WO2014010465A1 - Rankine cycle device - Google Patents
Rankine cycle device Download PDFInfo
- Publication number
- WO2014010465A1 WO2014010465A1 PCT/JP2013/068105 JP2013068105W WO2014010465A1 WO 2014010465 A1 WO2014010465 A1 WO 2014010465A1 JP 2013068105 W JP2013068105 W JP 2013068105W WO 2014010465 A1 WO2014010465 A1 WO 2014010465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- working fluid
- expander
- pump
- side pressure
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 102
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 238000005086 pumping Methods 0.000 claims abstract 2
- 230000007423 decrease Effects 0.000 abstract description 12
- 230000005494 condensation Effects 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a Rankine cycle device.
- the Rankine cycle device includes a pump that pumps the working fluid, a heat exchanger that exchanges heat with the fluid from the exhaust heat source, and a working fluid that is heat-exchanged by the heat exchanger. And an expander that outputs dynamic energy and a condenser that condenses the working fluid expanded by the expander.
- a pump, a heat exchanger, an expander, and a condenser are sequentially connected to form a working fluid circuit in which the working fluid circulates.
- the pressure of the working fluid flowing from the outlet of the pump to the inlet of the expander is “high pressure side pressure (evaporation pressure)”, and the pressure of the working fluid flowing from the outlet of the expander to the inlet of the pump is The “low pressure side pressure (condensation pressure)” is lower than the high pressure side pressure.
- Patent Document 1 a pressure difference detection device that detects a difference between a high-pressure side pressure and a low-pressure side pressure of the working fluid flowing in the working fluid circuit, and a pressure difference detected by the pressure difference detection device are determined in advance.
- a Rankine cycle device is disclosed that includes a pressure difference increasing device that increases a pressure difference so as to be a predetermined pressure difference when the pressure difference falls below a predetermined pressure difference.
- Patent Document 2 discloses that control is performed such that the difference between the high-pressure side pressure and the low-pressure side pressure of the working fluid flowing in the working fluid circuit is kept constant. According to these, the difference between the high-pressure side pressure and the low-pressure side pressure is prevented from becoming too small, and the expander can output stable mechanical energy.
- the difference between the evaporation pressure and the condensation pressure is controlled to be kept constant. For this reason, for example, when the condensing pressure is lowered, the evaporation pressure is lowered even when the pressure difference is in a range where the reliability of the expander and the pump is maintained. That is, the difference between the evaporation pressure and the condensation pressure cannot be made larger than a certain value, and as a result, the mechanical energy output from the expander cannot be made as large as possible.
- An object of the present disclosure is to provide a Rankine cycle device that can ensure the reliability of the expander and the pump and can increase the mechanical energy output from the expander as much as possible.
- the Rankine cycle device for achieving the above object includes a pump that pumps a working fluid, a heat exchanger that exchanges heat between the working fluid pumped by the pump and a fluid from an exhaust heat source, and heat exchange using the heat exchanger.
- An expander that expands the generated working fluid to output mechanical energy, and a condenser that condenses the working fluid expanded by the expander, the pump, the heat exchanger, the expander, and the The condenser is connected in series to form a working fluid circuit through which the working fluid circulates, and a low pressure side pressure that is a pressure of the working fluid flowing from the outlet of the expander to the inlet of the pump.
- a pressure control device that controls a high-pressure side pressure that is a pressure of a working fluid that flows from the outlet of the pump to the inlet of the expander.
- the pressure control device keeps the high-pressure side pressure constant even when the low-pressure side pressure is reduced, as long as the difference between the high-pressure side pressure and the low-pressure side pressure does not exceed a preset control upper limit value. Configured to control.
- the schematic diagram which shows the Rankine cycle apparatus in embodiment The graph which shows the change of a high pressure side pressure and a low pressure side pressure. The graph which shows the change of the high voltage
- FIGS. 1 and 2 a Rankine cycle device mounted on a vehicle according to an embodiment will be described with reference to FIGS. 1 and 2.
- the Rankine cycle device 10 includes a working fluid circuit 11 through which a working fluid circulates.
- the working fluid circuit 11 includes an expander 20, a condenser 30, a pump 40, and a heat exchanger 50 that are sequentially connected.
- the working fluid flows along the arrangement order of the expander 20, the condenser 30, the pump 40, and the heat exchanger 50 and circulates in the working fluid circuit 11.
- the heat exchanger 50 includes a heat absorber 50a and a heat radiator 50b.
- the heat absorber 50 a is connected to the outlet of the pump 40 through the first passage 21.
- the radiator 50b is provided around the exhaust passage E1 connected to the engine E as an exhaust heat source. The exhaust of the engine E is exhausted from the muffler E2 after being radiated by the radiator 50b.
- the heat absorber 50 a of the heat exchanger 50 and the inlet of the expander 20 are connected via the second passage 22.
- the outlet of the expander 20 and the inlet of the condenser 30 are connected via a third passage 23.
- the outlet of the condenser 30 and the inlet of the pump 40 are connected via the fourth passage 24.
- the heat exchanger 50 changes the working fluid in a low-temperature and high-pressure liquid state pumped by the pump 40 into a high-temperature and high-pressure working fluid by exchanging heat with the exhaust flowing through the exhaust passage E1 of the engine E.
- the condenser 30 changes the working fluid that has been expanded in the expander 20 and turned into a high-temperature and low-pressure gas state into a low-temperature and low-pressure liquid-state working fluid by exchanging heat with the outside air.
- Rankine cycle device 10 includes a drive shaft 60 a that functions as both a pump shaft of pump 40 and an output shaft of expander 20.
- a pulley 60b is fixed to the end of the drive shaft 60a.
- a belt 60c is wound around the pulley 60b.
- the belt 60c is wound around a pulley E4 fixed to a crankshaft E3 that is a rotation output shaft of the engine E.
- the crankshaft E3 is connected to the drive shaft 60a via a pulley E4, a belt 60c, and a pulley 60b.
- the working fluid circuit 11 has one end connected to the first passage 21 (that is, a passage extending between the outlet of the pump 40 and the heat exchanger 50) and the other end connected to the third passage 23 (that is, the expander 20).
- a bypass passage 71 connected to an outlet of the condenser 30 and an inlet of the condenser 30.
- the bypass passage 71 is provided with a flow rate adjusting valve 71a that changes the flow rate of the working fluid flowing from the pump 40 to the bypass passage 71 and the heat exchanger 50, respectively.
- the flow rate adjustment valve 71 a is connected to the control unit 75.
- the control unit 75 transmits a signal to the flow rate adjusting valve 71a in order to adjust the opening degree of the flow rate adjusting valve 71a.
- pressure detection for detecting a low-pressure side pressure (condensation pressure) that is the pressure of the working fluid that has passed through the condenser 30.
- a first pressure sensor 72 as a device is provided.
- the first pressure sensor 72 is connected to the control unit 75 so that a signal can be transmitted to the control unit 75.
- the first pressure sensor 72 sends a signal indicating the detection result to the control unit 75.
- a high-pressure side pressure that is the pressure of the working fluid that has passed through the heat exchanger 50 is detected.
- a second pressure sensor 73 is provided. The second pressure sensor 73 is connected to the control unit 75 so that signals can be transmitted to the control unit 75. The second pressure sensor 73 sends a signal indicating the detection result to the control unit 75.
- the working fluid When the pump 40 is driven, the working fluid is pumped by the pump 40 and circulates in the working fluid circuit 11.
- the working fluid sent from the pump 40 to the heat exchanger 50 through the first passage 21 passes through the heat exchanger 50, it is heat-exchanged with the exhaust gas and becomes a high-temperature and high-pressure gas state.
- the working fluid that has passed through the heat exchanger 50 and is in a high-temperature and high-pressure gas state is sucked into the expander 20 from the inlet of the expander 20 via the second passage 22.
- the working fluid sucked into the expander 20 is expanded by the expander 20, and part of the thermal energy of the working fluid is taken out as mechanical energy through the expander 20 to assist the rotational output of the engine E. Used for.
- the working fluid whose temperature has been lowered and reduced in pressure in the expander 20 is sucked into the condenser 30 from the outlet of the expander 20 via the third passage 23.
- the working fluid sucked into the condenser 30 is condensed and liquefied by the condenser 30, and is returned to the pump 40 through the fourth passage 24.
- the pressure detected by the first pressure sensor 72 is greatly affected by the temperature of the outside air that exchanges heat with the working fluid in the condenser 30.
- the higher the temperature of the outside air the harder the working fluid is cooled (condensed) in the condenser 30 and the lower the pressure of the working fluid.
- the lower the temperature of the outside air the easier the working fluid is cooled (condensed) in the condenser 30 and the pressure of the working fluid tends to be low.
- FIG. 2 shows changes in pressure (changes in low-pressure side pressure and high-pressure side pressure) detected by the first pressure sensor 72 and the second pressure sensor 73, respectively.
- the pressure difference Z1 between the pressure P11 detected by the first pressure sensor 72 and the pressure P21 detected by the second pressure sensor 73 is constant, and a preset control is performed. It is smaller than the upper limit.
- the “control upper limit value Z” is the high pressure side pressure and the low pressure side pressure at which the expander 20 and the pump 40 do not impair the reliability of the equipment due to the load received by the difference between the high pressure side pressure and the low pressure side pressure. This is the upper limit of the difference.
- the temperature of the outside air gradually decreases from time T1 to time T2 from time T2 to time T3. Then, the working fluid is cooled to a temperature lower than the temperature at the time T1 to the time T2 in the condenser 30 from the time T2 to the time T3, and the pressure of the working fluid gradually decreases.
- the pressure P12 detected by the first pressure sensor 72 at time T3 is lower than the pressure P11 detected by the first pressure sensor 72 at time T2.
- the control unit 75 determines that the flow rate of the working fluid flowing from the first passage 21 through the bypass passage 71 to the third passage 23 is within a range where the difference between the high pressure side pressure and the low pressure side pressure does not exceed the control upper limit value.
- the opening degree of the flow rate adjustment valve 71a is controlled so as to decrease.
- the control unit 75 functions as a pressure control device that controls the high-pressure side pressure.
- the pressure difference Z2 between the pressure P12 detected by the first pressure sensor 72 and the pressure P21 detected by the second pressure sensor 73 is constant. It is assumed that the temperature of the outside air further gradually decreases from the time T3 to the time T4 between the time T4 and the time T5. Then, the working fluid is cooled to a temperature further lower than the temperature between time T3 and time T4 in the condenser 30 between time T4 and time T5, and the pressure of the working fluid gradually decreases. Go.
- the pressure P13 detected by the first pressure sensor 72 at time T5 is lower than the pressure P12 detected by the first pressure sensor 72 at time T4.
- the controller 75 controls the opening degree of the flow rate adjusting valve 71a so that the flow rate of the working fluid flowing from the first passage 21 through the bypass passage 71 to the third passage 23 increases.
- the flow rate of the working fluid flowing from the outlet of the pump 40 to the inlet of the expander 20 decreases, and the pressure P22 detected by the second pressure sensor 73 at time T5 is the second pressure at time T4. It becomes lower than the pressure P21 detected by the sensor 73.
- the pressure difference Z3 between the pressure P13 detected by the first pressure sensor 72 and the pressure P22 detected by the second pressure sensor 73 is a preset control upper limit value. That is, the flow rate adjustment is performed so that the pressure difference Z3 between the pressure P13 and the pressure P22 becomes the control upper limit value by changing the flow rate of the working fluid flowing from the first passage 21 to the third passage 23 via the bypass passage 71.
- the opening degree of the valve 71 a is adjusted by the control unit 75.
- the high pressure side pressure decreases from time T4 to time T5 so that the difference between the high pressure side pressure and the low pressure side pressure does not exceed the control upper limit value, so the difference between the high pressure side pressure and the low pressure side pressure. Is prevented from becoming too large.
- the Rankine cycle apparatus 10 includes a first pressure sensor 72 that detects a low-pressure side pressure that is a pressure of a working fluid that flows from the outlet of the expander 20 to the inlet of the pump 40.
- the bypass passage 71 having one end connected to the first passage 21 and the other end connected to the third passage 23 is disposed, and the operation flows through the bypass passage 71 through the bypass passage 71.
- a flow rate adjusting valve 71a for changing the flow rate of the fluid and the flow rate of the working fluid flowing through the heat exchanger 50 is provided.
- control part 75 changes the flow volume of the working fluid which flows into the 3rd channel
- the high-pressure side pressure that is the pressure is controlled.
- the control unit 75 causes the difference between the high-pressure side pressure and the low-pressure side pressure to exceed a preset control upper limit value.
- the flow rate of the working fluid flowing from the first passage 21 through the bypass passage 71 to the third passage 23 is decreased. Therefore, the high-pressure side pressure can be controlled so that the high-pressure side pressure is maintained at a constant value without gradually decreasing following the low-pressure side pressure.
- the difference between the high pressure side pressure and the low pressure side pressure can be increased as much as possible within a range not exceeding the control upper limit value.
- the low-pressure side pressure detected by the first pressure sensor 72 when the low-pressure side pressure detected by the first pressure sensor 72 is excessively low, the amount of working fluid flowing from the first passage 21 to the third passage 23 through the bypass passage 71 is increased. Thus, the flow rate of the working fluid flowing from the outlet of the pump 40 to the inlet of the expander 20 can be reduced. As a result, the high pressure side pressure can be lowered so that the difference between the high pressure side pressure and the low pressure side pressure does not exceed the control upper limit value, so the difference between the high pressure side pressure and the low pressure side pressure becomes too large. This can be prevented. As a result, the reliability of the expander 20 and the pump 40 can be ensured, and the mechanical energy output from the expander 20 can be maximized.
- the high pressure side pressure is controlled by changing the flow rate of the working fluid flowing from the first passage 21 to the third passage 23 through the bypass passage 71. Therefore, for example, in order to control the high-pressure side pressure, there is no need to control the rotation speed of the motor that drives the pump 40 or the rotation speed of the expander 20, and the single drive shaft 60a can be controlled. It becomes possible to function as both the pump shaft of the pump 40 and the expander 20, and the configuration of the Rankine cycle apparatus 10 can be simplified.
- an upper limit value of the high pressure side pressure may be set in advance.
- the pressure difference Z4 between the pressure P14 detected by the first pressure sensor 72 and the pressure P23 detected by the second pressure sensor 73 is constant between time T6 and time T7. It is. At this time, it is assumed that the pressure P23 detected by the second pressure sensor 73 has already reached the upper limit value of the high-pressure side pressure. Then, it is assumed that the temperature of the outside air gradually rises from time T6 to time T7 from time T7 to time T8.
- the working fluid is condensed to a temperature higher than that at the time T6 to the time T7 in the condenser 30 from the time T7 to the time T8, and the pressure of the working fluid is gradually increased.
- the pressure P15 detected by the first pressure sensor 72 at time T8 is higher than the pressure P14 detected by the first pressure sensor 72 at time T7, and the high pressure side pressure and the low pressure side pressure are detected. The difference with is small.
- the control unit 75 controls the high pressure side pressure so that the high pressure side pressure does not exceed the upper limit value.
- control unit 75 controls the rotational speed of the motor that drives the pump 40, thereby changing the flow rate of the working fluid pumped from the pump 40 to the heat exchanger 50, and the high-pressure side pressure reaches the upper limit value. Do not exceed. According to this, a situation in which the high pressure side pressure becomes excessively high due to an attempt to increase the difference between the high pressure side pressure and the low pressure side pressure as much as possible within a range not exceeding the control upper limit value. Can be prevented. As a result, the reliability of the expander 20 and the pump 40 can be further ensured.
- the drive shaft 60a may not function as both the pump shaft of the pump 40 and the output shaft of the expander 20.
- the Rankine cycle apparatus 10 may include a motor 40 a that drives the pump 40.
- a pulley 201b is fixed to the output shaft 20b of the expander 20.
- a belt 60c is wound around the pulley 201b.
- the belt 60c is wound around a pulley E4 fixed to the crankshaft E3 of the engine E.
- the crankshaft E3 is connected to the output shaft 20b via a pulley E4, a belt 60c, and a pulley 201b.
- the mechanical energy output from the expander 20 assists the rotational output of the engine E.
- the pump 40 is driven by the rotation of the motor 40a to pump the working fluid to the heat exchanger 50.
- the control unit 75 has a range in which the difference between the high pressure side pressure and the low pressure side pressure does not exceed a preset control upper limit value. Then, the flow rate of the working fluid can be adjusted through the rotation speed control of the motor 40a so that the high-pressure side pressure is maintained at a constant value. As a result, the difference between the high pressure side pressure and the low pressure side pressure can be increased as much as possible within a range not exceeding the control upper limit value.
- the control unit 75 controls the motor 40a so that the rotation speed of the motor 40a decreases. According to this, the flow rate of the working fluid pumped to the heat exchanger 50 by the pump 40 can be reduced, and as a result, the difference between the high pressure side pressure and the low pressure side pressure is set to a preset control upper limit value.
- the high pressure side pressure can be lowered so as not to exceed. Therefore, it is possible to prevent the difference between the high pressure side pressure and the low pressure side pressure from becoming too large.
- a power generator 20 a may be connected to the expander 20.
- the control unit 75 causes the difference between the high pressure side pressure and the low pressure side pressure to exceed the preset control upper limit value.
- the rotational speed of the generator 20a is controlled to keep the high-pressure side pressure at a constant value.
- the difference between the high pressure side pressure and the low pressure side pressure can be increased as much as possible within a range not exceeding the control upper limit value.
- the control unit 75 controls the generator 20a so that the rotational speed of the generator 20a increases.
- bypass passage 71 may be connected to the second passage 22. Further, the other end of the bypass passage 71 may be connected to the fourth passage 24. The point is that a part of the working fluid flowing through the passage extending from the outlet of the pump 40 to the inlet of the expander 20 is transferred by the bypass passage 71 to the passage extending from the outlet of the expander 20 to the inlet of the pump 40. What is necessary is just to be able to bypass.
- the first pressure sensor 72 may be provided in the third passage 23.
- a temperature sensor for detecting the temperature of the working fluid condensed and liquefied in the condenser 30 (specifically, the temperature of the working fluid flowing from the outlet of the condenser 30 to the subcooler) may be provided. Then, the control unit 75 may calculate the pressure of the working fluid based on the temperature of the working fluid detected by the temperature sensor.
- the temperature sensor and the control unit 75 constitute a pressure detection device that detects the low-pressure side pressure.
- the fluid from the exhaust heat source for example, engine cooling water, supercharged air, EGR gas, or the like flowing through a cooling water circulation path connected to the engine E may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
A Rankine cycle device, provided with: a pump for pumping the working fluid; a heat exchanger for exchanging heat between the working fluid pumped by the pump and a fluid from the heat discharge source; an expander for causing the working fluid heat-exchanged by the heat exchanger to expand and outputting the mechanical energy; a condenser for causing the working fluid caused to expand in the expander to condense, the pump, the heat exchanger, the expander, and the condenser being connected in sequence so as to form a working fluid circuit in which the working fluid circulates; a pressure detection device for detecting the low-pressure-side pressure, which is the pressure of the working fluid flowing from the exit of the expander to the entrance of the pump; and a pressure control device for controlling the high-pressure-side pressure, which is the pressure of the working fluid flowing from the exit of the pump to the entrance of the expander. The pressure control device is constituted so as to control the high-pressure-side pressure so that the high-pressure-side pressure remains constant, even if the low-pressure-side pressure decreases, as long as the difference between the high-pressure-side pressure and the low-pressure-side pressure does not exceed a maximum control limit set in advance.
Description
本発明は、ランキンサイクル装置に関する。
The present invention relates to a Rankine cycle device.
ランキンサイクル装置は、作動流体を圧送するポンプと、ポンプにより圧送された作動流体を排熱源からの流体と熱交換させる熱交換器と、熱交換器で熱交換された作動流体を膨張させて機械的エネルギーを出力する膨張機と、膨張機で膨張された作動流体を凝縮させる凝縮器と、を有している。そして、ポンプ、熱交換器、膨張機、及び凝縮器が順次接続されて作動流体が循環する作動流体回路が形成されている。
The Rankine cycle device includes a pump that pumps the working fluid, a heat exchanger that exchanges heat with the fluid from the exhaust heat source, and a working fluid that is heat-exchanged by the heat exchanger. And an expander that outputs dynamic energy and a condenser that condenses the working fluid expanded by the expander. A pump, a heat exchanger, an expander, and a condenser are sequentially connected to form a working fluid circuit in which the working fluid circulates.
上記作動流体回路において、ポンプの出口から膨張機の入口までを流れる作動流体の圧力は「高圧側圧力(蒸発圧力)」であり、膨張機の出口からポンプの入口までを流れる作動流体の圧力は前記高圧側圧力よりも低い「低圧側圧力(凝縮圧力)」である。この高圧側圧力と低圧側圧力との差が小さければ小さいほど、膨張機は、作動流体の有する熱エネルギーを回転エネルギー等の機械的エネルギーに有効に変換することができず、その結果として、大きな機械的エネルギーを出力することができない。
In the above working fluid circuit, the pressure of the working fluid flowing from the outlet of the pump to the inlet of the expander is “high pressure side pressure (evaporation pressure)”, and the pressure of the working fluid flowing from the outlet of the expander to the inlet of the pump is The “low pressure side pressure (condensation pressure)” is lower than the high pressure side pressure. The smaller the difference between the high-pressure side pressure and the low-pressure side pressure is, the more the expander cannot effectively convert the thermal energy of the working fluid into mechanical energy such as rotational energy. The mechanical energy cannot be output.
そこで、特許文献1には、作動流体回路を流れる作動流体の高圧側圧力と低圧側圧力との差を検出する圧力差検出装置と、圧力差検出装置によって検出された圧力差が予め定められた所定圧力差を下回った時に、所定圧力差となるように圧力差を増加させる圧力差増加装置とを備えたランキンサイクル装置が開示されている。また、特許文献2には、作動流体回路を流れる作動流体の高圧側圧力と低圧側圧力との差を一定に保つように制御することが開示されている。これらによれば、高圧側圧力と低圧側圧力との差が小さくなり過ぎてしまうことが防止され、膨張機は安定した機械的エネルギーを出力することが可能となる。
Therefore, in Patent Document 1, a pressure difference detection device that detects a difference between a high-pressure side pressure and a low-pressure side pressure of the working fluid flowing in the working fluid circuit, and a pressure difference detected by the pressure difference detection device are determined in advance. A Rankine cycle device is disclosed that includes a pressure difference increasing device that increases a pressure difference so as to be a predetermined pressure difference when the pressure difference falls below a predetermined pressure difference. Patent Document 2 discloses that control is performed such that the difference between the high-pressure side pressure and the low-pressure side pressure of the working fluid flowing in the working fluid circuit is kept constant. According to these, the difference between the high-pressure side pressure and the low-pressure side pressure is prevented from becoming too small, and the expander can output stable mechanical energy.
しかし、例えば、膨張機で膨張された作動流体を凝縮器において外気で冷却して凝縮する場合、外気の温度が低ければ低いほど、作動流体が冷却され易くなって作動流体の凝縮圧力が低くなる。このような状況において、特許文献1の技術では、蒸発圧力と凝縮圧力との差が大きくなり過ぎて、膨張機やポンプの信頼性が低下してしまう虞がある。
However, for example, when the working fluid expanded by the expander is cooled by outside air in the condenser and condensed, the lower the temperature of the outside air, the easier the working fluid is cooled and the lower the condensation pressure of the working fluid. . Under such circumstances, in the technique of Patent Document 1, the difference between the evaporation pressure and the condensation pressure becomes too large, and the reliability of the expander and the pump may be reduced.
一方、特許文献2の技術では、蒸発圧力と凝縮圧力との差が一定に保たれるように制御されている。このため、例えば、凝縮圧力が低くなると、圧力差が膨張機やポンプの信頼性が保たれる範囲にある場合であっても蒸発圧力が低くなってしまう。つまり、蒸発圧力と凝縮圧力との差を一定値よりも大きくすることができず、その結果、膨張機から出力される機械的エネルギーを極力大きくすることができない。
On the other hand, in the technique of Patent Document 2, the difference between the evaporation pressure and the condensation pressure is controlled to be kept constant. For this reason, for example, when the condensing pressure is lowered, the evaporation pressure is lowered even when the pressure difference is in a range where the reliability of the expander and the pump is maintained. That is, the difference between the evaporation pressure and the condensation pressure cannot be made larger than a certain value, and as a result, the mechanical energy output from the expander cannot be made as large as possible.
本開示の目的は、膨張機やポンプの信頼性を確保することができるとともに、膨張機から出力される機械的エネルギーを極力大きくすることができるランキンサイクル装置を提供することにある。
An object of the present disclosure is to provide a Rankine cycle device that can ensure the reliability of the expander and the pump and can increase the mechanical energy output from the expander as much as possible.
上記目的を達成するためのランキンサイクル装置は、作動流体を圧送するポンプと、前記ポンプにより圧送された作動流体を排熱源からの流体と熱交換させる熱交換器と、前記熱交換器で熱交換された作動流体を膨張させて機械的エネルギーを出力する膨張機と、前記膨張機で膨張された作動流体を凝縮させる凝縮器であって、前記ポンプ、前記熱交換器、前記膨張機、及び前記凝縮器は、作動流体が循環する作動流体回路を形成するように順次接続される、前記凝縮器と、前記膨張機の出口から前記ポンプの入口までを流れる作動流体の圧力である低圧側圧力を検出する圧力検出装置と、前記ポンプの出口から前記膨張機の入口までを流れる作動流体の圧力である高圧側圧力を制御する圧力制御装置と、を備える。前記圧力制御装置は、前記高圧側圧力と前記低圧側圧力との差が予め設定された制御上限値を越えない範囲では、前記低圧側圧力が低下しても前記高圧側圧力を一定に保つように制御するよう構成される。
The Rankine cycle device for achieving the above object includes a pump that pumps a working fluid, a heat exchanger that exchanges heat between the working fluid pumped by the pump and a fluid from an exhaust heat source, and heat exchange using the heat exchanger. An expander that expands the generated working fluid to output mechanical energy, and a condenser that condenses the working fluid expanded by the expander, the pump, the heat exchanger, the expander, and the The condenser is connected in series to form a working fluid circuit through which the working fluid circulates, and a low pressure side pressure that is a pressure of the working fluid flowing from the outlet of the expander to the inlet of the pump. And a pressure control device that controls a high-pressure side pressure that is a pressure of a working fluid that flows from the outlet of the pump to the inlet of the expander. The pressure control device keeps the high-pressure side pressure constant even when the low-pressure side pressure is reduced, as long as the difference between the high-pressure side pressure and the low-pressure side pressure does not exceed a preset control upper limit value. Configured to control.
以下、一実施形態に係る車両に搭載されるランキンサイクル装置を図1及び図2にしたがって説明する。
Hereinafter, a Rankine cycle device mounted on a vehicle according to an embodiment will be described with reference to FIGS. 1 and 2.
図1に示すように、ランキンサイクル装置10は、作動流体が循環する作動流体回路11を備える。作動流体回路11は、順次接続された膨張機20、凝縮器30、ポンプ40、熱交換器50を含む。作動流体は、膨張機20、凝縮器30、ポンプ40、熱交換器50の並び順に沿って流れて作動流体回路11を循環するようになっている。
As shown in FIG. 1, the Rankine cycle device 10 includes a working fluid circuit 11 through which a working fluid circulates. The working fluid circuit 11 includes an expander 20, a condenser 30, a pump 40, and a heat exchanger 50 that are sequentially connected. The working fluid flows along the arrangement order of the expander 20, the condenser 30, the pump 40, and the heat exchanger 50 and circulates in the working fluid circuit 11.
熱交換器50は、吸熱器50aと放熱器50bとを有する。吸熱器50aは、ポンプ40の出口と第1通路21を介して接続されている。放熱器50bは、排熱源としてのエンジンEに接続された排気通路E1の周囲に設けられている。エンジンEの排気は、放熱器50bで放熱された後にマフラE2から排気される。
The heat exchanger 50 includes a heat absorber 50a and a heat radiator 50b. The heat absorber 50 a is connected to the outlet of the pump 40 through the first passage 21. The radiator 50b is provided around the exhaust passage E1 connected to the engine E as an exhaust heat source. The exhaust of the engine E is exhausted from the muffler E2 after being radiated by the radiator 50b.
熱交換器50の吸熱器50aと膨張機20の入口とは第2通路22を介して接続されている。膨張機20の出口と凝縮器30の入口とは第3通路23を介して接続されている。凝縮器30の出口とポンプ40の入口とは第4通路24を介して接続されている。熱交換器50は、ポンプ40により圧送された低温且つ高圧の液状態の作動流体を、エンジンEの排気通路E1を流れる排気と熱交換させることで高温且つ高圧のガス状態の作動流体に変化させる。凝縮器30は、膨張機20で膨張し高温かつ低圧のガス状態となった作動流体を、外気と熱交換させることで低温かつ低圧の液状態の作動流体に変化させる。
The heat absorber 50 a of the heat exchanger 50 and the inlet of the expander 20 are connected via the second passage 22. The outlet of the expander 20 and the inlet of the condenser 30 are connected via a third passage 23. The outlet of the condenser 30 and the inlet of the pump 40 are connected via the fourth passage 24. The heat exchanger 50 changes the working fluid in a low-temperature and high-pressure liquid state pumped by the pump 40 into a high-temperature and high-pressure working fluid by exchanging heat with the exhaust flowing through the exhaust passage E1 of the engine E. . The condenser 30 changes the working fluid that has been expanded in the expander 20 and turned into a high-temperature and low-pressure gas state into a low-temperature and low-pressure liquid-state working fluid by exchanging heat with the outside air.
ランキンサイクル装置10は、ポンプ40のポンプ軸及び膨張機20の出力軸の両方として機能する駆動軸60aを含む。駆動軸60aの端部にはプーリ60bが止着されている。プーリ60bにはベルト60cが巻き掛けられている。ベルト60cは、エンジンEの回転出力軸であるクランク軸E3に止着されたプーリE4に巻き掛けられている。クランク軸E3は、プーリE4、ベルト60c及びプーリ60bを介して駆動軸60aと連結している。
Rankine cycle device 10 includes a drive shaft 60 a that functions as both a pump shaft of pump 40 and an output shaft of expander 20. A pulley 60b is fixed to the end of the drive shaft 60a. A belt 60c is wound around the pulley 60b. The belt 60c is wound around a pulley E4 fixed to a crankshaft E3 that is a rotation output shaft of the engine E. The crankshaft E3 is connected to the drive shaft 60a via a pulley E4, a belt 60c, and a pulley 60b.
作動流体回路11は、一端が第1通路21(すなわち、ポンプ40の出口と熱交換器50との間を延びる通路)に接続されるとともに、他端が第3通路23(すなわち、膨張機20の出口と凝縮器30の入口との間を延びる通路)に接続されるバイパス通路71を含む。バイパス通路71には、ポンプ40からバイパス通路71と熱交換器50とへそれぞれ流れる作動流体の流量を変更する流量調整バルブ71aが設けられている。流量調整バルブ71aは制御部75に接続されている。制御部75は、流量調整バルブ71aの開度を調整すべく、流量調整バルブ71aに信号を伝送する。
The working fluid circuit 11 has one end connected to the first passage 21 (that is, a passage extending between the outlet of the pump 40 and the heat exchanger 50) and the other end connected to the third passage 23 (that is, the expander 20). A bypass passage 71 connected to an outlet of the condenser 30 and an inlet of the condenser 30. The bypass passage 71 is provided with a flow rate adjusting valve 71a that changes the flow rate of the working fluid flowing from the pump 40 to the bypass passage 71 and the heat exchanger 50, respectively. The flow rate adjustment valve 71 a is connected to the control unit 75. The control unit 75 transmits a signal to the flow rate adjusting valve 71a in order to adjust the opening degree of the flow rate adjusting valve 71a.
第4通路24(すなわち、凝縮器30の出口とポンプ40の入口との間の通路)には、凝縮器30を通過した作動流体の圧力である低圧側圧力(凝縮圧力)を検出する圧力検出装置としての第1圧力センサ72が設けられている。第1圧力センサ72は制御部75に信号伝送可能であるように制御部75に接続されている。第1圧力センサ72は、検出結果を示す信号を制御部75に送る。
In the fourth passage 24 (that is, the passage between the outlet of the condenser 30 and the inlet of the pump 40), pressure detection for detecting a low-pressure side pressure (condensation pressure) that is the pressure of the working fluid that has passed through the condenser 30. A first pressure sensor 72 as a device is provided. The first pressure sensor 72 is connected to the control unit 75 so that a signal can be transmitted to the control unit 75. The first pressure sensor 72 sends a signal indicating the detection result to the control unit 75.
第2通路22(すなわち、熱交換器50と膨張機20の入口との間を延びる通路)には、熱交換器50を通過した作動流体の圧力である高圧側圧力(蒸発圧力)を検出する第2圧力センサ73が設けられている。第2圧力センサ73は制御部75に信号伝送可能であるように制御部75に接続されている。第2圧力センサ73は、検出結果を示す信号を制御部75に送る。
In the second passage 22 (that is, a passage extending between the heat exchanger 50 and the inlet of the expander 20), a high-pressure side pressure (evaporation pressure) that is the pressure of the working fluid that has passed through the heat exchanger 50 is detected. A second pressure sensor 73 is provided. The second pressure sensor 73 is connected to the control unit 75 so that signals can be transmitted to the control unit 75. The second pressure sensor 73 sends a signal indicating the detection result to the control unit 75.
次に、本実施形態の作用について説明する。
Next, the operation of this embodiment will be described.
ポンプ40が駆動されると、ポンプ40により作動流体が圧送されて作動流体回路11内を作動流体が循環する。ポンプ40から第1通路21を介して熱交換器50に送られた作動流体は、熱交換器50を通過する際に排気と熱交換されて高温且つ高圧のガス状態となる。熱交換器50を通過して高温且つ高圧のガス状態となった作動流体は、第2通路22を介して膨張機20の入口から膨張機20に吸入される。膨張機20に吸入された作動流体は膨張機20で膨張し、それに伴い、作動流体の持つ熱エネルギーの一部が膨張機20を通じて機械的エネルギーとして取り出されて、エンジンEの回転出力を補助するために利用される。膨張機20において降温及び降圧した作動流体は、膨張機20の出口から第3通路23を介して凝縮器30へ吸入される。凝縮器30に吸入された作動流体は、凝縮器30で凝縮されて液化し、第4通路24を介してポンプ40に還流される。
When the pump 40 is driven, the working fluid is pumped by the pump 40 and circulates in the working fluid circuit 11. When the working fluid sent from the pump 40 to the heat exchanger 50 through the first passage 21 passes through the heat exchanger 50, it is heat-exchanged with the exhaust gas and becomes a high-temperature and high-pressure gas state. The working fluid that has passed through the heat exchanger 50 and is in a high-temperature and high-pressure gas state is sucked into the expander 20 from the inlet of the expander 20 via the second passage 22. The working fluid sucked into the expander 20 is expanded by the expander 20, and part of the thermal energy of the working fluid is taken out as mechanical energy through the expander 20 to assist the rotational output of the engine E. Used for. The working fluid whose temperature has been lowered and reduced in pressure in the expander 20 is sucked into the condenser 30 from the outlet of the expander 20 via the third passage 23. The working fluid sucked into the condenser 30 is condensed and liquefied by the condenser 30, and is returned to the pump 40 through the fourth passage 24.
ここで、第1圧力センサ72により検出される圧力は、凝縮器30において作動流体と熱交換される外気の温度に大きく影響を受ける。例えば、外気の温度が高ければ高いほど、作動流体は凝縮器30において冷却(凝縮)され難く、作動流体の圧力は低くなり難い。また、例えば、外気の温度が低ければ低いほど、作動流体は凝縮器30において冷却(凝縮)され易く、作動流体の圧力は低くなり易い。
Here, the pressure detected by the first pressure sensor 72 is greatly affected by the temperature of the outside air that exchanges heat with the working fluid in the condenser 30. For example, the higher the temperature of the outside air, the harder the working fluid is cooled (condensed) in the condenser 30 and the lower the pressure of the working fluid. Further, for example, the lower the temperature of the outside air, the easier the working fluid is cooled (condensed) in the condenser 30 and the pressure of the working fluid tends to be low.
図2には、第1圧力センサ72及び第2圧力センサ73によりそれぞれ検出される圧力の変化(低圧側圧力及び高圧側圧力の変化)を表している。時間T1から時間T2までの間では、第1圧力センサ72により検出された圧力P11と、第2圧力センサ73により検出された圧力P21との圧力差Z1は一定であるとともに、予め設定された制御上限値よりも小さくなっている。ここで、「制御上限値Z」とは、膨張機20やポンプ40が、高圧側圧力と低圧側圧力との差によって受ける荷重により機器の信頼性を損なわない高圧側圧力と低圧側圧力との差の上限値のことを言う。
FIG. 2 shows changes in pressure (changes in low-pressure side pressure and high-pressure side pressure) detected by the first pressure sensor 72 and the second pressure sensor 73, respectively. Between time T1 and time T2, the pressure difference Z1 between the pressure P11 detected by the first pressure sensor 72 and the pressure P21 detected by the second pressure sensor 73 is constant, and a preset control is performed. It is smaller than the upper limit. Here, the “control upper limit value Z” is the high pressure side pressure and the low pressure side pressure at which the expander 20 and the pump 40 do not impair the reliability of the equipment due to the load received by the difference between the high pressure side pressure and the low pressure side pressure. This is the upper limit of the difference.
時間T2から時間T3の間に、外気の温度が時間T1から時間T2のときよりも徐々に低下していったとする。すると、作動流体は、時間T2から時間T3の間に、凝縮器30において時間T1から時間T2のときの温度よりも低い温度に冷却されていき、作動流体の圧力は徐々に低くなっていく。そして、時間T3のときに第1圧力センサ72により検出された圧力P12は、時間T2のときに第1圧力センサ72により検出された圧力P11よりも低くなっている。
Suppose that the temperature of the outside air gradually decreases from time T1 to time T2 from time T2 to time T3. Then, the working fluid is cooled to a temperature lower than the temperature at the time T1 to the time T2 in the condenser 30 from the time T2 to the time T3, and the pressure of the working fluid gradually decreases. The pressure P12 detected by the first pressure sensor 72 at time T3 is lower than the pressure P11 detected by the first pressure sensor 72 at time T2.
ここで、第1圧力センサ72により検出された圧力P12と、第2圧力センサ73により検出された圧力P21との圧力差Z2が、予め設定された制御上限値に達したとする。このとき、制御部75は、高圧側圧力と低圧側圧力との差が制御上限値を越えない範囲では、第1通路21からバイパス通路71を通って第3通路23に流れる作動流体の流量が減少するように、流量調整バルブ71aの開度を制御している。その結果、高圧側圧力が低圧側圧力に追従して徐々に低くなることなく一定値に保たれ、高圧側圧力と低圧側圧力との差が、制御上限値を越えない範囲内で極力大きくなっている。よって、本実施形態では、制御部75は、高圧側圧力を制御する圧力制御装置として機能している。
Here, it is assumed that the pressure difference Z2 between the pressure P12 detected by the first pressure sensor 72 and the pressure P21 detected by the second pressure sensor 73 has reached a preset control upper limit value. At this time, the control unit 75 determines that the flow rate of the working fluid flowing from the first passage 21 through the bypass passage 71 to the third passage 23 is within a range where the difference between the high pressure side pressure and the low pressure side pressure does not exceed the control upper limit value. The opening degree of the flow rate adjustment valve 71a is controlled so as to decrease. As a result, the high-pressure side pressure is maintained at a constant value without gradually decreasing following the low-pressure side pressure, and the difference between the high-pressure side pressure and the low-pressure side pressure becomes as large as possible within the range not exceeding the control upper limit value. ing. Therefore, in the present embodiment, the control unit 75 functions as a pressure control device that controls the high-pressure side pressure.
時間T3から時間T4までの間では、第1圧力センサ72により検出された圧力P12と、第2圧力センサ73により検出された圧力P21との圧力差Z2は一定である。時間T4から時間T5までの間に、外気の温度が時間T3から時間T4の間の温度よりもさらに徐々に低下していったとする。すると、作動流体は、時間T4から時間T5までの間に、凝縮器30において時間T3から時間T4の間の温度よりもさらに低い温度に冷却されていき、作動流体の圧力は徐々に低くなっていく。そして、時間T5のときに第1圧力センサ72により検出された圧力P13は、時間T4のときに第1圧力センサ72により検出された圧力P12よりも低くなっている。
Between time T3 and time T4, the pressure difference Z2 between the pressure P12 detected by the first pressure sensor 72 and the pressure P21 detected by the second pressure sensor 73 is constant. It is assumed that the temperature of the outside air further gradually decreases from the time T3 to the time T4 between the time T4 and the time T5. Then, the working fluid is cooled to a temperature further lower than the temperature between time T3 and time T4 in the condenser 30 between time T4 and time T5, and the pressure of the working fluid gradually decreases. Go. The pressure P13 detected by the first pressure sensor 72 at time T5 is lower than the pressure P12 detected by the first pressure sensor 72 at time T4.
このとき、制御部75は、第1通路21からバイパス通路71を通って第3通路23へ流れる作動流体の流量が増大するように、流量調整バルブ71aの開度を制御する。これにより、ポンプ40の出口から膨張機20の入口までを流れる作動流体の流量が少なくなり、時間T5のときに第2圧力センサ73により検出された圧力P22が、時間T4のときに第2圧力センサ73により検出された圧力P21よりも低くなる。
At this time, the controller 75 controls the opening degree of the flow rate adjusting valve 71a so that the flow rate of the working fluid flowing from the first passage 21 through the bypass passage 71 to the third passage 23 increases. As a result, the flow rate of the working fluid flowing from the outlet of the pump 40 to the inlet of the expander 20 decreases, and the pressure P22 detected by the second pressure sensor 73 at time T5 is the second pressure at time T4. It becomes lower than the pressure P21 detected by the sensor 73.
ここで、第1圧力センサ72により検出された圧力P13と、第2圧力センサ73により検出された圧力P22との圧力差Z3は、予め設定された制御上限値になっている。すなわち、第1通路21からバイパス通路71を介して第3通路23へ流れる作動流体の流量を変化させることで、圧力P13と圧力P22との圧力差Z3が制御上限値になるように、流量調整バルブ71aの開度が制御部75によって調整されている。その結果、高圧側圧力と低圧側圧力との差が制御上限値を越えないように、時間T4から時間T5までの間で高圧側圧力が低下するため、高圧側圧力と低圧側圧力との差が大きくなり過ぎてしまうことが防止されている。
Here, the pressure difference Z3 between the pressure P13 detected by the first pressure sensor 72 and the pressure P22 detected by the second pressure sensor 73 is a preset control upper limit value. That is, the flow rate adjustment is performed so that the pressure difference Z3 between the pressure P13 and the pressure P22 becomes the control upper limit value by changing the flow rate of the working fluid flowing from the first passage 21 to the third passage 23 via the bypass passage 71. The opening degree of the valve 71 a is adjusted by the control unit 75. As a result, the high pressure side pressure decreases from time T4 to time T5 so that the difference between the high pressure side pressure and the low pressure side pressure does not exceed the control upper limit value, so the difference between the high pressure side pressure and the low pressure side pressure. Is prevented from becoming too large.
上記実施形態では以下の効果を得ることができる。
In the above embodiment, the following effects can be obtained.
(1)ランキンサイクル装置10は、膨張機20の出口からポンプ40の入口までを流れる作動流体の圧力である低圧側圧力を検出する第1圧力センサ72を備える。また、作動流体回路11において、一端が第1通路21に接続されるとともに、他端が第3通路23に接続されるバイパス通路71を配設し、バイパス通路71に、バイパス通路71を流れる作動流体の流量と、熱交換器50を流れる作動流体の流量とを変更する流量調整バルブ71aを設けた。そして、制御部75は、第1通路21からバイパス通路71を通って第3通路23へ流れる作動流体の流量を変化させることによって、ポンプ40の出口から膨張機20の入口までを流れる作動流体の圧力である高圧側圧力を制御する。
(1) The Rankine cycle apparatus 10 includes a first pressure sensor 72 that detects a low-pressure side pressure that is a pressure of a working fluid that flows from the outlet of the expander 20 to the inlet of the pump 40. In the working fluid circuit 11, the bypass passage 71 having one end connected to the first passage 21 and the other end connected to the third passage 23 is disposed, and the operation flows through the bypass passage 71 through the bypass passage 71. A flow rate adjusting valve 71a for changing the flow rate of the fluid and the flow rate of the working fluid flowing through the heat exchanger 50 is provided. And the control part 75 changes the flow volume of the working fluid which flows into the 3rd channel | path 23 from the 1st channel | path 21 through the bypass channel | path 71, and thereby the working fluid which flows from the outlet of the pump 40 to the inlet of the expander 20 is changed. The high-pressure side pressure that is the pressure is controlled.
制御部75は、例えば、第1圧力センサ72により検出される低圧側圧力が徐々に低くなっていったとしても、高圧側圧力と低圧側圧力との差が予め設定された制御上限値を越えない範囲では、第1通路21からバイパス通路71を通って第3通路23へ流れる作動流体の流量を減少させる。よって、高圧側圧力が低圧側圧力に追従して徐々に低くなることなく一定値に保たれるように高圧側圧力を制御することができる。その結果、高圧側圧力と低圧側圧力との差を、制御上限値を越えない範囲内で極力大きくすることができる。また、例えば、第1圧力センサ72により検出される低圧側圧力が過度に低くなった場合に、第1通路21からバイパス通路71を通って第3通路23へ流れる作動流体の量を増大させることで、ポンプ40の出口から膨張機20の入口までを流れる作動流体の流量を少なくすることができる。その結果として、高圧側圧力と低圧側圧力との差が制御上限値を越えないように高圧側圧力を低くすることができるため、高圧側圧力と低圧側圧力との差が大きくなり過ぎてしまうことを防止することができる。その結果、膨張機20やポンプ40の信頼性を確保することができるとともに、膨張機20から出力される機械的エネルギーを極力大きくすることができる。
For example, even if the low-pressure side pressure detected by the first pressure sensor 72 gradually decreases, the control unit 75 causes the difference between the high-pressure side pressure and the low-pressure side pressure to exceed a preset control upper limit value. In the absence range, the flow rate of the working fluid flowing from the first passage 21 through the bypass passage 71 to the third passage 23 is decreased. Therefore, the high-pressure side pressure can be controlled so that the high-pressure side pressure is maintained at a constant value without gradually decreasing following the low-pressure side pressure. As a result, the difference between the high pressure side pressure and the low pressure side pressure can be increased as much as possible within a range not exceeding the control upper limit value. Further, for example, when the low-pressure side pressure detected by the first pressure sensor 72 is excessively low, the amount of working fluid flowing from the first passage 21 to the third passage 23 through the bypass passage 71 is increased. Thus, the flow rate of the working fluid flowing from the outlet of the pump 40 to the inlet of the expander 20 can be reduced. As a result, the high pressure side pressure can be lowered so that the difference between the high pressure side pressure and the low pressure side pressure does not exceed the control upper limit value, so the difference between the high pressure side pressure and the low pressure side pressure becomes too large. This can be prevented. As a result, the reliability of the expander 20 and the pump 40 can be ensured, and the mechanical energy output from the expander 20 can be maximized.
(2)本実施形態では、第1通路21からバイパス通路71を通って第3通路23へ流れる作動流体の流量を変化させることで高圧側圧力を制御するようにした。よって、例えば、高圧側圧力を制御するために、ポンプ40を駆動させるモータの回転数を制御したり、膨張機20の回転数を制御したりするという必要が無く、単一の駆動軸60aがポンプ40のポンプ軸及び膨張機20の両方として機能することが可能となり、ランキンサイクル装置10の構成を簡素化することが可能となる。
(2) In the present embodiment, the high pressure side pressure is controlled by changing the flow rate of the working fluid flowing from the first passage 21 to the third passage 23 through the bypass passage 71. Therefore, for example, in order to control the high-pressure side pressure, there is no need to control the rotation speed of the motor that drives the pump 40 or the rotation speed of the expander 20, and the single drive shaft 60a can be controlled. It becomes possible to function as both the pump shaft of the pump 40 and the expander 20, and the configuration of the Rankine cycle apparatus 10 can be simplified.
なお、上記実施形態は以下のように変更してもよい。
Note that the above embodiment may be modified as follows.
実施形態において、高圧側圧力の上限値を予め設定してもよい。例えば、図3に示すように、時間T6から時間T7までの間では、第1圧力センサ72により検出された圧力P14と、第2圧力センサ73により検出された圧力P23との圧力差Z4は一定である。このとき、第2圧力センサ73により検出された圧力P23は、既に高圧側圧力の上限値に達しているとする。そして、時間T7から時間T8までの間に、外気の温度が時間T6から時間T7のときよりも徐々に上昇していったとする。すると、作動流体は、時間T7から時間T8までの間に、凝縮器30において時間T6から時間T7のときよりも高い温度に凝縮されていき、作動流体の圧力は徐々に高くなっていく。そして、時間T8のときに第1圧力センサ72により検出された圧力P15は、時間T7のときに第1圧力センサ72により検出された圧力P14よりも高くなっており、高圧側圧力と低圧側圧力との差が小さくなる。ここで、制御部75は、高圧側圧力が上限値を越えないように高圧側圧力を制御する。具体的には、制御部75がポンプ40を駆動させるモータの回転数を制御することで、ポンプ40から熱交換器50に圧送される作動流体の流量を変化させ、高圧側圧力が上限値を越えないようにする。これによれば、高圧側圧力と低圧側圧力との差を、制御上限値を越えない範囲内で極力大きくしようとしたことに起因して、高圧側圧力が過度に高くなってしまう、といった事態を防止することができる。その結果、膨張機20やポンプ40の信頼性をさらに確保することができる。
In the embodiment, an upper limit value of the high pressure side pressure may be set in advance. For example, as shown in FIG. 3, the pressure difference Z4 between the pressure P14 detected by the first pressure sensor 72 and the pressure P23 detected by the second pressure sensor 73 is constant between time T6 and time T7. It is. At this time, it is assumed that the pressure P23 detected by the second pressure sensor 73 has already reached the upper limit value of the high-pressure side pressure. Then, it is assumed that the temperature of the outside air gradually rises from time T6 to time T7 from time T7 to time T8. Then, the working fluid is condensed to a temperature higher than that at the time T6 to the time T7 in the condenser 30 from the time T7 to the time T8, and the pressure of the working fluid is gradually increased. The pressure P15 detected by the first pressure sensor 72 at time T8 is higher than the pressure P14 detected by the first pressure sensor 72 at time T7, and the high pressure side pressure and the low pressure side pressure are detected. The difference with is small. Here, the control unit 75 controls the high pressure side pressure so that the high pressure side pressure does not exceed the upper limit value. Specifically, the control unit 75 controls the rotational speed of the motor that drives the pump 40, thereby changing the flow rate of the working fluid pumped from the pump 40 to the heat exchanger 50, and the high-pressure side pressure reaches the upper limit value. Do not exceed. According to this, a situation in which the high pressure side pressure becomes excessively high due to an attempt to increase the difference between the high pressure side pressure and the low pressure side pressure as much as possible within a range not exceeding the control upper limit value. Can be prevented. As a result, the reliability of the expander 20 and the pump 40 can be further ensured.
駆動軸60aが、ポンプ40のポンプ軸及び膨張機20の出力軸の両方として機能していなくてもよい。そして、例えば、図4に示すように、ランキンサイクル装置10は、ポンプ40を駆動させるモータ40aを備えていてもよい。また、膨張機20の出力軸20bにはプーリ201bが止着されている。プーリ201bにはベルト60cが巻き掛けられている。ベルト60cは、エンジンEのクランク軸E3に止着されたプーリE4に巻き掛けられている。クランク軸E3は、プーリE4、ベルト60c及びプーリ201bを介して出力軸20bと連結している。膨張機20から出力された機械的エネルギーはエンジンEの回転出力を補助する。
The drive shaft 60a may not function as both the pump shaft of the pump 40 and the output shaft of the expander 20. For example, as shown in FIG. 4, the Rankine cycle apparatus 10 may include a motor 40 a that drives the pump 40. A pulley 201b is fixed to the output shaft 20b of the expander 20. A belt 60c is wound around the pulley 201b. The belt 60c is wound around a pulley E4 fixed to the crankshaft E3 of the engine E. The crankshaft E3 is connected to the output shaft 20b via a pulley E4, a belt 60c, and a pulley 201b. The mechanical energy output from the expander 20 assists the rotational output of the engine E.
ポンプ40はモータ40aの回転によって駆動して、作動流体を熱交換器50に圧送するようになっている。制御部75は、例えば、第1圧力センサ72により検出される圧力が徐々に低くなっていったとしても、高圧側圧力と低圧側圧力との差が予め設定された制御上限値を越えない範囲では、高圧側圧力が一定値に保たれるように、作動流体の流量をモータ40aの回転数制御を通じて調整することができる。その結果、高圧側圧力と低圧側圧力との差を、制御上限値を越えない範囲内で極力大きくすることができる。また、例えば、第1圧力センサ72により検出される圧力が過度に低くなった場合に、制御部75がモータ40aの回転数が減少するようにモータ40aを制御する。これによれば、ポンプ40により熱交換器50へ圧送される作動流体の流量を少なくすることができ、その結果として、高圧側圧力と低圧側圧力との差が予め設定された制御上限値を越えないように高圧側圧力を低くすることができる。よって、高圧側圧力と低圧側圧力との差が大きくなり過ぎてしまうことを防止することができる。
The pump 40 is driven by the rotation of the motor 40a to pump the working fluid to the heat exchanger 50. For example, even if the pressure detected by the first pressure sensor 72 gradually decreases, the control unit 75 has a range in which the difference between the high pressure side pressure and the low pressure side pressure does not exceed a preset control upper limit value. Then, the flow rate of the working fluid can be adjusted through the rotation speed control of the motor 40a so that the high-pressure side pressure is maintained at a constant value. As a result, the difference between the high pressure side pressure and the low pressure side pressure can be increased as much as possible within a range not exceeding the control upper limit value. For example, when the pressure detected by the first pressure sensor 72 is excessively low, the control unit 75 controls the motor 40a so that the rotation speed of the motor 40a decreases. According to this, the flow rate of the working fluid pumped to the heat exchanger 50 by the pump 40 can be reduced, and as a result, the difference between the high pressure side pressure and the low pressure side pressure is set to a preset control upper limit value. The high pressure side pressure can be lowered so as not to exceed. Therefore, it is possible to prevent the difference between the high pressure side pressure and the low pressure side pressure from becoming too large.
また、図5に示すように、膨張機20には発電機20aが接続されていてもよい。そして、制御部75は、例えば、第1圧力センサ72により検出される圧力が徐々に低くなっていったとしても、高圧側圧力と低圧側圧力との差が予め設定された制御上限値を越えない範囲では、発電機20aの回転数を制御し、高圧側圧力を一定値に保つ。これにより、高圧側圧力と低圧側圧力との差を、制御上限値を越えない範囲内で極力大きくすることができる。また、例えば、第1圧力センサ72により検出される圧力が過度に低くなった場合に、制御部75が発電機20aの回転数が上昇するように発電機20aを制御する。これによれば、発電機20aと共に駆動する膨張機20の回転数が上昇するように制御され、高圧側圧力を低くすることができる。その結果として、高圧側圧力と低圧側圧力との差が予め設定された制御上限値を越えないようにすることができ、高圧側圧力と低圧側圧力との差が大きくなり過ぎてしまうことを防止することができる。
Further, as shown in FIG. 5, a power generator 20 a may be connected to the expander 20. For example, even if the pressure detected by the first pressure sensor 72 gradually decreases, the control unit 75 causes the difference between the high pressure side pressure and the low pressure side pressure to exceed the preset control upper limit value. In the absence range, the rotational speed of the generator 20a is controlled to keep the high-pressure side pressure at a constant value. Thereby, the difference between the high pressure side pressure and the low pressure side pressure can be increased as much as possible within a range not exceeding the control upper limit value. For example, when the pressure detected by the first pressure sensor 72 is excessively low, the control unit 75 controls the generator 20a so that the rotational speed of the generator 20a increases. According to this, it controls so that the rotation speed of the expander 20 driven with the generator 20a rises, and it can make a high voltage | pressure side pressure low. As a result, it is possible to prevent the difference between the high-pressure side pressure and the low-pressure side pressure from exceeding a preset control upper limit value, and the difference between the high-pressure side pressure and the low-pressure side pressure becomes too large. Can be prevented.
バイパス通路71の一端は第2通路22に接続されていてもよい。また、バイパス通路71の他端は第4通路24に接続されていてもよい。要は、バイパス通路71によって、ポンプ40の出口から膨張機20の入口までの間を延びる通路を流れる作動流体の一部が、膨張機20の出口からポンプ40の入口までの間を延びる通路へバイパス可能であればよい。
One end of the bypass passage 71 may be connected to the second passage 22. Further, the other end of the bypass passage 71 may be connected to the fourth passage 24. The point is that a part of the working fluid flowing through the passage extending from the outlet of the pump 40 to the inlet of the expander 20 is transferred by the bypass passage 71 to the passage extending from the outlet of the expander 20 to the inlet of the pump 40. What is necessary is just to be able to bypass.
第1圧力センサ72が第3通路23に設けられていてもよい。
The first pressure sensor 72 may be provided in the third passage 23.
凝縮器30において凝縮されて液化した作動流体の温度(詳細には、凝縮器30の出口から過冷却器までの間を流れる作動流体の温度)を検出する温度センサを設けてもよい。そして、制御部75は、温度センサにより検出された作動流体の温度に基づいて作動流体の圧力を算出するようにしてもよい。この場合、温度センサ及び制御部75により、低圧側圧力を検出する圧力検出装置が構成されている。
A temperature sensor for detecting the temperature of the working fluid condensed and liquefied in the condenser 30 (specifically, the temperature of the working fluid flowing from the outlet of the condenser 30 to the subcooler) may be provided. Then, the control unit 75 may calculate the pressure of the working fluid based on the temperature of the working fluid detected by the temperature sensor. In this case, the temperature sensor and the control unit 75 constitute a pressure detection device that detects the low-pressure side pressure.
排熱源からの流体としては、例えば、エンジンEに接続された冷却水循環経路を流れるエンジン冷却水や過給空気、EGRガス等を利用してもよい。
As the fluid from the exhaust heat source, for example, engine cooling water, supercharged air, EGR gas, or the like flowing through a cooling water circulation path connected to the engine E may be used.
Claims (5)
- 作動流体を圧送するポンプと、
前記ポンプにより圧送された作動流体を排熱源からの流体と熱交換させる熱交換器と、
前記熱交換器で熱交換された作動流体を膨張させて機械的エネルギーを出力する膨張機と、
前記膨張機で膨張された作動流体を凝縮させる凝縮器であって、前記ポンプ、前記熱交換器、前記膨張機、及び前記凝縮器は、作動流体が循環する作動流体回路を形成するように順次接続される、前記凝縮器と、
前記膨張機の出口から前記ポンプの入口までを流れる作動流体の圧力である低圧側圧力を検出する圧力検出装置と、
前記ポンプの出口から前記膨張機の入口までを流れる作動流体の圧力である高圧側圧力を制御する圧力制御装置と、を備え、
前記圧力制御装置は、前記高圧側圧力と前記低圧側圧力との差が予め設定された制御上限値を越えない範囲では、前記低圧側圧力が低下しても前記高圧側圧力を一定に保つように制御するよう構成されるランキンサイクル装置。 A pump for pumping the working fluid;
A heat exchanger that exchanges heat between the working fluid pumped by the pump and the fluid from the exhaust heat source;
An expander that expands the working fluid heat-exchanged by the heat exchanger and outputs mechanical energy;
A condenser that condenses the working fluid expanded by the expander, wherein the pump, the heat exchanger, the expander, and the condenser sequentially form a working fluid circuit through which the working fluid circulates. Connected to the condenser;
A pressure detection device that detects a low-pressure side pressure that is a pressure of a working fluid flowing from an outlet of the expander to an inlet of the pump;
A pressure control device that controls a high-pressure side pressure that is a pressure of a working fluid that flows from an outlet of the pump to an inlet of the expander,
The pressure control device keeps the high-pressure side pressure constant even when the low-pressure side pressure is reduced, as long as the difference between the high-pressure side pressure and the low-pressure side pressure does not exceed a preset control upper limit value. A Rankine cycle device configured to be controlled. - 前記圧力制御装置は、前記高圧側圧力が予め設定された上限値を越えないように高圧側圧力を制御するよう構成される請求項1に記載のランキンサイクル装置。 The Rankine cycle device according to claim 1, wherein the pressure control device is configured to control the high-pressure side pressure so that the high-pressure side pressure does not exceed a preset upper limit value.
- 前記作動流体回路は、前記ポンプの出口から前記膨張機の入口までの間の部分を、前記膨張機の出口から前記ポンプの入口までの間の部分に接続するバイパス通路を含み、
前記圧力制御装置は、前記バイパス通路を流れる作動流体の流量を変化させることで前記高圧側圧力を制御するよう構成される請求項1又は請求項2に記載のランキンサイクル装置。 The working fluid circuit includes a bypass passage connecting a portion between the outlet of the pump and the inlet of the expander to a portion between the outlet of the expander and the inlet of the pump;
The Rankine cycle device according to claim 1 or 2, wherein the pressure control device is configured to control the high-pressure side pressure by changing a flow rate of the working fluid flowing through the bypass passage. - 前記圧力制御装置は、前記ポンプを駆動するモータの回転数を制御することで、前記高圧側圧力を制御するよう構成される請求項1又は請求項2に記載のランキンサイクル装置。 The Rankine cycle device according to claim 1 or 2, wherein the pressure control device is configured to control the high-pressure side pressure by controlling a rotation speed of a motor that drives the pump.
- 前記圧力制御装置は、前記膨張機の回転数を制御することで、前記高圧側圧力を制御するよう構成される請求項1又は請求項2に記載のランキンサイクル装置。 The Rankine cycle device according to claim 1 or 2, wherein the pressure control device is configured to control the high-pressure side pressure by controlling a rotation speed of the expander.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012154422A JP2014016115A (en) | 2012-07-10 | 2012-07-10 | Rankine cycle device |
JP2012-154422 | 2012-07-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014010465A1 true WO2014010465A1 (en) | 2014-01-16 |
Family
ID=49915928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/068105 WO2014010465A1 (en) | 2012-07-10 | 2013-07-02 | Rankine cycle device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014016115A (en) |
WO (1) | WO2014010465A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020190199A1 (en) * | 2019-03-20 | 2020-09-24 | Scania Cv Ab | Control unit, waste heat recovery system, vehicle comprising such a system, and method for starting an expansion device of a waste heat recovery system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007255327A (en) * | 2006-03-23 | 2007-10-04 | Nippon Soken Inc | Expander controlling device |
JP2008157152A (en) * | 2006-12-25 | 2008-07-10 | Denso Corp | Rankine cycle |
JP2009097434A (en) * | 2007-10-17 | 2009-05-07 | Sanden Corp | Waste heat utilization device for internal combustion engine |
JP2012067683A (en) * | 2010-09-24 | 2012-04-05 | Toyota Industries Corp | Rankine cycle device |
-
2012
- 2012-07-10 JP JP2012154422A patent/JP2014016115A/en active Pending
-
2013
- 2013-07-02 WO PCT/JP2013/068105 patent/WO2014010465A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007255327A (en) * | 2006-03-23 | 2007-10-04 | Nippon Soken Inc | Expander controlling device |
JP2008157152A (en) * | 2006-12-25 | 2008-07-10 | Denso Corp | Rankine cycle |
JP2009097434A (en) * | 2007-10-17 | 2009-05-07 | Sanden Corp | Waste heat utilization device for internal combustion engine |
JP2012067683A (en) * | 2010-09-24 | 2012-04-05 | Toyota Industries Corp | Rankine cycle device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020190199A1 (en) * | 2019-03-20 | 2020-09-24 | Scania Cv Ab | Control unit, waste heat recovery system, vehicle comprising such a system, and method for starting an expansion device of a waste heat recovery system |
Also Published As
Publication number | Publication date |
---|---|
JP2014016115A (en) | 2014-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2204902B1 (en) | Waste heat utilization device for internal combustion engine | |
JP5338730B2 (en) | Waste heat regeneration system | |
US20110088394A1 (en) | Waste heat regeneration system | |
US10184359B2 (en) | Waste heat recovery device and waste heat recovery method | |
JP5621721B2 (en) | Rankine cycle | |
US10234183B2 (en) | Compressing device | |
JP6143755B2 (en) | Engine waste heat utilization device | |
WO2013046853A1 (en) | Waste heat regeneration system | |
KR20140143705A (en) | Heat recovery apparatus and operation control method of heat recovery apparatus | |
KR101897871B1 (en) | Thermal energy recovery system | |
JP2017044454A (en) | Refrigeration cycle device and control method for the same | |
JP2007225140A (en) | Turbo refrigerating machine, and control device and method of turbo refrigerating machine | |
JP6277148B2 (en) | Power generator | |
JP2013231377A (en) | Waste heat regeneration system | |
WO2012039225A1 (en) | Rankine cycle device | |
JP6406583B2 (en) | Rankine cycle equipment | |
JP2008057874A (en) | Refrigerating cycle device | |
WO2014010465A1 (en) | Rankine cycle device | |
WO2013002018A1 (en) | Rankine cycle | |
US10677101B2 (en) | Combined heat and power system and operating method of combined heat and power system | |
JP5589981B2 (en) | Waste heat recovery device | |
EP3375988B1 (en) | Supercharged air cooling unit | |
JP6091077B2 (en) | Refrigeration equipment | |
JP2021067427A (en) | Feedwater heating system | |
JP6184156B2 (en) | Refrigeration cycle equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13816573 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13816573 Country of ref document: EP Kind code of ref document: A1 |