WO2014010312A1 - 二次電池の充電制御方法および充電制御装置 - Google Patents
二次電池の充電制御方法および充電制御装置 Download PDFInfo
- Publication number
- WO2014010312A1 WO2014010312A1 PCT/JP2013/064182 JP2013064182W WO2014010312A1 WO 2014010312 A1 WO2014010312 A1 WO 2014010312A1 JP 2013064182 W JP2013064182 W JP 2013064182W WO 2014010312 A1 WO2014010312 A1 WO 2014010312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charging
- current value
- secondary battery
- positive electrode
- upper limit
- Prior art date
Links
- 238000007600 charging Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000010280 constant potential charging Methods 0.000 claims abstract description 24
- 238000010277 constant-current charging Methods 0.000 claims abstract description 15
- 239000011255 nonaqueous electrolyte Substances 0.000 claims abstract description 6
- 239000007774 positive electrode material Substances 0.000 claims description 35
- 239000007773 negative electrode material Substances 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 239000013543 active substance Substances 0.000 abstract 2
- 230000000052 comparative effect Effects 0.000 description 28
- 230000014759 maintenance of location Effects 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 13
- 229910001416 lithium ion Inorganic materials 0.000 description 13
- -1 polytetrafluoroethylene Polymers 0.000 description 12
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 11
- 239000011888 foil Substances 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000011267 electrode slurry Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000000284 resting effect Effects 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000020411 cell activation Effects 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- YVIVRJLWYJGJTJ-UHFFFAOYSA-N gamma-Valerolactam Chemical compound CC1CCC(=O)N1 YVIVRJLWYJGJTJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229940017219 methyl propionate Drugs 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 108010014173 Factor X Proteins 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910007593 Li1.85Ni0.18Co0.10Mn0.87O3 Inorganic materials 0.000 description 1
- 229910010085 Li2MnO3-LiMO2 Inorganic materials 0.000 description 1
- 229910010099 Li2MnO3—LiMO2 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/00714—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/007182—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
-
- H02J7/008—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a charge control method and a charge control device for a secondary battery.
- This application claims priority based on Japanese Patent Application No. 2012-156668 filed on July 21, 2012.
- the contents described in the application are incorporated into the present application by reference and made a part of the description of the present application.
- Patent Document 1 discloses a solid solution material such as Li 2 MnO 3 —LiMO 2 (M is a transition metal having an average oxidation state of 3+).
- the positive electrode material having a high theoretical capacity such as the solid solution material disclosed in Patent Document 1 has a characteristic that resistance increases in a high SOC region. Therefore, when a secondary battery using such a positive electrode material is charged by constant current-constant voltage charging, the positive and negative electrode potentials fluctuate in the constant voltage charging process (particularly at the end of charging). Side reactions such as decomposition of the liquid and precipitation of lithium occur, resulting in a problem that the cycle characteristics deteriorate.
- the problem to be solved by the present invention is to improve the cycle characteristics of a secondary battery using a positive electrode active material having a characteristic that resistance increases as the SOC increases as the positive electrode material.
- the present invention relates to a charge control method for a secondary battery using a positive electrode active material having different open-circuit voltage curves for charging and discharging as a positive electrode material, and a charge cutoff current when performing constant current-constant voltage charging.
- the value A 2 , the cell resistance value R 1 of the secondary battery at the target SOC, the set current value A 1 during constant current charging, the threshold coefficient X calculated from the upper limit voltage for charging, and the set current during constant current charging By setting the current value equal to or greater than the product of the value A 1 (A 1 ⁇ X), the above problem is solved.
- the charging when charging a secondary battery using a positive electrode active material having a characteristic that the resistance increases as the SOC increases as the positive electrode material, the charging is terminated at a predetermined cut-off current.
- the charge / discharge efficiency of the secondary battery can be improved, and as a result, cycle characteristics can be improved.
- FIG. 1 is a configuration diagram illustrating a charge control system for a secondary battery according to the present embodiment.
- FIG. 2 is a plan view of the secondary battery according to the present embodiment.
- FIG. 3 is a cross-sectional view of the secondary battery taken along line III-III in FIG.
- FIG. 4 is a profile showing changes in the charging current and the voltage of the secondary battery 10 when the secondary battery 10 according to this embodiment is subjected to constant current-constant voltage charging.
- FIG. 5 is a graph showing the relationship between the value of “cutoff current value A 2 / set current value A 1 ” and the capacity retention ratio at the 100th cycle in the examples and comparative examples.
- FIG. 1 is a diagram showing a configuration of a charge control system for a secondary battery according to the present embodiment.
- the secondary battery charge control system according to the present embodiment includes a secondary battery 10, a control device 20, a load 30, an ammeter 40, and a voltmeter 50.
- the charge control device 20 is a device for controlling the secondary battery 10.
- the load 30 is various devices that receive power supply from the secondary battery 10.
- the load 30 includes an inverter and a motor.
- the load 30 is composed of an inverter and a motor, the regenerative power generated by the rotation of the motor is converted into DC power via the inverter and used for charging the secondary battery 10. It can also be set as such a structure.
- Examples of the secondary battery 10 include a lithium secondary battery such as a lithium ion secondary battery.
- FIG. 2 is a plan view of the secondary battery 10 according to the present embodiment, and
- FIG. 3 is a cross-sectional view of the secondary battery 10 taken along line III-IV in FIG.
- the secondary battery 10 includes an electrode laminate 101 having three positive plates 102, seven separators 103, and three negative plates 104, and each of the electrode laminates 101. Connected positive electrode tab 105 and negative electrode tab 106, upper exterior member 107 and lower exterior member 108 housing and sealing these electrode laminate 101, positive electrode tab 105, and negative electrode tab 106, and non-water not specifically shown And an electrolytic solution.
- the number of the positive electrode plate 102, the separator 103, and the negative electrode plate 104 is not particularly limited, and the electrode laminate 101 may be configured by one positive electrode plate 102, three separators 103, and one negative electrode plate 104. Moreover, the number of the positive electrode plate 102, the separator 103, and the negative electrode plate 104 may be appropriately selected as necessary.
- the positive electrode plate 102 constituting the electrode laminate 101 includes a positive electrode side current collector 104a extending to the positive electrode tab 105, and a positive electrode active material layer formed on both main surfaces of a part of the positive electrode side current collector 104a. have.
- the positive electrode side current collector 102a constituting the positive electrode plate 102 is made of, for example, an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper titanium foil, or a stainless steel foil having a thickness of about 20 ⁇ m. be able to.
- the positive electrode active material layer constituting the positive electrode plate 102 is a mixture of a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride or an aqueous dispersion of polytetrafluoroethylene. It is formed by applying to a part of the main surface of the positive electrode side current collector 104a, drying and pressing.
- the secondary battery 10 contains at least a positive electrode active material having a property of increasing resistance as the SOC increases in the positive electrode active material layer constituting the positive electrode plate 102 as the positive electrode active material.
- the positive electrode active material having such a characteristic that the resistance increases as the SOC becomes higher is not particularly limited, and examples thereof include a positive electrode material on a Li-excess layer having LiMnO 3 as a parent structure.
- the compound represented by General formula (1) is mentioned. In particular, since the compound represented by the following general formula (1) has a high potential and a high capacity, the secondary battery 10 has a high energy density by using such a compound as a positive electrode active material. can do. In addition, the compound represented by the following general formula (1) usually forms a solid solution.
- M ′ may be any metal element (metal element other than Li, Ni, Co, and Mn), and is not particularly limited. At least one selected from Al, Mg and Mg is preferable, and Ti is particularly preferable.
- the positive electrode active material layer has a positive electrode active material other than the positive electrode active material having the characteristic that the resistance increases as the SOC increases, for example, lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O). 4 ), a lithium composite oxide such as lithium cobaltate (LiCoO 2 ), LiFePO 4 , LiMnPO 4, or the like may be contained.
- a positive electrode active material other than the positive electrode active material having the characteristic that the resistance increases as the SOC increases for example, lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O). 4 ), a lithium composite oxide such as lithium cobaltate (LiCoO 2 ), LiFePO 4 , LiMnPO 4, or the like may be contained.
- the positive electrode current collectors 102 a constituting the three positive electrode plates 102 are joined to the positive electrode tab 105.
- the positive electrode tab 105 for example, an aluminum foil having a thickness of about 0.2 mm, an aluminum alloy foil, a copper foil, or a nickel foil can be used.
- the negative electrode plate 104 constituting the electrode laminate 101 includes a negative electrode current collector 104a extending to the negative electrode tab 106, and a negative electrode active material layer formed on both main surfaces of a part of the negative electrode current collector 104a. And have.
- the negative electrode side current collector 104a of the negative electrode plate 104 is an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil having a thickness of about 10 ⁇ m.
- the negative electrode active material layer constituting the negative electrode plate 104 includes a negative electrode active material, a conductive agent such as carbon black, a binder such as polyvinylidene fluoride, and a solvent such as N-methyl-2-pyrrolidone. It is formed by preparing a slurry, applying it to both main surfaces of a part of the negative electrode side current collector 104a, drying and pressing.
- the negative electrode active material constituting the negative electrode active material layer is not particularly limited.
- a material containing at least a negative electrode active material containing silicon or carbon as a main element can be used.
- the negative electrode active material containing silicon as a main element include silicon and silicon compounds such as silicon oxide.
- the negative electrode active material containing carbon as a main element include non-graphitizable carbon, graphitizable carbon, and graphite.
- the three negative electrode plates 104 are configured such that the negative electrode current collectors 104 a constituting the negative electrode plate 104 are joined to a single negative electrode tab 106. ing. That is, in the secondary battery 10 of this embodiment, each negative electrode plate 104 is configured to be joined to a single common negative electrode tab 106.
- the separator 103 of the electrode laminate 101 prevents the short circuit between the positive electrode plate 102 and the negative electrode plate 104 described above, and may have a function of holding an electrolyte.
- the separator 103 is a microporous film made of, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP) having a thickness of about 25 ⁇ m.
- PE polyethylene
- PP polypropylene
- the positive electrode plate 102 and the negative electrode plate 104 are alternately laminated via the separator 103, and further, the separator 103 is laminated on the uppermost layer and the lowermost layer, respectively.
- the electrode laminate 101 is formed.
- the electrolytic solution contained in the secondary battery 10 is a liquid in which a lithium salt such as lithium borofluoride (LiBF 4 ) or lithium hexafluorophosphate (LiPF 6 ) is dissolved as a solute in an organic liquid solvent.
- a lithium salt such as lithium borofluoride (LiBF 4 ) or lithium hexafluorophosphate (LiPF 6 )
- the organic liquid solvent constituting the electrolytic solution include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC),
- ester solvents such as methyl formate (MF), methyl acetate (MA), and methyl propionate (MP), and these can be used as a mixture.
- the electrode laminate 101 configured as described above is housed and sealed in the upper exterior member 107 and the lower exterior member 108 (sealing means).
- the upper exterior member 107 and the lower exterior member 108 for sealing the electrode laminate 101 are, for example, laminated with a resin film such as polyethylene or polypropylene, or a metal foil such as aluminum laminated with a resin such as polyethylene or polypropylene. It is formed of a flexible material such as a resin-metal thin film laminate material, and the upper outer member 107 and the lower outer member 108 are heat-sealed to lead the positive electrode tab 105 and the negative electrode tab 106 to the outside. In this state, the electrode laminate 101 is sealed.
- the positive electrode tab 105 and the negative electrode tab 106 are provided with a seal film 109 in order to ensure adhesion between the upper exterior member 107 and the lower exterior member 108 in a portion in contact with the upper exterior member 107 and the lower exterior member 108.
- a seal film 109 in order to ensure adhesion between the upper exterior member 107 and the lower exterior member 108 in a portion in contact with the upper exterior member 107 and the lower exterior member 108.
- the sealing film 109 can comprise from synthetic resin materials excellent in electrolyte solution resistance and heat-fusion property, such as polyethylene, modified polyethylene, a polypropylene, a modified polypropylene, or an ionomer.
- the secondary battery 10 according to the present embodiment is configured as described above.
- FIG. 4 is a profile showing changes in the charging current and the voltage of the secondary battery 10 when the secondary battery 10 according to this embodiment is subjected to constant current-constant voltage charging.
- the upper limit voltage V 1 is not particularly limited.
- the upper limit voltage V 1 is usually 4.3 to 4.5 V. Degree.
- set current value A 1 there is no particular limitation set current value A 1.
- the voltage of the secondary battery 10 Gradually increases, and for example, reaches the upper limit voltage V 1 at time T 1 .
- the voltage of the secondary battery 10 after reaching the upper limit voltage V 1, at the upper limit voltage V 1, performs constant voltage charging.
- the charging current attenuates.
- the charging current is gradually attenuated, it drops to the cut-off current value A 2, and terminates the charging of the secondary battery 10.
- the charging control of the secondary battery 10 is performed in this way.
- the procedure for setting the cut-off current value A upon setting the cut-off current value A 2, the cell resistance R 1 of the rechargeable battery 10 in the target SOC (unit, Omega), the set current value A at the time of constant current charging mentioned above
- the target SOC in the “cell resistance value R 1 of the secondary battery at the target SOC” is, for example, the case where the secondary battery 10 is charged at the charging rate of 0.1 C up to the upper limit voltage V 1 .
- SOC SOC. That is, for example, when the secondary battery 10 is charged at 0.1 C, and the SOC at the time when the voltage of the secondary battery 10 becomes 4.3 V, the upper limit voltage is reached.
- the “cell resistance value R 1 of the secondary battery at the target SOC” can be obtained by actually measuring the cell resistance value when the secondary battery 10 is charged to the target SOC.
- the relationship between the target SOC and the upper limit voltage V 1 is generally determined by the types of the positive electrode active material and the negative electrode active material constituting the secondary battery 10, the type of the non-aqueous electrolyte, and the positive electrode and the negative electrode. It changes depending on the balance.
- a secondary battery 10 manufactured by the same design that is, a secondary battery using the same positive electrode active material, the same negative electrode active material, the same non-aqueous electrolyte, and having the same balance between the positive electrode and the negative electrode) battery 10) includes a target SOC, the relationship between the upper limit voltages V 1 becomes similar.
- a method for measuring the “cell resistance value R 1 of the secondary battery at the target SOC” is not particularly limited.
- the secondary battery 10 charged to the target SOC is measured by measuring AC impedance. be able to.
- the cutoff current value A 2 is a value equal to or greater than the product (A 1 ⁇ X) of the set current value A 1 and the threshold coefficient X (and a value less than the set current value A 1 ).
- the charging current is cut-off current value at the time when decreased to a 2, it is to terminate the charging of the secondary battery 10.
- the constant voltage charging is performed.
- the present embodiment calculates the cut-off current value A 2, the cell resistance R 1 of the rechargeable battery in the target SOC, the set current value A 1 at constant current charging, and the charging upper limit voltage
- the product of the threshold coefficient X to be set and the set current value A 1 at the time of constant current charging (A 1 ⁇ X) or more is set and the charging current is attenuated to the cut-off current value A 2 in the constant voltage charging
- control device 20 corresponds to a constant current charging unit, a constant voltage charging unit, and a charging stop unit of the present invention related to a charging control device for a secondary battery.
- Graphite powder, acetylene black as a conductive additive, and PVDF as a binder are blended so as to have a mass ratio of 90: 5: 5, and N-methyl-2-pyrrolidone is added as a solvent thereto.
- the obtained negative electrode slurry was applied onto a copper foil as a current collector so that the thickness after drying was 70 ⁇ m, the solvent was dried, and then dried under vacuum for 24 hours, Got.
- Table 1 shows the capacity retention rate at the 100th cycle.
- Table 1 shows the capacity retention rate at the 100th cycle.
- Table 1 shows the capacity retention rate at the 100th cycle.
- Comparative Example 4 For a lithium ion secondary battery, in a constant current-constant voltage charging method in an atmosphere of 30 ° C., a setting current A 1 is set to 35 mA (1C), an upper limit voltage V 1 is 4.5 V, and a charging time is 2 hours. After charging and resting for 10 minutes, the battery was discharged to 2 V at a constant current of 35 mA (1 C). And the cycle test which makes this 1 cycle was done 100 cycles. That is, in the comparative example 4, without providing the cut-off current value A 2, constant current - was constant voltage charging. Table 1 shows the capacity retention rate at the 100th cycle.
- Comparative Examples 1 to 4 Example subjected to cycle test limit voltages V 1 as 4.5V 1-3, are summarized the results of Comparative Examples 1-4. As shown in Table 1, in Examples 1 to 3 in which a current value satisfying A 2 / A 1 ⁇ X was adopted as the cut-off current value A 2 , the capacity maintenance rate at the 100th cycle was 90% or more. Both were high and gave good results.
- a 2 / A 1 0.05. 4 satisfied A 2 / A 1 ⁇ X.
- Table 2 shows the capacity retention rate at the 100th cycle.
- Comparative Example 5 For a lithium ion secondary battery, in a constant current-constant voltage charging method in an atmosphere of 30 ° C., a setting current A 1 is set to 35 mA (1C), an upper limit voltage V 1 is set to 4.4 V, and a charging time is 2 hours. After charging and resting for 10 minutes, the battery was discharged to 2 V at a constant current of 35 mA (1 C). And the cycle test which makes this 1 cycle was done 100 cycles. That is, in Comparative Example 5, without providing the cut-off current value A 2, constant current - was constant voltage charging. Table 2 shows the capacity retention rate at the 100th cycle.
- Example 4 the evaluation Table 2 Comparative Example 5, Example 4 of the upper limit voltages V 1 cycled tests as 4.4 V, it is summarized the results of Comparative Example 5.
- Table 2 in Example 4 in which a current value satisfying A 2 / A 1 ⁇ X was adopted as the cut-off current value A 2 , the capacity maintenance rate at the 100th cycle was as high as 90% or more, Good results.
- Comparative Example 5 that it did not set a cut-off current value A 2
- both 100th cycle capacity retention rate is less than 40% was achieved, very poor cycle characteristics.
- a 2 / A 1 0.05. 5 satisfied A 2 / A 1 ⁇ X.
- Table 3 shows the capacity retention rate at the 100th cycle.
- Comparative Example 6 For a lithium ion secondary battery, in a constant current-constant voltage charging method in an atmosphere of 30 ° C., with a setting current A 1 of 35 mA (1C), an upper limit voltage V 1 of 4.3 V, and a charging time of 2 hours. After charging and resting for 10 minutes, the battery was discharged to 2 V at a constant current of 35 mA (1 C). And the cycle test which makes this 1 cycle was done 100 cycles. That is, in Comparative Example 6, without providing the cut-off current value A 2, constant current - was constant voltage charging. Table 3 shows the capacity retention rate at the 100th cycle.
- Example 5 the evaluation Table 3 Comparative Example 6, Example 5 was performed cycle test limit voltages V 1 as 4.3 V, are summarized the results of Comparative Example 6. As shown in Table 3, in Example 5 in which a current value satisfying A 2 / A 1 ⁇ X was adopted as the cut-off current value A 2 , the capacity maintenance rate at the 100th cycle was as high as 90% or more, Good results. On the other hand, in Comparative Example 6 which did not set a cut-off current value A 2 are both 100th cycle capacity retention rate is less than 70%, was inferior in cycle characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本出願は、2012年7月21日に出願された日本国特許出願の特願2012―156668に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
Li(2-0.5x)Mn1-xM1.5xO3 ・・・(1)
(上記式(1)において、0.1≦x≦0.5であり、式中のMは、NiαCoβMnγM’σ(ただし、0<α≦0.5、0≦β≦0.33、0<γ≦0.5、0≦σ≦0.1、α+β+γ+σ=1、M’は金属元素である。)である。)
Li(2-0.5x)Mn1-x(NiαCoβMnγ)1.5xO3 ・・・(2)
(上記式(2)において、0.1≦x≦0.5、0<α≦0.5、0≦β≦0.33、0<γ≦0.5、α+β+γ=1である。)
閾値係数X=(目標SOCにおける二次電池のセル抵抗値R1[Ω]/設定電流値A1[A])/上限電圧V1[V] ・・・(3)
カットオフ電流値A2≧設定電流値A1×閾値係数X ・・・(4)
すなわち、設定電流値A1と閾値係数Xとの積(A1×X)以上の値となるように、カットオフ電流値A2を設定する。
カットオフ電流値A2/設定電流値A1≧閾値係数X ・・・(5)
そのため、本実施形態では、設定電流値A1に対する、カットオフ電流値A2の比(A2/A1)が、閾値係数X以上となるように、カットオフ電流値A2を設定するということもできる。
グラファイト粉末と、導電助剤としてのアセチレンブラックと、バインダーとしてのPVDFを、90:5:5の質量比となるように配合し、これにN-メチル-2-ピロリドンを溶媒として添加し、これらを混合することで、負極スラリーを作製した。次いで、得られた負極スラリーを、集電体としての銅箔上に、乾燥後の厚みが70μmとなるように塗布し、溶媒を乾燥し、次いで、真空下で24時間乾燥することで、負極を得た。
次いで、上記にて得られた負極と正極とを対向させ、この間に、厚さ20μmのポリオレフィン製セパレータを配置することで、負極、セパレータおよび正極からなる積層体を得た。そして、得られた負極、セパレータおよび正極からなる積層体を、アルミニウム製のラミネートセル内に入れ、電解液をセル内に注入した後、密閉することで、リチウムイオン二次電池を得た。なお、電解液としては、1M LiPF6 エチレンカーボネート(EC):ジエチルカーボネート(DEC)(1:2(体積比))を用いた。
上記にて得られたリチウムイオン二次電池について、30℃の雰囲気下、定電流充電方式にて、0.1Cにて、4.5Vに達するまで充電を行ない、次いで、10分間休止させた後、同じく0.1Cの定電流にて2.0Vまで放電を行なった。次いで、充電上限電圧を4.6V、4.7V、4.8Vにそれぞれ変更して、0.1Cの定電流充電、10分間の休止、および0.1Cの定電流放電(カットオフ電圧:2.0V)を繰り返し行なうことで、セルの活性化処理を行った。また、本実施例では、充電上限電圧を4.8Vとした際の放電容量は、35mAhであり、これをセル容量(すなわち、SOC=100%の容量)とした。
上記にてセルの活性化を行ったリチウムイオン二次電池について、充電を行い、SOC=10%まで充電した後、電流印加を停止して、そのまま2時間放置した。その後、SOC=10%まで充電したリチウムイオン二次電池について、電圧幅10mV、周波数10mHz~1MHzの範囲において、交流インピーダンス測定を実施することにより、セル抵抗を測定した。
そして、同様の操作を、SOC=100%となるまで、SOC10%ごとに行うことで、SOC=10%、20%、30%、40%、50%、60%、70%、80%、90%および100%の各状態におけるセル抵抗を測定した。
次いで、上記と同様にして、セルの作製およびセルの活性化を行ったリチウムイオン二次電池を複数準備し、以下の充放電条件にてサイクル試験を行った。
リチウムイオン二次電池について、30℃の雰囲気下、定電流-定電圧充電方式にて、設定電流A1を35mA(1C)、定電圧充電におけるカットオフ電流値A2を17.5mA(A2/A1=0.5)、上限電圧V1を4.5Vとし、充電時間2時間の条件で充電を行い、10分間休止させた後、35mA(1C)の定電流にて、2Vまで放電した。そして、これを1サイクルとするサイクル試験を100サイクル行った。なお、実施例1における目標SOCは90%であり、上記方法にしたがって測定したこの時のセル抵抗値は7.5Ωであった。そのため、閾値係数XはX=0.0583(X=(7.5×0.035)/4.5)であり、実施例1においては、A2/A1=0.5であるため、実施例1は、A2/A1≧Xを満たすものであった。表1に、100サイクル目の容量維持率(=100サイクル目の放電容量/1サイクル目の放電容量×100(%))を示す。
定電圧充電におけるカットオフ電流値A2を8.75mA(A2/A1=0.25)に変更した以外は、実施例1と同様にして、100サイクルのサイクル試験を行った。なお、実施例2においては、実施例1と同様に、閾値係数XはX=0.0583であり、A2/A1=0.25であるため、実施例2は、A2/A1≧Xを満たすものであった。表1に、100サイクル目の容量維持率を示す。
定電圧充電におけるカットオフ電流値A2を3.5mA(A2/A1=0.1)に変更した以外は、実施例1と同様にして、100サイクルのサイクル試験を行った。なお、実施例3においては、実施例1と同様に、閾値係数XはX=0.0583であり、A2/A1=0.1であるため、実施例3は、A2/A1≧Xを満たすものであった。表1に、100サイクル目の容量維持率を示す。
定電圧充電におけるカットオフ電流値A2を1.75mA(A2/A1=0.05)に変更した以外は、実施例1と同様にして、100サイクルのサイクル試験を行った。なお、比較例1においては、実施例1と同様に、閾値係数XはX=0.0583である一方で、A2/A1=0.05であるため、比較例1は、A2/A1≧Xを満足しないものであった。表1に、100サイクル目の容量維持率を示す。
定電圧充電におけるカットオフ電流値A2を1.05mA(A2/A1=0.03)に変更した以外は、実施例1と同様にして、100サイクルのサイクル試験を行った。なお、比較例2においては、実施例1と同様に、閾値係数XはX=0.0583である一方で、A2/A1=0.03であるため、比較例2は、A2/A1≧Xを満足しないものであった。表1に、100サイクル目の容量維持率を示す。
定電圧充電におけるカットオフ電流値A2を0.525mA(A2/A1=0.015)に変更した以外は、実施例1と同様にして、100サイクルのサイクル試験を行った。なお、比較例3においては、実施例1と同様に、閾値係数XはX=0.0583である一方で、A2/A1=0.015であるため、比較例3は、A2/A1≧Xを満足しないものであった。表1に、100サイクル目の容量維持率を示す。
リチウムイオン二次電池について、30℃の雰囲気下、定電流-定電圧充電方式にて、設定電流A1を35mA(1C)、上限電圧V1を4.5Vとして、充電時間2時間の条件で充電を行い、10分間休止させた後、35mA(1C)の定電流にて、2Vまで放電した。そして、これを1サイクルとするサイクル試験を100サイクル行った。すなわち、比較例4においては、カットオフ電流値A2を設けずに、定電流-定電圧充電を行った。表1に、100サイクル目の容量維持率を示す。
表1に、上限電圧V1を4.5Vとしてサイクル試験を行った実施例1~3、比較例1~4の結果をまとめて示す。
表1に示すように、カットオフ電流値A2として、A2/A1≧Xを満足する電流値を採用した実施例1~3においては、100サイクル目の容量維持率が90%以上といずれも高く、良好な結果となった。一方、カットオフ電流値A2として、A2/A1≧Xを満足しない電流値と設定した比較例1~3、さらには、カットオフ電流値A2を設定しなかった比較例4においては、いずれも100サイクル目の容量維持率が80%未満となり、サイクル特性に劣るものであった。なお、実施例1~3および比較例1~4のA2/A1の値と、100サイクル目の容量維持率との関係を示すグラフを図5に示す。図5からも確認できるように、A2/A1≧Xを満足する場合(すなわち、A2/A1≧0.0583)には、100サイクル目の容量維持率が90%以上と高い値で、安定した結果が得られることが確認できる。図5中においては、カットオフ電流値A2を設定しなかった比較例4は、A2/A1=0とした。
リチウムイオン二次電池について、30℃の雰囲気下、定電流-定電圧充電方式にて、設定電流A1を35mA(1C)、定電圧充電におけるカットオフ電流値A2を1.75mA(A2/A1=0.05)、上限電圧V1を4.4Vとし、充電時間2時間の条件で充電を行い、10分間休止させた後、35mA(1C)の定電流にて、2Vまで放電した。そして、これを1サイクルとするサイクル試験を100サイクル行った。なお、実施例4における目標SOCは70%であり、上記方法にしたがって測定したこの時のセル抵抗値は4Ωであった。そのため、閾値係数XはX=0.0318(X=(4×0.035)/4.4)であり、実施例4においては、A2/A1=0.05であるため、実施例4は、A2/A1≧Xを満たすものであった。表2に、100サイクル目の容量維持率を示す。
リチウムイオン二次電池について、30℃の雰囲気下、定電流-定電圧充電方式にて、設定電流A1を35mA(1C)、上限電圧V1を4.4Vとして、充電時間2時間の条件で充電を行い、10分間休止させた後、35mA(1C)の定電流にて、2Vまで放電した。そして、これを1サイクルとするサイクル試験を100サイクル行った。すなわち、比較例5においては、カットオフ電流値A2を設けずに、定電流-定電圧充電を行った。表2に、100サイクル目の容量維持率を示す。
表2に、上限電圧V1を4.4Vとしてサイクル試験を行った実施例4、比較例5の結果をまとめて示す。
表2に示すように、カットオフ電流値A2として、A2/A1≧Xを満足する電流値を採用した実施例4においては、100サイクル目の容量維持率が90%以上と高く、良好な結果となった。一方、カットオフ電流値A2を設定しなかった比較例5においては、いずれも100サイクル目の容量維持率が40%未満となり、サイクル特性に極めて劣るものであった。
リチウムイオン二次電池について、30℃の雰囲気下、定電流-定電圧充電方式にて、設定電流A1を35mA(1C)、定電圧充電におけるカットオフ電流値A2を1.75mA(A2/A1=0.05)、上限電圧V1を4.3Vとし、充電時間2時間の条件で充電を行い、10分間休止させた後、35mA(1C)の定電流にて、2Vまで放電した。そして、これを1サイクルとするサイクル試験を100サイクル行った。なお、実施例5における目標SOCは50%であり、上記方法にしたがって測定したこの時のセル抵抗値は4Ωであった。そのため、閾値係数XはX=0.0325(X=(4×0.035)/4.3)であり、実施例5においては、A2/A1=0.05であるため、実施例5は、A2/A1≧Xを満たすものであった。表3に、100サイクル目の容量維持率を示す。
リチウムイオン二次電池について、30℃の雰囲気下、定電流-定電圧充電方式にて、設定電流A1を35mA(1C)、上限電圧V1を4.3Vとして、充電時間2時間の条件で充電を行い、10分間休止させた後、35mA(1C)の定電流にて、2Vまで放電した。そして、これを1サイクルとするサイクル試験を100サイクル行った。すなわち、比較例6においては、カットオフ電流値A2を設けずに、定電流-定電圧充電を行った。表3に、100サイクル目の容量維持率を示す。
表3に、上限電圧V1を4.3Vとしてサイクル試験を行った実施例5、比較例6の結果をまとめて示す。
表3に示すように、カットオフ電流値A2として、A2/A1≧Xを満足する電流値を採用した実施例5においては、100サイクル目の容量維持率が90%以上と高く、良好な結果となった。一方、カットオフ電流値A2を設定しなかった比較例6においては、いずれも100サイクル目の容量維持率が70%未満となり、サイクル特性に劣るものであった。
20…制御装置
30…負荷
40…電流計
50…電圧計
Claims (4)
- 正極活物質として、SOCが高くなるにしたがって抵抗が増大する特性を有する正極活物質を含有する正極と、負極と、非水電解液とを備える二次電池の充電制御方法であって、
所定の上限電圧V1まで、設定電流値A1で定電流充電するステップと、
前記上限電圧V1に到達した後、前記上限電圧V1にて定電圧充電を行うステップと、
前記定電圧充電における充電電流が、カットオフ電流値A2まで低下した場合に、前記二次電池への充電を終了するステップと、を備え、
前記カットオフ電流値A2を、下記式(I)、(II)の関係を満たす電流値に設定することを特徴とする二次電池の充電制御方法。
カットオフ電流値A2≧設定電流値A1×X ・・・(I)
X=(目標SOCにおける二次電池のセル抵抗値R1[Ω]/設定電流値A1[A])/上限電圧V1[V] ・・・(II) - 請求項1に記載の二次電池の充電制御方法であって、
前記正極活物質が、下記一般式(III)で表される化合物を含むことを特徴とする二次電池の充電制御方法。
Li(2-0.5x)Mn1-xM1.5xO3 ・・・(III)
(上記式(III)において、0.1≦x≦0.5であり、式中のMは、NiαCoβMnγM’σ(ただし、0<α≦0.5、0≦β≦0.33、0<γ≦0.5、0≦σ≦0.1、α+β+γ+σ=1、M’は金属元素である。)である。) - 請求項1または2に記載の二次電池の充電制御方法であって、
前記負極が、負極活物質として、ケイ素または炭素を主たる元素とする負極活物質を含有することを特徴とする二次電池の充電制御方法。 - 正極活物質として、SOCが高くなるにしたがって抵抗が増大する特性を有する正極活物質を含有する正極と、負極と、非水電解液とを備える二次電池の充電制御を行う充電制御装置であって、
所定の上限電圧V1まで、設定電流値A1で定電流充電する定電流充電手段と、
前記上限電圧V1に到達した後、前記上限電圧V1にて定電圧充電を行う定電圧充電手段と、
前記定電圧充電における充電電流が、カットオフ電流値A2まで低下したか否かの判定を行い、前記充電電流が、カットオフ電流値A2まで低下した場合に、前記二次電池への充電を停止する充電停止手段と、を備え、
前記充電停止手段は、前記カットオフ電流値A2を、下記式(I)、(II)の関係を満たす電流値に設定することを特徴とする二次電池の充電制御装置。
カットオフ電流値A2≧設定電流値A1×X ・・・(I)
X=(目標SOCにおける二次電池のセル抵抗値R1[Ω]/設定電流値A1[A])/上限電圧V1[V] ・・・(II)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380036732.XA CN104471829B (zh) | 2012-07-12 | 2013-05-22 | 二次电池的充电控制方法及充电控制装置 |
JP2014524683A JP5896024B2 (ja) | 2012-07-12 | 2013-05-22 | 二次電池の充電制御方法および充電制御装置 |
US14/406,652 US9190864B2 (en) | 2012-07-12 | 2013-05-22 | Charging control method for secondary cell and charging control device for secondary cell |
KR1020157002977A KR101568110B1 (ko) | 2012-07-12 | 2013-05-22 | 2차 전지의 충전 제어 방법 및 충전 제어 장치 |
EP13816694.7A EP2874272B1 (en) | 2012-07-12 | 2013-05-22 | Charging control method for secondary cell and charging control device for secondary cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-156668 | 2012-07-12 | ||
JP2012156668 | 2012-07-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014010312A1 true WO2014010312A1 (ja) | 2014-01-16 |
Family
ID=49915786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/064182 WO2014010312A1 (ja) | 2012-07-12 | 2013-05-22 | 二次電池の充電制御方法および充電制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9190864B2 (ja) |
EP (1) | EP2874272B1 (ja) |
JP (1) | JP5896024B2 (ja) |
KR (1) | KR101568110B1 (ja) |
CN (1) | CN104471829B (ja) |
WO (1) | WO2014010312A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3281274A4 (en) * | 2015-04-08 | 2018-12-05 | Intel Corporation | Systems, methods and devices for adaptable battery charging |
CN111049204A (zh) * | 2018-10-12 | 2020-04-21 | 上汽通用汽车有限公司 | 一种基于电池老化的动力电池自适应充电控制方法和装置 |
CN111788735A (zh) * | 2018-02-28 | 2020-10-16 | 松下知识产权经营株式会社 | 非水电解质二次电池的充电方法和非水电解质二次电池的充电系统 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015154593A (ja) * | 2014-02-14 | 2015-08-24 | ソニー株式会社 | 充放電制御装置、電池パック、電子機器、電動車両および充放電制御方法 |
US9923400B2 (en) * | 2014-06-12 | 2018-03-20 | Stmicroelectronics S.R.L. | Method of operating a battery-charger device, and corresponding device |
KR102589963B1 (ko) * | 2016-04-12 | 2023-10-13 | 삼성에스디아이 주식회사 | 배터리의 충방전 제어 장치 및 그 제어 방법 |
CN106785132A (zh) * | 2016-11-30 | 2017-05-31 | 东莞新能源科技有限公司 | 充电方法及装置 |
CN107204493B (zh) * | 2017-04-28 | 2020-09-29 | 宁德时代新能源科技股份有限公司 | 电池充电方法、装置和设备 |
KR102404274B1 (ko) * | 2017-09-08 | 2022-05-30 | 주식회사 엘지에너지솔루션 | 배터리 충방전 전압 조절 장치 및 방법 |
WO2019167475A1 (ja) * | 2018-02-28 | 2019-09-06 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム |
KR102655792B1 (ko) * | 2018-10-19 | 2024-04-09 | 삼성전자주식회사 | 배터리 충전 장치 및 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10145981A (ja) * | 1996-11-12 | 1998-05-29 | Nissan Motor Co Ltd | 電池の充電方法及び充電装置 |
JP2002058171A (ja) * | 2000-08-09 | 2002-02-22 | Matsushita Electric Ind Co Ltd | 二次電池の充電制御方法 |
JP2003087991A (ja) * | 2001-09-07 | 2003-03-20 | Nissan Motor Co Ltd | 充電装置および充電方法 |
JP2008270201A (ja) | 2007-03-27 | 2008-11-06 | Univ Kanagawa | リチウムイオン電池用正極材料 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5572395A (en) * | 1993-12-21 | 1996-11-05 | International Business Machines Corporation | Circuit for controlling current in an adapter card |
US5572159A (en) * | 1994-11-14 | 1996-11-05 | Nexgen, Inc. | Voltage-controlled delay element with programmable delay |
JP3653873B2 (ja) * | 1996-06-24 | 2005-06-02 | 日産自動車株式会社 | 電池の充電方法 |
JP2002142379A (ja) * | 2000-11-06 | 2002-05-17 | Sanyo Electric Co Ltd | 電池の充電方法 |
US20080191667A1 (en) * | 2007-02-12 | 2008-08-14 | Fyrestorm, Inc. | Method for charging a battery using a constant current adapted to provide a constant rate of change of open circuit battery voltage |
JP5418871B2 (ja) * | 2007-10-25 | 2014-02-19 | 日立工機株式会社 | 充電装置 |
JP2010252474A (ja) * | 2009-04-14 | 2010-11-04 | Nissan Motor Co Ltd | 二次電池の充電方法 |
US8816648B2 (en) * | 2009-08-17 | 2014-08-26 | Apple Inc. | Modulated, temperature-based multi-CC-CV charging technique for Li-ion/Li-polymer batteries |
-
2013
- 2013-05-22 CN CN201380036732.XA patent/CN104471829B/zh not_active Expired - Fee Related
- 2013-05-22 WO PCT/JP2013/064182 patent/WO2014010312A1/ja active Application Filing
- 2013-05-22 KR KR1020157002977A patent/KR101568110B1/ko active IP Right Grant
- 2013-05-22 JP JP2014524683A patent/JP5896024B2/ja not_active Expired - Fee Related
- 2013-05-22 US US14/406,652 patent/US9190864B2/en not_active Expired - Fee Related
- 2013-05-22 EP EP13816694.7A patent/EP2874272B1/en not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10145981A (ja) * | 1996-11-12 | 1998-05-29 | Nissan Motor Co Ltd | 電池の充電方法及び充電装置 |
JP2002058171A (ja) * | 2000-08-09 | 2002-02-22 | Matsushita Electric Ind Co Ltd | 二次電池の充電制御方法 |
JP2003087991A (ja) * | 2001-09-07 | 2003-03-20 | Nissan Motor Co Ltd | 充電装置および充電方法 |
JP2008270201A (ja) | 2007-03-27 | 2008-11-06 | Univ Kanagawa | リチウムイオン電池用正極材料 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2874272A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3281274A4 (en) * | 2015-04-08 | 2018-12-05 | Intel Corporation | Systems, methods and devices for adaptable battery charging |
CN111788735A (zh) * | 2018-02-28 | 2020-10-16 | 松下知识产权经营株式会社 | 非水电解质二次电池的充电方法和非水电解质二次电池的充电系统 |
CN111049204A (zh) * | 2018-10-12 | 2020-04-21 | 上汽通用汽车有限公司 | 一种基于电池老化的动力电池自适应充电控制方法和装置 |
CN111049204B (zh) * | 2018-10-12 | 2023-09-12 | 上汽通用汽车有限公司 | 一种基于电池老化的动力电池自适应充电控制方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2874272A4 (en) | 2015-09-02 |
CN104471829A (zh) | 2015-03-25 |
JPWO2014010312A1 (ja) | 2016-06-20 |
KR20150020257A (ko) | 2015-02-25 |
CN104471829B (zh) | 2017-03-15 |
KR101568110B1 (ko) | 2015-11-11 |
EP2874272B1 (en) | 2016-11-09 |
US9190864B2 (en) | 2015-11-17 |
JP5896024B2 (ja) | 2016-03-30 |
US20150188327A1 (en) | 2015-07-02 |
EP2874272A1 (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5896024B2 (ja) | 二次電池の充電制御方法および充電制御装置 | |
JP5924552B2 (ja) | 非水電解液二次電池とその製造方法 | |
US10224570B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5866987B2 (ja) | 二次電池の制御装置およびsoc検出方法 | |
KR101903913B1 (ko) | 비수계 이차 전지 | |
US9520588B2 (en) | Nonaqueous electrolyte secondary cell | |
CN106537654B (zh) | 制造非水二次电池的方法 | |
JP4714229B2 (ja) | リチウム二次電池 | |
JP2015125858A (ja) | 非水電解質二次電池 | |
JP6250941B2 (ja) | 非水電解質二次電池 | |
JP2016119154A (ja) | リチウムイオン二次電池 | |
US8980482B2 (en) | Nonaqueous electrolyte lithium ion secondary battery | |
JP6812827B2 (ja) | 非水電解液およびそれを用いた非水電解液電池 | |
JP2012252951A (ja) | 非水電解質二次電池 | |
US9960459B2 (en) | Method of manufacturing nonaqueous electrolyte secondary battery | |
JP5985272B2 (ja) | 非水電解質二次電池 | |
JP6222389B1 (ja) | 非水電解液およびそれを用いた非水電解液電池 | |
US10833319B2 (en) | Active material for a positive electrode of a battery cell, positive electrode, and battery cell | |
JP2018133335A (ja) | 非水電解液電池 | |
JP6801602B2 (ja) | 非水電解質二次電池 | |
WO2016009261A9 (en) | Method of manufacturing nonaqueous secondary battery | |
CN114982035A (zh) | 电池组、电池包、电学装置以及电池组的制造方法及制造设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13816694 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014524683 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14406652 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013816694 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013816694 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157002977 Country of ref document: KR Kind code of ref document: A |