • Example 12 in the in-computer evolution method, by examining the aptamer sequence having high binding ability to the target gene product among aptamers obtained in each generation, A sequence motif that exhibits the ability to bind to a gene product may become apparent.
  • Example 12 when the HGF-binding aptamer obtained in Example 4 below is used as a parent sequence and an in-computer evolution method is performed until the second generation, the first and second generation aptamers are used.
  • the base sequences of aptamers having high binding ability to HGF were examined, it was found that many sequences have a common sequence motif of ggtggagggg (SEQ ID NO: 57).
  • an aptamer that binds to a desired target protein can be easily produced without performing SELEX using the promoter sequence of the structural gene of the desired target protein. Excellent effect is achieved.
  • aptamers Since aptamers have the property of binding specifically to a target protein, they can be used for quantification and detection of the target protein (for example, Patent Document 2).
  • the aptamer can be labeled and used.
  • the label include well-known labels such as a fluorescent label, a radiolabel, an enzyme label, and a chemiluminescent label. It is well known that the binding affinity to the target substance is maintained even if these labels are bound directly or via the spacer sequence to the end of the aptamer.
  • the aptamer bound with FITC which is a fluorescent label, is used. Used. Aptamers to which these labels are added can be used for measurement (detection or quantification) of gene products.
  • the method for measuring a target substance using a labeled aptamer is well known in this field, and can be performed, for example, in the same manner as an immunoassay using a labeled antibody.
  • the aptamer produced by the method of the present invention should be used as a nucleic acid drug. Can do. That is, when the aptamer is administered to a living body, a part of the gene product produced in the cell binds to the aptamer and cannot bind to the promoter, so that transcriptional repression by the gene product is reduced.
  • an aptamer can bind to a gene product and neutralize its activity, it can also inhibit the activity of the gene product, and if the inhibition of the gene product leads to treatment of the disease, the nucleic acid drug Can be used as When aptamers are used as nucleic acid drugs, for example, other structures such as polyethylene glycol (PEG) chains can be added to improve nuclease resistance. It is well known that the nuclease resistance of an aptamer is enhanced by attaching a PEG chain to the end of the aptamer and has already been put into practical use.
  • PEG polyethylene glycol
  • the size of the PEG chain is not particularly limited, but usually has a molecular weight of about 10,000 to 30,000, preferably about 15,000 to 25,000, and the number of PEG chains may be one or two, but two are preferred. .
  • Such a PEG chain can be bound via a known amino linker added to the end of the aptamer. When two PEG chains are bonded, an amino linker having a plurality of amino groups such as a lysine amino linker can be used, and the PEG chain can be bonded to each amino group.
  • a new drug using the binding ability to the aptamer produced by the method of the present invention as an index Screening can also be performed.
  • a substance found by screening for new drugs inhibition of the promoter by the gene product is reduced, so that the substance exerts a pharmacological effect.
  • the present inventors further considered that when a G-quadruplex structure is present in mRNA, the mRNA and the gene product encoded by the mRNA may be combined.
  • a new finding is that single-stranded nucleic acid having the same base sequence as the G-quadruplex structure-containing region contained in mRNA can be used as it is as an aptamer that specifically binds to the gene product encoded by the mRNA.
  • the aptamer production method has the same base sequence as the region containing the G-quadruplex structure present in mRNA, and the gene product encoded by the mRNA or the relationship between the gene products Chemically synthesizing an aptamer that binds to a gene product, or an aptamer that has 90% or more sequence identity with the base sequence of the aptamer and includes a G-quadruplex structure and binds to the gene product to which the aptamer binds Including.
  • mRNA itself can be used as an RNA aptamer, but the aptamer need not be RNA, and it is preferable to chemically synthesize aptamer DNA as described above.
  • uracil in mRNA becomes thymine in DNA, and as described above, uracil in mRNA is replaced with thymine in DNA, and it is understood that it has “the same base sequence”. .
  • the size is preferably 30 mer to 100 mer as in the first aspect of the present invention described above, and the affinity with the target substance can be further increased by the in-computer evolution method. preferable. Further, it can be used as a nucleic acid drug as in the first aspect, and in that case, it is preferable to perform nuclease resistance modification such as PEGylation.
  • the second invention of the present application has succeeded in creating aptamers that bind to each of vascular endothelial growth factor and platelet-derived growth factor.
  • Example 1 and Comparative Example 1 Analysis of binding ability of Gq structure formed in VEGF promoter region to VEGF
  • VEGF promoter known to contain G-quadruplex structure (Sun, D., Guo, K., Rusche, JJ & Hurley, LH Facilitation of a structural transition in the polypurine / polypyrimidine tract within the proximal promoter region of The human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 33, 6070-6080 (2005)) was selected as a promoter.
  • Gq G-quadruplex (hereinafter sometimes abbreviated as “Gq”) structure-forming sequence (VEGF promoter Gq (SEQ ID NO: 1)) formed within the VEGF promoter region (position on the genome: chr6: 43,737,633-43,739,852) Example 1) and evaluation of the binding ability of VEGF promoter Gq- (SEQ ID NO: 2), Comparative Example 1) to VEGF, which was designed to replace G base involved in Gq formation with T base and not form Gq Went.
  • Gq G-quadruplex
  • VEGF 165 (GenBank Accession No .: NP_001165097) and each aptamer (5′-FITC modification) were mixed to a final concentration of 1.3 ⁇ M or 500 nM, respectively, and shaken for 30 minutes at room temperature. Thereafter, each sample was applied to a 12% native polyacrylamide gel and electrophoresed at room temperature and 20 mA (constant current) for 25 minutes. After the electrophoresis, FITC fluorescence of each aptamer was detected by Typhoon 8600 (trade name, manufactured by GE Healthcare). Further, VEGF was stained by silver staining.
  • SPR measurement TBS buffer was used as the running buffer.
  • CM5 trade name, manufactured by GE Healthcare
  • VEGF 165 of about 4700 RU is immobilized by the amine coupling method
  • each aptamer prepared at 7.8 to 1000 nM is injected, and VEGF on the sensor chip is injected.
  • the binding between 165 and each aptamer was observed by SPR measurement.
  • VEGF-promoter-Gq- When VEGF-promoter-Gq- was injected, no increase in SPR signal was observed, whereas when VEap121 or VEGF-promoter-Gq was used, an increase in aptamer concentration-dependent SPR signal was observed.
  • VEap121 510 nM
  • VEGF promoter Gq 240 nM.
  • Example 2 and Comparative Example 2 Analysis of binding ability of Gq structure formed in PDGF promoter region to PDGF by SPR
  • PDGF-A promoter known to contain G-quadruplex structure (Qin, Y., Rezler, EM, Gokhale, V., Sun, D. & Hurley, LH Characterization of the G-quadruplexes in the duplex nuclease
  • the Gq structure forming sequence (PDGF promoter Gq (SEQ ID NO: 4), Example 2) formed in the PDGF-A promoter region (position on the genome: chr7: 556,612-562,845) and the G base involved in Gq formation Evaluation of the binding ability to the PDGF-AA of the sequences (PDGF promoter Gq- (SEQ ID NO: 5), Comparative Example 2) designed so as to be substituted with T base and not form Gq was performed by SPR measurement. These sequences are shown in Table 2. All base numbers correspond to Human Feb. 2009 (GRCh37 / hg19) Assembly.
  • TBS ⁇ ⁇ ⁇ ⁇ ⁇ buffer was used as the running buffer.
  • PDGF-AA GenBank Accession No .: The binding between each aptamer and P04085) was observed by SPR measurement.
  • FIG. 2 shows the results of SPR measurement of the PDGF promoter Gq sequence.
  • PDGF promoter Gq- When PDGF promoter Gq- was injected, no increase in SPR signal was observed, whereas when PDGF promoter Gq was used, an increase in aptamer concentration-dependent SPR signal was observed.
  • VEGF promoter Gq 18 nM.
  • Gq structure forming sequence (RB-1_Gq promoter Gq (SEQ ID NO: 6), Example 3) formed in the RB-1 promoter region (position on the genome: chr13: 48877460-48878501) and G involved in Gq formation
  • the binding ability of the sequences (RB-1_Gq_Mut (SEQ ID NO: 7), Comparative Example 3) designed so as not to form Gq by replacing the base with T base was examined by gel shift assay. All base numbers correspond to Human Feb. 2009 (GRCh37 / hg19) Assembly.
  • RB-1 final concentration 0 nM or 470 nM (GenBank Accession No .: P06400) and 1000 nM each DNA (5′-TAMRA modification, sequence shown in Table 3 below) were mixed and shaken at room temperature for 30 minutes. Thereafter, each sample was applied to 12% native polyacrylamide gel and electrophoresed at room temperature and 20 mA (constant current) for 20 minutes. After electrophoresis, TAMRA fluorescence of each DNA was detected with Typhoon 8600 (trade name). In addition, RB-1 was stained by silver staining.
  • FIG. 3 shows the results of detecting fluorescence with Typhoon (trade name) and the results of detecting RB-1 protein with silver staining after electrophoresis.
  • Typhoon trade name
  • sequences capable of forming a quadruplex structure were extracted under the following conditions.
  • HGF Four or more consecutive Gs were included at four positions, the sequence between consecutive Gs and consecutive Gs was within 7 mer, and the total length was within 40 mer.
  • PDGFB, HBEGF, Annexin II 3 or more consecutive Gs were included at 4 positions, the sequence between consecutive Gs and consecutive Gs was within 7 mer, and the total length was within 30 mer. If there is no sequence that meets the above conditions, extract 2 or more consecutive Gs in 4 or more locations, the sequence between consecutive Gs is within 7 mer, and the total length is within 30 mer did.
  • HGF and HBEGF PBS buffer Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH7.4
  • was dissolved in was immobilized onto the sensor chip CM5 via amine coupling method .
  • the synthesized oligonucleotide was folded in TBSK buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl) (95 ° C. for 5 minutes and then cooled to 25 ° C. over 30 minutes).
  • Each oligonucleotide was diluted to various concentrations and injected onto the sensor chip, and changes in the SPR signal were observed.
  • the addition time was 120 seconds
  • the dissociation time was 120 seconds
  • the flow rate was 30 ⁇ l / min.
  • the dissociation constant (Kd) was calculated by Curve fitting analysis.
  • the gel shift assay was performed by the following method. Each oligonucleotide whose FI ′ end was modified with FITC was folded in TBSK buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl, pH 7.4). Thereafter, 250 ng of protein and 5 pmol of oligonucleotide were mixed and shaken at room temperature for 30 minutes. Thereafter, each sample was applied to a 12% native polyacrylamide gel and electrophoresed at room temperature and 20 mA (constant current). After electrophoresis, the fluorescence of each aptamer was detected by Typhoon 8600.
  • CD spectra were measured for sequences capable of forming a DNA quadruplex structure present in the HGF and HBEGF promoters.
  • the prepared sample was put into a quartz cell having an optical path length of 10 mm, and a CD spectrum was measured using a J-820 type circular dichroism dispersometer.
  • Sensitivity is 1000 mdeg
  • wavelength region is 220 320nm
  • data acquisition interval is 1 nm
  • scanning speed is 500 nm / min
  • response is 1 sec
  • bandwidth is 5.0 nm
  • integration number is 10 times. Measurements were made.
  • HGF-PQS1 SEQ ID NO: 8
  • HGF-PQS7 SEQ ID NO: 9
  • HGF-PQS8 SEQ ID NO: 10
  • Increased DNA concentration-dependent SPR signals were observed in, indicating that these are aptamers of HGF (FIG. 4).
  • the dissociation constants of HGF-PQS1, HGF-PQS7, and HGF-PQS8 for HGF were 73 nM, 45 nM, and 110 nM, respectively.
  • Annexin II-PQS6 SEQ ID NO: 21
  • Annexin II-PQS6 SEQ ID NO: 21
  • HGF-PQS1 to PQS9 When CD spectra of HGF-PQS1 to PQS9 were measured, only HGF-PQS1 and HGF-PQS7, in which binding to HGF was observed, were positive in the presence of potassium at around 260 nm, and negative at around 240 nm. (FIG. 8). This is a CD spectrum unique to the parallel DNA quadruplex structure, indicating that HGF-PQS1 and HGF-PQS7 form a parallel DNA quadruplex structure and bind to HGF. It was done.
  • HBEGF-PQS8 and HBEGF-PQS9 formed a parallel DNA quadruplex structure and bound to HBEGF.
  • sequences capable of forming an RNA quadruplex structure were extracted under the following conditions. Two or more consecutive Gs were included in four or more locations, the sequence between consecutive Gs was within 14 mer, and the sequence with a total length of 40 mer or less was extracted.
  • PDGF-AA and PDGF-BB are dissolved in 10 mM HEPES buffer (pH 7.0) and VEGFA is dissolved in 10 mM sodium acetate buffer (pH 6.0) and immobilized on the sensor chip CM5 by the amine coupling method. did. Thereafter, the synthesized oligonucleotide was folded in PBS buffer (Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH 7.4) (65 ° C. for 5 minutes and then 25 ° C. Cooling over 30 minutes).
  • PBS buffer Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH 7.4
  • Each oligonucleotide was diluted to various concentrations and injected onto the sensor chip, and changes in the SPR signal were observed.
  • the addition time was 120 seconds
  • the dissociation time was 120 seconds
  • the flow rate was 30 ⁇ l / min.
  • the dissociation constant (Kd) was calculated by Curve fitting analysis.
  • VEGFA RNA1 (SEQ ID NO: 22) bound to VEGFA with a dissociation constant of about 140 nM
  • VEGFA RNA2 (SEQ ID NO: 23) was about 31 nM
  • VEGFA RNA3 (SEQ ID NO: 24) was about 300 nM. (FIG. 10).
  • PDGFB RNA1 (SEQ ID NO: 27) is about 42 nM
  • PDGFB RNA2 (SEQ ID NO: 28) is about 30 nM
  • PDGFB RNA3 (SEQ ID NO: 29) is about 59 nM
  • PDGFB RNA4 (SEQ ID NO: 30) is about 35 nM
  • PDGFB RNA5 (SEQ ID NO: 31) bound to PDGFA with a dissociation constant of about 34 nM (FIG. 12).
  • Example 11 Search for the predicted G4 formation sequence in the promoter region of the target protein gene Genome Browser (http: //genome.ucsc. edu / cgi-bin / hgGateway). From the extracted sequences, a sequence that satisfies the following conditions was searched using QGRS Mapper (http://bioinformatics.ramapo.edu/QGRS/index.php). (i) Total length within 30 mer (ii) The obtained sequence containing two or more consecutive Gs at intervals of 7 mer was designated as an aptamer candidate sequence for ApoE4.
  • HGFap1, HGFap2, HGFap3, and the two HBEGF aptamers are referred to as HBEGFap1, HBEGFap2.
  • Sp (HGF) includes a target / [HBEGF [association constant K a in the case of the HGF targeted]
  • HGF Sp (HGF) was calculated for HGFap1, HGFap2, and HGFap3, which are the first generation parent sequences, and each sequence was replicated based on the ratio of Sp (HGF) values, totaling 20 An array of books was made. Subsequently, 2 pairs were randomly formed in 20 sequences, and crossed at any one point. Thereafter, 10% mutations were randomly introduced into each of the 20 sequences, both in position and base type, to obtain first generation sequences (1R01 to 1R20). The base sequences of 1R01 to 1R20 are shown in SEQ ID NOs: 58 to 77 in this order.
  • HGF and HBEGF were immobilized on the sensor chip CM5 by PBS coupling (Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH 7.4) by the amine coupling method.
  • PBS coupling Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH 7.4
  • As a protein dilution buffer 10 mM HEPES buffer (pH 6.5) was used for HGF, and 10 mM acetic acid buffer (pH 5.0) was used for HBEGF.
  • each first-generation sequence folded in TBS buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl) was used at various concentrations (fc 1000 nM, 500 nM, 100 nM) using TBS buffer. , 50 nM, 0 nM), and the change of the SPR signal when HGF or HBEGF was added to the immobilized sensor chip was measured.
  • TBS buffer was used as a running buffer at the time of interaction measurement, and the measurement was performed at an addition time of 120 seconds, a dissociation time of 200 seconds, and a flow rate of 30 ⁇ L / min. After measurement, Ka (HGF) and Ka (HBEGF) were obtained by curve fitting, and Sp (HGF) was calculated.
  • the 1st and 2nd generation sequences do not bind to sequence groups with high Sp (HGF) , sequence groups with low Sp (HGF) , HGF and HBEGF As a result of comparing the sequences, the sequences having a high Sp (HGF) have a common sequence motif of GGTGGAGGGG. Therefore, the first generation sequence and the second generation sequence that have a GGTGGAGGGG sequence motif with high Sp (HGF) (1R01, 1R05, 1R08, 1R09, 2R07) For parent sequence.
  • the obtained third generation motif-fixed parent sequence was replicated, crossed and introduced in the same manner as the first generation parent sequence and the second generation parent sequence to obtain third generation motif-fixed sequences (3R01mfix-3R20mfix).
  • the nucleotide sequences of 3R01mfix to 3R20mfix are shown in SEQ ID NOs: 98 to 117 in this order. Evaluation of binding to HGF and HBEGF and calculation of Sp (HGF) were performed in the same manner as the first generation sequence and the second generation sequence.
  • HGF dissociation constant to HGF K d
  • HGF Dissociation constant for HBEGF K a
  • HGF Binding constant for HGF K a
  • HBEGF Sp HGF
  • HGF Dissociation constant for HGF K d
  • HGF Dissociation constant for HBEGF K a
  • HGF binding constant for HGF K a
  • HBEGF Binding constant for HBEGF Sp (HGF) : The value obtained by dividing the binding constant for HGF by the binding constant for HBEGF (Ka (HGF) / Ka (HBEGF) )
  • HGF dissociation constant to HGF K d
  • HGF Dissociation constant for HBEGF K a
  • HGF Binding constant for HGF K a
  • HBEGF Sp HGF

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Disclosed is a method for producing an aptamer that binds specifically with a target substance without using SELEX. The method for producing an aptamer includes the chemical synthesis of an aptamer that has a gene sequence coding for a target protein or a base sequence identical to a region containing a G-quadruplex structure present in a control sequence or transcription product of the gene sequence, and that binds with the target protein or a related gene product of the gene sequence, or the chemical synthesis of an aptamer that has 90% or higher sequence identity with the base sequence of the aptamer, contains a G-quadruplex structure, and binds to the target protein to which the aptamer binds, or to the related gene product.

Description

アプタマーの製造方法Method for producing aptamer
 本発明は、アプタマーの製造方法及びそれにより製造されたアプタマーに関する。 The present invention relates to an aptamer production method and an aptamer produced thereby.
 任意の分子と特異的に結合する核酸分子であるアプタマーが知られている。アプタマーは、所望の標的分子と特異的に結合するので、アプタマーを利用して該標的分子の検出や定量を行うことが提案されている。これまでに、インスリン、ルシフェラーゼ、チログロブリン、C反応性タンパク質、血管内皮細胞増殖因子(特許文献1)等に特異的に結合するアプタマーが報告されている。 Aptamers that are nucleic acid molecules that specifically bind to arbitrary molecules are known. Since an aptamer specifically binds to a desired target molecule, it has been proposed to detect and quantify the target molecule using the aptamer. So far, aptamers that specifically bind to insulin, luciferase, thyroglobulin, C-reactive protein, vascular endothelial growth factor (Patent Document 1) and the like have been reported.
 所望の標的分子と特異的に結合するこれらのアプタマーは、基本的にSELEX (Systematic Evolution of Ligands by EXponential Enrichment)と呼ばれる方法により作出されている (非特許文献1)。この方法では、標的分子を担体に固定化し、これに膨大な種類のランダムな塩基配列を有する核酸から成る核酸ライブラリを添加し、標的分子に結合する核酸を回収し、これをPCRにより増幅して再び標的分子を固定化した担体に添加する。この工程を10回程度繰り返すことにより、標的分子に対して結合力の高いアプタマーを濃縮し、その塩基配列を決定して、標的分子を認識するアプタマーを取得する。なお、上記核酸ライブラリーは、核酸の自動化学合成装置により、ランダムにヌクレオチドを結合していくことにより容易に調製可能である。このように、ランダムな塩基配列を有する核酸ライブラリーを用いた、偶然を積極的に利用する方法により、任意の標的物質と特異的に結合するアプタマーを作出できる。 These aptamers that specifically bind to a desired target molecule are basically produced by a method called SELEX® (Systematic Evolution of Ligands by EXponential Enrichment) (Non-patent Document 1). In this method, a target molecule is immobilized on a carrier, a nucleic acid library consisting of nucleic acids having a large number of random base sequences is added to the target molecule, nucleic acids that bind to the target molecule are recovered, and this is amplified by PCR. Again, the target molecule is added to the immobilized carrier. By repeating this step about 10 times, aptamers having high binding power to the target molecule are concentrated, the base sequence thereof is determined, and the aptamer that recognizes the target molecule is obtained. The nucleic acid library can be easily prepared by binding nucleotides at random using an automatic nucleic acid synthesizer. Thus, an aptamer that specifically binds to an arbitrary target substance can be produced by a method that actively uses chance by using a nucleic acid library having a random base sequence.
特開2011-92138号公報JP 2011-92138 A WO 2005/049826WO 2005/049826 特開2010-30999号公報JP 2010-30999
 SELEXは、任意の標的物質と特異的に結合するアプタマーを作出できる優れた方法ではあるが、アプタマーを作出するためにかなり手間のかかる作業を必要とする。また、偶然を利用する方法であるので、かなりの時間に亘りSELEXを適用しても、満足できる親和性で標的物質と特異的に結合するアプタマーが得られない場合もある。 SELEX is an excellent method for producing an aptamer that specifically binds to an arbitrary target substance, but it requires considerable labor to produce an aptamer. In addition, since it is a method utilizing chance, even if SELEX is applied for a considerable time, an aptamer that specifically binds to a target substance with satisfactory affinity may not be obtained.
 本発明の目的は、SELEXを用いることなく、標的物質と特異的に結合するアプタマーを製造する方法を提供することである。 An object of the present invention is to provide a method for producing an aptamer that specifically binds to a target substance without using SELEX.
 G-quadruplex構造がゲノミックDNA中に存在して四重らせん構造をとることが知られており、G-quadruplex構造を含むプロモーターも知られている。本願発明者らは、プロモーター中にG-quadruplex構造が含まれる場合、該プロモーターが制御する構造遺伝子の遺伝子産物又は該遺伝子産物が包含されるカスケードの下流の遺伝子産物が、該G-quadruplex構造に結合してフィードバック阻害がかかるのではないか考えた。そして、プロモーター中に含まれるG-quadruplex構造含有領域と同じ塩基配列を有する一本鎖核酸は、そのままで、該プロモーターが結合する物質と特異的に結合するアプタマーとして利用可能であるという新知見を得て本発明の第1の局面を完成した。本願発明者らはさらに、mRNA中にG-quadruplex構造が存在する場合、該mRNAと、該mRNAがコードする遺伝子産物とが結合するのではないかと考えた。そして、mRNA中に含まれるG-quadruplex構造含有領域と同じ塩基配列を有する一本鎖核酸は、そのままで、該mRNAがコードする遺伝子産物と特異的に結合するアプタマーとして利用可能であるという新知見を得て本願発明の第2の局面を完成した。 It is known that a G-quadruplex structure exists in genomic DNA and takes a quadruplex structure, and promoters containing the G-quadruplex structure are also known. When the G-quadruplex structure is included in the promoter, the present inventors have found that the gene product of the structural gene controlled by the promoter or the gene product downstream of the cascade in which the gene product is included in the G-quadruplex structure. I thought that it might be combined to inhibit feedback. The new finding is that a single-stranded nucleic acid having the same base sequence as the G-quadruplex structure-containing region contained in the promoter can be used as it is as an aptamer that specifically binds to the substance to which the promoter binds. Thus, the first aspect of the present invention was completed. The present inventors further considered that when a G-quadruplex structure is present in mRNA, the mRNA and the gene product encoded by the mRNA may bind to each other. A new finding is that single-stranded nucleic acid having the same base sequence as the G-quadruplex structure-containing region contained in mRNA can be used as it is as an aptamer that specifically binds to the gene product encoded by the mRNA. To complete the second aspect of the present invention.
 すなわち、本発明は、標的タンパク質をコードする遺伝子配列若しくはその制御配列又はその転写産物中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、前記標的タンパク質若しくは前記遺伝子配列の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と90%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する前記標的タンパク質又は前記関連遺伝子産物に結合するアプタマーを化学合成することを含む、アプタマーの製造方法を提供する。また、本発明は、上記本発明の方法により製造されたアプタマーを提供する。ここで、「制御配列」は、プロモーターやエンハンサー、サイレンサー、インスレーター等、標的タンパク質をコードする遺伝子の発現を制御する遺伝子配列を意味する。また、「標的タンパク質をコードする遺伝子配列」は、cDNA配列のみならず、ゲノミックDNAの場合にはイントロンをも包含する遺伝子配列を意味する。また、「転写産物」には、mRNAのみならず、スプライシング前のmRNA前駆体も包含される。また、周知の通り、DNA中のチミンとRNA中のウラシルは、共にアデニンと特異的に対合するものであるから、本発明において、DNA中のチミンとRNA中のウラシルは「同一の塩基」と解する。従って、本発明において、あるDNA配列と、このDNA配列中のチミンがウラシルに置き換わったRNA配列は、「同一の塩基配列を有する」と解する。 That is, the present invention has a base sequence identical to a region containing a G-quadruplex structure that is present in a gene sequence encoding a target protein or a regulatory sequence thereof or a transcription product thereof, and relates to the target protein or the gene sequence. An aptamer that binds to a gene product or an aptamer that has 90% or more sequence identity with the base sequence of the aptamer and includes a G-quadruplex structure, and binds to the target protein or the related gene product to which the aptamer binds There is provided a method for producing an aptamer, which comprises chemically synthesizing. Moreover, this invention provides the aptamer manufactured by the method of the said invention. Here, “control sequence” means a gene sequence that controls the expression of a gene encoding a target protein, such as a promoter, enhancer, silencer, insulator and the like. The “gene sequence encoding the target protein” means a gene sequence including not only a cDNA sequence but also an intron in the case of genomic DNA. In addition, “transcription product” includes not only mRNA but also mRNA precursor before splicing. As is well known, since thymine in DNA and uracil in RNA both specifically pair with adenine, in the present invention, thymine in DNA and uracil in RNA are “the same base”. I understand. Therefore, in the present invention, a certain DNA sequence and an RNA sequence in which thymine in this DNA sequence is replaced with uracil are understood to have “the same base sequence”.
 上記本発明の範囲に包含される、本発明の第1の局面によれば、プロモーター中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、該プロモーターが制御する構造遺伝子の遺伝子産物若しくは該遺伝子産物の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と90%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する遺伝子産物に結合するアプタマーを化学合成することを含む、アプタマーの製造方法が提供される。 According to the first aspect of the present invention, which is included in the scope of the present invention, the structural gene having the same base sequence as the region containing the G-quadruplex structure present in the promoter and controlled by the promoter An aptamer that binds to a gene product or a related gene product of the gene product, or that has a sequence identity of 90% or more with the base sequence of the aptamer and includes a G-quadruplex structure, and binds to the gene product to which the aptamer binds There is provided a method for producing an aptamer, which comprises chemically synthesizing an aptamer.
 また、上記本発明の範囲に包含される、本発明の第2の局面によれば、mRNA中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、該mRNAがコードする遺伝子産物若しくは該遺伝子産物の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と90%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する遺伝子産物に結合するアプタマーを化学合成することを含む、アプタマーの製造方法が提供される。 In addition, according to the second aspect of the present invention, which is included in the scope of the present invention, a gene having the same base sequence as a region containing a G-quadruplex structure present in mRNA and encoded by the mRNA An aptamer that binds to a product or a related gene product of the gene product, or has a nucleotide sequence of 90% or more with the base sequence of the aptamer, and includes a G-quadruplex structure, and binds to a gene product to which the aptamer binds A method for producing an aptamer is provided that includes chemically synthesizing an aptamer.
 本発明により、手間のかかる操作が必要なSELEXを用いることなく所望の標的物質と結合するアプタマーを製造する方法が初めて提供された。本発明の方法によれば、SELEXを用いることなく、所望の標的タンパク質をコードする遺伝子のプロモーター中のG-quadruplex構造含有領域の塩基配列と同じ塩基配列を持つ核酸を市販の核酸合成機により化学合成することで標的物質と結合するアプタマーを製造することができるので、所望の標的タンパク質と結合するアプタマーを、従来法に比べて遙かに容易に製造することができる。 The present invention provides for the first time a method for producing an aptamer that binds to a desired target substance without using SELEX, which requires laborious operations. According to the method of the present invention, a nucleic acid having the same base sequence as the base sequence of the G-quadruplex structure-containing region in the promoter of the gene encoding the desired target protein can be chemically synthesized using a commercially available nucleic acid synthesizer without using SELEX. Since an aptamer that binds to a target substance can be produced by synthesis, an aptamer that binds to a desired target protein can be produced much more easily than conventional methods.
下記実施例1及び比較例1で作製したアプタマーと、血管内皮増殖因子との結合性を示すSPR測定の結果を示す図(左側が実施例1、右側が比較例1)である。It is a figure which shows the result of the SPR measurement which shows the binding property of the aptamer produced in the following Example 1 and Comparative Example 1 and vascular endothelial growth factor (the left side is Example 1 and the right side is Comparative Example 1). 下記実施例2及び比較例2で作製したアプタマーと、血小板由来成長因子との結合性を示すSPR測定の結果を示す図(左側が比較例2、右側が実施例2)である。It is a figure (the left side is Comparative Example 2 and the right side is Example 2) which shows the result of the SPR measurement which shows the binding property of the aptamer produced in the following Example 2 and Comparative Example 2 and platelet-derived growth factor. 下記実施例3及び比較例3で作製したアプタマーと、網膜芽細胞腫関連タンパク質との結合性を示すゲルシフトアッセイの結果を示す図である。It is a figure which shows the result of the gel shift assay which shows the binding property of the aptamer produced in the following Example 3 and Comparative Example 3, and a retinoblastoma related protein. 下記実施例4~7において行った、HGFとHGF-PQS1、HGF-PQS7、HGF-PQS8の結合をSPRにより解析した結果を示す図である。図4のいずれの図においても、各曲線は、上から5000nM、3000nM、1000nM、500nM、250nM、125nM、62.5nMの結果を示す。It is a figure which shows the result of having analyzed the coupling | bonding of HGF and HGF-PQS1, HGF-PQS7, and HGF-PQS8 by SPR performed in the following Examples 4-7. In any figure of FIG. 4, each curve shows the result of 5000 nM, 3000 nM, 1000 nM, 500 nM, 250 nM, 125 nM, and 62.5 nM from the top. 下記実施例4~7において行った、HBEGFとHBEGF-PQS8、HBEGF-PQS9の結合をSPRにより解析した結果を示す図である。図5のいずれの図においても、各曲線は、上から5000nM、3000nM、1000nM、500nM、250nM、125nM、62.5nMの結果を示す。It is a figure which shows the result of having analyzed the coupling | bonding of HBEGF, HBEGF-PQS8, and HBEGF-PQS9 by SPR performed in the following Examples 4-7. In any figure of FIG. 5, each curve shows the result of 5000 nM, 3000 nM, 1000 nM, 500 nM, 250 nM, 125 nM, and 62.5 nM from the top. 下記実施例4~7において行った、PDGF-BBと各オリゴヌクレオチドの結合をゲルシフトアッセイにより解析した結果を示す図である。It is a figure which shows the result of having analyzed in the following Examples 4-7 the analysis of the coupling | bonding of PDGF-BB and each oligonucleotide by a gel shift assay. 下記実施例4~7において行った、Annexin IIと各オリゴヌクレオチドの結合をゲルシフトアッセイにより解析した結果を示す図である。It is a figure which shows the result of having analyzed in the following Examples 4-7 the analysis of the coupling | bonding of Annexin II and each oligonucleotide by gel shift assay. 下記実施例4~7において得られた、HGF-PQS1からPQS9のCDスペクトルを示す図である。It is a figure which shows the CD spectrum of HGF-PQS1 to PQS9 obtained in the following Examples 4-7. 下記実施例4~7において得られた、HBEGF-PQS1からPQS14のCDスペクトルを示す図である。It is a figure which shows the CD spectrum of HBEGF-PQS1 to PQS14 obtained in the following Examples 4-7. 下記実施例8~10において行った、VEGFA遺伝子から抽出したRNA配列のVEGFAへの結合をSPR測定により解析した結果を示す図である。図10のいずれの図においても、各曲線は、上から1000nM、500nM、100nM、50nM、10nMの結果を示す。It is a figure which shows the result of having analyzed in SPR measurement the coupling | bonding to the VEGFA of the RNA sequence extracted from the VEGFA gene performed in the following Examples 8-10. In any figure of FIG. 10, each curve shows the results of 1000 nM, 500 nM, 100 nM, 50 nM, and 10 nM from the top. 下記実施例8~10において行った、PDGFA遺伝子から抽出したRNA配列のPDGFAへの結合をSPR測定により解析した結果を示す図である。図11の右側の図において、各曲線は、上から1000nM、500nM、100nM、50nM、10nMの結果を示す。It is a figure which shows the result of having analyzed by the SPR measurement about the coupling | bonding to PDGFA of the RNA sequence extracted from the PDGFA gene performed in the following Examples 8-10. In the figure on the right side of FIG. 11, each curve shows the results of 1000 nM, 500 nM, 100 nM, 50 nM, and 10 nM from the top. 下記実施例8~10において行った、PDGFB遺伝子から抽出したRNA配列のPDGFBへの結合をSPR測定により解析した結果を示す図である。図12のいずれの図においても、各曲線は、上から1000nM、500nM、100nM、50nM、10nMの結果を示す。It is a figure which shows the result of having analyzed by the SPR measurement about the coupling | bonding to PDGFB of the RNA sequence extracted from PDGFB gene performed in the following Examples 8-10. In any figure of FIG. 12, each curve shows the results of 1000 nM, 500 nM, 100 nM, 50 nM, and 10 nM from the top.
 G-quadruplex(Gカルテット、G4、グアニン四重鎖等とも呼ばれる)構造は、核酸中のグアニン塩基が4つ接近して水素結合により四量体を形成している面が2~3面重なった構造であり、四重らせん構造をとることで知られている。G-quadruplex構造は、ヒトテロメアやプロモーター中に存在することが知られている。 The G-quadruplex (also called G quartet, G4, guanine quadruplex, etc.) structure has two or three guanine bases in a nucleic acid that are close to each other and form a tetramer by hydrogen bonding. It is a structure and is known for taking a quadruplex structure. The G-quadruplex structure is known to exist in human telomeres and promoters.
 本願発明者らは、プロモーター中に含まれるG-quadruplex構造を含む領域(「G-quadruplex構造含有領域」と呼ぶ)と同一の塩基配列を有する一本鎖ポリヌクレオチドが、そのままでアプタマーとして機能し、該アプタマーは、そのプロモーターが制御する構造遺伝子の遺伝子産物又は該遺伝子産物の関連遺伝子産物と結合することを見出した。本発明は、この新知見を基礎とする。ここで、ある「遺伝子産物の関連遺伝子産物」は、例えば、その遺伝子産物が包含されるカスケードの上流又は下流の遺伝子産物や、その遺伝子産物と協働して機能するタンパク質等である。ある遺伝子産物の関連遺伝子産物は、例えば、文献における共起性解析により調べることができる。この共起性解析は、例えば、国立情報学研究所、国立遺伝学研究所等が公開しているJabionのウェブサイトで行うことができる。このウェブサイトで提供されている方法によれば、共起性スコアもわかるので、ある遺伝子産物と共起性の強い遺伝子産物が、関連性の高い遺伝子産物であると考えることができる。例えば、下記実施例において具体的に試験した血管内皮増殖因子(VEGF)と共起性の高いタンパク質は、KDR、FLT1、HIF1Aの順で共起性が高く、血小板由来成長因子(PDGF)では、PDGFB、 PDGFRAの順、網膜芽細胞腫関連タンパク質(RB-1)では、E2F1、 CDKN2A、TP53の順で共起性が高い。これらの遺伝子のプロモーター中のG-quadruplex形成配列を後述する方法で探し、その配列を合成して結合能を確認することができる。 The inventors of the present application use a single-stranded polynucleotide having the same base sequence as a region containing a G-quadruplex structure contained in a promoter (referred to as a “G-quadruplex structure-containing region”) as it functions as an aptamer. The aptamer was found to bind to the gene product of the structural gene controlled by its promoter or a related gene product of the gene product. The present invention is based on this new knowledge. Here, a “related gene product of a gene product” is, for example, a gene product upstream or downstream of a cascade in which the gene product is included, a protein that functions in cooperation with the gene product, and the like. A related gene product of a gene product can be examined, for example, by co-occurrence analysis in the literature. This co-occurrence analysis can be performed, for example, on the Jabion website published by the National Institute of Informatics, the National Institute of Genetics, and the like. According to the method provided on this website, the co-occurrence score is also known, so that a gene product strongly co-occurring with a certain gene product can be considered to be a highly related gene product. For example, a protein having high co-occurrence with vascular endothelial growth factor (VEGF) specifically tested in the following examples has high co-occurrence in the order of KDR, FLT1, and HIF1A, and with platelet-derived growth factor (PDGF), In the order of PDGFB, PDGFRA, and retinoblastoma-related protein (RB-1), E2F1, CDKN2A, and TP53 have the highest co-occurrence. G-quadruplex forming sequences in the promoters of these genes can be searched for by the method described later, and these sequences can be synthesized to confirm the binding ability.
 本発明の方法は、例えば次のように実施することができる。先ず、G-quadruplex構造を含むプロモーターを選出する。ヒトゲノムは既に解読されており、各種構造遺伝子のプロモーター配列も公知である。これらの各種プロモーターのうち、G-quadruplex構造を含むものが本発明の方法において利用可能である。G-quadruplex構造を含むことが公知であるプロモーターは、本発明の方法において利用可能である。G-quadruplex構造を含むことが公知であるプロモーターの例としては、c-Kit遺伝子のプロモーターであるc-Kit87up、c-Myb遺伝子プロモーター、Rb遺伝子プロモーター、c-myc遺伝子プロモーターであるc-myc-23456、BCL-2遺伝子プロモーター、HIF1α遺伝子プロモーター、PDGFRβ遺伝子プロモーター、KRAS遺伝子プロモーター、TERT遺伝子プロモーター、MYB遺伝子プロモーター等を挙げることができる。また、後述の実施例では、プロモーターとして、血管内皮増殖因子(VEGF)プロモーター、血小板由来成長因子(PDGF-A)プロモーター及び網膜芽細胞腫関連タンパク質(RB-1)プロモーター中を選出したが、これらのプロモーター中にG-quadruplex構造が含まれることも公知である。 The method of the present invention can be implemented as follows, for example. First, a promoter containing a G-quadruplex structure is selected. The human genome has already been decoded, and promoter sequences of various structural genes are also known. Among these various promoters, those containing a G-quadruplex structure can be used in the method of the present invention. Promoters known to contain a G-quadruplex structure can be used in the method of the present invention. Examples of promoters known to contain a G-quadruplex structure include c-Kit87up, which is the promoter of the c-Kit gene, c-Myb gene promoter, Rb gene promoter, c-myc gene promoter, c-myc- 23456, BCL-2 gene promoter, HIF1α gene promoter, PDGFRβ gene promoter, KRAS gene promoter, TERT gene promoter, MYB gene promoter, and the like. In the examples described below, the promoters were selected from among the vascular endothelial growth factor (VEGF) promoter, platelet-derived growth factor (PDGF-A) promoter, and retinoblastoma-related protein (RB-1) promoter. It is also known that a G-quadruplex structure is included in the promoter of.
 G-quadruplex構造を含むことが知られていないプロモーターが、G-quadruplex構造を含むか否かは、次のようにして調べることができる。プロモーター配列がG-quadruplex構造を含むためには、グアニンの2連続配列が4箇所以上含まれることが必要である。この要件を満足するプロモーター配列がG-quadruplex構造を含むか否かは、コンピューターソフトによる解析(例えば、http://bioinformatics.ramapo.edu/QGRS/analyze.phpで公開されているRAMAPO COLLEGEのMapper(Nucleic Acids Research 2006 July; 34 (Web Server issue):W676-W682)や、実際にG-quadruplex構造含有領域を化学合成し、それが例えば特許文献3に記載されている公知のG-quadruplex構造検出試薬と反応させて結合するか否かを調べることにより容易に調べることができる。 Whether a promoter that is not known to contain a G-quadruplex structure contains a G-quadruplex structure can be examined as follows. In order for the promoter sequence to contain a G-quadruplex structure, it is necessary that four or more consecutive guanine sequences are included. Whether a promoter sequence that satisfies this requirement includes a G-quadruplex structure is analyzed by computer software (for example, Mapper of RAMAPOACOLLEGE published at http://bioinformatics.ramapo.edu/QGRS/analyze.php) (Nucleic Acids Research 2006 July; 34 (Web Server issue): W676-W682) or the actual G-quadruplex structure-containing region is chemically synthesized, for example, the known G-quadruplex structure described in Patent Document 3 It can be easily investigated by reacting with a detection reagent and examining whether or not it binds.
 本願発明者らはまた、本発明の方法が、ヘパリン結合性ドメインを持つタンパク質に結合するアプタマーの創製にも有用であることを見出した。下記実施例では、このようなヘパリン結合性ドメインを持つタンパク質である肝細胞増殖因子(HGF(hepatocyte growth factor))、ヘパリン結合性EGF(HBEGF(Heparin-binding EGF-like growth factor))及び血小板由来成長因子、アネキシンII(Annexin II)又はアポリポタンパク質E4(ApoE4)について実験を行い、これらのいずれに対しても本願発明の方法により、これらのそれぞれに結合するアプタマーの創製に成功している。 The inventors of the present application have also found that the method of the present invention is useful for creating an aptamer that binds to a protein having a heparin-binding domain. In the following examples, hepatocyte growth factor (HGF (hepatocyte growth factor)), heparin-binding EGF (HBEGF (Hparf-binding EGF-like growth factor))) and platelet derived are proteins having such heparin binding domains. Experiments were conducted on growth factors, annexin II (Annexin II) or apolipoprotein E4 (ApoE4), and aptamers that bind to each of them were successfully created by the method of the present invention for any of these.
 次に、選出したプロモーターのG-quadruplex構造含有領域と同一の塩基配列を有するアプタマーを化学合成する。なお、G-quadruplex構造はプロモーター中に存在するが、G-quadruplex構造含有領域はプロモーター以外の部分に跨がるものであってもよい。アプタマーのサイズは特に限定されないが、通常、15merないし100mer程度、好ましくは30merないし70mer程度である(merはヌクレオチド数を示す)。また、アプタマーは、DNAでもRNAでもよいが、化学的に安定なDNAが好ましい。なお、DNAやRNAの化学合成は、市販の自動合成装置を用いて容易に行うことができる。また、所定の塩基配列を持つDNAやRNAの化学合成を請け負っている業者も種々存在するので、これらの業者に依頼することもできる。なお、in vitro transcriptionによるRNA合成や、PCR等の核酸増幅法によるDNA合成等、無細胞系で核酸を合成することも本発明における「化学合成」に包含される。なお、本明細書及び特許請求の範囲において、「塩基配列を有する」という語は、塩基がそのように並んでいることを意味し、例えば、「配列番号1で示される塩基配列を有するアプタマー」とは、塩基配列が配列番号1の通りに並んでいる34merのアプタマーを意味する。 Next, an aptamer having the same base sequence as the G-quadruplex structure-containing region of the selected promoter is chemically synthesized. Although the G-quadruplex structure exists in the promoter, the G-quadruplex structure-containing region may straddle parts other than the promoter. The size of the aptamer is not particularly limited, but is usually about 15 mer to 100 mer, preferably about 30 mer to 70 mer (mer represents the number of nucleotides). The aptamer may be DNA or RNA, but is preferably chemically stable DNA. In addition, chemical synthesis of DNA and RNA can be easily performed using a commercially available automatic synthesizer. In addition, since there are various contractors who undertake chemical synthesis of DNA or RNA having a predetermined base sequence, it is possible to request these contractors. In addition, synthesis of nucleic acid in a cell-free system such as RNA synthesis by in vitro transcription or DNA synthesis by a nucleic acid amplification method such as PCR is also included in “chemical synthesis” in the present invention. In the present specification and claims, the term “having a base sequence” means that bases are arranged in such a manner, for example, “an aptamer having a base sequence represented by SEQ ID NO: 1”. Means a 34-mer aptamer whose base sequence is arranged as shown in SEQ ID NO: 1.
 次に製造したアプタマーが、当該プロモーターにより制御される構造遺伝子の遺伝子産物と結合することを確認する。これは、下記実施例に具体的に記載するゲルシフトアッセイやSPR測定により行うことができる。すなわち、ゲルシフトアッセイでは、アプタマーの末端に蛍光標識等の標識を結合し、遺伝子産物と混合後、ゲル電気泳動にかけ、標識を検出すると共に銀染色によりタンパク質を検出し、標識と銀染色とが共に陽性であれば、アプタマーと遺伝子産物とが結合していることが確認できる。SPR測定では、SPR測定用のチップ上に遺伝子産物を固定化し、遺伝子産物とアプタマーを接触させ、アプタマーが遺伝子産物に結合するか否かを市販のSPR測定装置で測定することによりアプタマーと遺伝子産物とが結合するか否かを確認することができる。 Next, it is confirmed that the produced aptamer binds to the gene product of the structural gene controlled by the promoter. This can be performed by gel shift assay or SPR measurement specifically described in the following examples. That is, in the gel shift assay, a label such as a fluorescent label is bound to the end of the aptamer, mixed with the gene product, subjected to gel electrophoresis, the label is detected, and the protein is detected by silver staining. If positive, it can be confirmed that the aptamer and the gene product are bound. In SPR measurement, an aptamer and a gene product are immobilized by immobilizing the gene product on a chip for SPR measurement, bringing the gene product into contact with the aptamer, and measuring whether or not the aptamer binds to the gene product with a commercially available SPR measurement device. And can be confirmed.
 アプタマーが遺伝子産物と結合することが確認できた場合には、化学合成によりそのアプタマーを製造する。なお、一般に、標的物質と結合するアプタマーの塩基配列をわずかに変更しても該標的物質との結合性を維持できる場合が少なからず存在することが知られているので、遺伝子産物と結合することが確認されたアプタマーの塩基配列を、該遺伝子産物との結合性を維持したまま修飾してもよい。修飾後のアプタマーの塩基配列は、元の塩基配列と90%以上の配列同一性を有するものであり、好ましくは配列同一性は95%以上である。この場合、修飾後のアプタマーもG-quadruplex構造を有している必要がある。G-quadruplex構造が遺伝子産物と結合すると考えられるので、G-quadruplex構造以外の部分を修飾することが好ましく、G-quadruplex構造以外の部分を修飾しても遺伝子産物との結合性は維持される可能性が高い。このような修飾アプタマーを化学合成により製造することもできる。なお、ここで、「配列同一性」は、配列を比較する2つの塩基配列の塩基ができるだけ多く一致するように2つの配列を整列させ(必要に応じてギャップを挿入する)、一致する塩基の数を全塩基数で除し、百分率で表した数値を意味する。両者の塩基数が異なる場合には、長い方の塩基数で除す。配列同一性を算出するソフトは周知であり、インターネット上でも無料公開されている。なお、上記の通り、本発明では、DNA中のチミンとRNA中のウラシルは、「同一の塩基」と解するので、DNA配列とRNA配列の配列同一性を比較する場合、チミンとウラシルは同一の塩基として計算する。 When it is confirmed that the aptamer binds to the gene product, the aptamer is produced by chemical synthesis. In general, it is known that there are not a few cases where the binding property to the target substance can be maintained even if the base sequence of the aptamer that binds to the target substance is changed slightly. The aptamer base sequence confirmed to be may be modified while maintaining the binding property to the gene product. The base sequence of the aptamer after modification has 90% or more sequence identity with the original base sequence, and preferably the sequence identity is 95% or more. In this case, the modified aptamer also needs to have a G-quadruplex structure. Since it is thought that the G-quadruplex structure binds to the gene product, it is preferable to modify the part other than the G-quadruplex structure, and even if the part other than the G-quadruplex structure is modified, the binding to the gene product is maintained. Probability is high. Such modified aptamers can also be produced by chemical synthesis. Here, “sequence identity” refers to aligning two sequences so that the bases of the two base sequences to be compared match as much as possible (by inserting a gap if necessary), and By dividing the number by the total number of bases, it means a numerical value expressed as a percentage. If the number of bases is different, divide by the longer base number. Software for calculating sequence identity is well known and is also publicly available on the Internet. As described above, in the present invention, thymine in DNA and uracil in RNA are interpreted as “the same base”. Therefore, when comparing the sequence identity of a DNA sequence and an RNA sequence, thymine and uracil are the same. Calculate as the base of.
 G-quadruplex構造含有領域と同一の塩基配列を有するアプタマーを、公知のコンピューター内進化(in silico maturation)法に付して、その塩基配列を改変することにより、遺伝子産物との親和性をさらに高めることが可能である。コンピューター内進化法は、本願共同発明者により発明された方法で、非特許文献2、非特許文献3や特許文献2に記載されており、下記実施例12にも具体的に記載されている。この方法を、遺伝子産物と結合することが確認されたアプタマーに適用する場合には、例えば、G-quadruplex構造の維持に不可欠ではない、例えば3~5mer程度の複数の領域を、得られた各アプタマーの対応する各領域どうしの間でランダムに交換したり(シャフル)、遺伝的アルゴリズムによる交差を行う。そして、さらにシャフル又は交差後の上記各領域に、ランダムな一塩基置換を導入する。これらのシャフル又は交差及び一塩基置換の導入はコンピューターで行なう。そして、コンピューターにより作出された新たな塩基配列を有するアプタマーを化学合成して核酸ライブラリーとし、SELEXのサイクルに付す。1サイクル目終了後の第2の核酸ライブラリーを作製する際、結合能の順序の高かったアプタマーに由来する領域を有するアプタマーの量を最も多くし、以下、順序が下がるにつれてその比率を少なくする。以上のように、コンピューター内でのシャフル又は交差及び一塩基置換により人為的に変異を導入することにより、SELEXによる進化の効率を高めることができる。 The aptamer having the same base sequence as the G-quadruplex structure-containing region is subjected to the known in-computer evolution (in silico maturation) method, and the base sequence is modified to further increase the affinity with the gene product. It is possible. The in-computer evolution method is a method invented by the joint inventor of the present application and is described in Non-Patent Document 2, Non-Patent Document 3, and Patent Document 2, and is also specifically described in Example 12 below. When this method is applied to an aptamer that has been confirmed to bind to a gene product, for example, a plurality of regions, for example, about 3 to 5 mer, which are not essential for maintaining a G-quadruplex structure, are obtained. Swap randomly between corresponding regions of the aptamer (shuffle), or perform crossover by genetic algorithm. Further, random single-base substitution is introduced into each region after shuffle or crossing. The introduction of these shuffles or crossings and single base substitutions is done by computer. Then, an aptamer having a new base sequence created by a computer is chemically synthesized into a nucleic acid library, which is subjected to a SELEX cycle. When preparing the second nucleic acid library after the end of the first cycle, the amount of aptamer having a region derived from the aptamer having the highest binding ability is maximized, and the ratio is decreased as the order is lowered. . As described above, the efficiency of evolution by SELEX can be enhanced by artificially introducing mutations by shuffling or crossing and single base substitution in a computer.
 このコンピューター内進化法は、コンピューターの支援を利用してSELEXを行うものであるが、元になるアプタマーが既に遺伝子産物との結合能を有するものであるので、全くのゼロから出発するSELEXとは難易度が異なり、高い確率で遺伝子産物との結合能をさらに高めることができる。なお、コンピューター内進化法は、遺伝子産物との結合能を実験で確かめながら行うものであるので、塩基配列が元の塩基配列とかなり異なるものとなっても遺伝子産物との結合能が確保されているので、配列同一性は、必ずしも90%以上に限定されるものではない。もっとも、コンピューター内進化法は、上記の通り、G-quadruplex構造以外の部分に変異を導入するものであるので、G-quadruplex構造は維持されている。さらに、下記実施例12に具体的に記載する通り、コンピューター内進化法において、各世代で得られたアプタマーのうち、目的の遺伝子産物との結合能が高いアプタマーの配列を調べることにより、目的の遺伝子産物との結合能を発揮する配列モチーフが明らかになる場合がある。例えば、下記実施例12では、下記実施例4で得られたHGF結合性アプタマーを親配列として、コンピューター内進化法を行い、第2世代まで行った時点で、第1世代と第2世代のアプタマーのうち、HGFとの結合能が高いアプタマーの塩基配列を調べたところ、多くの配列がggtggagggg(配列番号57)という配列モチーフを共通して持っていることがわかった。そこで、この配列モチーフの部分を固定して第3世代を行ったところ、HGFに対する結合特異性(Sp(HGF))が親配列の実に約240倍ものアプタマーを得ることができた。このように、コンピューター内進化法によれば、途中段階で、高い結合能を発揮する配列モチーフが判明する場合があり、この場合には、この配列モチーフを固定して、それ以降の世代を行うことにより、一層効率的に高い結合能を持つアプタマーを得ることが可能になる。 This in-computer evolution method uses computer support to perform SELEX, but since the original aptamer already has the ability to bind gene products, what is SELEX that starts from zero? Difficulty is different, and the ability to bind gene products can be further enhanced with high probability. In addition, since the in-computer evolution method is performed while confirming the binding ability with the gene product by experiment, the binding ability with the gene product is ensured even if the base sequence is considerably different from the original base sequence. Therefore, the sequence identity is not necessarily limited to 90% or more. However, since the in-computer evolution method introduces mutations in parts other than the G-quadruplex structure as described above, the G-quadruplex structure is maintained. Furthermore, as specifically described in Example 12 below, in the in-computer evolution method, by examining the aptamer sequence having high binding ability to the target gene product among aptamers obtained in each generation, A sequence motif that exhibits the ability to bind to a gene product may become apparent. For example, in Example 12 below, when the HGF-binding aptamer obtained in Example 4 below is used as a parent sequence and an in-computer evolution method is performed until the second generation, the first and second generation aptamers are used. Among them, when the base sequences of aptamers having high binding ability to HGF were examined, it was found that many sequences have a common sequence motif of ggtggagggg (SEQ ID NO: 57). Thus, when the third generation was carried out with this sequence motif portion fixed, an aptamer whose binding specificity for HGF (Sp (HGF) ) was about 240 times that of the parent sequence could be obtained. Thus, according to the in-computer evolution method, a sequence motif that exhibits high binding ability may be found in the middle stage. In this case, this sequence motif is fixed and subsequent generations are performed. This makes it possible to obtain an aptamer having a higher binding ability more efficiently.
 上記の通り、本発明の方法によれば、所望の標的タンパク質の構造遺伝子のプロモーター配列を利用して、SELEXを行うことなく、所望の標的タンパク質に結合するアプタマーを容易に製造することができるという優れた効果が奏される。 As described above, according to the method of the present invention, an aptamer that binds to a desired target protein can be easily produced without performing SELEX using the promoter sequence of the structural gene of the desired target protein. Excellent effect is achieved.
 アプタマーは、標的タンパク質と特異的に結合する性質を有しているので、その標的タンパク質の定量や検出に用いることができる(例えば特許文献2)。この場合にはアプタマーを標識して用いることができる。標識としては、蛍光標識、放射標識、酵素標識、化学発光標識等、周知の標識を挙げることができる。これらの標識を直接又はスペーサー配列を介してアプタマーの末端に結合しても、標的物質に対する結合親和性は維持されることは周知であり、下記実施例でも蛍光標識であるFITCを結合したアプタマーを用いている。これらの標識を付加したアプタマーは、遺伝子産物の測定(検出又は定量)に用いることができる。標識アプタマーを用いた標的物質の測定方法自体はこの分野において周知であり、例えば標識抗体を用いる免疫測定法と同様に行うことができる。 Since aptamers have the property of binding specifically to a target protein, they can be used for quantification and detection of the target protein (for example, Patent Document 2). In this case, the aptamer can be labeled and used. Examples of the label include well-known labels such as a fluorescent label, a radiolabel, an enzyme label, and a chemiluminescent label. It is well known that the binding affinity to the target substance is maintained even if these labels are bound directly or via the spacer sequence to the end of the aptamer. In the examples below, the aptamer bound with FITC, which is a fluorescent label, is used. Used. Aptamers to which these labels are added can be used for measurement (detection or quantification) of gene products. The method for measuring a target substance using a labeled aptamer is well known in this field, and can be performed, for example, in the same manner as an immunoassay using a labeled antibody.
 また、標的タンパク質が疾患に関する何らかの生理活性を有しており、その発現を促進することがその疾患の治療につながる場合には、本発明の方法により製造されたアプタマーは、核酸医薬として利用することができる。すなわち、生体に該アプタマーを投与すると、細胞内で生産された遺伝子産物の一部がアプタマーと結合し、プロモーターと結合できなくなるので、遺伝子産物による転写抑制が低減される。また、アプタマーが、遺伝子産物と結合してその活性を中和できる場合には、遺伝子産物の活性を阻害することも可能であり、遺伝子産物の阻害がその疾患の治療につながる場合にも核酸医薬として用いることができる。アプタマーを核酸医薬として用いる場合、例えば、耐ヌクレアーゼ性向上のために例えばポリエチレングリコール(PEG)鎖のような、他の構造を付加することができる。PEG鎖をアプタマーの末端に結合することにより、アプタマーの耐ヌクレアーゼ性を高めることは周知であり、既に実用化されている。PEG鎖のサイズは、特に限定されないが、通常、分子量1万~3万程度、好ましくは分子量15000~25000程度であり、また、PEG鎖の数は1本でも2本でもよいが2本が好ましい。このようなPEG鎖は、アプタマーの末端に周知のアミノリンカーを付加し、これを介して結合することができる。PEG鎖を2本結合する場合には、リジン化したアミノリンカー等の複数のアミノ基を持つアミノリンカーを用い、各アミノ基にPEG鎖を結合することができる。 In addition, when the target protein has some physiological activity related to a disease and promoting its expression leads to treatment of the disease, the aptamer produced by the method of the present invention should be used as a nucleic acid drug. Can do. That is, when the aptamer is administered to a living body, a part of the gene product produced in the cell binds to the aptamer and cannot bind to the promoter, so that transcriptional repression by the gene product is reduced. In addition, if an aptamer can bind to a gene product and neutralize its activity, it can also inhibit the activity of the gene product, and if the inhibition of the gene product leads to treatment of the disease, the nucleic acid drug Can be used as When aptamers are used as nucleic acid drugs, for example, other structures such as polyethylene glycol (PEG) chains can be added to improve nuclease resistance. It is well known that the nuclease resistance of an aptamer is enhanced by attaching a PEG chain to the end of the aptamer and has already been put into practical use. The size of the PEG chain is not particularly limited, but usually has a molecular weight of about 10,000 to 30,000, preferably about 15,000 to 25,000, and the number of PEG chains may be one or two, but two are preferred. . Such a PEG chain can be bound via a known amino linker added to the end of the aptamer. When two PEG chains are bonded, an amino linker having a plurality of amino groups such as a lysine amino linker can be used, and the PEG chain can be bonded to each amino group.
 さらに、標的タンパク質が疾患に関する何らかの生理活性を有しており、その発現を促進することがその疾患の治療につながる場合には、本発明の方法により製造されたアプタマーに対する結合性を指標とした新薬スクリーニングを行うことも可能である。新薬スクリーニングにより見出された物質を投与することにより、遺伝子産物によりプロモーターの阻害が低減されるので、該物質は、薬理効果を発揮する。 Furthermore, when the target protein has some physiological activity related to a disease, and promoting its expression leads to the treatment of the disease, a new drug using the binding ability to the aptamer produced by the method of the present invention as an index Screening can also be performed. By administering a substance found by screening for new drugs, inhibition of the promoter by the gene product is reduced, so that the substance exerts a pharmacological effect.
 上記の通り、本願発明者らはさらに、mRNA中にG-quadruplex構造が存在する場合、該mRNAと、該mRNAがコードする遺伝子産物とが結合するのではないかと考えた。そして、mRNA中に含まれるG-quadruplex構造含有領域と同じ塩基配列を有する一本鎖核酸は、そのままで、該mRNAがコードする遺伝子産物と特異的に結合するアプタマーとして利用可能であるという新知見を得て本願発明の第2の局面を完成した。すなわち、本願発明の第2の局面によるアプタマーの製造方法は、mRNA中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、該mRNAがコードする遺伝子産物若しくは該遺伝子産物の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と90%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する遺伝子産物に結合するアプタマーを化学合成することを含む。 As described above, the present inventors further considered that when a G-quadruplex structure is present in mRNA, the mRNA and the gene product encoded by the mRNA may be combined. A new finding is that single-stranded nucleic acid having the same base sequence as the G-quadruplex structure-containing region contained in mRNA can be used as it is as an aptamer that specifically binds to the gene product encoded by the mRNA. To complete the second aspect of the present invention. That is, the aptamer production method according to the second aspect of the present invention has the same base sequence as the region containing the G-quadruplex structure present in mRNA, and the gene product encoded by the mRNA or the relationship between the gene products Chemically synthesizing an aptamer that binds to a gene product, or an aptamer that has 90% or more sequence identity with the base sequence of the aptamer and includes a G-quadruplex structure and binds to the gene product to which the aptamer binds Including.
 本願発明の第2の局面によれば、mRNAそのものをRNAアプタマーとして用いることもできるが、アプタマーはRNAである必要はなく、上記の通り、アプタマーDNAを化学合成することが好ましい。この場合、当然ながら、mRNA中のウラシルは、DNA中ではチミンになり、上記の通り、mRNA中のウラシルがDNAにおいてチミンに置き換えられているものは「同一の塩基配列」を有するものと解する。 According to the second aspect of the present invention, mRNA itself can be used as an RNA aptamer, but the aptamer need not be RNA, and it is preferable to chemically synthesize aptamer DNA as described above. In this case, as a matter of course, uracil in mRNA becomes thymine in DNA, and as described above, uracil in mRNA is replaced with thymine in DNA, and it is understood that it has “the same base sequence”. .
 本願発明の第2の局面によるアプタマーについても、上記した本願発明の第1の局面と同様、サイズが30mer~100merが好ましく、また、コンピューター内進化法により標的物質との親和性をさらに高めることが好ましい。また、第1の局面と同様に核酸医薬として利用可能であり、その場合には、PEG化などの耐ヌクレアーゼ修飾を行うことが好ましい。なお、下記実施例では、本願第2の発明により、血管内皮増殖因子及び血小板由来成長因子のそれぞれに結合するアプタマーの創製に成功している。 As for the aptamer according to the second aspect of the present invention, the size is preferably 30 mer to 100 mer as in the first aspect of the present invention described above, and the affinity with the target substance can be further increased by the in-computer evolution method. preferable. Further, it can be used as a nucleic acid drug as in the first aspect, and in that case, it is preferable to perform nuclease resistance modification such as PEGylation. In the following examples, the second invention of the present application has succeeded in creating aptamers that bind to each of vascular endothelial growth factor and platelet-derived growth factor.
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
実施例1、比較例1
VEGFプロモーター領域中で形成されるGq構造のVEGFへの結合能の解析
Example 1 and Comparative Example 1
Analysis of binding ability of Gq structure formed in VEGF promoter region to VEGF
実験方法
 G-quadruplex構造を含むことが公知であるVEGFプロモーター(Sun, D., Guo, K., Rusche, J. J. & Hurley, L. H. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 33, 6070-6080 (2005))をプロモーターとして選出した。VEGFプロモーター領域(ゲノム上の位置:chr6:43,737,633-43,739,852)内で形成されるG-quadruplex(以下、「Gq」と略記することがある)構造形成配列(VEGF promoter Gq(配列番号1)、実施例1)及び、Gq形成に関与するG塩基をT塩基に置換しGqを形成しないように設計したオリゴDNA (VEGF promoter Gq-(配列番号2)、比較例1)のVEGFに対する結合能の評価を行った。各オリゴDNAは、市販のDNA自動合成機により合成した。なお、すべての塩基番号はHuman Feb. 2009 (GRCh37/hg19) Assemblyに対応している。
Experimental method VEGF promoter known to contain G-quadruplex structure (Sun, D., Guo, K., Rusche, JJ & Hurley, LH Facilitation of a structural transition in the polypurine / polypyrimidine tract within the proximal promoter region of The human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 33, 6070-6080 (2005)) was selected as a promoter. G-quadruplex (hereinafter sometimes abbreviated as “Gq”) structure-forming sequence (VEGF promoter Gq (SEQ ID NO: 1)) formed within the VEGF promoter region (position on the genome: chr6: 43,737,633-43,739,852) Example 1) and evaluation of the binding ability of VEGF promoter Gq- (SEQ ID NO: 2), Comparative Example 1) to VEGF, which was designed to replace G base involved in Gq formation with T base and not form Gq Went. Each oligo DNA was synthesized by a commercially available DNA automatic synthesizer. All base numbers correspond to Human Feb. 2009 (GRCh37 / hg19) Assembly.
 評価はゲルシフトアッセイ及びSPR測定により行った。評価に用いたDNA配列を下記表1に示す。アプタマーは全てTBS バッファー(10 mM Tris-HCl, 150 mM NaCl, 5 mM KCl, pH 7.4)を用いて1μMに希釈し、フォールディングした後に使用した。 Evaluation was performed by gel shift assay and SPR measurement. The DNA sequences used for the evaluation are shown in Table 1 below. All aptamers were diluted to 1 μM with TBS buffer (10 mM Tris-HCl, 150 mM NaCl, 5 mM KCl, pH 7.4) and used after folding.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
ゲルシフトアッセイ
 VEGF165(GenBank Accession No.: NP_001165097)及び各アプタマー(5'-FITC修飾)を、それぞれ終濃度1.3μM又は500 nMとなるように混合し、30 分間室温で振とうした。その後、各サンプルを12%未変性ポリアクリルアミドゲルにアプライし、室温、20mA(定電流)で25 分間泳動を行った。泳動した後、Typhoon 8600(商品名、GE Healthcare社製)により各アプタマーのFITCの蛍光を検出した。また、銀染色によりVEGFを染色した。
Gel Shift Assay VEGF 165 (GenBank Accession No .: NP_001165097) and each aptamer (5′-FITC modification) were mixed to a final concentration of 1.3 μM or 500 nM, respectively, and shaken for 30 minutes at room temperature. Thereafter, each sample was applied to a 12% native polyacrylamide gel and electrophoresed at room temperature and 20 mA (constant current) for 25 minutes. After the electrophoresis, FITC fluorescence of each aptamer was detected by Typhoon 8600 (trade name, manufactured by GE Healthcare). Further, VEGF was stained by silver staining.
SPR測定
 ランニングバッファーにはTBS バッファーを用いた。アミンカップリング法により4700 RU程度のVEGF165が固定化されたセンサーチップCM5(商品名、GE Healthcare社製)を用いて、7.8~1000 nMに調製した各アプタマーを注入し、センサーチップ上のVEGF165と各アプタマーの結合をSPR測定により観察した。
SPR measurement TBS buffer was used as the running buffer. Using the sensor chip CM5 (trade name, manufactured by GE Healthcare) to which VEGF 165 of about 4700 RU is immobilized by the amine coupling method, each aptamer prepared at 7.8 to 1000 nM is injected, and VEGF on the sensor chip is injected. The binding between 165 and each aptamer was observed by SPR measurement.
結果及び考察
 ゲルシフトアッセイの結果、VEGF165を混合したサンプルのレーンにおいてVEGFの位置にVEap121(配列番号3)の蛍光バンドのシフトが見られた。また、VEGF promoter GqにおいてもVEGFの位置にバンドのシフトが観察された。これにより、VEGF promoter領域のGq構造はVEGFに結合することが示された。VEGF promoter Gq配列のSPR測定を行った結果を図1に示す。
Results and Discussion As a result of gel shift assay, a fluorescence band shift of VEap121 (SEQ ID NO: 3) was observed at the position of VEGF in the sample lane mixed with VEGF 165 . A band shift was also observed at the position of VEGF in VEGF promoter Gq. This indicates that the Gq structure of the VEGF promoter region binds to VEGF. The results of SPR measurement of the VEGF promoter Gq sequence are shown in FIG.
 VEGF promoter Gq-を注入した場合にはSPRシグナルの上昇が見られなかったのに対し、VEap121又は VEGF promoter Gqを用いた場合、アプタマー濃度依存的なSPRシグナルの上昇が観察された。カーブフィッティングにより各アプタマーの解離定数を算出した結果、VEap121 : 510 nM, VEGF promoter Gq : 240 nMと算出された。 When VEGF-promoter-Gq- was injected, no increase in SPR signal was observed, whereas when VEap121 or VEGF-promoter-Gq was used, an increase in aptamer concentration-dependent SPR signal was observed. As a result of calculating the dissociation constant of each aptamer by curve fitting, VEap121: 510 nM, VEGF promoter Gq: 240 nM.
実施例2、比較例2
SPRによるPDGFプロモーター領域中で形成されるGq構造のPDGFへの結合能の解析
Example 2 and Comparative Example 2
Analysis of binding ability of Gq structure formed in PDGF promoter region to PDGF by SPR
実験方法
 G-quadruplex構造を含むことが公知であるPDGF-Aプロモーター(Qin, Y., Rezler, E. M., Gokhale, V., Sun, D. & Hurley, L. H. Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res. 35, 7698-7713 (2007)) をプロモーターとして選出した。PDGF-Aプロモーター領域(ゲノム上の位置:chr7:556,612-562,845)内で形成されるGq構造形成配列(PDGF promoter Gq(配列番号4)、実施例2)及び、Gq形成に関与するG塩基をT塩基に置換しGqを形成しないように設計した配列(PDGF promoter Gq-(配列番号5)、比較例2)のPDGF-AAに対する結合能の評価をSPR測定により行った。これらの配列を表2に示す。なお、すべての塩基番号はHuman Feb. 2009 (GRCh37/hg19) Assemblyに対応している。
Experimental method PDGF-A promoter known to contain G-quadruplex structure (Qin, Y., Rezler, EM, Gokhale, V., Sun, D. & Hurley, LH Characterization of the G-quadruplexes in the duplex nuclease The hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res. 35, 7698-7713 (2007)) was selected as the promoter. The Gq structure forming sequence (PDGF promoter Gq (SEQ ID NO: 4), Example 2) formed in the PDGF-A promoter region (position on the genome: chr7: 556,612-562,845) and the G base involved in Gq formation Evaluation of the binding ability to the PDGF-AA of the sequences (PDGF promoter Gq- (SEQ ID NO: 5), Comparative Example 2) designed so as to be substituted with T base and not form Gq was performed by SPR measurement. These sequences are shown in Table 2. All base numbers correspond to Human Feb. 2009 (GRCh37 / hg19) Assembly.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ランニングバッファーにはTBS バッファーを用いた。アミンカップリング法により9000 RU程度のPDGF-AAが固定化されたセンサーチップCM5を用いて、7.8~1000 nMに調製した各アプタマーを注入し、センサーチップ上のPDGF-AA(GenBank Accession No.: P04085)と各アプタマーの結合をSPR測定により観察した。 TBS バ ッ フ ァ ー buffer was used as the running buffer. Using the sensor chip CM5 on which PDGF-AA of about 9000 RU is immobilized by the amine coupling method, each aptamer prepared to 7.8-1000 nM is injected, and PDGF-AA (GenBank Accession No .: The binding between each aptamer and P04085) was observed by SPR measurement.
結果及び考察
 PDGF promoter Gq配列のSPR測定を行った結果を図2に示す。PDGF promoter Gq-を注入した場合にはSPRシグナルの上昇が見られなかったのに対し、PDGF promoter Gqを用いた場合、アプタマー濃度依存的なSPRシグナルの上昇が観察された。カーブフィッティングにより各アプタマーの解離定数を算出した結果、VEGF promoter Gq : 18nMと算出された。
Results and Discussion FIG. 2 shows the results of SPR measurement of the PDGF promoter Gq sequence. When PDGF promoter Gq- was injected, no increase in SPR signal was observed, whereas when PDGF promoter Gq was used, an increase in aptamer concentration-dependent SPR signal was observed. As a result of calculating the dissociation constant of each aptamer by curve fitting, it was calculated as VEGF promoter Gq: 18 nM.
実施例3、比較例3
RB-1のプロモーター領域中に存在するGq構造のRB-1への結合能の解析
Example 3 and Comparative Example 3
Analysis of the binding ability of Gq structure in RB-1 promoter region to RB-1
実験方法
 G-quadruplex構造を含むことが公知であるRB-1プロモーター(Xu, Y. & Sugiyama, H. Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb). Nucleic Acids Res. 34, 949-954 (2006))をプロモーターとして選出した。RB-1プロモーター領域(ゲノム上の位置:chr13:48877460-48878501)内で形成されるGq構造形成配列(RB-1_Gq promoter Gq(配列番号6)、実施例3)及び、Gq形成に関与するG塩基をT塩基に置換しGqを形成しないように設計した配列(RB-1_Gq_Mut(配列番号7)、比較例3)のRB-1に対する結合能をゲルシフトアッセイで調べた。なお、すべての塩基番号はHuman Feb. 2009 (GRCh37/hg19) Assemblyに対応している。RB-1(終濃度0nM or 470nM) (GenBank Accession No.: P06400)及び1000nM各DNA(5'-TAMRA修飾、下記表3に配列を示す)を混合し、30分間室温で振とうした。その後、各サンプルを12%未変性ポリアクリルアミドゲルにアプライし、室温、20 mA(定電流)で20分間泳動を行った。泳動した後、Typhoon 8600(商品名)により各DNAのTAMRAの蛍光を検出した。また、銀染色によりRB-1を染色した。
Experimental method RB-1 promoter known to contain G-quadruplex structure (Xu, Y. & Sugiyama, H. Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb) .Nucleic Acids Res. 34, 949-954 (2006)) were selected as promoters. Gq structure forming sequence (RB-1_Gq promoter Gq (SEQ ID NO: 6), Example 3) formed in the RB-1 promoter region (position on the genome: chr13: 48877460-48878501) and G involved in Gq formation The binding ability of the sequences (RB-1_Gq_Mut (SEQ ID NO: 7), Comparative Example 3) designed so as not to form Gq by replacing the base with T base was examined by gel shift assay. All base numbers correspond to Human Feb. 2009 (GRCh37 / hg19) Assembly. RB-1 (final concentration 0 nM or 470 nM) (GenBank Accession No .: P06400) and 1000 nM each DNA (5′-TAMRA modification, sequence shown in Table 3 below) were mixed and shaken at room temperature for 30 minutes. Thereafter, each sample was applied to 12% native polyacrylamide gel and electrophoresed at room temperature and 20 mA (constant current) for 20 minutes. After electrophoresis, TAMRA fluorescence of each DNA was detected with Typhoon 8600 (trade name). In addition, RB-1 was stained by silver staining.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
結果及び考察
 泳動後、Typhoon(商品名)により蛍光を検出した結果及び銀染色によりRB-1タンパク質を検出した結果を図3に示す。470 nM RB-1と1000 nM RB-1_Gqを混合したレーンにおいて、RB-1のバンドが観察される位置にTAMRAの蛍光が観察された。他のレーンではこのバンドは観察されなかった。このことから、RB-1プロモーター中で形成されるGq構造がRB-1タンパク質に結合することが示された。
Results and Discussion FIG. 3 shows the results of detecting fluorescence with Typhoon (trade name) and the results of detecting RB-1 protein with silver staining after electrophoresis. In the lane in which 470 nM RB-1 and 1000 nM RB-1_Gq were mixed, TAMRA fluorescence was observed at the position where the RB-1 band was observed. This band was not observed in other lanes. This indicates that the Gq structure formed in the RB-1 promoter binds to the RB-1 protein.
実施例4~7
ヘパリン結合性ドメインを有するタンパク質に対するアプタマーの創製
1.方法
(1)HGF、HBEGF、PDGFB、Annexin II遺伝子の各転写開始点近傍配列をUSCS Genome Browserを用いて取得した。HGFに対しては転写開始点±1kbpの配列を、HBEGF、PDGFB及びAnnexin IIに対しては転写開始点近傍に存在するCpGアイランドの配列を取得した。配列はプラスストランド及びマイナスストランドの両配列を取得した。
Examples 4-7
Creation of aptamers for proteins having heparin binding domains Method
(1) Sequences near transcription start sites of HGF, HBEGF, PDGFB, and Annexin II genes were obtained using USCS Genome Browser. For HGF, the sequence of transcription start point ± 1 kbp was obtained, and for HBEGF, PDGFB and Annexin II, sequences of CpG islands present in the vicinity of the transcription start point were obtained. As the sequence, both a plus strand and a minus strand were obtained.
(2)各配列の内、四重らせん構造を形成しうる配列を下記条件で抽出した。
HGF:2連続以上のGを4箇所以上含み、連続したGと連続したGの間の配列は7 mer以内であり、全長が40 mer以内の配列を抽出した。
PDGFB, HBEGF, Annexin II :3連続以上のGを4箇所以上含み、連続したGと連続したGの間の配列は7 mer以内であり、全長が30 mer以内の配列を抽出した。上記条件に該当する配列が存在しない場合は、2連続以上のGを4箇所以上含み、連続したGと連続したGの間の配列は7 mer以内であり、全長が30 mer以内の配列を抽出した。
(2) Among the sequences, sequences capable of forming a quadruplex structure were extracted under the following conditions.
HGF: Four or more consecutive Gs were included at four positions, the sequence between consecutive Gs and consecutive Gs was within 7 mer, and the total length was within 40 mer.
PDGFB, HBEGF, Annexin II: 3 or more consecutive Gs were included at 4 positions, the sequence between consecutive Gs and consecutive Gs was within 7 mer, and the total length was within 30 mer. If there is no sequence that meets the above conditions, extract 2 or more consecutive Gs in 4 or more locations, the sequence between consecutive Gs is within 7 mer, and the total length is within 30 mer did.
(3)上記(2)で抽出した配列を合成し、HGF, HBEGFに対してはSPRを用いて、PDGFB, Annexin IIに対してはゲルシフトアッセイにより解析した。 (3) The sequences extracted in (2) above were synthesized and analyzed by SPR for HGF and HBEGF, and by gel shift assay for PDGFB and Annexin II.
(4) SPRは下記の方法で実施した。
 HGF及びHBEGFをPBSバッファー (Na2HPO4 8.1 mM, KH2PO4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH7.4)に溶解し、アミンカップリング法によりセンサーチップCM5上に固定化した。その後、合成したオリゴヌクレオチドをTBSK バッファー (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl)中でフォールディングさせた(95℃5分の後25℃まで30分かけて冷却)。各オリゴヌクレオチドを種々の濃度に希釈し、センサーチップ上にインジェクションし、SPRシグナルの変化を観察した。添加時間120秒、解離時間120秒、流速30μl/minで行った。解離定数(Kd)は、Curve fitting解析によって算出した。
(4) SPR was performed by the following method.
HGF and HBEGF PBS buffer (Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH7.4) was dissolved in was immobilized onto the sensor chip CM5 via amine coupling method . Thereafter, the synthesized oligonucleotide was folded in TBSK buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl) (95 ° C. for 5 minutes and then cooled to 25 ° C. over 30 minutes). Each oligonucleotide was diluted to various concentrations and injected onto the sensor chip, and changes in the SPR signal were observed. The addition time was 120 seconds, the dissociation time was 120 seconds, and the flow rate was 30 μl / min. The dissociation constant (Kd) was calculated by Curve fitting analysis.
(5) ゲルシフトアッセイは下記の方法で実施した。
 5’末端をFITCで修飾した各オリゴヌクレオチドをTBSK バッファー (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl, pH 7.4)中でフォールディングさせた。その後、250 ngのタンパク質と5 pmolのオリゴヌクレオチドを混合し、室温で30分間振とうした。その後、各サンプルを12%未変性ポリアクリルアミドゲルにアプライし、室温、20 mA(定電流)で泳動を行った。泳動した後、Typhoon 8600により各アプタマーの蛍光を検出した。
(5) The gel shift assay was performed by the following method.
Each oligonucleotide whose FI ′ end was modified with FITC was folded in TBSK buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl, pH 7.4). Thereafter, 250 ng of protein and 5 pmol of oligonucleotide were mixed and shaken at room temperature for 30 minutes. Thereafter, each sample was applied to a 12% native polyacrylamide gel and electrophoresed at room temperature and 20 mA (constant current). After electrophoresis, the fluorescence of each aptamer was detected by Typhoon 8600.
(6) HGF及びHBEGFプロモーター中に存在するDNA四重らせん構造を形成しうる配列については、CDスペクトル測定を行った。各オリゴヌクレオチドを、終濃度2 μMとなるようにTBSK バッファー (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl pH 7.4)またはTBS バッファー(10 mM Tris-HCl, 150 mM NaCl pH 7.4)で調製し、フォールディング(95℃5分の後25℃まで30分かけて冷却)を行った。調製したサンプルを光路長10 mmの石英セルに入れ、J-820型円二色性分散計を用いてCDスペクトルを測定した。尚、感度は1000 mdeg、波長領域は220 nmから320 nm、データ取り込み間隔は1 nm、走査速度は500 nm/min、レスポンスは1 sec、バンド幅は5.0 nm、積算回数は10回の条件で測定を行った。 (6) CD spectra were measured for sequences capable of forming a DNA quadruplex structure present in the HGF and HBEGF promoters. Prepare each oligonucleotide in TBSK buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM NaCl, KCl pH 7.4) or TBS buffer (10 mM Tris-HCl, 150 mM NaCl, pH 7.4) to a final concentration of 2 μM. Folding (95 ° C for 5 minutes followed by cooling to 25 ° C over 30 minutes) was then performed. The prepared sample was put into a quartz cell having an optical path length of 10 mm, and a CD spectrum was measured using a J-820 type circular dichroism dispersometer. Sensitivity is 1000 mdeg, wavelength region is 220 320nm, data acquisition interval is 1 nm, scanning speed is 500 nm / min, response is 1 sec, bandwidth is 5.0 nm, integration number is 10 times. Measurements were made.
2.結果
(1)各プロモーター領域からDNA四重らせん構造を形成しうる配列を検索したところ、HGFプロモーターからは9配列、HBEGFプロモーターからは14配列、PDGFBプロモーターからは8配列、Annexin IIプロモーターからは7配列、抽出することができた(表4)。
2. result
(1) When searching for a sequence capable of forming a DNA quadruplex structure from each promoter region, 9 sequences from the HGF promoter, 14 sequences from the HBEGF promoter, 8 sequences from the PDGFB promoter, 7 sequences from the Annexin II promoter Could be extracted (Table 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(2)HGFに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、HGF-PQS1(配列番号8)、HGF-PQS7(配列番号9)、HGF-PQS8(配列番号10)の3つの配列においてDNA濃度依存的なSPRシグナルの増加が観察された、これらがHGFのアプタマーであることが示された(図4)。HGF-PQS1、HGF-PQS7、HGF-PQS8のHGFに対する解離定数はそれぞれ73 nM、45 nM、110 nMであった。 (2) When each oligonucleotide binds to HGF and analyzed by SPR, three sequences of HGF-PQS1 (SEQ ID NO: 8), HGF-PQS7 (SEQ ID NO: 9), and HGF-PQS8 (SEQ ID NO: 10) Increased DNA concentration-dependent SPR signals were observed in, indicating that these are aptamers of HGF (FIG. 4). The dissociation constants of HGF-PQS1, HGF-PQS7, and HGF-PQS8 for HGF were 73 nM, 45 nM, and 110 nM, respectively.
(3)HBEGFに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、HBEGF-PQS8、HBEGF-PQS9の2つの配列においてDNA濃度依存的なSPRシグナルの増加が観察され、これらがHBEGFのアプタマーであることが示された(図5)。HBEGF-PQS8(配列番号11)、HBEGF-PQS9(配列番号12)のHBEGFに対する解離定数はそれぞれ110nM、9μMであった。 (3) SPR analysis was conducted to determine whether each oligonucleotide binds to HBEGF. DNA concentration-dependent increases in SPR signals were observed in the two sequences HBEGF-PQS8 and HBEGF-PQS9. (FIG. 5). The dissociation constants of HBEGF-PQS8 (SEQ ID NO: 11) and HBEGF-PQS9 (SEQ ID NO: 12) for HBEGF were 110 nM and 9 μM, respectively.
(4)PDGF-BBに対して各オリゴヌクレオチドが結合するかゲルシフトアッセイにより解析したところ、8配列(表4中の上から順に配列番号13~20)すべてのオリゴヌクレオチドがPDGF-BBに結合することが示され、これらがPDGF-BBに結合するアプタマーであることが示された(図6)。なお、図6中、+はPDGF-BB存在下、-はPDGF-BB非存在下のレーンを示している。 (4) When each oligonucleotide binds to PDGF-BB and analyzed by gel shift assay, all 8 oligonucleotides (SEQ ID NOs: 13 to 20 in order from the top in Table 4) bind to PDGF-BB. It was shown that these are aptamers that bind to PDGF-BB (FIG. 6). In FIG. 6, + indicates a lane in the presence of PDGF-BB, and-indicates a lane in the absence of PDGF-BB.
(5)Annexin IIに対して各オリゴヌクレオチドが結合するかゲルシフトアッセイにより解析したところ、Annexin II-PQS6(配列番号21)がAnnexin IIに結合することが示され、これがAnnexin IIに結合するアプタマーであることが示された(図7)。なお、図7中、+はAnnexin II存在下、-はAnnexin II非存在下のレーンを示している。 (5) Analysis of whether each oligonucleotide binds to Annexin II by gel shift assay shows that Annexin II-PQS6 (SEQ ID NO: 21) binds to Annexin II, which is an aptamer that binds Annexin II. It was shown (Figure 7). In FIG. 7, + indicates a lane in the presence of Annexin II, and-indicates a lane in the absence of Annexin II.
(6)HGF-PQS1からPQS9のCDスペクトル測定したところ、HGFに結合が観察されたHGF-PQS1及びHGF-PQS7のみ、カリウム存在下で260 nm付近に正のピーク、240 nm付近に負のピークを示した(図8)。これは、パラレル型のDNA四重らせん構造特有のCDスペクトルであることから、HGF-PQS1及びHGF-PQS7はパラレル型のDNA四重らせん構造を形成して、HGFに結合していることが示された。 (6) When CD spectra of HGF-PQS1 to PQS9 were measured, only HGF-PQS1 and HGF-PQS7, in which binding to HGF was observed, were positive in the presence of potassium at around 260 nm, and negative at around 240 nm. (FIG. 8). This is a CD spectrum unique to the parallel DNA quadruplex structure, indicating that HGF-PQS1 and HGF-PQS7 form a parallel DNA quadruplex structure and bind to HGF. It was done.
 HBEGF-PQS1からPQS14のCDスペクトル測定したところ、HBEGFに結合が観察されたHBEGF-PQS8及びHBEGF-PQS9のみ、カリウム存在下で260 nm付近に正のピーク、240 nm付近に負のピークを示した(図9)。つまり、HBEGF-PQS8及びHBEGF-PQS9はパラレル型のDNA四重らせん構造を形成して、HBEGFに結合していることが示された。 When CD spectra of HBEGF-PQS1 to PQS14 were measured, only HBEGF-PQS8 and HBEGF-PQS9, in which binding to HBEGF was observed, showed a positive peak near 260 nm and a negative peak around 240 nm in the presence of potassium. (FIG. 9). That is, it was shown that HBEGF-PQS8 and HBEGF-PQS9 formed a parallel DNA quadruplex structure and bound to HBEGF.
実施例8~10
1.方法
(1)VEGFA、PDGFA、PDGFB遺伝子から転写されるRNAの全長配列をUSCS Genome Browserを用いて取得した。
Examples 8-10
1. Method
(1) Full length sequences of RNA transcribed from VEGFA, PDGFA, and PDGFB genes were obtained using USCS Genome Browser.
(2)各配列の内、RNA四重らせん構造を形成しうる配列を下記条件で抽出した。
 2連続以上のGを4箇所以上含み、連続したGと連続したGの間の配列は14 mer以内であり、全長が40 mer以内の配列を抽出した。
(2) Among the sequences, sequences capable of forming an RNA quadruplex structure were extracted under the following conditions.
Two or more consecutive Gs were included in four or more locations, the sequence between consecutive Gs was within 14 mer, and the sequence with a total length of 40 mer or less was extracted.
(3)PDGF-AA及びPDGF-BBは10 mM HEPES バッファー(pH7.0)に、VEGFAは10 mM 酢酸ナトリウムバッファー(pH6.0)に溶解し、アミンカップリング法によりセンサーチップCM5上に固定化した。その後、合成したオリゴヌクレオチドをPBS バッファー(Na2HPO4 8.1 mM, KH2PO4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH7.4)中でフォールディングさせた(65℃5分の後25℃まで30分かけて冷却)。各オリゴヌクレオチドを種々の濃度に希釈し、センサーチップ上にインジェクションし、SPRシグナルの変化を観察した。添加時間120秒、解離時間120秒、流速30μl/minで行った。解離定数(Kd)は、Curve fitting解析によって算出した。 (3) PDGF-AA and PDGF-BB are dissolved in 10 mM HEPES buffer (pH 7.0) and VEGFA is dissolved in 10 mM sodium acetate buffer (pH 6.0) and immobilized on the sensor chip CM5 by the amine coupling method. did. Thereafter, the synthesized oligonucleotide was folded in PBS buffer (Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH 7.4) (65 ° C. for 5 minutes and then 25 ° C. Cooling over 30 minutes). Each oligonucleotide was diluted to various concentrations and injected onto the sensor chip, and changes in the SPR signal were observed. The addition time was 120 seconds, the dissociation time was 120 seconds, and the flow rate was 30 μl / min. The dissociation constant (Kd) was calculated by Curve fitting analysis.
2.結果
(1)各遺伝子の転写されるRNA配列中から四重らせんRNA構造を形成しうる配列を探索したところ、VEGFA遺伝子からは159配列、PDGFA遺伝子からは247配列、PDGFB遺伝子からは194配列のRNAを抽出することができた。この内から下記の配列をそれぞれ選択し合成した(表5)。
2. result
(1) From the transcribed RNA sequence of each gene, a sequence that can form a quadruplex RNA structure was searched. RNA of 159 sequences from the VEGFA gene, 247 sequences from the PDGFA gene, and 194 sequences from the PDGFB gene Could be extracted. From these, the following sequences were selected and synthesized (Table 5).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(2)VEGFAに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、すべての配列においてRNA濃度依存的なSPRシグナルの増加が観察され、これらがVEGFAに結合するRNAアプタマーであることが示された。VEGFA RNA1(配列番号22)は約140 nM、VEGFA RNA2(配列番号23)は約31 nM、 VEGFA RNA3(配列番号24)は約300 nMの解離定数でそれぞれVEGFAに結合した。(図10)。 (2) When SPR analyzes whether each oligonucleotide binds to VEGFA, an increase in RNA concentration-dependent SPR signal was observed in all sequences, indicating that these are RNA aptamers that bind to VEGFA. It was done. VEGFA RNA1 (SEQ ID NO: 22) bound to VEGFA with a dissociation constant of about 140 nM, VEGFA RNA2 (SEQ ID NO: 23) was about 31 nM, and VEGFA RNA3 (SEQ ID NO: 24) was about 300 nM. (FIG. 10).
(3)PDGF-AAに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、すべての配列においてRNA濃度依存的なSPRシグナルの増加が観察され、これらがPDGF-AAに結合するRNAアプタマーであることが示された。PDGFA RNA1(配列番号25)は約29 nM、PDGFA RNA2(配列番号26)は約30 nMの解離定数でそれぞれPDGFAに結合した。(図11)。 (3) When SPR analysis was performed to determine whether each oligonucleotide bound to PDGF-AA, an increase in RNA concentration-dependent SPR signal was observed in all sequences. These were RNA aptamers that bind to PDGF-AA. It was shown that there is. PDGFA RNA1 (SEQ ID NO: 25) bound to PDGFA with a dissociation constant of about 29 nM and PDGFA RNA2 (SEQ ID NO: 26) with a dissociation constant of about 30 nM. (FIG. 11).
(4)PDGF-BBに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、すべての配列においてRNA濃度依存的なSPRシグナルの増加が観察され、これらがPDGF-BBに結合するRNAアプタマーであることが示された。PDGFB RNA1(配列番号27)は約42 nM、PDGFB RNA2(配列番号28)は約30 nM、PDGFB RNA3(配列番号29)は約59 nM、PDGFB RNA4(配列番号30)は約35 nM、PDGFB RNA5(配列番号31)は約34 nMの解離定数でそれぞれPDGFAに結合した(図12)。 (4) When SPR analysis was performed to determine whether each oligonucleotide bound to PDGF-BB, an increase in the SPR signal depending on the RNA concentration was observed in all sequences. These were RNA aptamers that bind to PDGF-BB. It was shown that there is. PDGFB RNA1 (SEQ ID NO: 27) is about 42 nM, PDGFB RNA2 (SEQ ID NO: 28) is about 30 nM, PDGFB RNA3 (SEQ ID NO: 29) is about 59 nM, PDGFB RNA4 (SEQ ID NO: 30) is about 35 nM, PDGFB RNA5 (SEQ ID NO: 31) bound to PDGFA with a dissociation constant of about 34 nM (FIG. 12).
実施例11
1. 標的タンパク質遺伝子のプロモーター領域におけるG4形成予測配列の探索
 ヘパリン結合ドメインを持つタンパク質であるApoE4をコードする遺伝子の転写開始点から±1 kbpの配列をGenome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway)を用いて抽出した。抽出した配列中からQGRS Mapper (http://bioinformatics.ramapo.edu/QGRS/index.php) を用いて以下の条件を満たす配列を探索した。
(i)全長30 mer 以内 (ii) 2連続以上のGを7 mer 以内の間隔で含んでいる
なお得られた配列をApoE4に対するアプタマー候補配列とした。
Example 11
1. Search for the predicted G4 formation sequence in the promoter region of the target protein gene Genome Browser (http: //genome.ucsc. edu / cgi-bin / hgGateway). From the extracted sequences, a sequence that satisfies the following conditions was searched using QGRS Mapper (http://bioinformatics.ramapo.edu/QGRS/index.php).
(i) Total length within 30 mer (ii) The obtained sequence containing two or more consecutive Gs at intervals of 7 mer was designated as an aptamer candidate sequence for ApoE4.
2. 表面プラズモン共鳴(SPR)測定によるアプタマー候補配列と標的タンパク質の結合評価
 ApoE4を10 mM 酢酸 buffer (pH 4.0) を用いて希釈し、アミンカップリング法によりセンサーチップCM4上に約900 RU固定化した。その後、TBS buffer(10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl, pH 7.4)中でフォールディングを行ったアプタマー候補配列(Table.)を種々の濃度に希釈し、センサーチップに添加した際のSPRシグナルの変化を測定した。測定後、カーブフィッティングにより解離定数(Kd)を算出した。
2. Evaluation of binding between aptamer candidate sequence and target protein by surface plasmon resonance (SPR) measurement ApoE4 is diluted with 10 mM acetic acid buffer (pH 4.0) and immobilized on sensor chip CM4 by amine coupling method. did. After that, aptamer candidate sequences (Table.) Folded in TBS buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl, pH 7.4) were diluted to various concentrations and added to the sensor chip. Changes in SPR signal were measured. After the measurement, the dissociation constant (K d ) was calculated by curve fitting.
結果及び考察
1. ApoE4をコードする遺伝子のプロモーター領域から、G4構造を形成する可能性を持つ配列が8本得られた(ApoE4_1~8と命名)。これらのうち、ApoE4_1(配列番号56)においてDNA濃度依存的なSPRシグナルの上昇が観察された。これよりApoE4_1はApoE4に結合していると考えられる。カーブフィッティングにより解離定数を算出したところ、60 nMであった。
Results and discussion
1. From the promoter region of the gene encoding ApoE4, 8 sequences having the possibility of forming a G4 structure were obtained (named ApoE4_1 to 8). Among these, a DNA concentration-dependent increase in SPR signal was observed in ApoE4_1 (SEQ ID NO: 56). This suggests that ApoE4_1 is bound to ApoE4. The dissociation constant calculated by curve fitting was 60 nM.
実施例12
 獲得した3つのHGFアプタマーを、HGFap1, HGFap2, HGFap3、2つのHBEGFアプタマーをHBEGFap1, HBEGFap2と呼称する。またHGFアプタマーのin silico maturationにおいて、評価した配列のHGFに対する結合特異性(Sp(HGF))は、Sp(HGF)=[HGFを標的とした場合の結合定数Ka]/[HBEGFを標的とした場合の結合定数Ka] (Sp(HGF) =Ka(HGF) / Ka(HBEGF))と定義した。
Example 12
The three acquired HGF aptamers are referred to as HGFap1, HGFap2, HGFap3, and the two HBEGF aptamers are referred to as HBEGFap1, HBEGFap2. In in silico maturation of HGF aptamer binding specificity for HGF sequences were evaluated (Sp (HGF)) includes a target / [HBEGF [association constant K a in the case of the HGF targeted] Sp (HGF) = The coupling constant K a ] (Sp (HGF) = Ka (HGF) / Ka (HBEGF) ) was defined.
第1世代配列の作製と特異性評価
 まず第1世代親配列であるHGFap1, HGFap2, HGFap3についてSp(HGF)を求め、Sp(HGF)の値の比に基づいて各配列を複製し、合計20本の配列を作製した。続いて20本の配列の中でランダムに2本ずつ組を作り、任意の1点で交叉(crossover)させた。その後各20本の配列に10%の突然変異を位置、塩基の種類ともにランダムに導入し、第1世代配列とした(1R01~1R20)。1R01~1R20の塩基配列を、この順に配列番号58~77に示す。
First generation sequence generation and specificity evaluation First, Sp (HGF) was calculated for HGFap1, HGFap2, and HGFap3, which are the first generation parent sequences, and each sequence was replicated based on the ratio of Sp (HGF) values, totaling 20 An array of books was made. Subsequently, 2 pairs were randomly formed in 20 sequences, and crossed at any one point. Thereafter, 10% mutations were randomly introduced into each of the 20 sequences, both in position and base type, to obtain first generation sequences (1R01 to 1R20). The base sequences of 1R01 to 1R20 are shown in SEQ ID NOs: 58 to 77 in this order.
 HGF及びHBEGFをPBS buffer (Na2HPO4 8.1 mM, KH2PO4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH7.4)を用いて、アミンカップリング法によりセンサーチップCM5上に固定化した。タンパク質の希釈bufferとして、HGFには10 mM HEPES buffer (pH6.5)を、HBEGFには10 mM 酢酸buffer (pH5.0)を用いた。その後、TBS buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl)中でフォールディングを行った各第1世代配列を、TBS bufferを用いて種々の濃度(f.c. 1000 nM, 500 nM, 100 nM, 50 nM, 0 nM)に希釈し、HGFまたはHBEGFを固定化したセンサーチップに添加した際のSPRシグナルの変化を測定した。相互作用測定時のRunning bufferにはTBS bufferを使用し、添加時間120秒、解離時間200秒、流速30μL/minで測定を行った。測定後カーブフィッティングによってKa(HGF)及びKa(HBEGF)を求め、Sp(HGF)を算出した。 HGF and HBEGF were immobilized on the sensor chip CM5 by PBS coupling (Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH 7.4) by the amine coupling method. . As a protein dilution buffer, 10 mM HEPES buffer (pH 6.5) was used for HGF, and 10 mM acetic acid buffer (pH 5.0) was used for HBEGF. After that, each first-generation sequence folded in TBS buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl) was used at various concentrations (fc 1000 nM, 500 nM, 100 nM) using TBS buffer. , 50 nM, 0 nM), and the change of the SPR signal when HGF or HBEGF was added to the immobilized sensor chip was measured. TBS buffer was used as a running buffer at the time of interaction measurement, and the measurement was performed at an addition time of 120 seconds, a dissociation time of 200 seconds, and a flow rate of 30 μL / min. After measurement, Ka (HGF) and Ka (HBEGF) were obtained by curve fitting, and Sp (HGF) was calculated.
第2世代配列の作製と特異性評価
 第1世代配列から(i)親配列のSp(HGF) (最低値: 1.9)を下回る配列、(ii)Ka(HGF)が親配列のKa(HGF) (最低値: 9.1E+06)の1/10以下である配列を除外し、残りの配列を第2世代配列作製のための親配列とした。得られた第2世代親配列について、第1世代親配列と同様に複製、交叉、変異導入を行い第2世代配列を得た(2R01~2R20)。2R01~2R20の塩基配列を、この順に配列番号78~97に示す。HGF及びHBEGFに対する結合の評価とSp(HGF)の算出は、第1世代配列と同様に行った。
Generation of second generation sequence and evaluation of specificity (i) Sequence lower than Sp (HGF) (minimum value: 1.9) of the parent sequence from the first generation sequence, (ii) Ka (HGF) is the parent sequence Ka ( HGF) (minimum value: 9.1E + 06) 1/10 or less of the sequence was excluded, and the remaining sequence was used as a parent sequence for the generation of the second generation sequence. The obtained second generation parent sequence was replicated, crossed and mutagenized in the same manner as the first generation parent sequence to obtain second generation sequences (2R01 to 2R20). The nucleotide sequences of 2R01 to 2R20 are shown in SEQ ID NOs: 78 to 97 in this order. Evaluation of binding to HGF and HBEGF and calculation of Sp (HGF) were performed in the same manner as the first generation sequence.
第3世代モチーフ固定配列の作製と特異性評価
 第1世代配列及び第2世代配列を、高いSp(HGF)を持つ配列グループ、低いSp(HGF)を持つ配列グループ、HGF及びHBEGFに結合しなかった配列グループに分類し配列を比較したところ、高いSp(HGF)を持つ配列グループの多くの配列がGGTGGAGGGGという配列モチーフを共通して持っていた。そこで第1世代配列及び第2世代配列の中の、GGTGGAGGGG配列モチーフを有する配列で高いSp(HGF)を持つもの(1R01, 1R05, 1R08, 1R09, 2R07)を、第3世代モチーフ固定配列作製のための親配列とした。得られた第3世代モチーフ固定親配列について、第1世代親配列及び第2世代親配列と同様に複製、交叉、変異導入を行い、第3世代モチーフ固定配列を得た(3R01mfix~3R20mfix)。3R01mfix~3R20mfixの塩基配列を、この順に配列番号98~117に示す。HGF及びHBEGFに対する結合の評価とSp(HGF)の算出は、第1世代配列及び第2世代配列と同様に行った。
Generation of 3rd generation motif-fixed sequences and specificity evaluation The 1st and 2nd generation sequences do not bind to sequence groups with high Sp (HGF) , sequence groups with low Sp (HGF) , HGF and HBEGF As a result of comparing the sequences, the sequences having a high Sp (HGF) have a common sequence motif of GGTGGAGGGG. Therefore, the first generation sequence and the second generation sequence that have a GGTGGAGGGG sequence motif with high Sp (HGF) (1R01, 1R05, 1R08, 1R09, 2R07) For parent sequence. The obtained third generation motif-fixed parent sequence was replicated, crossed and introduced in the same manner as the first generation parent sequence and the second generation parent sequence to obtain third generation motif-fixed sequences (3R01mfix-3R20mfix). The nucleotide sequences of 3R01mfix to 3R20mfix are shown in SEQ ID NOs: 98 to 117 in this order. Evaluation of binding to HGF and HBEGF and calculation of Sp (HGF) were performed in the same manner as the first generation sequence and the second generation sequence.
結果及び考察
 第1世代配列において、親配列と比較して高いSp(HGF)の値を持つ配列が複数得られた(表6)。第2世代配列において、親配列のSp(HGF) (最低値: 1.9)のおよそ13倍のSp(HGF)を示す特異性の高い配列が得られた(表7、2R07)。さらに第3世代モチーフ固定配列においては、親配列のSp(HGF)のおよそ50倍のSp(HGF)を示す配列(3R02mfix)、また親配列のSp(HGF)のおよそ240倍のSp(HGF)を示す配列(3R14mfix)が得られた(表8)。これより、コンピューター内進化法によって本発明の方法で獲得されたHGFアプタマーの特異性を向上させることができた。
Results and Discussion In the first generation sequence, a plurality of sequences having higher Sp (HGF) values than the parent sequence were obtained (Table 6). In the second generation sequence, a highly specific sequence showing Sp (HGF) approximately 13 times Sp (HGF) (minimum value: 1.9) of the parent sequence was obtained (Table 7, 2R07). In a further third generation motif fixed sequence, the parent sequence Sp (HGF) approximately 50 times the Sp (HGF) sequences showing the (3R02mfix), also approximately 240 times the Sp of the parent sequence Sp (HGF) (HGF) A sequence (3R14mfix) was obtained (Table 8). Thus, the specificity of the HGF aptamer obtained by the method of the present invention could be improved by the in-computer evolution method.
Figure JPOXMLDOC01-appb-T000006
Kd(HGF):HGFに対する解離定数
Kd(HBEGF):HBEGFに対する解離定数
Ka(HGF):HGFに対する結合定数
Ka(HBEGF):HBEGFに対する結合定数
Sp(HGF):HGFに対する結合定数をHBEGFに対する結合定数で割った値(Ka(HGF) /Ka(HBEGF)
Figure JPOXMLDOC01-appb-T000006
K d (HGF): dissociation constant to HGF
K d (HBEGF) : Dissociation constant for HBEGF
K a (HGF) : Binding constant for HGF
K a (HBEGF) : Binding constant for HBEGF
Sp (HGF) : The value obtained by dividing the binding constant for HGF by the binding constant for HBEGF (Ka (HGF) / Ka (HBEGF) )
Figure JPOXMLDOC01-appb-T000007
Kd(HGF):HGFに対する解離定数
Kd(HBEGF):HBEGFに対する解離定数
Ka(HGF):HGFに対する結合定数
Ka(HBEGF):HBEGFに対する結合定数
Sp(HGF):HGFに対する結合定数をHBEGFに対する結合定数で割った値(Ka(HGF) /Ka(HBEGF)
Figure JPOXMLDOC01-appb-T000007
K d (HGF) : Dissociation constant for HGF
K d (HBEGF) : Dissociation constant for HBEGF
K a (HGF): binding constant for HGF
K a (HBEGF) : Binding constant for HBEGF
Sp (HGF) : The value obtained by dividing the binding constant for HGF by the binding constant for HBEGF (Ka (HGF) / Ka (HBEGF) )
Figure JPOXMLDOC01-appb-T000008
Kd(HGF):HGFに対する解離定数
Kd(HBEGF):HBEGFに対する解離定数
Ka(HGF):HGFに対する結合定数
Ka(HBEGF):HBEGFに対する結合定数
Sp(HGF):HGFに対する結合定数をHBEGFに対する結合定数で割った値(Ka(HGF) /Ka(HBEGF)
Figure JPOXMLDOC01-appb-T000008
K d (HGF): dissociation constant to HGF
K d (HBEGF) : Dissociation constant for HBEGF
K a (HGF) : Binding constant for HGF
K a (HBEGF) : Binding constant for HBEGF
Sp (HGF) : The value obtained by dividing the binding constant for HGF by the binding constant for HBEGF (Ka (HGF) / Ka (HBEGF) )

Claims (30)

  1.  標的タンパク質をコードする遺伝子配列若しくはその制御配列又はその転写産物中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、前記標的タンパク質若しくは前記遺伝子配列の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と90%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する前記標的タンパク質又は前記関連遺伝子産物に結合するアプタマーを化学合成することを含む、アプタマーの製造方法。 An aptamer that has the same base sequence as a region containing a G-quadruplex structure present in a gene sequence encoding the target protein or a regulatory sequence thereof or a transcription product thereof, and binds to the target protein or a related gene product of the gene sequence Or chemically synthesizing an aptamer having 90% or more sequence identity with the base sequence of the aptamer and containing a G-quadruplex structure and binding to the target protein or the related gene product to which the aptamer binds. A method for producing an aptamer.
  2.  プロモーター中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、該プロモーターが制御する構造遺伝子の遺伝子産物若しくは該遺伝子産物の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と90%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する遺伝子産物に結合するアプタマーを化学合成することを含む、請求項1記載の方法。 An aptamer having the same base sequence as the region containing the G-quadruplex structure present in the promoter, and binding to the gene product of the structural gene controlled by the promoter or a related gene product of the gene product, or the base sequence of the aptamer The method according to claim 1, comprising chemically synthesizing an aptamer having a sequence identity of 90% or more and including a G-quadruplex structure and binding to a gene product to which the aptamer binds.
  3.  製造される前記アプタマーは、前記プロモーターが制御する前記構造遺伝子の前記遺伝子産物と結合する請求項2記載の方法。 The method according to claim 2, wherein the aptamer produced binds to the gene product of the structural gene controlled by the promoter.
  4.  サイズが15mer~100merである請求項2又は3記載の方法。 The method according to claim 2 or 3, wherein the size is 15mer to 100mer.
  5.  前記プロモーターが、血管内皮増殖因子プロモーター、血小板由来成長因子プロモーター又は網膜芽細胞腫関連タンパク質プロモーターである請求項3又は4記載の方法。 The method according to claim 3 or 4, wherein the promoter is a vascular endothelial growth factor promoter, a platelet-derived growth factor promoter, or a retinoblastoma-related protein promoter.
  6.  製造されたアプタマーを、コンピューター内進化法により標的物質との親和性をさらに高める工程をさらに含む請求項2~5のいずれか1項に記載の方法。 The method according to any one of claims 2 to 5, further comprising a step of further increasing the affinity of the produced aptamer with a target substance by an in-computer evolution method.
  7.  請求項2~6のいずれか1項に記載の方法により製造されたアプタマー。 An aptamer produced by the method according to any one of claims 2 to 6.
  8.  配列番号1で示される塩基配列、又は該塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、血管内皮増殖因子と結合する請求項7記載のアプタマー。 The base sequence represented by SEQ ID NO: 1 or a base sequence having a sequence identity of 90% or more with the base sequence, comprising a G-quadruplex structure, and binding to vascular endothelial growth factor. Aptamer.
  9.  配列番号4で示される塩基配列、又は該塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、血小板由来成長因子と結合する請求項7記載のアプタマー。 The base sequence represented by SEQ ID NO: 4 or a base sequence having a sequence identity of 90% or more with the base sequence, comprising a G-quadruplex structure, and binding to a platelet-derived growth factor. Aptamer.
  10.  配列番号6で示される塩基配列、又は該塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、網膜芽細胞腫関連タンパク質と結合する請求項7記載のアプタマー。 A base sequence represented by SEQ ID NO: 6, or a base sequence having a sequence identity of 90% or more with the base sequence, comprising a G-quadruplex structure, and binding to a retinoblastoma-related protein. 7. The aptamer according to 7.
  11.  前記遺伝子産物が、ヘパリン結合ドメインを有する請求項2~6のいずれか1項に記載の方法。 The method according to any one of claims 2 to 6, wherein the gene product has a heparin binding domain.
  12.  前記遺伝子産物が、肝細胞増殖因子、ヘパリン結合性EGF、血小板由来成長因子又はアネキシンIIである請求項11記載の方法。 The method according to claim 11, wherein the gene product is hepatocyte growth factor, heparin-binding EGF, platelet-derived growth factor, or annexin II.
  13.  請求項11又は12記載の方法により製造されたアプタマー。 An aptamer produced by the method according to claim 11 or 12.
  14.  配列番号8、9若しくは10で示される塩基配列、又はこれらの各塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、肝細胞増殖因子と結合する請求項13記載のアプタマー。 A nucleotide sequence represented by SEQ ID NO: 8, 9 or 10, or a nucleotide sequence having a sequence identity of 90% or more with each of these nucleotide sequences, comprising a G-quadruplex structure, 14. The aptamer according to claim 13, which binds.
  15.  配列番号11若しくは12示される塩基配列、又はこれらの各塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、ヘパリン結合性EGFと結合する請求項13記載のアプタマー。 A nucleotide sequence having the nucleotide sequence of SEQ ID NO: 11 or 12 or a nucleotide sequence having a sequence identity of 90% or more with each of these nucleotide sequences, comprising a G-quadruplex structure, and binding to heparin-binding EGF Item 14. An aptamer according to Item 13.
  16.  配列番号13~20のいずれかで示される塩基配列、又はこれらの各塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、血小板由来成長因子と結合する請求項13記載のアプタマー。 Platelet-derived growth factor having a base sequence represented by any of SEQ ID NOs: 13 to 20, or a base sequence having a sequence identity of 90% or more with each of these base sequences, including a G-quadruplex structure 14. The aptamer according to claim 13, which binds to.
  17.  配列番号21で示される塩基配列、又は該塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、アネキシンIIと結合する請求項13記載のアプタマー。 The aptamer according to claim 13, which has the base sequence represented by SEQ ID NO: 21 or a base sequence having a sequence identity of 90% or more with the base sequence, includes a G-quadruplex structure, and binds to annexin II .
  18.  mRNA中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、該mRNAがコードする遺伝子産物若しくは該遺伝子産物の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と90%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する遺伝子産物に結合するアプタマーを化学合成することを含む、請求項1記載の方法。 90% or more of the aptamer having the same base sequence as the region containing the G-quadruplex structure present in mRNA and binding to the gene product encoded by the mRNA or the related gene product of the gene product, or the base sequence of the aptamer The method according to claim 1, comprising chemically synthesizing an aptamer having a sequence identity of 2 and comprising a G-quadruplex structure and binding to a gene product to which the aptamer binds.
  19.  製造される前記アプタマーは、前記mRNAがコードする前記構造遺伝子の前記遺伝子産物と結合する請求項18記載の方法。 The method according to claim 18, wherein the aptamer produced binds to the gene product of the structural gene encoded by the mRNA.
  20.  サイズが15mer~100merである請求項18又は19記載の方法。 The method according to claim 18 or 19, wherein the size is 15mer to 100mer.
  21.  前記mRNAが、血管内皮増殖因子又は血小板由来成長因子のmRNAである請求項18~20のいずれか1項に記載の方法。 The method according to any one of claims 18 to 20, wherein the mRNA is vascular endothelial growth factor or platelet-derived growth factor mRNA.
  22.  製造されたアプタマーを、コンピューター内進化法により標的物質との親和性をさらに高める工程をさらに含む請求項18~21のいずれか1項に記載の方法。 The method according to any one of claims 18 to 21, further comprising a step of further increasing the affinity of the produced aptamer with a target substance by an in-computer evolution method.
  23.  配列番号22~24のいずれかで示される塩基配列、又はこれらの各塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、血小板由来成長因子と結合する請求項21記載のアプタマー。 Platelet-derived growth factor having a base sequence represented by any of SEQ ID NOs: 22 to 24, or a base sequence having a sequence identity of 90% or more with each of these base sequences, including a G-quadruplex structure The aptamer according to claim 21, which binds to.
  24.  配列番号25~31のいずれかで示される塩基配列、又はこれらの各塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、血小板由来成長因子と結合する請求項21記載のアプタマー。 Platelet-derived growth factor having a base sequence represented by any one of SEQ ID NOs: 25 to 31 or a base sequence having a sequence identity of 90% or more with each of these base sequences and including a G-quadruplex structure The aptamer according to claim 21, which binds to.
  25.  前記遺伝子産物が、アポリポタンパク質E4である請求項11記載の方法。 The method according to claim 11, wherein the gene product is apolipoprotein E4.
  26.  請求項25記載の方法により製造されたアプタマー。 An aptamer produced by the method according to claim 25.
  27.  配列番号56で示される塩基配列、又は該塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、アポリポタンパク質E4と結合する請求項27記載のアプタマー。 The base sequence represented by SEQ ID NO: 56, or a base sequence having a sequence identity of 90% or more with the base sequence, comprising a G-quadruplex structure, and binding to apolipoprotein E4. Aptamer.
  28.  配列番号57で示される塩基配列を含み、肝細胞増殖因子と結合する請求項13記載のアプタマー。 The aptamer according to claim 13, which comprises the base sequence represented by SEQ ID NO: 57 and binds to hepatocyte growth factor.
  29.  配列番号58、60~68、70、72、77、78、84、90、99、100、102、104、107、108、111若しくは115で示される塩基配列、又はこれらの各塩基配列との配列同一性が90%以上である塩基配列を有し、かつ、G-quadruplex構造を含み、肝細胞増殖因子と結合する請求項13記載のアプタマー。 SEQ ID NOs: 58, 60 to 68, 70, 72, 77, 78, 84, 90, 99, 100, 102, 104, 107, 108, 111 or 115, or a sequence with each of these base sequences The aptamer according to claim 13, which has a nucleotide sequence having an identity of 90% or more, contains a G-quadruplex structure, and binds to a hepatocyte growth factor.
  30.  配列番号111で示される塩基配列を有する請求項29記載のアプタマー。 30. The aptamer according to claim 29, having a base sequence represented by SEQ ID NO: 111.
PCT/JP2013/068901 2012-07-10 2013-07-10 Method for producing aptamer WO2014010640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014524844A JP6517017B2 (en) 2012-07-10 2013-07-10 Method of producing aptamer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-155095 2012-07-10
JP2012155095 2012-07-10
JP2013-079998 2013-04-05
JP2013079998 2013-04-05

Publications (1)

Publication Number Publication Date
WO2014010640A1 true WO2014010640A1 (en) 2014-01-16

Family

ID=49916089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068901 WO2014010640A1 (en) 2012-07-10 2013-07-10 Method for producing aptamer

Country Status (2)

Country Link
JP (2) JP6517017B2 (en)
WO (1) WO2014010640A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131727A1 (en) * 2017-12-27 2019-07-04 コニカミノルタ株式会社 Method for assessing medicine
JP2020000051A (en) * 2018-06-26 2020-01-09 国立大学法人東京農工大学 Method for determining whether aptamer can be created and method for creating aptamer using the same

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
GATT,B. ET AL.: "Nucleic acid aptamers based on the G-quadruplex structure: therapeutic and diagnostic potential.", CURR MED CHEM, vol. 16, 2009, pages 1248 - 1265 *
QIN,Y. ET AL.: "Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4.", NUCLEIC ACIDS RES, vol. 35, 2007, pages 7698 - 7713 *
SISSI,C. ET AL.: "The evolving world of protein- G-quadruplex recognition: a medicinal chemist's perspective.", BIOCHIMIE, vol. 93, 2011, pages 1219 - 1230 *
SUN,D. ET AL.: "Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents.", NUCLEIC ACIDS RES, vol. 33, 2005, pages 6070 - 6080 *
TAIKI SAITO ET AL.: "Genome-chu no G-quadruplex Kozo Keisei Hairetsu ni Chakumoku shita Aptamer Tansakuho no Kaihatsu", 93RD ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2013) KOEN YOSHISHU III, 8 March 2013 (2013-03-08), pages 935, 3 EL - 15 *
WATARU YOSHIDA ET AL.: "Genome-chu no G-quadruplex Keisei Hairetsu Joho ni Motozuita Biomarker Ketsugo Aptamer no Tansaku", 93RD ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2013) KOEN YOSHISHU III, 8 March 2013 (2013-03-08), pages 935, 3 EL - 16 *
XIAO,J. ET AL.: "A genome-inspired DNA ligand for the affinity capture of insulin and insulin -like growth factor-2.", J SEP SCI, vol. 32, 2009, pages 1654 - 1664 *
XU,Y. ET AL.: "Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb).", NUCLEIC ACIDS RES, vol. 34, 2006, pages 949 - 954 *
YOSHIDA,W. ET AL.: "Aptamer selection based on g4-forming promoter region.", PLOS ONE, vol. 8, June 2013 (2013-06-01), pages E65497 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131727A1 (en) * 2017-12-27 2019-07-04 コニカミノルタ株式会社 Method for assessing medicine
JPWO2019131727A1 (en) * 2017-12-27 2021-02-12 コニカミノルタ株式会社 Evaluation method of medicine
JP2020000051A (en) * 2018-06-26 2020-01-09 国立大学法人東京農工大学 Method for determining whether aptamer can be created and method for creating aptamer using the same
JP7224011B2 (en) 2018-06-26 2023-02-17 国立大学法人東京農工大学 Method for determining whether aptamer can be created and method for creating aptamer using the same

Also Published As

Publication number Publication date
JP2018029601A (en) 2018-03-01
JPWO2014010640A1 (en) 2016-06-23
JP6706417B2 (en) 2020-06-10
JP6517017B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
Kohlberger et al. SELEX: Critical factors and optimization strategies for successful aptamer selection
Musumeci et al. Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics
Qi et al. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment
Wakui et al. Rapidly neutralizable and highly anticoagulant thrombin-binding DNA aptamer discovered by MACE SELEX
Di Giusto et al. Proximity extension of circular DNA aptamers with real-time protein detection
Kuai et al. Circular bivalent aptamers enable in vivo stability and recognition
Shu et al. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs
Zhang et al. Binding-induced DNA assembly and its application to yoctomole detection of proteins
TW201825679A (en) Modified guide rnas
Rangnekar et al. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures
JP2018019697A (en) Method of producing nucleic acid aptamers
Mao et al. Evolution of a highly functional circular DNA aptamer in serum
US9725715B2 (en) Signal activatable constructs and related components compositions methods and systems
Almasi et al. Development of a single stranded DNA aptamer as a molecular probe for lncap cells using cell-selex
JP6617934B2 (en) Vascular endothelial growth factor binding aptamer
WO2011022820A1 (en) Binding-induced hairpin detection system
Kanevsky et al. Structural determinants of TAR RNA-DNA annealing in the absence and presence of HIV-1 nucleocapsid protein
JP6706417B2 (en) Method for producing aptamer
Yüce et al. Systematic evolution of ligands by exponential enrichment for aptamer selection
JP5673992B2 (en) Vascular endothelial growth factor binding aptamer
Wang et al. Magnetic microparticle-based SELEX process for the identification of highly specific aptamers of heart marker--brain natriuretic peptide
Chen et al. Aptamer-based applications for cardiovascular disease
Perrier et al. Capillary gel electrophoresis-coupled aptamer enzymatic cleavage protection strategy for the simultaneous detection of multiple small analytes
Shu et al. New approach to develop ultra-high inhibitory drug using the power function of the stoichiometry of the targeted nanomachine or biocomplex
Bassett et al. Combinatorial selection and edited combinatorial selection of phosphorothioate aptamers targeting human nuclear factor-κb RelA/p50 and RelA/RelA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816820

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014524844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816820

Country of ref document: EP

Kind code of ref document: A1