JP6517017B2 - Method of producing aptamer - Google Patents
Method of producing aptamer Download PDFInfo
- Publication number
- JP6517017B2 JP6517017B2 JP2014524844A JP2014524844A JP6517017B2 JP 6517017 B2 JP6517017 B2 JP 6517017B2 JP 2014524844 A JP2014524844 A JP 2014524844A JP 2014524844 A JP2014524844 A JP 2014524844A JP 6517017 B2 JP6517017 B2 JP 6517017B2
- Authority
- JP
- Japan
- Prior art keywords
- sequence
- aptamer
- hgf
- promoter
- sequences
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108091023037 Aptamer Proteins 0.000 title claims description 121
- 238000000034 method Methods 0.000 title description 36
- 108091081406 G-quadruplex Proteins 0.000 claims description 52
- 239000002773 nucleotide Substances 0.000 claims description 16
- 125000003729 nucleotide group Chemical group 0.000 claims description 16
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 13
- 239000003102 growth factor Substances 0.000 claims description 3
- 108010041308 Endothelial Growth Factors Proteins 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 description 92
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 72
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 72
- 101800001649 Heparin-binding EGF-like growth factor Proteins 0.000 description 43
- 102100033762 Proheparin-binding EGF-like growth factor Human genes 0.000 description 43
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 42
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 28
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 28
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 27
- 108020004707 nucleic acids Proteins 0.000 description 24
- 102000039446 nucleic acids Human genes 0.000 description 24
- 150000007523 nucleic acids Chemical class 0.000 description 24
- 108020004414 DNA Proteins 0.000 description 23
- 238000005259 measurement Methods 0.000 description 22
- 238000010494 dissociation reaction Methods 0.000 description 21
- 230000005593 dissociations Effects 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- 108020004999 messenger RNA Proteins 0.000 description 19
- 102000004169 proteins and genes Human genes 0.000 description 18
- 108091034117 Oligonucleotide Proteins 0.000 description 17
- 108050006676 Retinoblastoma-related proteins Proteins 0.000 description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 16
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 16
- 239000000872 buffer Substances 0.000 description 16
- 238000003556 assay Methods 0.000 description 13
- 108090000668 Annexin A2 Proteins 0.000 description 12
- 102100040990 Platelet-derived growth factor subunit B Human genes 0.000 description 12
- 108010019674 Proto-Oncogene Proteins c-sis Proteins 0.000 description 12
- 108010017843 platelet-derived growth factor A Proteins 0.000 description 12
- 102000004149 Annexin A2 Human genes 0.000 description 11
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000013076 target substance Substances 0.000 description 11
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 10
- 108010081589 Becaplermin Proteins 0.000 description 9
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 9
- 102100039037 Vascular endothelial growth factor A Human genes 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- 230000001419 dependent effect Effects 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 7
- 108010060159 Apolipoprotein E4 Proteins 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000001142 circular dichroism spectrum Methods 0.000 description 7
- 238000001962 electrophoresis Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 102100037596 Platelet-derived growth factor subunit A Human genes 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 6
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229960002897 heparin Drugs 0.000 description 5
- 229920000669 heparin Polymers 0.000 description 5
- 229940113082 thymine Drugs 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 229940035893 uracil Drugs 0.000 description 5
- 208000002109 Argyria Diseases 0.000 description 4
- 101710163270 Nuclease Proteins 0.000 description 4
- 108091008103 RNA aptamers Proteins 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- GUYIZQZWDFCUTA-UHFFFAOYSA-N (pentadecachlorophthalocyaninato(2-))-copper Chemical compound [Cu+2].N1=C([N-]2)C3=C(Cl)C(Cl)=C(Cl)C(Cl)=C3C2=NC(C2=C(Cl)C(Cl)=C(Cl)C(Cl)=C22)=NC2=NC(C2=C(Cl)C(Cl)=C(Cl)C(Cl)=C22)=NC2=NC2=C(C(Cl)=C(C(Cl)=C3)Cl)C3=C1[N-]2 GUYIZQZWDFCUTA-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 101150023114 RNA1 gene Proteins 0.000 description 3
- 101150084101 RNA2 gene Proteins 0.000 description 3
- 101100353432 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRP2 gene Proteins 0.000 description 3
- 230000037429 base substitution Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000012146 running buffer Substances 0.000 description 3
- 108700021652 sis Genes Proteins 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- QCJPNTKIAXXSJI-UHFFFAOYSA-N 5-methyl-1h-pyrimidine-2,4-dione;1h-pyrimidine-2,4-dione Chemical compound O=C1C=CNC(=O)N1.CC1=CNC(=O)NC1=O QCJPNTKIAXXSJI-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 101150057744 PDGFA gene Proteins 0.000 description 2
- 101150117945 PDGFB gene Proteins 0.000 description 2
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 2
- 101100191561 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRP3 gene Proteins 0.000 description 2
- 101150030763 Vegfa gene Proteins 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000010225 co-occurrence analysis Methods 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- FYELSNVLZVIGTI-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-5-ethylpyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1CC)CC(=O)N1CC2=C(CC1)NN=N2 FYELSNVLZVIGTI-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102000000412 Annexin Human genes 0.000 description 1
- 108050008874 Annexin Proteins 0.000 description 1
- 108010074051 C-Reactive Protein Proteins 0.000 description 1
- 102100032752 C-reactive protein Human genes 0.000 description 1
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 1
- 108091029523 CpG island Proteins 0.000 description 1
- 108010009392 Cyclin-Dependent Kinase Inhibitor p16 Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 description 1
- 101001046870 Homo sapiens Hypoxia-inducible factor 1-alpha Proteins 0.000 description 1
- 101001126417 Homo sapiens Platelet-derived growth factor receptor alpha Proteins 0.000 description 1
- 101000904152 Homo sapiens Transcription factor E2F1 Proteins 0.000 description 1
- 101000851018 Homo sapiens Vascular endothelial growth factor receptor 1 Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102100022875 Hypoxia-inducible factor 1-alpha Human genes 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 101150105104 Kras gene Proteins 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 101150078498 MYB gene Proteins 0.000 description 1
- 102100030485 Platelet-derived growth factor receptor alpha Human genes 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 108010087776 Proto-Oncogene Proteins c-myb Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 101100163901 Rattus norvegicus Asic2 gene Proteins 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 108700025701 Retinoblastoma Genes Proteins 0.000 description 1
- 101100084449 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRP4 gene Proteins 0.000 description 1
- 101150047500 TERT gene Proteins 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 102100024026 Transcription factor E2F1 Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 102100033254 Tumor suppressor ARF Human genes 0.000 description 1
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 1
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 108700041737 bcl-2 Genes Proteins 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002983 circular dichroism Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000013024 dilution buffer Substances 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 108700024542 myc Genes Proteins 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 101150022630 prp5 gene Proteins 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 108091035539 telomere Proteins 0.000 description 1
- 102000055501 telomere Human genes 0.000 description 1
- 210000003411 telomere Anatomy 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 230000037426 transcriptional repression Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/16—Aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2330/00—Production
- C12N2330/30—Production chemically synthesised
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
本発明は、アプタマーの製造方法及びそれにより製造されたアプタマーに関する。 The present invention relates to a method for producing an aptamer and an aptamer produced thereby.
任意の分子と特異的に結合する核酸分子であるアプタマーが知られている。アプタマーは、所望の標的分子と特異的に結合するので、アプタマーを利用して該標的分子の検出や定量を行うことが提案されている。これまでに、インスリン、ルシフェラーゼ、チログロブリン、C反応性タンパク質、血管内皮細胞増殖因子(特許文献1)等に特異的に結合するアプタマーが報告されている。 Aptamers that are nucleic acid molecules that specifically bind to any molecule are known. Since the aptamer specifically binds to a desired target molecule, it has been proposed to detect and quantify the target molecule using the aptamer. So far, aptamers that specifically bind to insulin, luciferase, thyroglobulin, C-reactive protein, vascular endothelial cell growth factor (Patent Document 1) and the like have been reported.
所望の標的分子と特異的に結合するこれらのアプタマーは、基本的にSELEX (Systematic Evolution of Ligands by EXponential Enrichment)と呼ばれる方法により作出されている (非特許文献1)。この方法では、標的分子を担体に固定化し、これに膨大な種類のランダムな塩基配列を有する核酸から成る核酸ライブラリを添加し、標的分子に結合する核酸を回収し、これをPCRにより増幅して再び標的分子を固定化した担体に添加する。この工程を10回程度繰り返すことにより、標的分子に対して結合力の高いアプタマーを濃縮し、その塩基配列を決定して、標的分子を認識するアプタマーを取得する。なお、上記核酸ライブラリーは、核酸の自動化学合成装置により、ランダムにヌクレオチドを結合していくことにより容易に調製可能である。このように、ランダムな塩基配列を有する核酸ライブラリーを用いた、偶然を積極的に利用する方法により、任意の標的物質と特異的に結合するアプタマーを作出できる。 These aptamers that specifically bind to a desired target molecule are basically produced by a method called SELEX (Systematic Evolution of Ligands by Exponential Enrichment) (Non-patent Document 1). In this method, a target molecule is immobilized on a carrier, a nucleic acid library consisting of nucleic acids having a large variety of random base sequences is added to this, nucleic acid binding to the target molecule is recovered, and this is amplified by PCR. Again, the target molecule is added to the immobilized carrier. By repeating this process about 10 times, an aptamer with high avidity to the target molecule is concentrated, and its base sequence is determined to obtain an aptamer that recognizes the target molecule. The above nucleic acid library can be easily prepared by binding nucleotides at random by an automatic chemical synthesizer for nucleic acid. Thus, an aptamer that specifically binds to any target substance can be created by a method that actively utilizes chance, using a nucleic acid library having a random base sequence.
SELEXは、任意の標的物質と特異的に結合するアプタマーを作出できる優れた方法ではあるが、アプタマーを作出するためにかなり手間のかかる作業を必要とする。また、偶然を利用する方法であるので、かなりの時間に亘りSELEXを適用しても、満足できる親和性で標的物質と特異的に結合するアプタマーが得られない場合もある。 Although SELEX is an excellent method that can create an aptamer that specifically binds to any target substance, it requires considerable labor to create an aptamer. Also, as it is a method utilizing chance, applying SELEX for a considerable amount of time may not result in an aptamer that specifically binds to a target substance with satisfactory affinity.
本発明の目的は、SELEXを用いることなく、標的物質と特異的に結合するアプタマーを製造する方法を提供することである。 An object of the present invention is to provide a method for producing an aptamer that specifically binds to a target substance without using SELEX.
G-quadruplex構造がゲノミックDNA中に存在して四重らせん構造をとることが知られており、G-quadruplex構造を含むプロモーターも知られている。本願発明者らは、プロモーター中にG-quadruplex構造が含まれる場合、該プロモーターが制御する構造遺伝子の遺伝子産物又は該遺伝子産物が包含されるカスケードの下流の遺伝子産物が、該G-quadruplex構造に結合してフィードバック阻害がかかるのではないか考えた。そして、プロモーター中に含まれるG-quadruplex構造含有領域と同じ塩基配列を有する一本鎖核酸は、そのままで、該プロモーターが結合する物質と特異的に結合するアプタマーとして利用可能であるという新知見を得た。本願発明者らはさらに、mRNA中にG-quadruplex構造が存在する場合、該mRNAと、該mRNAがコードする遺伝子産物とが結合するのではないかと考えた。そして、mRNA中に含まれるG-quadruplex構造含有領域と同じ塩基配列を有する一本鎖核酸は、そのままで、該mRNAがコードする遺伝子産物と特異的に結合するアプタマーとして利用可能であるという新知見を得て本願発明を完成した。 It is known that G-quadruplex structure exists in genomic DNA and takes a quadruplex structure, and a promoter including G-quadruplex structure is also known. The present inventors indicate that, when the G-quadruplex structure is contained in the promoter, the gene product of a structural gene controlled by the promoter or the gene product downstream of the cascade in which the gene product is contained is in the G-quadruplex structure. I thought that binding would cause feedback inhibition. And, as it is, single-stranded nucleic acid having the same base sequence as the G-quadruplex structure-containing region contained in the promoter can be used as an aptamer specifically binding to a substance to which the promoter binds. I got it . The present inventors further considered that, when a G-quadruplex structure is present in the mRNA, the mRNA may be bound to the gene product encoded by the mRNA. And, a new finding that a single-stranded nucleic acid having the same base sequence as the G-quadruplex structure-containing region contained in mRNA can be used as an aptamer that specifically binds to the gene product encoded by the mRNA as it is It was completed the present onset Akira obtained.
すなわち、本発明は、mRNA中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、該mRNAがコードする遺伝子産物若しくは該遺伝子産物の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と95%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する前記遺伝子産物又は前記関連遺伝子産物に結合するアプタマーを化学合成することを含む、アプタマーの製造方法を提供する。また、本発明は、上記本発明の方法により製造されたアプタマーを提供する。周知の通り、DNA中のチミンとRNA中のウラシルは、共にアデニンと特異的に対合するものであるから、本発明において、DNA中のチミンとRNA中のウラシルは「同一の塩基」と解する。従って、本発明において、あるDNA配列と、このDNA配列中のチミンがウラシルに置き換わったRNA配列は、「同一の塩基配列を有する」と解する。 That is, the present invention is identical to the region containing the G-quadruplex structure present in the mRNA has a nucleotide sequence, the aptamer or the aptamer to bind to related gene product of a gene product or the gene product said mRNA encodes It has nucleotide sequence and 95% or more sequence identity, and includes the G-quadruplex structure comprises chemically synthesizing an aptamer that binds to the gene product or the related gene product wherein the aptamer binds, aptamers Provide a manufacturing method of Further, the present invention is that provides an aptamer produced by the method of the present invention. As circumferential intelligence, uracil thymine in RNA in DNA, since it is intended to both adenine specifically pairing, in the present invention, uracil thymine in RNA in DNA "Identity of base" I understand. Therefore, in the present invention, a certain DNA sequence and an RNA sequence in which thymine in this DNA sequence is replaced by uracil are understood as “having the same base sequence”.
本発明によれば、mRNA中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、該mRNAがコードする遺伝子産物若しくは該遺伝子産物の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と95%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する遺伝子産物に結合するアプタマーを化学合成することを含む、アプタマーの製造方法が提供される。 According to the present invention, an aptamer having the same base sequence as a region containing a G-quadruplex structure present in mRNA and binding to a gene product encoded by the mRNA or a related gene product of the gene product have nucleotide sequence and 95% or more sequence identity, and includes the G-quadruplex structure comprises chemically synthesizing an aptamer that binds to a gene product the aptamer binds, method for producing aptamers are provided Ru.
本発明により、手間のかかる操作が必要なSELEXを用いることなく所望の標的物質と結合するアプタマーを製造する方法が初めて提供された。本発明の方法によれば、SELEXを用いることなく、所望の標的タンパク質をコードする遺伝子のプロモーター中のG-quadruplex構造含有領域の塩基配列と同じ塩基配列を持つ核酸を市販の核酸合成機により化学合成することで標的物質と結合するアプタマーを製造することができるので、所望の標的タンパク質と結合するアプタマーを、従来法に比べて遙かに容易に製造することができる。 The present invention provides, for the first time, a method for producing an aptamer that binds to a desired target substance without using SELEX requiring time-consuming manipulation. According to the method of the present invention, a nucleic acid having the same base sequence as the base sequence of the G-quadruplex structure-containing region in the promoter of the gene encoding the desired target protein is chemically analyzed using a commercially available nucleic acid synthesizer without using SELEX. Since the synthesis | combination can manufacture the aptamer which couple | bonds with a target substance, the aptamer couple | bonded with desired target protein can be manufactured much more easily compared with the conventional method.
G-quadruplex(Gカルテット、G4、グアニン四重鎖等とも呼ばれる)構造は、核酸中のグアニン塩基が4つ接近して水素結合により四量体を形成している面が2〜3面重なった構造であり、四重らせん構造をとることで知られている。G-quadruplex構造は、ヒトテロメアやプロモーター中に存在することが知られている。 The G-quadruplex (also called G-quartet, G4, guanine quadruple chain, etc.) structure has two to three faces where four guanine bases in the nucleic acid are close to form a tetramer by hydrogen bonding. It is a structure and is known to have a quadruple helical structure. G-quadruplex structures are known to exist in human telomeres and promoters.
本願発明者らは、プロモーター中に含まれるG-quadruplex構造を含む領域(「G-quadruplex構造含有領域」と呼ぶ)と同一の塩基配列を有する一本鎖ポリヌクレオチドが、そのままでアプタマーとして機能し、該アプタマーは、そのプロモーターが制御する構造遺伝子の遺伝子産物又は該遺伝子産物の関連遺伝子産物と結合することを見出した。ここで、ある「遺伝子産物の関連遺伝子産物」は、例えば、その遺伝子産物が包含されるカスケードの上流又は下流の遺伝子産物や、その遺伝子産物と協働して機能するタンパク質等である。ある遺伝子産物の関連遺伝子産物は、例えば、文献における共起性解析により調べることができる。この共起性解析は、例えば、国立情報学研究所、国立遺伝学研究所等が公開しているJabionのウェブサイトで行うことができる。このウェブサイトで提供されている方法によれば、共起性スコアもわかるので、ある遺伝子産物と共起性の強い遺伝子産物が、関連性の高い遺伝子産物であると考えることができる。例えば、下記実施例において具体的に試験した血管内皮増殖因子(VEGF)と共起性の高いタンパク質は、KDR、FLT1、HIF1Aの順で共起性が高く、血小板由来成長因子(PDGF)では、PDGFB、 PDGFRAの順、網膜芽細胞腫関連タンパク質(RB-1)では、E2F1、 CDKN2A、TP53の順で共起性が高い。これらの遺伝子のプロモーター中のG-quadruplex形成配列を後述する方法で探し、その配列を合成して結合能を確認することができる。 The present inventors function as an aptamer as they are, as a single-stranded polynucleotide having the same base sequence as a region containing a G-quadruplex structure (referred to as "G-quadruplex structure-containing region") contained in a promoter. The aptamer was found to bind to a gene product of a structural gene controlled by the promoter or a related gene product of the gene product . In here, there "related gene product of a gene product", for example, upstream or downstream of the gene product of the cascade of the gene product is included, a protein or the like that function in cooperation with its gene product. Related gene products of a gene product can be examined, for example, by co-occurrence analysis in the literature. This co-occurrence analysis can be performed, for example, on the website of Jabion published by the National Institute of Informatics, the National Institute of Genetics, and the like. According to the method provided on this website, since the co-occurrence score is also known, it is possible to consider that a gene product strongly co-occurring with a certain gene product is a highly relevant gene product. For example, proteins highly co-occurring with vascular endothelial growth factor (VEGF) specifically tested in the following examples have high co-occurrence in the order of KDR, FLT1, HIF1A, and platelet-derived growth factor (PDGF) PDGFB, PDGFRA, and retinoblastoma-related protein (RB-1) have high co-occurrence in the order of E2F1, CDKN2A, and TP53. The G-quadruplex-forming sequence in the promoter of these genes can be searched by the method described later, and that sequence can be synthesized to confirm the binding ability.
本発明の参考例に係る方法は、例えば次のように実施することができる。先ず、G-quadruplex構造を含むプロモーターを選出する。ヒトゲノムは既に解読されており、各種構造遺伝子のプロモーター配列も公知である。これらの各種プロモーターのうち、G-quadruplex構造を含むものが本発明の方法において利用可能である。G-quadruplex構造を含むことが公知であるプロモーターは、本発明の方法において利用可能である。G-quadruplex構造を含むことが公知であるプロモーターの例としては、c-Kit遺伝子のプロモーターであるc-Kit87up、c-Myb遺伝子プロモーター、Rb遺伝子プロモーター、c-myc遺伝子プロモーターであるc-myc-23456、BCL-2遺伝子プロモーター、HIF1α遺伝子プロモーター、PDGFRβ遺伝子プロモーター、KRAS遺伝子プロモーター、TERT遺伝子プロモーター、MYB遺伝子プロモーター等を挙げることができる。また、後述の実施例では、プロモーターとして、血管内皮増殖因子(VEGF)プロモーター、血小板由来成長因子(PDGF-A)プロモーター及び網膜芽細胞腫関連タンパク質(RB-1)プロモーター中を選出したが、これらのプロモーター中にG-quadruplex構造が含まれることも公知である。 The method according to the reference example of the present invention can be implemented, for example, as follows. First, a promoter containing a G-quadruplex structure is selected. The human genome has already been decoded, and promoter sequences of various structural genes are also known. Of these various promoters, those containing the G-quadruplex structure are available in the methods of the present invention. Promoters known to contain the G-quadruplex structure are available in the methods of the invention. Examples of promoters known to contain the G-quadruplex structure include c-Kit 87up, which is a promoter of c-Kit gene, c-Myb gene promoter, Rb gene promoter, c-myc gene promoter, c-myc- 23456, BCL-2 gene promoter, HIF1α gene promoter, PDGFRβ gene promoter, KRAS gene promoter, TERT gene promoter, MYB gene promoter and the like. Also, in the examples described later, the promoters for vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF-A) and retinoblastoma related protein (RB-1) were selected as promoters. It is also known that the G-quadruplex structure is contained in the promoter of
G-quadruplex構造を含むことが知られていないプロモーターが、G-quadruplex構造を含むか否かは、次のようにして調べることができる。プロモーター配列がG-quadruplex構造を含むためには、グアニンの2連続配列が4箇所以上含まれることが必要である。この要件を満足するプロモーター配列がG-quadruplex構造を含むか否かは、コンピューターソフトによる解析(例えば、http://bioinformatics.ramapo.edu/QGRS/analyze.phpで公開されているRAMAPO COLLEGEのMapper(Nucleic Acids Research 2006 July; 34 (Web Server issue):W676-W682)や、実際にG-quadruplex構造含有領域を化学合成し、それが例えば特許文献3に記載されている公知のG-quadruplex構造検出試薬と反応させて結合するか否かを調べることにより容易に調べることができる。 Whether or not a promoter not known to contain a G-quadruplex structure can contain a G-quadruplex structure can be examined as follows. In order for the promoter sequence to contain the G-quadruplex structure, it is necessary that two or more consecutive sequences of guanine be included. Whether or not a promoter sequence satisfying this requirement includes a G-quadruplex structure can be analyzed by computer software (eg, Mapper of RAMAPO COLLEGE published at http://bioinformatics.ramapo.edu/QGRS/analyze.php (Nucleic Acids Research 2006 July; 34 (Web Server issue): W676-W682) or a known G-quadruplex structure that is actually chemically synthesized with a G-quadruplex structure-containing region and that is described, for example, in Patent Document 3 It can be easily determined by examining whether or not it reacts with the detection reagent to bind.
本願発明者らはまた、本発明の参考例の方法が、ヘパリン結合性ドメインを持つタンパク質に結合するアプタマーの創製にも有用であることを見出した。下記参考例では、このようなヘパリン結合性ドメインを持つタンパク質である肝細胞増殖因子(HGF(hepatocyte growth factor))、ヘパリン結合性EGF(HBEGF(Heparin-binding EGF-like growth factor))及び血小板由来成長因子、アネキシンII(Annexin II)又はアポリポタンパク質E4(ApoE4)について実験を行い、これらのいずれに対しても本願発明の参考例の方法により、これらのそれぞれに結合するアプタマーの創製に成功している。 The present inventors also found that the method of the reference example of the present invention is also useful for creating an aptamer that binds to a protein having a heparin binding domain. In the following reference example , hepatocyte growth factor (HGF) which is a protein having such a heparin-binding domain, heparin-binding EGF (HBEGF (Heparin-binding EGF-like growth factor)), and platelet-derived Experiments were conducted on growth factors, annexin II (Anexin II) or apolipoprotein E4 (ApoE4), and any of these was successfully created by the method of the reference example of the present invention to create an aptamer that binds to each of them. There is.
次に、選出したプロモーターのG-quadruplex構造含有領域と同一の塩基配列を有するアプタマーを化学合成する。なお、G-quadruplex構造はプロモーター中に存在するが、G-quadruplex構造含有領域はプロモーター以外の部分に跨がるものであってもよい。アプタマーのサイズは特に限定されないが、通常、15merないし100mer程度、好ましくは30merないし70mer程度である(merはヌクレオチド数を示す)。また、アプタマーは、DNAでもRNAでもよいが、化学的に安定なDNAが好ましい。なお、DNAやRNAの化学合成は、市販の自動合成装置を用いて容易に行うことができる。また、所定の塩基配列を持つDNAやRNAの化学合成を請け負っている業者も種々存在するので、これらの業者に依頼することもできる。なお、in vitro transcriptionによるRNA合成や、PCR等の核酸増幅法によるDNA合成等、無細胞系で核酸を合成することも本発明における「化学合成」に包含される。なお、本明細書及び特許請求の範囲において、「塩基配列を有する」という語は、塩基がそのように並んでいることを意味し、例えば、「配列番号1で示される塩基配列を有するアプタマー」とは、塩基配列が配列番号1の通りに並んでいる34merのアプタマーを意味する。 Next, an aptamer having the same base sequence as the G-quadruplex structure-containing region of the selected promoter is chemically synthesized. Although the G-quadruplex structure is present in the promoter, the G-quadruplex structure-containing region may span parts other than the promoter. The size of the aptamer is not particularly limited, but is usually about 15 mer to 100 mer, preferably about 30 mer to 70 mer (mer indicates the number of nucleotides). The aptamer may be DNA or RNA, but is preferably chemically stable DNA. Chemical synthesis of DNA and RNA can be easily performed using a commercially available automatic synthesizer. In addition, there are various vendors undertaking chemical synthesis of DNA and RNA having a predetermined base sequence, and these vendors can also be requested. In addition, synthesizing a nucleic acid in a cell-free system such as RNA synthesis by in vitro transcription, DNA synthesis by a nucleic acid amplification method such as PCR, etc. is also included in the “chemical synthesis” in the present invention. In the present specification and claims, the term "having a base sequence" means that the bases are aligned as such, for example, "an aptamer having the base sequence represented by SEQ ID NO: 1". Means a 34-mer aptamer whose base sequence is arranged as SEQ ID NO: 1.
次に製造したアプタマーが、当該プロモーターにより制御される構造遺伝子の遺伝子産物と結合することを確認する。これは、下記実施例に具体的に記載するゲルシフトアッセイやSPR測定により行うことができる。すなわち、ゲルシフトアッセイでは、アプタマーの末端に蛍光標識等の標識を結合し、遺伝子産物と混合後、ゲル電気泳動にかけ、標識を検出すると共に銀染色によりタンパク質を検出し、標識と銀染色とが共に陽性であれば、アプタマーと遺伝子産物とが結合していることが確認できる。SPR測定では、SPR測定用のチップ上に遺伝子産物を固定化し、遺伝子産物とアプタマーを接触させ、アプタマーが遺伝子産物に結合するか否かを市販のSPR測定装置で測定することによりアプタマーと遺伝子産物とが結合するか否かを確認することができる。 Next, it is confirmed that the produced aptamer binds to the gene product of a structural gene controlled by the promoter. This can be performed by gel shift assay or SPR measurement specifically described in the following examples. That is, in the gel shift assay, a label such as a fluorescent label is bound to the end of the aptamer, mixed with the gene product, subjected to gel electrophoresis, and the label is detected and the protein is detected by silver staining. If it is positive, it can be confirmed that the aptamer and the gene product are bound. In SPR measurement, a gene product is immobilized on a chip for SPR measurement, the gene product and aptamer are brought into contact, and the aptamer and gene product are measured by measuring whether or not the aptamer binds to the gene product with a commercially available SPR measurement device It can be checked whether or not to be combined.
アプタマーが遺伝子産物と結合することが確認できた場合には、化学合成によりそのアプタマーを製造する。なお、一般に、標的物質と結合するアプタマーの塩基配列をわずかに変更しても該標的物質との結合性を維持できる場合が少なからず存在することが知られているので、遺伝子産物と結合することが確認されたアプタマーの塩基配列を、該遺伝子産物との結合性を維持したまま修飾してもよい。修飾後のアプタマーの塩基配列は、元の塩基配列と90%以上の配列同一性を有するものであり、好ましくは配列同一性は95%以上である。この場合、修飾後のアプタマーもG-quadruplex構造を有している必要がある。G-quadruplex構造が遺伝子産物と結合すると考えられるので、G-quadruplex構造以外の部分を修飾することが好ましく、G-quadruplex構造以外の部分を修飾しても遺伝子産物との結合性は維持される可能性が高い。このような修飾アプタマーを化学合成により製造することもできる。なお、ここで、「配列同一性」は、配列を比較する2つの塩基配列の塩基ができるだけ多く一致するように2つの配列を整列させ(必要に応じてギャップを挿入する)、一致する塩基の数を全塩基数で除し、百分率で表した数値を意味する。両者の塩基数が異なる場合には、長い方の塩基数で除す。配列同一性を算出するソフトは周知であり、インターネット上でも無料公開されている。なお、上記の通り、本発明では、DNA中のチミンとRNA中のウラシルは、「同一の塩基」と解するので、DNA配列とRNA配列の配列同一性を比較する場合、チミンとウラシルは同一の塩基として計算する。 If it is confirmed that the aptamer binds to the gene product, the aptamer is produced by chemical synthesis. Generally, it is known that even if the base sequence of the aptamer binding to the target substance is slightly changed, the binding property to the target substance can be maintained in many cases, so that it binds to the gene product. The nucleotide sequence of the aptamer in which the is confirmed may be modified while maintaining the binding to the gene product. The base sequence of the aptamer after modification has 90% or more sequence identity with the original base sequence, and preferably 95% or more sequence identity. In this case, the modified aptamer also needs to have a G-quadruplex structure. Since the G-quadruplex structure is considered to bind to the gene product, it is preferable to modify the portion other than the G-quadruplex structure, and even if the portion other than the G-quadruplex structure is modified, the binding to the gene product is maintained Probability is high. Such modified aptamers can also be produced by chemical synthesis. Here, “sequence identity” refers to aligning two sequences (inserting gaps as necessary) so that the bases of the two base sequences whose sequences are to be compared match as much as possible. The number is divided by the total number of bases, meaning the numerical value expressed as a percentage. When the numbers of bases of the two are different, they are divided by the number of longer bases. Software for calculating sequence identity is well known and published free of charge on the Internet. As described above, in the present invention, thymine in DNA and uracil in RNA are understood to be "identical bases", so thymine and uracil are identical when comparing the sequence identity of DNA sequences and RNA sequences. Calculate as the base of
G-quadruplex構造含有領域と同一の塩基配列を有するアプタマーを、公知のコンピューター内進化(in silico maturation)法に付して、その塩基配列を改変することにより、遺伝子産物との親和性をさらに高めることが可能である。コンピューター内進化法は、本願共同発明者により発明された方法で、非特許文献2、非特許文献3や特許文献2に記載されており、下記実施例12にも具体的に記載されている。この方法を、遺伝子産物と結合することが確認されたアプタマーに適用する場合には、例えば、G-quadruplex構造の維持に不可欠ではない、例えば3〜5mer程度の複数の領域を、得られた各アプタマーの対応する各領域どうしの間でランダムに交換したり(シャフル)、遺伝的アルゴリズムによる交差を行う。そして、さらにシャフル又は交差後の上記各領域に、ランダムな一塩基置換を導入する。これらのシャフル又は交差及び一塩基置換の導入はコンピューターで行なう。そして、コンピューターにより作出された新たな塩基配列を有するアプタマーを化学合成して核酸ライブラリーとし、SELEXのサイクルに付す。1サイクル目終了後の第2の核酸ライブラリーを作製する際、結合能の順序の高かったアプタマーに由来する領域を有するアプタマーの量を最も多くし、以下、順序が下がるにつれてその比率を少なくする。以上のように、コンピューター内でのシャフル又は交差及び一塩基置換により人為的に変異を導入することにより、SELEXによる進化の効率を高めることができる。 Aptamers having the same base sequence as the G-quadruplex structure-containing region are subjected to a known in-situ computer evolution method to further enhance the affinity to the gene product by modifying the base sequence. It is possible. The in-computer evolution method is a method invented by the co-inventor of the present application and described in Non-Patent Document 2, Non-Patent Document 3 and Patent Document 2, and is also specifically described in Example 12 below. When this method is applied to an aptamer confirmed to bind to a gene product, for example, a plurality of regions not necessary for maintaining the G-quadruplex structure, for example, about 3 to 5 mers, are obtained. Random exchange (shuffle) between corresponding regions of the aptamer or crossover by genetic algorithm is performed. Then, random single base substitutions are introduced into the above regions after shuffle or intersection. The introduction of these shuffles or crossovers and single base substitutions is done by computer. Then, an aptamer having a new base sequence generated by a computer is chemically synthesized to form a nucleic acid library, which is subjected to the cycle of SELEX. When producing the second nucleic acid library after completion of the first cycle, the amount of aptamers having a region derived from the aptamer having the highest binding ability order is maximized, and the ratio is decreased as the order is lowered. . As described above, the efficiency of SELEX evolution can be enhanced by artificially introducing mutations by shuffle or crossover and single base substitution in a computer.
このコンピューター内進化法は、コンピューターの支援を利用してSELEXを行うものであるが、元になるアプタマーが既に遺伝子産物との結合能を有するものであるので、全くのゼロから出発するSELEXとは難易度が異なり、高い確率で遺伝子産物との結合能をさらに高めることができる。なお、コンピューター内進化法は、遺伝子産物との結合能を実験で確かめながら行うものであるので、塩基配列が元の塩基配列とかなり異なるものとなっても遺伝子産物との結合能が確保されているので、配列同一性は、必ずしも90%以上に限定されるものではない。もっとも、コンピューター内進化法は、上記の通り、G-quadruplex構造以外の部分に変異を導入するものであるので、G-quadruplex構造は維持されている。さらに、下記実施例12に具体的に記載する通り、コンピューター内進化法において、各世代で得られたアプタマーのうち、目的の遺伝子産物との結合能が高いアプタマーの配列を調べることにより、目的の遺伝子産物との結合能を発揮する配列モチーフが明らかになる場合がある。例えば、下記実施例12では、下記実施例4で得られたHGF結合性アプタマーを親配列として、コンピューター内進化法を行い、第2世代まで行った時点で、第1世代と第2世代のアプタマーのうち、HGFとの結合能が高いアプタマーの塩基配列を調べたところ、多くの配列がggtggagggg(配列番号57)という配列モチーフを共通して持っていることがわかった。そこで、この配列モチーフの部分を固定して第3世代を行ったところ、HGFに対する結合特異性(Sp(HGF))が親配列の実に約240倍ものアプタマーを得ることができた。このように、コンピューター内進化法によれば、途中段階で、高い結合能を発揮する配列モチーフが判明する場合があり、この場合には、この配列モチーフを固定して、それ以降の世代を行うことにより、一層効率的に高い結合能を持つアプタマーを得ることが可能になる。Although this in-house evolution method performs SELEX with the assistance of a computer, since the original aptamer already has the ability to bind to the gene product, with SELEX starting from an entirely zero, The level of difficulty is different, and the ability to bind to a gene product can be further enhanced with high probability. In addition, since the in-computer evolution method is performed while confirming the binding ability with the gene product by experiment, the binding ability with the gene product is secured even if the base sequence becomes considerably different from the original base sequence. Therefore, the sequence identity is not necessarily limited to 90% or more. However, as described above, since the in-computer evolution method is to introduce mutations in parts other than the G-quadruplex structure, the G-quadruplex structure is maintained. Furthermore, as specifically described in Example 12 below, in the in-house evolution method, among the aptamers obtained in each generation, the target sequence can be determined by examining the sequence of an aptamer having high binding ability with the target gene product. Sequence motifs that exert the ability to bind to gene products may become apparent. For example, in Example 12 below, when the HGF-binding aptamer obtained in Example 4 below is used as a parent sequence, the in-computer evolution method is performed, and when the second generation is performed, aptamers of the first generation and the second generation Among them, when the base sequences of aptamers having high binding ability to HGF were examined, it was found that many sequences share the sequence motif of ggtggagggg (SEQ ID NO: 57). Then, when the portion of this sequence motif was fixed and the third generation was performed, it was possible to obtain an aptamer with about 240 times the binding specificity (Sp (HGF) ) for HGF as the parent sequence. Thus, according to the in-house evolution method, a sequence motif that exerts a high binding ability may be found in the middle, and in this case, this sequence motif is fixed and subsequent generations are performed. This makes it possible to obtain an aptamer having high binding ability more efficiently.
上記の通り、本発明の参考例の方法によれば、所望の標的タンパク質の構造遺伝子のプロモーター配列を利用して、SELEXを行うことなく、所望の標的タンパク質に結合するアプタマーを容易に製造することができるという優れた効果が奏される。 As described above, according to the method of the reference example of the present invention, easily using the promoter sequence of the structural gene of the desired target protein to easily produce an aptamer that binds to the desired target protein without performing SELEX. The excellent effect of being able to
アプタマーは、標的タンパク質と特異的に結合する性質を有しているので、その標的タンパク質の定量や検出に用いることができる(例えば特許文献2)。この場合にはアプタマーを標識して用いることができる。標識としては、蛍光標識、放射標識、酵素標識、化学発光標識等、周知の標識を挙げることができる。これらの標識を直接又はスペーサー配列を介してアプタマーの末端に結合しても、標的物質に対する結合親和性は維持されることは周知であり、下記実施例でも蛍光標識であるFITCを結合したアプタマーを用いている。これらの標識を付加したアプタマーは、遺伝子産物の測定(検出又は定量)に用いることができる。標識アプタマーを用いた標的物質の測定方法自体はこの分野において周知であり、例えば標識抗体を用いる免疫測定法と同様に行うことができる。 Aptamers have the property of binding specifically to a target protein, and can therefore be used for quantification and detection of the target protein (for example, Patent Document 2). In this case, an aptamer can be labeled and used. Examples of labels include well-known labels such as fluorescent labels, radio labels, enzyme labels, chemiluminescent labels and the like. It is well known that the binding affinity to the target substance is maintained even if these labels are bound to the end of the aptamer directly or through a spacer sequence, and in the following example, the fluorescent label FITC conjugated aptamer is used. It is used. Aptamers added with these labels can be used for measurement (detection or quantification) of gene products. Methods of measuring target substances using labeled aptamers are well known in the art, and can be performed, for example, in the same manner as immunoassays using a labeled antibody.
また、標的タンパク質が疾患に関する何らかの生理活性を有しており、その発現を促進することがその疾患の治療につながる場合には、本発明の方法により製造されたアプタマーは、核酸医薬として利用することができる。すなわち、生体に該アプタマーを投与すると、細胞内で生産された遺伝子産物の一部がアプタマーと結合し、プロモーターと結合できなくなるので、遺伝子産物による転写抑制が低減される。また、アプタマーが、遺伝子産物と結合してその活性を中和できる場合には、遺伝子産物の活性を阻害することも可能であり、遺伝子産物の阻害がその疾患の治療につながる場合にも核酸医薬として用いることができる。アプタマーを核酸医薬として用いる場合、例えば、耐ヌクレアーゼ性向上のために例えばポリエチレングリコール(PEG)鎖のような、他の構造を付加することができる。PEG鎖をアプタマーの末端に結合することにより、アプタマーの耐ヌクレアーゼ性を高めることは周知であり、既に実用化されている。PEG鎖のサイズは、特に限定されないが、通常、分子量1万〜3万程度、好ましくは分子量15000〜25000程度であり、また、PEG鎖の数は1本でも2本でもよいが2本が好ましい。このようなPEG鎖は、アプタマーの末端に周知のアミノリンカーを付加し、これを介して結合することができる。PEG鎖を2本結合する場合には、リジン化したアミノリンカー等の複数のアミノ基を持つアミノリンカーを用い、各アミノ基にPEG鎖を結合することができる。 In addition, when the target protein has some physiological activity related to a disease, and promoting its expression leads to the treatment of the disease, the aptamer produced by the method of the present invention is used as a nucleic acid drug. Can. That is, when the aptamer is administered to a living body, part of the gene product produced in the cell binds to the aptamer and can not bind to the promoter, so that the transcriptional repression by the gene product is reduced. In addition, when the aptamer can bind to the gene product and neutralize its activity, it is also possible to inhibit the activity of the gene product, and also when the inhibition of the gene product leads to the treatment of the disease It can be used as When an aptamer is used as a nucleic acid drug, other structures such as polyethylene glycol (PEG) chain can be added, for example, to improve nuclease resistance. It is well known to increase the nuclease resistance of aptamers by attaching a PEG chain to the end of the aptamer, and has already been put to practical use. The size of the PEG chain is not particularly limited, but usually, the molecular weight is about 10,000 to 30,000, preferably the molecular weight is about 15,000 to 25,000, and the number of PEG chains may be one or two, but two is preferable. . Such PEG chains can be attached via the addition of a well-known amino linker at the end of the aptamer. When two PEG chains are linked, an aminolinker having a plurality of amino groups such as a lysineated aminolinker can be used to link the PEG chain to each amino group.
さらに、標的タンパク質が疾患に関する何らかの生理活性を有しており、その発現を促進することがその疾患の治療につながる場合には、本発明の方法により製造されたアプタマーに対する結合性を指標とした新薬スクリーニングを行うことも可能である。新薬スクリーニングにより見出された物質を投与することにより、遺伝子産物によりプロモーターの阻害が低減されるので、該物質は、薬理効果を発揮する。 Furthermore, when the target protein has some physiological activity related to a disease, and promoting its expression leads to the treatment of the disease, a new drug based on the binding to the aptamer produced by the method of the present invention It is also possible to screen. By administering the substance found by the drug screening, the inhibition of the promoter is reduced by the gene product, so that the substance exerts a pharmacological effect.
上記の通り、本願発明者らはさらに、mRNA中にG-quadruplex構造が存在する場合、該mRNAと、該mRNAがコードする遺伝子産物とが結合するのではないかと考えた。そして、mRNA中に含まれるG-quadruplex構造含有領域と同じ塩基配列を有する一本鎖核酸は、そのままで、該mRNAがコードする遺伝子産物と特異的に結合するアプタマーとして利用可能であるという新知見を得て本願発明を完成した。すなわち、本願発明によるアプタマーの製造方法は、mRNA中に存在するG-quadruplex構造を含む領域と同一の塩基配列を有し、該mRNAがコードする遺伝子産物若しくは該遺伝子産物の関連遺伝子産物と結合するアプタマー又は該アプタマーの塩基配列と90%以上の配列同一性を有し、かつ、G-quadruplex構造を含み、前記アプタマーが結合する遺伝子産物に結合するアプタマーを化学合成することを含む。 As described above, the present inventors further considered that, when a G-quadruplex structure is present in the mRNA, the mRNA may be bound to the gene product encoded by the mRNA. And, a new finding that a single-stranded nucleic acid having the same base sequence as the G-quadruplex structure-containing region contained in mRNA can be used as an aptamer that specifically binds to the gene product encoded by the mRNA as it is It was completed the present onset Akira obtained. That is, the production method of aptamer by application onset Ming has the same base sequence region containing the G-quadruplex structure present in the mRNA, and related gene product of a gene product or the gene product said mRNA encodes The chemical synthesis of the aptamer to be bound or the aptamer having a sequence identity of 90% or more with the nucleotide sequence of the aptamer and comprising a G-quadruplex structure and binding to the gene product to which the aptamer binds.
本願発明によれば、mRNAそのものをRNAアプタマーとして用いることもできるが、アプタマーはRNAである必要はなく、上記の通り、アプタマーDNAを化学合成することが好ましい。この場合、当然ながら、mRNA中のウラシルは、DNA中ではチミンになり、上記の通り、mRNA中のウラシルがDNAにおいてチミンに置き換えられているものは「同一の塩基配列」を有するものと解する。 According to the present onset bright, although the mRNA itself may be used as the RNA aptamer, the aptamer need not be RNA, as described above, it is preferred to chemically synthesize the aptamer DNA. In this case, of course, uracil in mRNA is thymine in DNA, and as described above, those in which uracil in mRNA is replaced with thymine in DNA are understood to have “the same base sequence”. .
本願発明のアプタマーについても、上記した本願発明の参考例と同様、サイズが30mer〜100merが好ましく、また、コンピューター内進化法により標的物質との親和性をさらに高めることが好ましい。また、参考例と同様に核酸医薬として利用可能であり、その場合には、PEG化などの耐ヌクレアーゼ修飾を行うことが好ましい。なお、下記実施例では、本願発明により、血管内皮増殖因子及び血小板由来成長因子のそれぞれに結合するアプタマーの創製に成功している。 For even A aptamer of the present invention, similarly to the reference example of the present invention described above, preferably size is 30Mer~100mer, also preferably further enhance the affinity for a target substance by a computer evolution method. Also, as in the reference example, it can be used as a nucleic acid drug, and in that case, it is preferable to carry out nuclease resistant modification such as PEGylation. In the following examples, the present gun onset bright, have succeeded in creation of aptamers that bind to each of the vascular endothelial growth factor and platelet-derived growth factor.
以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。なお、下記実施例において、実施例1〜7は、それぞれ、参考例1〜7と読み替えるものとする。
Hereinafter, the present invention will be more specifically described based on examples. However, the present invention is not limited to the following examples. In the following examples, Examples 1 to 7 are respectively read as Reference Examples 1 to 7.
実施例1、比較例1
VEGFプロモーター領域中で形成されるGq構造のVEGFへの結合能の解析Example 1, Comparative Example 1
Analysis of the ability of Gq structures formed in the VEGF promoter region to bind to VEGF
実験方法
G-quadruplex構造を含むことが公知であるVEGFプロモーター(Sun, D., Guo, K., Rusche, J. J. & Hurley, L. H. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 33, 6070-6080 (2005))をプロモーターとして選出した。VEGFプロモーター領域(ゲノム上の位置:chr6:43,737,633-43,739,852)内で形成されるG-quadruplex(以下、「Gq」と略記することがある)構造形成配列(VEGF promoter Gq(配列番号1)、実施例1)及び、Gq形成に関与するG塩基をT塩基に置換しGqを形成しないように設計したオリゴDNA (VEGF promoter Gq-(配列番号2)、比較例1)のVEGFに対する結合能の評価を行った。各オリゴDNAは、市販のDNA自動合成機により合成した。なお、すべての塩基番号はHuman Feb. 2009 (GRCh37/hg19) Assemblyに対応している。experimental method
VEGF promoter known to contain G-quadruplex structure (Sun, D., Guo, Rusche, JJ & Hurley, LH Facilitation of a structural transition in the polypurine / polypyrimidine tract within the proximal promoter region of the human Nucleic acid Res. 33, 6070-6080 (2005)) was selected as a promoter for VEGF gene by the presence of potassium and G-quadruplex-interactive agents. G-quadruplex (hereinafter sometimes abbreviated as “Gq”) structure-forming sequence (VEGF promoter Gq (SEQ ID NO: 1), formed in the VEGF promoter region (location on the genome: chr6: 43, 737, 633-43, 739, 852) Example 1) Evaluation of the binding ability of an oligo DNA (VEGF promoter Gq- (SEQ ID NO: 2), Comparative Example 1) designed to substitute G bases involved in Gq formation with T bases and not form Gq. Did. Each oligo DNA was synthesized by a commercially available automatic DNA synthesizer. All nucleotide numbers correspond to Human Feb. 2009 (GRCh37 / hg19) Assembly.
評価はゲルシフトアッセイ及びSPR測定により行った。評価に用いたDNA配列を下記表1に示す。アプタマーは全てTBS バッファー(10 mM Tris-HCl, 150 mM NaCl, 5 mM KCl, pH 7.4)を用いて1μMに希釈し、フォールディングした後に使用した。 Evaluation was performed by gel shift assay and SPR measurement. The DNA sequences used for the evaluation are shown in Table 1 below. All aptamers were diluted to 1 μM with TBS buffer (10 mM Tris-HCl, 150 mM NaCl, 5 mM KCl, pH 7.4) and used after folding.
ゲルシフトアッセイ
VEGF165(GenBank Accession No.: NP_001165097)及び各アプタマー(5'-FITC修飾)を、それぞれ終濃度1.3μM又は500 nMとなるように混合し、30 分間室温で振とうした。その後、各サンプルを12%未変性ポリアクリルアミドゲルにアプライし、室温、20mA(定電流)で25 分間泳動を行った。泳動した後、Typhoon 8600(商品名、GE Healthcare社製)により各アプタマーのFITCの蛍光を検出した。また、銀染色によりVEGFを染色した。Gel shift assay
VEGF 165 (GenBank Accession No .: NP — 001165097) and each aptamer (5′-FITC modified) were mixed to a final concentration of 1.3 μM or 500 nM, respectively, and shaken at room temperature for 30 minutes. Thereafter, each sample was applied to a 12% non-denaturing polyacrylamide gel, and electrophoresis was performed at room temperature and 20 mA (constant current) for 25 minutes. After electrophoresis, FITC fluorescence of each aptamer was detected by Typhoon 8600 (trade name, manufactured by GE Healthcare). In addition, VEGF was stained by silver staining.
SPR測定
ランニングバッファーにはTBS バッファーを用いた。アミンカップリング法により4700 RU程度のVEGF165が固定化されたセンサーチップCM5(商品名、GE Healthcare社製)を用いて、7.8〜1000 nMに調製した各アプタマーを注入し、センサーチップ上のVEGF165と各アプタマーの結合をSPR測定により観察した。SPR measurement TBS buffer was used as a running buffer. Each aptamer prepared at 7.8 to 1000 nM is injected using a sensor chip CM5 (trade name, manufactured by GE Healthcare) on which VEGF 165 of about 4700 RU is immobilized by amine coupling method, and VEGF on the sensor chip The binding of 165 and each aptamer was observed by SPR measurement.
結果及び考察
ゲルシフトアッセイの結果、VEGF165を混合したサンプルのレーンにおいてVEGFの位置にVEap121(配列番号3)の蛍光バンドのシフトが見られた。また、VEGF promoter GqにおいてもVEGFの位置にバンドのシフトが観察された。これにより、VEGF promoter領域のGq構造はVEGFに結合することが示された。VEGF promoter Gq配列のSPR測定を行った結果を図1に示す。Results and Discussion gel shift assay results, the shift in fluorescence band VEap121 the position of VEGF in the lane of the sample mixed with VEGF 165 (SEQ ID NO: 3) was observed. In addition, a shift of the band at the position of VEGF was also observed in VEGF promoter Gq. This indicated that the Gq structure in the VEGF promoter region binds to VEGF. The results of SPR measurement of the VEGF promoter Gq sequence are shown in FIG.
VEGF promoter Gq-を注入した場合にはSPRシグナルの上昇が見られなかったのに対し、VEap121又は VEGF promoter Gqを用いた場合、アプタマー濃度依存的なSPRシグナルの上昇が観察された。カーブフィッティングにより各アプタマーの解離定数を算出した結果、VEap121 : 510 nM, VEGF promoter Gq : 240 nMと算出された。 While an increase in SPR signal was not observed when VEGF promoter Gq- was injected, an aptamer concentration-dependent increase in SPR signal was observed when VEap121 or VEGF promoter Gq was used. As a result of calculating the dissociation constant of each aptamer by curve fitting, it was calculated with VEap121: 510 nM and VEGF promoter Gq: 240 nM.
実施例2、比較例2
SPRによるPDGFプロモーター領域中で形成されるGq構造のPDGFへの結合能の解析Example 2, Comparative Example 2
Analysis of the ability of Gq structures formed in the PDGF promoter region to bind to PDGF by SPR
実験方法
G-quadruplex構造を含むことが公知であるPDGF-Aプロモーター(Qin, Y., Rezler, E. M., Gokhale, V., Sun, D. & Hurley, L. H. Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res. 35, 7698-7713 (2007)) をプロモーターとして選出した。PDGF-Aプロモーター領域(ゲノム上の位置:chr7:556,612-562,845)内で形成されるGq構造形成配列(PDGF promoter Gq(配列番号4)、実施例2)及び、Gq形成に関与するG塩基をT塩基に置換しGqを形成しないように設計した配列(PDGF promoter Gq-(配列番号5)、比較例2)のPDGF-AAに対する結合能の評価をSPR測定により行った。これらの配列を表2に示す。なお、すべての塩基番号はHuman Feb. 2009 (GRCh37/hg19) Assemblyに対応している。experimental method
PDGF-A promoter which is known to contain G-quadruplex structure (Qin, Y., Rezler, EM, Gokhale, V., Sun, D. & Hurley, LH Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element Nucleic acid Res. 35, 7698-7713 (2007)) was selected as a promoter of the PDGF-A promoter and the modulation of the PDGF-A promoter activity by TMPyP4. The Gq structure-forming sequence (PDGF promoter Gq (SEQ ID NO: 4), Example 2) formed in the PDGF-A promoter region (location on the genome: chr7: 556, 612-562, 845) and the G bases involved in Gq formation Evaluation of the binding ability to PDGF-AA of a sequence (PDGF promoter Gq- (SEQ ID NO: 5), Comparative Example 2) designed to substitute T bases and not form Gq was performed by SPR measurement. These sequences are shown in Table 2. All nucleotide numbers correspond to Human Feb. 2009 (GRCh37 / hg19) Assembly.
ランニングバッファーにはTBS バッファーを用いた。アミンカップリング法により9000 RU程度のPDGF-AAが固定化されたセンサーチップCM5を用いて、7.8〜1000 nMに調製した各アプタマーを注入し、センサーチップ上のPDGF-AA(GenBank Accession No.: P04085)と各アプタマーの結合をSPR測定により観察した。 TBS buffer was used as a running buffer. Each aptamer prepared to 7.8 to 1000 nM is injected using a sensor chip CM5 on which approximately 9000 RU of PDGF-AA is immobilized by an amine coupling method, and PDGF-AA (GenBank Accession No .: The binding of each aptamer with P04085 was observed by SPR measurement.
結果及び考察
PDGF promoter Gq配列のSPR測定を行った結果を図2に示す。PDGF promoter Gq-を注入した場合にはSPRシグナルの上昇が見られなかったのに対し、PDGF promoter Gqを用いた場合、アプタマー濃度依存的なSPRシグナルの上昇が観察された。カーブフィッティングにより各アプタマーの解離定数を算出した結果、VEGF promoter Gq : 18nMと算出された。Result and consideration
The results of SPR measurement of the PDGF promoter Gq sequence are shown in FIG. While an increase in SPR signal was not observed when PDGF promoter Gq- was injected, an increase in aptamer concentration-dependent SPR signal was observed when PDGF promoter Gq was used. As a result of calculating the dissociation constant of each aptamer by curve fitting, it was calculated as VEGF promoter Gq: 18 nM.
実施例3、比較例3
RB-1のプロモーター領域中に存在するGq構造のRB-1への結合能の解析Example 3, Comparative Example 3
Analysis of the ability of Gq structures present in the promoter region of RB-1 to bind to RB-1
実験方法
G-quadruplex構造を含むことが公知であるRB-1プロモーター(Xu, Y. & Sugiyama, H. Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb). Nucleic Acids Res. 34, 949-954 (2006))をプロモーターとして選出した。RB-1プロモーター領域(ゲノム上の位置:chr13:48877460-48878501)内で形成されるGq構造形成配列(RB-1_Gq promoter Gq(配列番号6)、実施例3)及び、Gq形成に関与するG塩基をT塩基に置換しGqを形成しないように設計した配列(RB-1_Gq_Mut(配列番号7)、比較例3)のRB-1に対する結合能をゲルシフトアッセイで調べた。なお、すべての塩基番号はHuman Feb. 2009 (GRCh37/hg19) Assemblyに対応している。RB-1(終濃度0nM or 470nM) (GenBank Accession No.: P06400)及び1000nM各DNA(5'-TAMRA修飾、下記表3に配列を示す)を混合し、30分間室温で振とうした。その後、各サンプルを12%未変性ポリアクリルアミドゲルにアプライし、室温、20 mA(定電流)で20分間泳動を行った。泳動した後、Typhoon 8600(商品名)により各DNAのTAMRAの蛍光を検出した。また、銀染色によりRB-1を染色した。experimental method
The RB-1 promoter is known to contain the G-quadruplex structure (Xu, Y. & Sugiyama, H. Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb). Nucleic Acids Res. 34, 949-954 (2006)) was selected as a promoter. Gq structure-forming sequence (RB-1_Gq promoter Gq (SEQ ID NO: 6), Example 3) formed in the RB-1 promoter region (location on the genome: chr13: 48877460-48878501), and G involved in Gq formation The binding ability to RB-1 of the sequence (RB-1_Gq_Mut (SEQ ID NO: 7), Comparative Example 3) designed to substitute T bases for bases and not form Gq was examined by gel shift assay. All nucleotide numbers correspond to Human Feb. 2009 (GRCh37 / hg19) Assembly. RB-1 (final concentration 0 nM or 470 nM) (GenBank Accession No .: P06400) and 1000 nM each DNA (5'-TAMRA modification, the sequence is shown in Table 3 below) was mixed and shaken at room temperature for 30 minutes. Thereafter, each sample was applied to a 12% non-denaturing polyacrylamide gel, and electrophoresis was performed for 20 minutes at room temperature and 20 mA (constant current). After electrophoresis, the fluorescence of TAMRA of each DNA was detected by Typhoon 8600 (trade name). In addition, RB-1 was stained by silver staining.
結果及び考察
泳動後、Typhoon(商品名)により蛍光を検出した結果及び銀染色によりRB-1タンパク質を検出した結果を図3に示す。470 nM RB-1と1000 nM RB-1_Gqを混合したレーンにおいて、RB-1のバンドが観察される位置にTAMRAの蛍光が観察された。他のレーンではこのバンドは観察されなかった。このことから、RB-1プロモーター中で形成されるGq構造がRB-1タンパク質に結合することが示された。Results and Discussion After electrophoresis, the results of fluorescence detection by Typhoon (trade name) and the results of detection of RB-1 protein by silver staining are shown in FIG. In the lane in which 470 nM RB-1 and 1000 nM RB-1_Gq were mixed, TAMRA fluorescence was observed at the position where the band of RB-1 was observed. This band was not observed in the other lanes. This indicates that the Gq structure formed in the RB-1 promoter binds to the RB-1 protein.
実施例4〜7
ヘパリン結合性ドメインを有するタンパク質に対するアプタマーの創製
1.方法
(1)HGF、HBEGF、PDGFB、Annexin II遺伝子の各転写開始点近傍配列をUSCS Genome Browserを用いて取得した。HGFに対しては転写開始点±1kbpの配列を、HBEGF、PDGFB及びAnnexin IIに対しては転写開始点近傍に存在するCpGアイランドの配列を取得した。配列はプラスストランド及びマイナスストランドの両配列を取得した。Examples 4 to 7
Creation of an aptamer for a protein having a heparin binding domain Method
(1) The sequences near the transcription start point of the HGF, HBEGF, PDGFB, and Annexin II genes were obtained using the USCS Genome Browser. The sequence of transcription start point ± 1 kbp was obtained for HGF, and the sequence of CpG island present near the transcription start point was obtained for HBEGF, PDGFB and Annexin II. The sequence acquired both plus strand and minus strand sequences.
(2)各配列の内、四重らせん構造を形成しうる配列を下記条件で抽出した。
HGF:2連続以上のGを4箇所以上含み、連続したGと連続したGの間の配列は7 mer以内であり、全長が40 mer以内の配列を抽出した。
PDGFB, HBEGF, Annexin II :3連続以上のGを4箇所以上含み、連続したGと連続したGの間の配列は7 mer以内であり、全長が30 mer以内の配列を抽出した。上記条件に該当する配列が存在しない場合は、2連続以上のGを4箇所以上含み、連続したGと連続したGの間の配列は7 mer以内であり、全長が30 mer以内の配列を抽出した。(2) Among the sequences, sequences capable of forming a quadruplex structure were extracted under the following conditions.
HGF: A sequence containing G at two or more consecutive positions at 4 or more positions, a sequence between consecutive Gs and consecutive Gs was within 7 mer, and a sequence having a total length of 40 mer or less was extracted.
PDGFB, HBEGF, Annexin II: A sequence containing at least 3 consecutive Gs, and a sequence between consecutive Gs and a continuous G was within 7 mer, and a sequence having a total length of 30 mer was extracted. When there is no sequence that falls under the above conditions, it contains 4 or more of 2 or more consecutive G, and the sequence between continuous G and continuous G is within 7 mer, and the total length is within 30 mer. did.
(3)上記(2)で抽出した配列を合成し、HGF, HBEGFに対してはSPRを用いて、PDGFB, Annexin IIに対してはゲルシフトアッセイにより解析した。 (3) The sequences extracted in (2) above were synthesized and analyzed by gel shift assay for PDGFB and Annexin II using SPR for HGF and HBEGF.
(4) SPRは下記の方法で実施した。
HGF及びHBEGFをPBSバッファー (Na2HPO4 8.1 mM, KH2PO4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH7.4)に溶解し、アミンカップリング法によりセンサーチップCM5上に固定化した。その後、合成したオリゴヌクレオチドをTBSK バッファー (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl)中でフォールディングさせた(95℃5分の後25℃まで30分かけて冷却)。各オリゴヌクレオチドを種々の濃度に希釈し、センサーチップ上にインジェクションし、SPRシグナルの変化を観察した。添加時間120秒、解離時間120秒、流速30μl/minで行った。解離定数(Kd)は、Curve fitting解析によって算出した。(4) SPR was performed by the following method.
HGF and HBEGF were dissolved in PBS buffer (Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH 7.4) and immobilized on sensor chip CM5 by amine coupling method . Thereafter, the synthesized oligonucleotides were folded in TBSK buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl) (95 ° C. for 5 minutes and then cooled to 25 ° C. over 30 minutes). Each oligonucleotide was diluted to various concentrations, injected onto a sensor chip, and changes in SPR signal were observed. The addition time was 120 seconds, the dissociation time was 120 seconds, and the flow rate was 30 μl / min. The dissociation constant (Kd) was calculated by Curve fitting analysis.
(5) ゲルシフトアッセイは下記の方法で実施した。
5’末端をFITCで修飾した各オリゴヌクレオチドをTBSK バッファー (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl, pH 7.4)中でフォールディングさせた。その後、250 ngのタンパク質と5 pmolのオリゴヌクレオチドを混合し、室温で30分間振とうした。その後、各サンプルを12%未変性ポリアクリルアミドゲルにアプライし、室温、20 mA(定電流)で泳動を行った。泳動した後、Typhoon 8600により各アプタマーの蛍光を検出した。(5) The gel shift assay was performed by the following method.
The 5'-end FITC-modified oligonucleotides were folded in TBSK buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl, pH 7.4). Then, 250 ng of protein and 5 pmol of oligonucleotide were mixed and shaken at room temperature for 30 minutes. Thereafter, each sample was applied to a 12% non-denaturing polyacrylamide gel, and electrophoresis was performed at room temperature and 20 mA (constant current). After electrophoresis, the fluorescence of each aptamer was detected by Typhoon 8600.
(6) HGF及びHBEGFプロモーター中に存在するDNA四重らせん構造を形成しうる配列については、CDスペクトル測定を行った。各オリゴヌクレオチドを、終濃度2 μMとなるようにTBSK バッファー (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl pH 7.4)またはTBS バッファー(10 mM Tris-HCl, 150 mM NaCl pH 7.4)で調製し、フォールディング(95℃5分の後25℃まで30分かけて冷却)を行った。調製したサンプルを光路長10 mmの石英セルに入れ、J-820型円二色性分散計を用いてCDスペクトルを測定した。尚、感度は1000 mdeg、波長領域は220 nmから320 nm、データ取り込み間隔は1 nm、走査速度は500 nm/min、レスポンスは1 sec、バンド幅は5.0 nm、積算回数は10回の条件で測定を行った。 (6) CD spectra were measured for sequences capable of forming a DNA quadruple helix structure present in the HGF and HBEGF promoters. Prepare each oligonucleotide in TBSK buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl pH 7.4) or TBS buffer (10 mM Tris-HCl, 150 mM NaCl pH 7.4) to a final concentration of 2 μM And folding (95 ° C. for 5 minutes and then cooling to 25 ° C. over 30 minutes). The prepared sample was placed in a quartz cell with an optical path length of 10 mm, and a CD spectrum was measured using a Model J-820 circular dichroism spectrometer. The sensitivity is 1000 mdeg, the wavelength range is 220 nm to 320 nm, the data acquisition interval is 1 nm, the scanning speed is 500 nm / min, the response is 1 sec, the bandwidth is 5.0 nm, and the integration number is 10 times. It measured.
2.結果
(1)各プロモーター領域からDNA四重らせん構造を形成しうる配列を検索したところ、HGFプロモーターからは9配列、HBEGFプロモーターからは14配列、PDGFBプロモーターからは8配列、Annexin IIプロモーターからは7配列、抽出することができた(表4)。2. result
(1) Sequences capable of forming a quadruple DNA structure were searched from each promoter region, 9 sequences from the HGF promoter, 14 sequences from the HBEGF promoter, 8 sequences from the PDGFB promoter and 7 sequences from the Annexin II promoter , Could be extracted (Table 4).
(2)HGFに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、HGF-PQS1(配列番号8)、HGF-PQS7(配列番号9)、HGF-PQS8(配列番号10)の3つの配列においてDNA濃度依存的なSPRシグナルの増加が観察された、これらがHGFのアプタマーであることが示された(図4)。HGF-PQS1、HGF-PQS7、HGF-PQS8のHGFに対する解離定数はそれぞれ73 nM、45 nM、110 nMであった。 (2) Three oligonucleotides of HGF-PQS1 (SEQ ID NO: 8), HGF-PQS7 (SEQ ID NO: 9) and HGF-PQS8 (SEQ ID NO: 10) were analyzed by SPR to analyze whether each oligonucleotide binds to HGF An increase in SPR signal dependent on DNA concentration was observed in A, indicating that these are aptamers of HGF (FIG. 4). The dissociation constants of HGF-PQS1, HGF-PQS7 and HGF-PQS8 for HGF were 73 nM, 45 nM and 110 nM, respectively.
(3)HBEGFに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、HBEGF-PQS8、HBEGF-PQS9の2つの配列においてDNA濃度依存的なSPRシグナルの増加が観察され、これらがHBEGFのアプタマーであることが示された(図5)。HBEGF-PQS8(配列番号11)、HBEGF-PQS9(配列番号12)のHBEGFに対する解離定数はそれぞれ110nM、9μMであった。 (3) When each oligonucleotide binds to HBEGF or analyzed by SPR, an increase in DNA concentration-dependent SPR signal is observed in two sequences of HBEGF-PQS8 and HBEGF-PQS9, and these are aptamers of HBEGF Was shown (Figure 5). The dissociation constants for HBEGF-PQS8 (SEQ ID NO: 11) and HBEGF-PQS9 (SEQ ID NO: 12) for HBEGF were 110 nM and 9 μM, respectively.
(4)PDGF-BBに対して各オリゴヌクレオチドが結合するかゲルシフトアッセイにより解析したところ、8配列(表4中の上から順に配列番号13〜20)すべてのオリゴヌクレオチドがPDGF-BBに結合することが示され、これらがPDGF-BBに結合するアプタマーであることが示された(図6)。なお、図6中、+はPDGF-BB存在下、-はPDGF-BB非存在下のレーンを示している。 (4) When each oligonucleotide binds to PDGF-BB or analyzed by gel shift assay, all oligonucleotides bind to PDGF-BB in 8 sequences (SEQ ID NOS: 13 to 20 in order from the top in Table 4) It was shown that these are aptamers that bind to PDGF-BB (FIG. 6). In FIG. 6, + indicates the presence of PDGF-BB, and-indicates the lane in the absence of PDGF-BB.
(5)Annexin IIに対して各オリゴヌクレオチドが結合するかゲルシフトアッセイにより解析したところ、Annexin II-PQS6(配列番号21)がAnnexin IIに結合することが示され、これがAnnexin IIに結合するアプタマーであることが示された(図7)。なお、図7中、+はAnnexin II存在下、-はAnnexin II非存在下のレーンを示している。 (5) Analysis of each oligonucleotide binding to Annexin II or analysis by gel shift assay shows that Annexin II-PQS6 (SEQ ID NO: 21) binds to Annexin II, which is an aptamer binding to Annexin II It was shown that there was (Fig. 7). In FIG. 7, + indicates a lane in the presence of Annexin II and-indicates a lane in the absence of Annexin II.
(6)HGF-PQS1からPQS9のCDスペクトル測定したところ、HGFに結合が観察されたHGF-PQS1及びHGF-PQS7のみ、カリウム存在下で260 nm付近に正のピーク、240 nm付近に負のピークを示した(図8)。これは、パラレル型のDNA四重らせん構造特有のCDスペクトルであることから、HGF-PQS1及びHGF-PQS7はパラレル型のDNA四重らせん構造を形成して、HGFに結合していることが示された。 (6) HGF-PQS1 to PQS9 CD spectra measured HGF-PQS1 and HGF-PQS7 only show binding to HGF, positive peak near 260 nm and negative peak near 240 nm in the presence of potassium (Figure 8). This is a CD spectrum unique to the parallel DNA quadruplex structure, indicating that HGF-PQS1 and HGF-PQS7 form a parallel DNA quadruplex structure and bind to HGF. It was done.
HBEGF-PQS1からPQS14のCDスペクトル測定したところ、HBEGFに結合が観察されたHBEGF-PQS8及びHBEGF-PQS9のみ、カリウム存在下で260 nm付近に正のピーク、240 nm付近に負のピークを示した(図9)。つまり、HBEGF-PQS8及びHBEGF-PQS9はパラレル型のDNA四重らせん構造を形成して、HBEGFに結合していることが示された。 When HBEGF-PQS1 to PQS14 CD spectra were measured, only HBEGF-PQS8 and HBEGF-PQS9 in which binding was observed to HBEGF showed a positive peak near 260 nm and a negative peak near 240 nm in the presence of potassium (Figure 9). That is, it was shown that HBEGF-PQS8 and HBEGF-PQS9 form parallel DNA quadruplexes and bind to HBEGF.
実施例8〜10
1.方法
(1)VEGFA、PDGFA、PDGFB遺伝子から転写されるRNAの全長配列をUSCS Genome Browserを用いて取得した。Examples 8 to 10
1. Method
(1) The full-length sequence of RNA transcribed from the VEGFA, PDGFA and PDGFB genes was obtained using the USCS Genome Browser.
(2)各配列の内、RNA四重らせん構造を形成しうる配列を下記条件で抽出した。
2連続以上のGを4箇所以上含み、連続したGと連続したGの間の配列は14 mer以内であり、全長が40 mer以内の配列を抽出した。(2) Among the sequences, sequences capable of forming an RNA quadruple helix structure were extracted under the following conditions.
Sequences containing two or more consecutive Gs at four positions, and between the continuous Gs and the consecutive Gs were within 14 mers, and a sequence having a total length of 40 mer or less was extracted.
(3)PDGF-AA及びPDGF-BBは10 mM HEPES バッファー(pH7.0)に、VEGFAは10 mM 酢酸ナトリウムバッファー(pH6.0)に溶解し、アミンカップリング法によりセンサーチップCM5上に固定化した。その後、合成したオリゴヌクレオチドをPBS バッファー(Na2HPO4 8.1 mM, KH2PO4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH7.4)中でフォールディングさせた(65℃5分の後25℃まで30分かけて冷却)。各オリゴヌクレオチドを種々の濃度に希釈し、センサーチップ上にインジェクションし、SPRシグナルの変化を観察した。添加時間120秒、解離時間120秒、流速30μl/minで行った。解離定数(Kd)は、Curve fitting解析によって算出した。(3) PDGF-AA and PDGF-BB are dissolved in 10 mM HEPES buffer (pH 7.0), VEGFA is dissolved in 10 mM sodium acetate buffer (pH 6.0), and immobilized on sensor chip CM5 by amine coupling method did. The synthesized oligonucleotides were then folded in PBS buffer (Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH 7.4) (65 ° C. for 5 minutes, then 25 ° C. Cool down to 30 minutes). Each oligonucleotide was diluted to various concentrations, injected onto a sensor chip, and changes in SPR signal were observed. The addition time was 120 seconds, the dissociation time was 120 seconds, and the flow rate was 30 μl / min. The dissociation constant (Kd) was calculated by Curve fitting analysis.
2.結果
(1)各遺伝子の転写されるRNA配列中から四重らせんRNA構造を形成しうる配列を探索したところ、VEGFA遺伝子からは159配列、PDGFA遺伝子からは247配列、PDGFB遺伝子からは194配列のRNAを抽出することができた。この内から下記の配列をそれぞれ選択し合成した(表5)。2. result
(1) When sequences capable of forming a quadruple-helix RNA structure were searched among the transcribed RNA sequences of each gene, RNAs of 159 sequences from the VEGFA gene, 247 sequences from the PDGFA gene, and 194 sequences from the PDGFB gene Could be extracted. The following sequences were respectively selected and synthesized from these (Table 5).
(2)VEGFAに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、すべての配列においてRNA濃度依存的なSPRシグナルの増加が観察され、これらがVEGFAに結合するRNAアプタマーであることが示された。VEGFA RNA1(配列番号22)は約140 nM、VEGFA RNA2(配列番号23)は約31 nM、 VEGFA RNA3(配列番号24)は約300 nMの解離定数でそれぞれVEGFAに結合した。(図10)。 (2) Analysis of each oligonucleotide binding to VEGFA or analysis by SPR shows that an RNA concentration-dependent increase in SPR signal is observed in all sequences, indicating that they are RNA aptamers binding to VEGFA It was done. VEGFA RNA1 (SEQ ID NO: 22) bound to VEGFA with a dissociation constant of about 140 nM, VEGFA RNA2 (SEQ ID NO: 23) about 31 nM, and VEGFA RNA3 (SEQ ID NO: 24) with a dissociation constant of about 300 nM. (Figure 10).
(3)PDGF-AAに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、すべての配列においてRNA濃度依存的なSPRシグナルの増加が観察され、これらがPDGF-AAに結合するRNAアプタマーであることが示された。PDGFA RNA1(配列番号25)は約29 nM、PDGFA RNA2(配列番号26)は約30 nMの解離定数でそれぞれPDGFAに結合した。(図11)。 (3) When each oligonucleotide binds to PDGF-AA or analyzed by SPR, an RNA concentration-dependent increase in SPR signal is observed in all sequences, and these are RNA aptamers that bind to PDGF-AA. It was shown to be. PDGFA RNA1 (SEQ ID NO: 25) and PDGFA RNA2 (SEQ ID NO: 26) bound PDGFA with a dissociation constant of about 30 nM, respectively. (Figure 11).
(4)PDGF-BBに対して各オリゴヌクレオチドが結合するかSPRにより解析したところ、すべての配列においてRNA濃度依存的なSPRシグナルの増加が観察され、これらがPDGF-BBに結合するRNAアプタマーであることが示された。PDGFB RNA1(配列番号27)は約42 nM、PDGFB RNA2(配列番号28)は約30 nM、PDGFB RNA3(配列番号29)は約59 nM、PDGFB RNA4(配列番号30)は約35 nM、PDGFB RNA5(配列番号31)は約34 nMの解離定数でそれぞれPDGFAに結合した(図12)。 (4) When each oligonucleotide binds to PDGF-BB or analyzed by SPR, an increase in SPR signal dependent on RNA concentration is observed in all sequences, and these are RNA aptamers that bind to PDGF-BB. It was shown to be. PDGFB RNA1 (SEQ ID NO: 27) is about 42 nM, PDGFB RNA2 (SEQ ID NO: 28) is about 30 nM, PDGFB RNA3 (SEQ ID NO: 29) is about 59 nM, PDGFB RNA4 (SEQ ID NO: 30) is about 35 nM, PDGFB RNA5 (SEQ ID NO: 31) bound to PDGFA, respectively, with a dissociation constant of about 34 nM (FIG. 12).
実施例11
1. 標的タンパク質遺伝子のプロモーター領域におけるG4形成予測配列の探索
ヘパリン結合ドメインを持つタンパク質であるApoE4をコードする遺伝子の転写開始点から±1 kbpの配列をGenome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway)を用いて抽出した。抽出した配列中からQGRS Mapper (http://bioinformatics.ramapo.edu/QGRS/index.php) を用いて以下の条件を満たす配列を探索した。
(i)全長30 mer 以内 (ii) 2連続以上のGを7 mer 以内の間隔で含んでいる
なお得られた配列をApoE4に対するアプタマー候補配列とした。Example 11
1. Search for a G4 formation prediction sequence in the promoter region of the target protein gene The sequence of ± 1 kbp from the transcription start point of the gene encoding ApoE4, which is a protein having a heparin binding domain, is referred to as Genome Browser (http: //genome.ucsc. It extracted using edu / cgi-bin / hgGateway). From the extracted sequences, sequences satisfying the following conditions were searched using QGRS Mapper (http://bioinformatics.ramapo.edu/QGRS/index.php).
(i) Total length of 30 mer or less (ii) The obtained sequence containing G of two or more consecutive lines at an interval of 7 mer or less was defined as an aptamer candidate sequence for ApoE4.
2. 表面プラズモン共鳴(SPR)測定によるアプタマー候補配列と標的タンパク質の結合評価
ApoE4を10 mM 酢酸 buffer (pH 4.0) を用いて希釈し、アミンカップリング法によりセンサーチップCM4上に約900 RU固定化した。その後、TBS buffer(10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl, pH 7.4)中でフォールディングを行ったアプタマー候補配列(Table.)を種々の濃度に希釈し、センサーチップに添加した際のSPRシグナルの変化を測定した。測定後、カーブフィッティングにより解離定数(Kd)を算出した。2. Evaluation of binding between aptamer candidate sequence and target protein by surface plasmon resonance (SPR) measurement
ApoE4 was diluted with 10 mM acetic acid buffer (pH 4.0), and approximately 900 RU was immobilized on the sensor chip CM4 by amine coupling method. After that, the aptamer candidate sequence (Table.) Folded in TBS buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl, pH 7.4) is diluted to various concentrations and added to the sensor chip Changes in SPR signal were measured. After measurement, the dissociation constant (K d ) was calculated by curve fitting.
結果及び考察
1. ApoE4をコードする遺伝子のプロモーター領域から、G4構造を形成する可能性を持つ配列が8本得られた(ApoE4_1〜8と命名)。これらのうち、ApoE4_1(配列番号56)においてDNA濃度依存的なSPRシグナルの上昇が観察された。これよりApoE4_1はApoE4に結合していると考えられる。カーブフィッティングにより解離定数を算出したところ、60 nMであった。Result and consideration
1. From the promoter region of the gene encoding ApoE4, eight sequences having the possibility of forming the G4 structure were obtained (designated as ApoE4_1 to 8). Among these, a DNA concentration-dependent increase in SPR signal was observed in ApoE4_1 (SEQ ID NO: 56). From this, it is considered that ApoE4_1 is bound to ApoE4. The dissociation constant was calculated by curve fitting and was 60 nM.
実施例12
獲得した3つのHGFアプタマーを、HGFap1, HGFap2, HGFap3、2つのHBEGFアプタマーをHBEGFap1, HBEGFap2と呼称する。またHGFアプタマーのin silico maturationにおいて、評価した配列のHGFに対する結合特異性(Sp(HGF))は、Sp(HGF)=[HGFを標的とした場合の結合定数Ka]/[HBEGFを標的とした場合の結合定数Ka] (Sp(HGF) =Ka(HGF) / Ka(HBEGF))と定義した。Example 12
The three obtained HGF aptamers are referred to as HGFap1, HGFap2 and HGFap3, and the two HBEGF aptamers are referred to as HBEGFap1 and HBEGFap2. Moreover, in the in silico maturation of the HGF aptamer, the binding specificity (Sp (HGF) ) with respect to HGF of the evaluated sequence is Sp (HGF) = [the binding constant K a when targeting HGF] / [HBEGF as the target The binding constant K a ] (Sp (HGF) = K a (HGF) / K a (HBEGF) ) in the case of the reaction was defined.
第1世代配列の作製と特異性評価
まず第1世代親配列であるHGFap1, HGFap2, HGFap3についてSp(HGF)を求め、Sp(HGF)の値の比に基づいて各配列を複製し、合計20本の配列を作製した。続いて20本の配列の中でランダムに2本ずつ組を作り、任意の1点で交叉(crossover)させた。その後各20本の配列に10%の突然変異を位置、塩基の種類ともにランダムに導入し、第1世代配列とした(1R01〜1R20)。1R01〜1R20の塩基配列を、この順に配列番号58〜77に示す。Preparation of first generation sequences and evaluation of specificity First, Sp (HGF) is determined for first generation parent sequences HGFap1, HGFap2 and HGFap3, and each sequence is replicated based on the ratio of Sp (HGF) values, for a total of 20 An array of books was made. Subsequently, a pair was randomly made out of 20 sequences, and crossover was made at any one point. Thereafter, 10% of mutations were randomly introduced into each of the 20 sequences for the position and the type of the base, to obtain first generation sequences (1R01 to 1R20). The nucleotide sequences of 1R01 to 1R20 are shown in this order in SEQ ID NOs: 58 to 77.
HGF及びHBEGFをPBS buffer (Na2HPO4 8.1 mM, KH2PO4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH7.4)を用いて、アミンカップリング法によりセンサーチップCM5上に固定化した。タンパク質の希釈bufferとして、HGFには10 mM HEPES buffer (pH6.5)を、HBEGFには10 mM 酢酸buffer (pH5.0)を用いた。その後、TBS buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl)中でフォールディングを行った各第1世代配列を、TBS bufferを用いて種々の濃度(f.c. 1000 nM, 500 nM, 100 nM, 50 nM, 0 nM)に希釈し、HGFまたはHBEGFを固定化したセンサーチップに添加した際のSPRシグナルの変化を測定した。相互作用測定時のRunning bufferにはTBS bufferを使用し、添加時間120秒、解離時間200秒、流速30μL/minで測定を行った。測定後カーブフィッティングによってKa(HGF)及びKa(HBEGF)を求め、Sp(HGF)を算出した。HGF and HBEGF were immobilized on sensor chip CM5 by amine coupling method using PBS buffer (Na 2 HPO 4 8.1 mM, KH 2 PO 4 1.47 mM, NaCl 137 mM, KCl 2.68 mM, pH 7.4) . As a dilution buffer for proteins, 10 mM HEPES buffer (pH 6.5) was used for HGF, and 10 mM acetic acid buffer (pH 5.0) was used for HBEGF. Thereafter, each first-generation sequence folded in TBS buffer (10 mM Tris-HCl, 150 mM NaCl, 100 mM KCl) was subjected to various concentrations (fc 1000 nM, 500 nM, 100 nM) using TBS buffer. , 50 nM, 0 nM), and the change in SPR signal was measured when HGF or HBEGF was added to the immobilized sensor chip. The TBS buffer was used as a running buffer at the time of interaction measurement, and the measurement was performed at an addition time of 120 seconds, a dissociation time of 200 seconds, and a flow rate of 30 μL / min. After measurement, Ka (HGF) and Ka (HBEGF) were determined by curve fitting, and Sp (HGF) was calculated.
第2世代配列の作製と特異性評価
第1世代配列から(i)親配列のSp(HGF) (最低値: 1.9)を下回る配列、(ii)Ka(HGF)が親配列のKa(HGF) (最低値: 9.1E+06)の1/10以下である配列を除外し、残りの配列を第2世代配列作製のための親配列とした。得られた第2世代親配列について、第1世代親配列と同様に複製、交叉、変異導入を行い第2世代配列を得た(2R01〜2R20)。2R01〜2R20の塩基配列を、この順に配列番号78〜97に示す。HGF及びHBEGFに対する結合の評価とSp(HGF)の算出は、第1世代配列と同様に行った。Second from the formation and specificity evaluated first generation sequence generation sequence (i) the parent sequence of Sp (HGF) (minimum: 1.9) to below sequence, (ii) K a (HGF ) is a parent sequence K a ( HGF) Sequences which were 1/10 or less of (minimum value: 9.1E + 06) were excluded, and the remaining sequences were used as parent sequences for generation of second generation sequences. The obtained second generation parent sequence was replicated, crossed and mutagenized in the same manner as the first generation parent sequence to obtain a second generation sequence (2R01 to 2R20). The nucleotide sequences of 2R01 to 2R20 are shown in this order in SEQ ID NOs: 78 to 97. Evaluation of binding to HGF and HBEGF and calculation of Sp (HGF) were performed in the same manner as in the first generation sequence.
第3世代モチーフ固定配列の作製と特異性評価
第1世代配列及び第2世代配列を、高いSp(HGF)を持つ配列グループ、低いSp(HGF)を持つ配列グループ、HGF及びHBEGFに結合しなかった配列グループに分類し配列を比較したところ、高いSp(HGF)を持つ配列グループの多くの配列がGGTGGAGGGGという配列モチーフを共通して持っていた。そこで第1世代配列及び第2世代配列の中の、GGTGGAGGGG配列モチーフを有する配列で高いSp(HGF)を持つもの(1R01, 1R05, 1R08, 1R09, 2R07)を、第3世代モチーフ固定配列作製のための親配列とした。得られた第3世代モチーフ固定親配列について、第1世代親配列及び第2世代親配列と同様に複製、交叉、変異導入を行い、第3世代モチーフ固定配列を得た(3R01mfix〜3R20mfix)。3R01mfix〜3R20mfixの塩基配列を、この順に配列番号98〜117に示す。HGF及びHBEGFに対する結合の評価とSp(HGF)の算出は、第1世代配列及び第2世代配列と同様に行った。Generation and specificity evaluation of third generation motif fixed sequences First generation sequence and second generation sequence, sequence group with high Sp (HGF) , sequence group with low Sp (HGF) , not bound to HGF and HBEGF When classified into sequence groups and compared the sequences, many sequences of the sequence group having high Sp (HGF) share a sequence motif of GGTGGAGGGG in common. Therefore, among the first-generation sequences and second-generation sequences, sequences having a GGTGGAGGGGG sequence motif and having high Sp (HGF) (1R01, 1R05, 1R08, 1R09, 2R07) are used to prepare a third-generation motif-fixed sequence The parent array for The obtained third generation motif fixed parent sequence was replicated, crossed and mutagenized in the same manner as the first generation parent sequence and the second generation parent sequence to obtain a third generation motif fixed sequence (3R01mfix to 3R20mfix). The nucleotide sequences of 3R01mfix to 3R20mfix are shown in this order in SEQ ID NOs: 98 to 117. Evaluation of the binding to HGF and HBEGF and calculation of Sp (HGF) were performed in the same manner as the first generation sequence and the second generation sequence.
結果及び考察
第1世代配列において、親配列と比較して高いSp(HGF)の値を持つ配列が複数得られた(表6)。第2世代配列において、親配列のSp(HGF) (最低値: 1.9)のおよそ13倍のSp(HGF)を示す特異性の高い配列が得られた(表7、2R07)。さらに第3世代モチーフ固定配列においては、親配列のSp(HGF)のおよそ50倍のSp(HGF)を示す配列(3R02mfix)、また親配列のSp(HGF)のおよそ240倍のSp(HGF)を示す配列(3R14mfix)が得られた(表8)。これより、コンピューター内進化法によって本発明の方法で獲得されたHGFアプタマーの特異性を向上させることができた。Results and Discussion In the first generation sequence, a plurality of sequences having high Sp (HGF) values compared to the parent sequence were obtained (Table 6). In the second generation sequence, a highly specific sequence showing Sp (HGF) approximately 13 times that of the parent sequence Sp (HGF) (minimum value: 1.9) was obtained (Table 7, 2R07). In a further third generation motif fixed sequence, the parent sequence Sp (HGF) approximately 50 times the Sp (HGF) sequences showing the (3R02mfix), also approximately 240 times the Sp of the parent sequence Sp (HGF) (HGF) The sequence (3R14mfix) showing is obtained (Table 8). From this, it was possible to improve the specificity of the HGF aptamer obtained by the method of the present invention by in-house evolution.
Kd(HBEGF):HBEGFに対する解離定数
Ka(HGF):HGFに対する結合定数
Ka(HBEGF):HBEGFに対する結合定数
Sp(HGF):HGFに対する結合定数をHBEGFに対する結合定数で割った値(Ka(HGF) /Ka(HBEGF))
K d (HBEGF) : dissociation constant for HBEGF
Ka (HGF) : binding constant to HGF
Ka (HBEGF) : Binding constant to HBEGF
Sp (HGF) : Value obtained by dividing the binding constant for HGF by the binding constant for HBEGF (K a (HGF) / K a (HBEGF) )
Kd(HBEGF):HBEGFに対する解離定数
Ka(HGF):HGFに対する結合定数
Ka(HBEGF):HBEGFに対する結合定数
Sp(HGF):HGFに対する結合定数をHBEGFに対する結合定数で割った値(Ka(HGF) /Ka(HBEGF))
K d (HBEGF) : dissociation constant for HBEGF
Ka (HGF) : binding constant to HGF
Ka (HBEGF) : Binding constant to HBEGF
Sp (HGF) : Value obtained by dividing the binding constant for HGF by the binding constant for HBEGF (K a (HGF) / K a (HBEGF) )
Kd(HBEGF):HBEGFに対する解離定数
Ka(HGF):HGFに対する結合定数
Ka(HBEGF):HBEGFに対する結合定数
Sp(HGF):HGFに対する結合定数をHBEGFに対する結合定数で割った値(Ka(HGF) /Ka(HBEGF))
K d (HBEGF) : dissociation constant for HBEGF
Ka (HGF) : binding constant to HGF
Ka (HBEGF) : Binding constant to HBEGF
Sp (HGF) : Value obtained by dividing the binding constant for HGF by the binding constant for HBEGF (K a (HGF) / K a (HBEGF) )
Claims (2)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012155095 | 2012-07-10 | ||
JP2012155095 | 2012-07-10 | ||
JP2013079998 | 2013-04-05 | ||
JP2013079998 | 2013-04-05 | ||
PCT/JP2013/068901 WO2014010640A1 (en) | 2012-07-10 | 2013-07-10 | Method for producing aptamer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017181861A Division JP6706417B2 (en) | 2012-07-10 | 2017-09-22 | Method for producing aptamer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2014010640A1 JPWO2014010640A1 (en) | 2016-06-23 |
JP6517017B2 true JP6517017B2 (en) | 2019-05-22 |
Family
ID=49916089
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014524844A Active JP6517017B2 (en) | 2012-07-10 | 2013-07-10 | Method of producing aptamer |
JP2017181861A Active JP6706417B2 (en) | 2012-07-10 | 2017-09-22 | Method for producing aptamer |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017181861A Active JP6706417B2 (en) | 2012-07-10 | 2017-09-22 | Method for producing aptamer |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6517017B2 (en) |
WO (1) | WO2014010640A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019131727A1 (en) * | 2017-12-27 | 2019-07-04 | コニカミノルタ株式会社 | Method for assessing medicine |
JP7224011B2 (en) * | 2018-06-26 | 2023-02-17 | 国立大学法人東京農工大学 | Method for determining whether aptamer can be created and method for creating aptamer using the same |
-
2013
- 2013-07-10 JP JP2014524844A patent/JP6517017B2/en active Active
- 2013-07-10 WO PCT/JP2013/068901 patent/WO2014010640A1/en active Application Filing
-
2017
- 2017-09-22 JP JP2017181861A patent/JP6706417B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JPWO2014010640A1 (en) | 2016-06-23 |
JP2018029601A (en) | 2018-03-01 |
WO2014010640A1 (en) | 2014-01-16 |
JP6706417B2 (en) | 2020-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kohlberger et al. | SELEX: Critical factors and optimization strategies for successful aptamer selection | |
Kuai et al. | Circular bivalent aptamers enable in vivo stability and recognition | |
Qi et al. | Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment | |
Dunn et al. | Analysis of aptamer discovery and technology | |
Wang et al. | Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development | |
Musumeci et al. | Fluorescence sensing using DNA aptamers in cancer research and clinical diagnostics | |
Wu et al. | Perspective on the future role of aptamers in analytical chemistry | |
Wakui et al. | Rapidly neutralizable and highly anticoagulant thrombin-binding DNA aptamer discovered by MACE SELEX | |
Di Giusto et al. | Proximity extension of circular DNA aptamers with real-time protein detection | |
Pfeiffer et al. | Customised nucleic acid libraries for enhanced aptamer selection and performance | |
Darmostuk et al. | Current approaches in SELEX: An update to aptamer selection technology | |
Kimoto et al. | Generation of high-affinity DNA aptamers using an expanded genetic alphabet | |
Li et al. | Aptamers facilitating amplified detection of biomolecules | |
Kimoto et al. | Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications | |
King et al. | Novel combinatorial selection of phosphorothioate oligonucleotide aptamers | |
Ruff et al. | Enhanced functional potential of nucleic acid aptamer libraries patterned to increase secondary structure | |
Zhang et al. | Binding-induced DNA assembly and its application to yoctomole detection of proteins | |
JP5142290B2 (en) | Method for measuring test substance in sample, aptamer molecule and production method thereof | |
Mao et al. | Evolution of a highly functional circular DNA aptamer in serum | |
US9725715B2 (en) | Signal activatable constructs and related components compositions methods and systems | |
Dausse et al. | HAPIscreen, a method for high-throughput aptamer identification | |
JP5673992B2 (en) | Vascular endothelial growth factor binding aptamer | |
JP2018085992A (en) | Vascular endothelial growth factor binding aptamer | |
Yüce et al. | Systematic evolution of ligands by exponential enrichment for aptamer selection | |
Mao et al. | Catalytic nucleic acids for bioanalysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170523 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20170724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180206 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181002 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20181203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6517017 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |