WO2014010161A1 - Light emitting module - Google Patents

Light emitting module Download PDF

Info

Publication number
WO2014010161A1
WO2014010161A1 PCT/JP2013/003277 JP2013003277W WO2014010161A1 WO 2014010161 A1 WO2014010161 A1 WO 2014010161A1 JP 2013003277 W JP2013003277 W JP 2013003277W WO 2014010161 A1 WO2014010161 A1 WO 2014010161A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
emitting elements
emitting module
element row
Prior art date
Application number
PCT/JP2013/003277
Other languages
French (fr)
Japanese (ja)
Inventor
益巳 阿部
和田 恭典
俊文 緒方
杉浦 健二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013547750A priority Critical patent/JP5453580B1/en
Priority to DE112013003504.9T priority patent/DE112013003504T5/en
Publication of WO2014010161A1 publication Critical patent/WO2014010161A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • F21S8/026Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters intended to be recessed in a ceiling or like overhead structure, e.g. suspended ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/004Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by deformation of parts or snap action mountings, e.g. using clips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/003Fastening of light source holders, e.g. of circuit boards or substrates holding light sources
    • F21V19/0055Fastening of light source holders, e.g. of circuit boards or substrates holding light sources by screwing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a light emitting module in which semiconductor light emitting elements such as LED chips are two-dimensionally mounted on a substrate.
  • LEDs have the advantages of long life, small size, good luminous efficiency, and vivid luminescent colors, and are widely used in backlights for lighting devices and display devices.
  • a light-emitting module used in large-capacity lighting devices such as downlights
  • a light-emitting module is also developed by mounting a large number of LED chips in a matrix on a single substrate and covering it with a sealing material. Has been.
  • the light emitting device disclosed in Patent Document 1 has the same number of LED chips connected in parallel in each element row to improve the balance of the entire circuit configuration, and each LED chip.
  • the brightness is made uniform by arranging the currents flowing in
  • the sealing agent is applied in a line shape for each element array.
  • the sealing material is formed in a line shape, the efficiency of extracting light from the LED chip to the outside of the sealing layer can be increased.
  • the LED chips are usually mounted at a high density in the mounting area in order to emit light with high luminance.
  • an object of the present invention is to reduce a temperature rise in a mounting region in a light emitting module in which light emitting elements are mounted in a matrix on a mounting region on a substrate.
  • a plurality of light-emitting elements are mounted in a matrix over a substrate, and the light-emitting elements are sealed with a line-shaped sealing material for each column.
  • all the light emitting element arrays include a first element array in which the light emitting elements are arranged in a line with a pitch width within the first range, and the light emitting elements are more than the upper limit of the first range.
  • the number of adjacent rows is limited to two or less.
  • the light emitting module of the above aspect it is possible to reduce the maximum temperature in the light emitting module when the light emitting element is lit under the same condition as compared with the case where the pitch width in which the light emitting elements are arranged is uniform in the entire light emitting module. it can.
  • FIG. 3 is a perspective view of a lamp unit 6 in the lighting device 1. 3 is an exploded perspective view of the lamp unit 6.
  • FIG. 2 is a plan view illustrating an example of a light emitting module 10.
  • FIG. (A) is the table
  • (A) It is sectional drawing which cut
  • (b) is sectional drawing which cut
  • (A) is a figure which shows an example of the light emitting module 100 concerning Embodiment 2
  • (b) is the elements on larger scale which show the wiring.
  • (a)-(e) is a figure which shows typically the arrangement
  • the present inventor has devised the mounting form of the light emitting element to reduce the temperature rise in the light emitting module in which the light emitting element is sealed with a line-shaped sealing material for each column. investigated.
  • a plurality of light emitting element arrays having different pitch widths of light emitting elements are arranged so that a light emitting element array having a large pitch width and a light emitting element array having a small pitch width are alternately repeated (a light emitting element is a rough array and a light emitting element array). It has been found that the temperature rise can be reduced by mounting in a form in which dense rows are alternately arranged, and the present invention has been achieved.
  • a light-emitting module in which a plurality of light-emitting elements are mounted in a matrix on a substrate and the light-emitting elements are sealed with a line-shaped sealing material for each column, all the light-emitting elements
  • the columns include a first element row in which the light emitting elements are arranged in a line with a pitch width within the first range, and a light emitting element in the second range larger than the upper limit of the first range.
  • the number of continuously adjacent rows is limited to two or less.
  • the warpage of the substrate can be suppressed. If the board is warped, it may be damaged, or a gap will be formed between the lamp unit mounting part where the light emitting module is mounted, and heat dissipation to the mounting part will be hindered, causing the temperature of the light emitting module to rise. .
  • the sealing form is sealed with a line-shaped sealing material for each light emitting element row, the light extraction efficiency from the light emitting elements is also good.
  • the light emitting module of the above aspect can be easily implemented because it is only necessary to increase or decrease the arrangement pitch of the light emitting elements in each light emitting element array to some extent as compared with the conventional light emitting module.
  • the first element row group including the first element row including one or two rows and the second element row including the second element row including one or more rows.
  • the element array groups may be arranged alternately.
  • the temperature reduction effect can be obtained only by alternately repeating the pitch range of the light emitting elements in the mounting region.
  • the second element array group since heat is easily stored in the central portion of the mounting region, it is preferable to mount the second element array group in the central portion in order to reduce the temperature.
  • the temperature tends to be high, so that the temperature reduction effect obtained by applying the above aspect is also large.
  • each light emitting element array in the mounting region and the length in the direction perpendicular thereto are both 20 mm or more and 50 mm or less
  • the number of light emitting elements arranged in each light emitting element row is smaller in the light emitting element row located at the end than the light emitting element row located in the center in the mounting region. It can also be.
  • the semiconductor light emitting elements included in each light emitting element row can be electrically connected directly by wire bonding without using a conductive land.
  • Embodiment 1 The light emitting module, the lamp unit, and the illumination device according to Embodiment 1 will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view showing a lighting device 1 in which a light emitting module 10 according to an embodiment is incorporated.
  • the lighting device 1 is a downlight that is mounted so as to be embedded in the ceiling 2, and includes a fixture 3, a circuit unit 4, a dimming unit 5, and a lamp unit 6.
  • the appliance 3 is made of metal and has a lamp housing portion 3a, a circuit housing portion 3b, and an outer casing portion 3c.
  • the lamp housing portion 3a has a bottomed cylindrical shape, and the lamp unit 6 is detachably attached therein.
  • the circuit housing part 3b extends on the bottom side of the lamp housing part 3a, and the circuit unit 4 is housed therein.
  • the outer collar part 3c is annular and extends outward from the opening of the lamp housing part 3a.
  • the appliance 3 has a lamp housing portion 3a and a circuit housing portion 3b embedded in an embedded hole 2a penetrating the ceiling 2, and an outer flange portion 3c that contacts the peripheral portion of the embedded hole 2a on the lower surface 2b of the ceiling 2. It is attached to the ceiling 2 in a contacted state.
  • the circuit unit 4 incorporates a circuit for lighting the lamp unit 6.
  • the circuit unit 4 has a power supply line 4 a that is electrically connected to the lamp unit 6.
  • a connector 4b detachably connected to the connector 72 of the lead wire 71 of the lamp unit 6 is attached to the tip of the power supply line 4a.
  • the lamp unit 6 and the circuit unit 4 are separately unitized. However, a circuit corresponding to the circuit unit 4 may be built in the lamp unit.
  • FIG. 2 is a perspective view of the lamp unit 6, and FIG. 3 is an exploded perspective view of the lamp unit 6.
  • the lamp unit 6 includes the light emitting module 10 as a light source, and includes a base 80, a holder 30, a decorative cover 40, a cover 50, a cover pressing member 60, a wiring member 70, and the like.
  • the base 80 has a disk shape made of aluminum die cast and has a mounting portion 81 in the center on the upper surface side.
  • the light emitting module 10 is mounted on the mounting portion 81.
  • screw holes 82 for screwing the assembly screws 35 for fixing the holder 30 are provided on both sides of the mounting portion 81.
  • An insertion hole 83, a boss hole 84, and a notch 85 are provided in the peripheral portion of the base 80.
  • the holder 30 has a bottomed cylindrical shape, and includes a disc-shaped presser plate portion 31 and a cylindrical peripheral wall portion 32 extending from the periphery of the presser plate portion 31 to the base 80 side.
  • the light emitting module 10 is pressed against the mounting portion 81 by the pressing plate portion 31 and fixed to the base 80.
  • a window hole 33 through which light from the light emitting module 10 passes is formed in the center of the pressing plate portion 31. Further, an opening 34 is formed in communication with the window hole 33 to prevent the lead wire 71 connected to the light emitting module 10 from interfering with the holder 30. Furthermore, an insertion hole 36 through which the assembly screw 35 is inserted is provided in a circumferential portion of the holding plate portion 31 of the holder 30 at a position corresponding to the screw hole 82 of the base 80.
  • the light emitting module 10 is sandwiched between the base 80 and the holder 30 in a state where the sealing member 13 of the light emitting module 10 is exposed from the window hole 33 of the holder 30.
  • the assembly screw 35 is inserted into the screw insertion hole 36 from above the holding plate portion 31 of the holder 30 and screwed into the screw hole 82 of the base 80, so that the holder 30 is attached to the base 80.
  • the decorative cover 40 is an annular shape made of a non-translucent material such as a white opaque resin, and is disposed between the holder 30 and the cover 50, and the lead wire 71 and the assembly screw exposed from the opening 34 are provided. Covering 35 mag. A window hole 41 is also formed in the center of the decorative cover 40.
  • the cover 50 is formed of a translucent material such as silicone resin, acrylic resin, glass, and the light emitted from the sealing member 13 passes through the cover 50 and is taken out of the lamp unit 6.
  • the cover 50 has a dome shape, and includes a main body 51 having a lens function and an outer flange 52 extending outward from the peripheral edge of the main body 51, and the outer flange 52 is a base 80. It is fixed to.
  • the cover pressing member 60 is made of a non-translucent material such as a metal such as aluminum or a white opaque resin, and has a circular plate shape so as not to block light emitted from the main body 51 of the cover 50. .
  • the outer flange portion 52 of the cover 50 is sandwiched and fixed between the cover pressing member 60 and the base 80.
  • a columnar boss portion 61 that protrudes toward the base 80 is provided on the lower surface side of the cover pressing member 60, and a semicircular cutout portion is formed on the outer flange portion 52 of the cover 50 at a position corresponding to the boss portion 61. 53 is formed. Further, a boss hole 84 through which the boss portion 61 is inserted is formed at a peripheral portion of the base 80 at a position corresponding to the boss portion 61.
  • the boss portion 61 of the cover pressing member 60 is inserted into the boss hole 84 of the base 80, and the tip of the boss portion 61 is irradiated with laser light from below the base 80. Then, the tip portion is plastically deformed into a shape that does not come out of the boss hole 84. Thereby, the cover pressing member 60 is fixed to the base 80.
  • Semicircular cutouts 54 and 62 are formed at positions corresponding to the insertion hole 83 of the base 80 on the outer peripheral portion 52 of the cover 50 and the cover pressing member 60, and are attached to be inserted into the insertion hole 83. Screws (not shown) are prevented from hitting the cover pressing member 60 and the cover 50.
  • the wiring member 70 has a set of lead wires 71 electrically connected to the light emitting module 10.
  • the lead wire 71 is led out of the lamp unit 6 through the notch 85 of the base 80, and a connector 72 is attached to the end thereof.
  • FIG. 4 is a plan view illustrating an example of the light emitting module 10.
  • the vertical direction of the paper surface is the vertical direction
  • the horizontal direction of the paper surface is the horizontal direction.
  • the light emitting module 10 includes a substrate 11, a plurality of light emitting elements 12 arranged in a matrix on the substrate 11, a sealing member 13 covering the light emitting elements 12 for each column, terminal portions 14, 15, Wirings 16 and 17 are provided.
  • the light emitting elements 12 are mounted in a matrix in the mounting region 20 on the upper surface of the substrate 11. That is, in the mounting region 20, a plurality of light emitting elements 12 are arranged in a row in the horizontal direction to form light emitting element rows 21 and 22, and the light emitting element rows 21 and 22 are arranged in a row in parallel in the vertical direction. Yes.
  • the light emitting element rows 21 and 22 are arranged in twelve rows at equal intervals in the vertical direction. And the light emitting element row
  • the mounting area 20 is an area surrounded by a broken-line circle and has a circular shape.
  • a total of 120 light emitting elements 12 are arranged in the mounting area 20, a total of 120 light emitting elements 12 are arranged.
  • the number of light emitting elements 12 arranged in each light emitting element array is as shown in FIG.
  • the substrate 11 has an insulating layer made of an insulating material such as ceramic or heat conductive resin.
  • the entire substrate 11 may be an insulating layer, or may have a two-layer structure of an insulating layer and a metal layer made of an aluminum plate.
  • the shape of the substrate 11 is not particularly limited, but here is a square plate.
  • the light emitting element 12 is, for example, a GaN-based LED chip that emits blue light having a main wavelength of about 430 nm to 470 nm.
  • the light emitting element 12 is mounted on the upper surface of the substrate 11 using COB (Chip on Board) technology.
  • each light emitting element 12 is, for example, 390 ⁇ m ⁇ 520 ⁇ m, 346 ⁇ m square, and the like.
  • the light emitting element 12 is an LED and the light emitting module 10 is an LED module.
  • the light emitting element 12 may be an LD (laser diode) or an EL element (electric luminescence element). good.
  • the light emitting element rows 21 and 22 are each provided with a line-shaped sealing member 13 extending in the lateral direction so as to cover the plurality of light emitting elements 12 for each light emitting element row.
  • the sealing member 13 is formed of a translucent material mixed with a wavelength conversion material, and converts part of the light emitted from the light emitting element 12 into light of another wavelength.
  • Each light emitting element 12 is sealed by a sealing member 13.
  • Fluorescent particles can be used as the wavelength conversion material.
  • a silicone resin for example, a fluorine resin, a silicone-epoxy hybrid resin, a urea resin, or the like can be used.
  • Part of the blue light having a dominant wavelength of about 430 nm to 470 nm emitted from the light emitting element 12 is converted into light having a dominant wavelength of, for example, about 540 nm to 640 nm by the wavelength conversion material in the sealing member 13.
  • white light is emitted by the color mixture of the converted wavelength band light and the unconverted blue light.
  • the emission color of the phosphor used for the sealing member 13 may be changed to green or yellow for each light emitting element array.
  • the color temperature of the entire white light can be adjusted in the range of about 2700 to 6500 ° C.
  • FIG. 6A is a cross-sectional view of the light-emitting element array 21 cut in the horizontal direction
  • FIG. 6B is a cross-sectional view of the light-emitting element arrays 21 and 22 arranged in the vertical direction.
  • P1 in FIG. 6A indicates the pitch width of the light emitting elements 12 mounted next to each other in the light emitting element row 21.
  • P2 in FIG. 6B indicates the pitch width (vertical pitch) between the light emitting element rows 21 and 22.
  • each light emitting element 12 is sealed with a line-shaped sealing member 13 for each of the light emitting element rows 21 and 22, and the longitudinal section of the sealing member 13 has a dome shape. Therefore, the light emitted from each light emitting element 12 is efficiently emitted outside from the sealing member 13, so that the light extraction efficiency from each light emitting element 12 is good.
  • Terminal, wiring, land The terminal portions 14 and 15 and the wirings 16 and 17 are conductor patterns formed on the insulating layer of the substrate 11.
  • the terminal portions 14 and 15 are for supplying power to the light emitting element 12 and are formed on the peripheral edge of the upper surface of the substrate 11 as shown in FIG.
  • the terminal portions 14 and 15 are electrically connected to the lead wire 71 shown in FIGS.
  • the wiring 16 electrically connects one end portion of each light emitting element row 21, 22 on the substrate 11 and the terminal portion 14.
  • the wiring 17 electrically connects the other end of each light emitting element row 21, 22 and the terminal portion 15.
  • bonding lands 19 are arranged at positions adjacent to the light emitting elements 12 on the substrate 11. Each light emitting element 12 and the land 19 are electrically connected by wire bonding. The light emitting elements 12 adjacent in the horizontal direction are directly connected by the lands 19. Further, in the mounting region 20, wirings 18a to 18e are arranged across adjacent light emitting element rows.
  • the plurality of light emitting elements 12 mounted in the mounting region 20 are connected in parallel with 15 light emitting elements 12 connected in series, and are in a 15-by-8 parallel connection form. .
  • connection form is set to 15 to 8 in parallel, but is not particularly limited as long as the connection form can uniformly supply power to the plurality of light emitting elements 12 mounted in the mounting region 20.
  • the light emitting elements are electrically connected by wires via the lands 19.
  • the light emitting elements can be directly electrically connected by wires without using the lands 19.
  • the light emitting element can be mounted on the substrate without being restricted by the position of the land 19. Further, no light absorption loss due to the land 19 occurs.
  • Circuit unit 4 The circuit unit 4 is configured by a circuit including an AC / DC converter, and is electrically connected to an external commercial AC power supply (not shown), and power input from the commercial AC power supply is suitable for the element array of the light emitting elements 12. Converted to DC voltage and supplied. Thereby, all the light emitting elements 12 are controlled to be turned on collectively.
  • the mounting region 20 of the light emitting module 10 is formed by vertically arranging a plurality of light emitting element rows 21 and light emitting element rows 22.
  • the horizontal pitch width P1 in the light emitting element array is uniform, but there are a light emitting element array having a larger pitch width P1 and a smaller one. That is, with respect to the lateral pitch width P1 in each light emitting element row, the light emitting element row 21 has a first range in which the pitch width P1 of the light emitting elements 12 is relatively small, and the light emitting element row 22 Twelve pitch widths P1 are in the second range which is larger than the upper limit of the first range.
  • the value is set to the first range.
  • the upper limit is set.
  • the pitch width P1 of the light emitting elements 12 is in the range below the upper limit value, and in the light emitting element row 22, the pitch width P1 of the light emitting elements 12 is in the range larger than the upper limit value.
  • the vertical pitch width P2 between the light emitting element rows is uniform.
  • Example A is the light emitting module 10 shown in FIG. 4 described above, and the light emitting element rows 21 and 22 are arranged in a total of 12 rows.
  • the number of elements is set to 13, 13, 12, 10, 8, and 4 from the element row on the center side to the element row on the upper end side.
  • the six rows in the lower half are also set to the same number of elements as those in the upper half from the light emitting element row on the center side to the light emitting element row on the lower end side, and are mounted in 180 ° rotational symmetry.
  • Example B The basic configuration of Example B is the same as that of the light emitting module 10 shown in FIG. 4 except that the arrangement of the light emitting element rows 21 and 22 and the pitch width P1 of the light emitting element rows 21 in each of the light emitting element rows 21 and 22 are as follows. Is different from that of the embodiment A.
  • the pitch width P1 in each light emitting element array is set to a value shown in the table of FIG. 5A and the graph of FIG. 5B.
  • Example A the range is 1.40 to 1.53 mm
  • Example B the range is 1.40 to 1.48 mm.
  • the sum of the pitch widths of the 1st to 6th rows is 8.72 mm, and when divided by the total number of rows of 6, the average value is 1.45 mm.
  • the average value is 1.45 mm. That is, in both Examples A and B, the average value of the pitch width P1 in all the light emitting element rows is 1.45 mm.
  • the first range is 1.45 mm or less (1.45 mm is the upper limit of the pitch width P1 of the light emitting element array 21), and the second range is a range exceeding 1.45 mm.
  • the one having the pitch width P1 in the range of 1.45 mm or less becomes the light emitting element row 21, and the one having the pitch width P1 in the range larger than 1.45 mm emits light.
  • the element row 22 is obtained.
  • FIGS. 8A and 8B schematically show the arrangement forms of Examples A and B.
  • FIG. in Example A in the column numbers 2 and 3 and the column numbers 5 and 6, the light emitting element columns 21 are adjacent and continuous. The number of continuous rows is limited to two, and the light emitting element rows 21 are not continuous for three or more rows.
  • Example B the light emitting element rows 21 are arranged in row numbers 3 and 5 without being continuous.
  • the remaining column numbers 1, 2, 4, and 6 are the light emitting element columns 22.
  • the light emitting element row 21 having a narrow pitch width P1 belongs to the first element row group
  • the light emitting element row 22 having a wide pitch width P1 belongs to the second element row group.
  • the first element array group and the second element array group are alternately and repeatedly arranged in the mounting region 20.
  • the upper limit (1.53 mm, 1.48 mm) of the pitch P1 in Example A and Example B is within a range increased by 3% to 10% with respect to the average value (1.45 mm).
  • the lower limit value (1.40 mm) of the pitch P1 is a value within a range reduced by 3% to 10% with respect to the average value (1.45 mm).
  • the pitch width ranges (1.40 to 1.53 mm, 1.40 to 1.48 mm) of Examples A and B are set in consideration of such points.
  • the lower limit of the range (first range) of the pitch width P1 in the light emitting element array 21 is preferably a value reduced within a range of 3% to 10% with respect to the average value.
  • the upper limit of the pitch width range (second range) in the light emitting element array 22 is preferably a value added within a range of 3% to 10% with respect to the average pitch width.
  • Comparative test A light emitting module similar to Example A and B shown in FIG. 4 is used as Comparative Example C, except that the arrangement pitch of the light emitting elements 12 is the same 1.45 mm in all the light emitting element rows, and the temperature during driving is compared. A test was conducted.
  • the same number (120) of light emitting elements 12 are arranged in the mounting area ( ⁇ 22 mm, mounting area 380 mm 2 ) of the same size, so the average mounting density is the same. It is.
  • the pitch width P2 between the light emitting element rows is 1.8 mm.
  • All the light emitting modules have a rated current IF of 700 mA and a rated voltage VF of 43.9V.
  • FIG. 5A shows the temperatures at the center and the lower end in the mounting area 20 when the light emitting modules of Examples A and B and Comparative Example C are turned on with the same power (rated power 30.7 W). It is shown in the table.
  • Comparative Example C in which the pitch width P1 of the light emitting element rows is the same, the temperature at the central portion where the temperature is highest is 101.4 ° C., whereas the pitch width P1 is equal to or less than the reference in the first element row group and the reference.
  • Example A in which wider second element array groups were alternately arranged the temperature was 77.0 ° C., which was 24.4 ° C. lower than that in Comparative Example C.
  • Example B the temperature at the center is 87.8 ° C., which is 113.6 ° C. lower than that in Comparative Example C. Further, in Comparative Example C, the temperature difference between the central portion and the lower end portion is 29.2 ° C., whereas in Examples A and B, they are 12.8 ° C. and 12.4 ° C., which are less than half.
  • Examples A and B in which the first element row group having the pitch width P1 equal to or smaller than the reference and the second element row group wider than the reference are alternately mounted are the highest in the light emitting module as compared with Comparative Example C. In addition to lowering the temperature, it is also possible to lower the temperature of the entire light emitting module.
  • the temperature difference in the light emitting module can be reduced.
  • the temperature difference in the light emitting module can be reduced, so that the warpage of the substrate can be suppressed. If the board is warped, it may be damaged, or a gap will be formed between the lamp unit mounting part where the light emitting module is mounted, and heat dissipation to the mounting part will be hindered, causing the temperature of the light emitting module to rise. However, according to this embodiment, the cause can be suppressed.
  • This effect is not limited to the case where the second element array group is arranged in the central portion of the mounting region 20, and the above effect such as lowering the maximum temperature can be obtained even when the first element array group is arranged. Is possible. (Discussion) Further, the following consideration was made.
  • the substrate 11 since the substrate 11 includes a layer made of a ceramic material, the heat generated by the light emitting element 12 is not easily dispersed in the direction along the surface of the substrate 11. Generally, in such a case, heat is likely to be stored and the temperature is likely to be high, but in the light emitting module 10, an increase in temperature can be suppressed.
  • the substrate 11 includes a layer made of a ceramic material like the light emitting module 10.
  • the mounting density in the mounting region 20 is generally low (when the average area occupied by one light emitting element is smaller than 3.3 mm 2 / element). In this case, the temperature rise hardly occurs. On the other hand, it was also found that when the mounting density is high (when the average area occupied by one light emitting element is 3.3 mm 2 / element or less), the temperature rises easily.
  • the temperature reduction effect obtained by the light emitting module 10 is increased.
  • the size of both mounting machines was ⁇ 22 mm. However, if the length in the vertical direction and the horizontal direction of the mounting region 20 is in the range of 20 mm to 50 mm, it is equally excellent. A temperature reduction effect can be obtained.
  • the total number of light emitting elements 12 mounted in the mounting area 20 is also in the range of 40 to 520, the number of light emitting element arrays mounted in the mounting area 20 is 5 to 25, and the total input power is 10W. If it is ⁇ 100 W, an excellent temperature reduction effect can be obtained.
  • the number of the light emitting elements 12 arranged in each light emitting element row is smaller in the light emitting element row located at the end than the light emitting element row located in the center.
  • the mounting area 20 was circular.
  • the shape of the mounting region 20 is not particularly limited. For example, when the mounting area 20 is rectangular as shown in the second embodiment below, the same effect can be obtained.
  • FIG. 7A is a diagram illustrating an example of the light emitting module 100 according to the second embodiment.
  • the light emitting module 100 has the same configuration as that of the light emitting module 10 according to the first embodiment, but the mounting area 20 has a quadrangular shape.
  • the same components as those of the light emitting module 10 are denoted by the same reference numerals.
  • the light emitting element arrays having substantially the same length are mounted side by side in the mounting region 20.
  • the light emitting element rows 21 and the light emitting element rows 22 are alternately and repeatedly arranged.
  • the pitch width P1 in the light emitting element array 21 and the pitch width P1 in the light emitting element array 22 are as described in the first embodiment. That is, the light emitting element row 21 belongs to the first element row group which is set within the first range where the pitch width P1 is small, and the light emitting element row 22 has the second pitch width wider than the upper limit of the first range. It is set within the range and belongs to the second element array group.
  • FIGS. 8C to 8E are diagrams showing examples of arrangement sequence patterns of the light emitting element rows 21 and the light emitting element rows 22 in the mounting region 20.
  • FIG. 8C shows a pattern in which the light emitting element rows 21 and the light emitting element rows 22 are alternately and repeatedly arranged one by one as shown in FIG. 7A.
  • FIG. 8D shows a pattern in which the central two rows are the element rows 22 and the light emitting element rows 21 and the element rows 22 are alternately and repeatedly arranged above and below the row.
  • FIG. 8E shows a pattern in which the two central rows are the element rows 22, two light emitting element rows 21 are arranged above and below the element rows 22, and one element row 22 is arranged above and below the rows.
  • the first element row groups and the second element row groups are alternately arranged. Therefore, as described in Embodiment 1, a temperature reduction effect can be obtained.
  • the same number (for example, 36) of the light emitting elements 12 may be arranged and connected in series. In this case, the pitch width P1 is different from each other.
  • the total length of the light emitting element array 22 is longer than that of the element array 21.
  • the number of the light emitting elements 12 arranged in the light emitting element array 21 is larger than the number of the light emitting elements 12 arranged in the light emitting element array 22. It may be set. For example, 38 light emitting elements 12 are arranged in the light emitting element array 21 with a narrow pitch width, and 34 light emitting elements 12 are arranged in the light emitting element array 22 with a wide pitch width.
  • the branch wiring 16a extending from the wiring 16 to the middle of the light emitting element array 21 and the wiring 18 extending between the adjacent light emitting element array 21 and the light emitting element array 22 are arranged.
  • the number of light emitting elements 12 connected in series can be made the same (36), and the same power is supplied to each light emitting element 12.
  • the first element row groups and the second element row groups are alternately arranged in the mounting region 20.
  • the number of light emitting element rows arranged in the mounting area 20 is five or more, it is preferable to alternately arrange the first element row groups and the second element row groups in this way.
  • the first element row groups and the second element row groups may not be alternately arranged.
  • all the light emitting element rows are formed as long as the number of the light emitting element rows 21 is continuously formed. It is considered that a temperature reduction effect can be obtained as compared with those having a uniform pitch width.
  • two light emitting element rows 21 may be arranged in succession, and two light emitting element rows 22 may be arranged in succession.
  • a phosphor is included in the sealing member and wavelength of light from the light emitting element is converted by the phosphor, but the present invention is not limited to this.
  • the effect of lowering the maximum temperature in the light emitting module to reduce the temperature difference has been confirmed even in a form not including phosphor particles.
  • the same effect can be obtained by applying the contents described in the above embodiment even in a light emitting module mounted by combining light emitting elements that emit light of different emission wavelengths such as red, green, and blue. it can.
  • the form for sealing the light emitting elements is not limited to the form for sealing each light emitting element row.
  • a form in which each light emitting element is individually sealed a form in which a plurality of light emitting elements are sealed regardless of a light emitting element array, a form in which a plurality of light emitting element arrays are collectively sealed, and all light emitting elements are integrally sealed
  • the same effect can be obtained in various sealing forms such as the form to be performed.
  • the pitch width P2 between the light emitting element rows is not limited to a form in which the pitch width P2 is uniform, and the same effect can be obtained in a form in which the pitch width P2 is also changed.

Abstract

Light emitting element lines (21, 22), in which a plurality of light emitting elements (12) are aligned in a single row in the horizontal direction, are formed upon the upper face of a substrate (11), and a plurality of the light emitting element lines (21, 22) are mounted in parallel in the vertical direction, with a mounting region (20) being formed. A positioning pitch width of the light emitting elements (12) in the light emitting element line (21) is set in a first range which is comparatively narrow. A positioning pitch width of the light emitting elements (12) in the light emitting element line (22) is set in a second range which is wider than the upper bound of the first range. When light emitting element lines (21) are contiguously adjacent, the number of contiguous lines is two or less.

Description

発光モジュールLight emitting module
 本発明は、LEDチップ等の半導体発光素子が基板上に2次元状に実装された発光モジュールに関する。 The present invention relates to a light emitting module in which semiconductor light emitting elements such as LED chips are two-dimensionally mounted on a substrate.
 LEDは、長寿命で、小型で発光効率が良く、鮮やかな発光色を有するといった利点を持ち、照明装置や表示装置のバックライト等に広く利用されている。また、ダウンライトなど大容量の照明装置に用いる発光モジュールとして、一つの基板上に、多数のLEDチップを行列状に実装し、その上を封止材で覆って封止して発光モジュールも開発されている。 LEDs have the advantages of long life, small size, good luminous efficiency, and vivid luminescent colors, and are widely used in backlights for lighting devices and display devices. In addition, as a light-emitting module used in large-capacity lighting devices such as downlights, a light-emitting module is also developed by mounting a large number of LED chips in a matrix on a single substrate and covering it with a sealing material. Has been.
 このような発光モジュールにおいて、例えば特許文献1に開示された発光装置は、各素子列において並列接続されるLEDチップの数を同数にして、全体の回路構成のバランスを良くし、また各LEDチップに流れる電流の大きさを揃えて明るさを均一にしている。 In such a light emitting module, for example, the light emitting device disclosed in Patent Document 1 has the same number of LED chips connected in parallel in each element row to improve the balance of the entire circuit configuration, and each LED chip. The brightness is made uniform by arranging the currents flowing in
 LEDチップを封止材で封止する形態として、すべてのLEDチップが配列された領域(実装領域)全体に封止剤を流し込む方法の他に、封止剤を素子列ごとにライン状に塗布するライン工法がある。封止材をライン状に形成すると、LEDチップから封止層の外に光を取り出す効率を高くすることができる。 As a form of sealing LED chips with a sealing material, in addition to a method in which the sealing agent is poured into the entire region (mounting region) where all the LED chips are arranged, the sealing agent is applied in a line shape for each element array. There is a line construction method. When the sealing material is formed in a line shape, the efficiency of extracting light from the LED chip to the outside of the sealing layer can be increased.
 上記のように多数のLEDチップを基板上に行列状に実装した発光モジュールにおいて、高輝度に発光させるため、通常、実装領域内にLEDチップが高密度に実装されている。 In the light emitting module in which a large number of LED chips are mounted in a matrix on the substrate as described above, the LED chips are usually mounted at a high density in the mounting area in order to emit light with high luminance.
特開2012-9622号公報JP 2012-9622 A
 しかし、LEDチップを高密度で実装した発光モジュールにおいては、LEDチップで発光に伴って発生する熱が実装領域に蓄積されて、中央部で高温になりやすい。 However, in a light emitting module in which LED chips are mounted at a high density, heat generated by light emission from the LED chips is accumulated in the mounting area, and the temperature tends to increase at the center.
 LEDチップが高温になると、LED自身の劣化が生じたり、発光効率が低下したり、色調の変化が生じたりする。 When the LED chip becomes high temperature, the LED itself deteriorates, the light emission efficiency decreases, or the color tone changes.
 本発明は、上記課題を鑑み、基板上の実装領域に発光素子が行列状に実装された発光モジュールにおいて、実装領域の温度上昇を低減することを目的とする。 In view of the above problems, an object of the present invention is to reduce a temperature rise in a mounting region in a light emitting module in which light emitting elements are mounted in a matrix on a mounting region on a substrate.
 上記目的を達成するため、本発明の一態様においては、基板上に、複数の発光素子が行列状に実装され、各列ごとに発光素子がライン状をした封止材で封止された発光モジュールにおいて、すべての発光素子列の中には、発光素子が第1の範囲内にあるピッチ幅でライン状に配列されてなる第1素子列と、発光素子が第1の範囲の上限よりも大きい第2の範囲内にあるピッチ幅で配列された第2素子列とが存在し、第1素子列同士が互いに隣接する場合、連続して隣接する列数は2列以下に限定した。 In order to achieve the above object, in one embodiment of the present invention, a plurality of light-emitting elements are mounted in a matrix over a substrate, and the light-emitting elements are sealed with a line-shaped sealing material for each column. In the module, all the light emitting element arrays include a first element array in which the light emitting elements are arranged in a line with a pitch width within the first range, and the light emitting elements are more than the upper limit of the first range. In the case where there are second element rows arranged with a pitch width within a large second range and the first element rows are adjacent to each other, the number of adjacent rows is limited to two or less.
 上記態様の発光モジュールによれば、発光素子が配列されるピッチ幅が発光モジュール全体において均一であるものと比べて、同等の条件で点灯させたときの発光モジュール内の最高温度を低減することができる。 According to the light emitting module of the above aspect, it is possible to reduce the maximum temperature in the light emitting module when the light emitting element is lit under the same condition as compared with the case where the pitch width in which the light emitting elements are arranged is uniform in the entire light emitting module. it can.
実施の形態に係る発光モジュール10を用いた照明装置1を示す断面図である。It is sectional drawing which shows the illuminating device 1 using the light emitting module 10 which concerns on embodiment. 照明装置1におけるランプユニット6の斜視図である。FIG. 3 is a perspective view of a lamp unit 6 in the lighting device 1. ランプユニット6の分解斜視図である。3 is an exploded perspective view of the lamp unit 6. FIG. 発光モジュール10の一例を示す平面図である。2 is a plan view illustrating an example of a light emitting module 10. FIG. (a)は実施例A,B及び比較例Cにおいて、各発光素子列におけるピッチ幅P1、発光モジュール10の中央部と端部の温度を示す表、(b)はそのグラフである。(A) is the table | surface which shows the pitch width P1 in each light emitting element row | line | column and the temperature of the center part and edge part of the light emitting module 10 in Example A, B and the comparative example C, (b) is the graph. (a)発光素子列21を横方向に切断した断面図であり、(b)は、並べられた発光素子列21,22を縦方向に切断した断面図である。(A) It is sectional drawing which cut | disconnected the light emitting element row | line | column 21 to the horizontal direction, (b) is sectional drawing which cut | disconnected the arranged light emitting element row | line | columns 21 and 22 to the vertical direction. (a)は実施の形態2にかかる発光モジュール100の一例を示す図、(b)はその配線を示す部分拡大図である。(A) is a figure which shows an example of the light emitting module 100 concerning Embodiment 2, (b) is the elements on larger scale which show the wiring. (a)~(e)は、実施例の発光モジュールにおいて、発光素子列21と発光素子列22の配列形態を模式的に示す図である。(a)-(e) is a figure which shows typically the arrangement | sequence form of the light emitting element row | line | column 21 and the light emitting element row | line | column 22 in the light emitting module of an Example.
 <本発明に到る経緯>
 基板上の実装領域に多数の発光素子を実装した発光モジュールにおいて、温度を低減するには、端部よりも中央部において発光素子を実装する密度を小さく設定することも有効と考えられる。しかし、発光素子列ごとにライン状の封止材で封止された発光モジュールにおいては、発光素子の各素子列を直線上に並べる必要があるので、発光素子を、実装密度が中央部で小さくなるように実装しにくいこともある。
<Background to the Present Invention>
In a light-emitting module in which a large number of light-emitting elements are mounted in a mounting region on a substrate, it is considered effective to set the density at which the light-emitting elements are mounted at the center portion smaller than the end portion in order to reduce the temperature. However, in a light emitting module sealed with a line-shaped sealing material for each light emitting element row, it is necessary to arrange each element row of the light emitting elements on a straight line. It may be difficult to implement.
 これに対して、本発明者は、各列ごとに発光素子がライン状をした封止材で封止された発光モジュールにおいて、発光素子の実装形態を工夫して、温度上昇を低減することを検討した。 On the other hand, the present inventor has devised the mounting form of the light emitting element to reduce the temperature rise in the light emitting module in which the light emitting element is sealed with a line-shaped sealing material for each column. investigated.
 その結果、発光素子のピッチ幅が異なる複数の発光素子列を、ピッチ幅が大きい発光素子列とピッチ幅が小さい発光素子列とが交互に繰り返されるように配列する(発光素子が粗な列と密な列が交互になるような形態で実装する)ことによって、温度上昇を低減できることを見出し、本発明に到った。 As a result, a plurality of light emitting element arrays having different pitch widths of light emitting elements are arranged so that a light emitting element array having a large pitch width and a light emitting element array having a small pitch width are alternately repeated (a light emitting element is a rough array and a light emitting element array). It has been found that the temperature rise can be reduced by mounting in a form in which dense rows are alternately arranged, and the present invention has been achieved.
 <発明の態様>
 本発明の一態様においては、基板上に、複数の発光素子が行列状に実装され、各列ごとに発光素子がライン状をした封止材で封止された発光モジュールにおいて、すべての発光素子列の中には、発光素子が第1の範囲内にあるピッチ幅でライン状に配列されてなる第1素子列と、発光素子が第1の範囲の上限よりも大きい第2の範囲内にあるピッチ幅で配列された第2素子列とが存在し、第1素子列同士が互いに隣接する場合、連続して隣接する列数は2列以下に限定した。
<Aspect of the Invention>
In one embodiment of the present invention, in a light-emitting module in which a plurality of light-emitting elements are mounted in a matrix on a substrate and the light-emitting elements are sealed with a line-shaped sealing material for each column, all the light-emitting elements The columns include a first element row in which the light emitting elements are arranged in a line with a pitch width within the first range, and a light emitting element in the second range larger than the upper limit of the first range. In the case where there are second element rows arranged with a certain pitch width and the first element rows are adjacent to each other, the number of continuously adjacent rows is limited to two or less.
 これによって、発光素子のピッチ幅が実装領域全体で均一である場合と比べると発光モジュール内の最高温度を低減できる。 This makes it possible to reduce the maximum temperature in the light emitting module as compared with the case where the pitch width of the light emitting elements is uniform over the entire mounting area.
 また、発光モジュール内での温度差を小さくすることができるので、基板の反りを抑制することができる。基板が反ると破損の原因となったり、発光モジュールを搭載しているランプユニットの搭載部との間に隙間が生じ、搭載部への放熱が阻害され、発光モジュールの温度上昇の原因となる。 Further, since the temperature difference in the light emitting module can be reduced, the warpage of the substrate can be suppressed. If the board is warped, it may be damaged, or a gap will be formed between the lamp unit mounting part where the light emitting module is mounted, and heat dissipation to the mounting part will be hindered, causing the temperature of the light emitting module to rise. .
 また、封止形態において、発光素子列ごとにライン状の封止材で封止されているので、発光素子からの光取り出し効率もよい。 In addition, since the sealing form is sealed with a line-shaped sealing material for each light emitting element row, the light extraction efficiency from the light emitting elements is also good.
 また、上記態様の発光モジュールは、従来の発光モジュールと比べて、各発光素子列における発光素子の配列ピッチをある程度増減するだけでいいので、容易に実施にすることができる。 In addition, the light emitting module of the above aspect can be easily implemented because it is only necessary to increase or decrease the arrangement pitch of the light emitting elements in each light emitting element array to some extent as compared with the conventional light emitting module.
 上記態様の発光モジュールにおいて、発光素子列の総数が5列以上の場合、第1素子列が1列又は2列からなる第1素子列群と、第2素子列が1列以上からなる第2素子列群とが、交互に並べられた形態としてもよい。 In the light emitting module of the above aspect, when the total number of the light emitting element rows is 5 or more, the first element row group including the first element row including one or two rows and the second element row including the second element row including one or more rows. The element array groups may be arranged alternately.
 それによって、発光素子列の総数が多い場合でも、実装領域内における発光素子のピッチの範囲を交互に繰り返すだけで、温度低減効果を得ることができる。 Thereby, even when the total number of the light emitting element rows is large, the temperature reduction effect can be obtained only by alternately repeating the pitch range of the light emitting elements in the mounting region.
 上記態様の発光モジュールにおいて、実装領域の中央部は、熱が貯まりやすいので、中央部には第2素子列群を実装することが、温度を低減する上で好ましい。 In the light emitting module of the above aspect, since heat is easily stored in the central portion of the mounting region, it is preferable to mount the second element array group in the central portion in order to reduce the temperature.
 実装領域において発光素子1個あたりが占める面積の平均が3.3mm2以下である発光モジュールにおいては、温度が高くなりやすいので、上記態様を適用することによって得られる温度低減効果も大きい。 In the light emitting module in which the average area occupied by one light emitting element in the mounting region is 3.3 mm 2 or less, the temperature tends to be high, so that the temperature reduction effect obtained by applying the above aspect is also large.
 実装領域における各発光素子列の伸長方向の長さ及びそれと直交する方向の長さが、共に20mm以上50mm以下である発光モジュールにおいては、特に上記態様を適用することが有効である。また、実装領域に実装されている発光素子の総数が40以上520以下である発光モジュールにおいても、上記態様を適用することが有効である。 In the light emitting module in which the length in the extending direction of each light emitting element array in the mounting region and the length in the direction perpendicular thereto are both 20 mm or more and 50 mm or less, it is particularly effective to apply the above embodiment. In addition, it is effective to apply the above aspect also to a light emitting module in which the total number of light emitting elements mounted in the mounting region is 40 or more and 520 or less.
 基板にセラミック材料からなる層が含まれている発光モジュールにおいては、一般的に熱が蓄積しやすいが、上記態様を適用することによって温度を低減できるので、得られる効果が大きい。 In a light emitting module in which a layer made of a ceramic material is included in a substrate, heat is generally easy to accumulate, but since the temperature can be reduced by applying the above embodiment, the effect obtained is great.
 上記態様の発光モジュールにおいて、実装領域における中央に位置する発光素子列よりも端部に位置する発光素子列の方が、各発光素子列に配列されている発光素子の個数が少なくなっている形態とすることもできる。 In the light emitting module of the above aspect, the number of light emitting elements arranged in each light emitting element row is smaller in the light emitting element row located at the end than the light emitting element row located in the center in the mounting region. It can also be.
 上記態様の発光モジュールにおいて、各発光素子列に含まれる半導体発光素子同士は、導電ランドを介さずに直接ワイヤボンディングによって電気接続することもできる。 In the light emitting module of the above aspect, the semiconductor light emitting elements included in each light emitting element row can be electrically connected directly by wire bonding without using a conductive land.
 <実施の形態>
 [実施の形態1]
 実施の形態1に係る発光モジュール、ランプユニットおよび照明装置について、図面を参照しながら説明する。
<Embodiment>
[Embodiment 1]
The light emitting module, the lamp unit, and the illumination device according to Embodiment 1 will be described with reference to the drawings.
 <照明装置1>
 図1は、実施の形態に係る発光モジュール10が組み込まれた照明装置1を示す断面図である。
<Lighting device 1>
FIG. 1 is a cross-sectional view showing a lighting device 1 in which a light emitting module 10 according to an embodiment is incorporated.
 この照明装置1は、天井2に埋め込むように取り付けられるダウンライトであって、器具3、回路ユニット4、調光ユニット5、およびランプユニット6を備える。 The lighting device 1 is a downlight that is mounted so as to be embedded in the ceiling 2, and includes a fixture 3, a circuit unit 4, a dimming unit 5, and a lamp unit 6.
 器具3は、金属製であって、ランプ収容部3a、回路収容部3bおよび外鍔部3cを有する。ランプ収容部3aは、有底円筒状であって、内部にランプユニット6が着脱自在に取り付けられる。回路収容部3bは、ランプ収容部3aの底側に延設されており、内部に回路ユニット4が収容されている。外鍔部3cは、円環状であって、ランプ収容部3aの開口部から外方へ向けて延設されている。 The appliance 3 is made of metal and has a lamp housing portion 3a, a circuit housing portion 3b, and an outer casing portion 3c. The lamp housing portion 3a has a bottomed cylindrical shape, and the lamp unit 6 is detachably attached therein. The circuit housing part 3b extends on the bottom side of the lamp housing part 3a, and the circuit unit 4 is housed therein. The outer collar part 3c is annular and extends outward from the opening of the lamp housing part 3a.
 器具3は、ランプ収容部3aおよび回路収容部3bが天井2に貫設された埋込穴2aに埋め込まれて、外鍔部3cが天井2の下面2bにおける埋込穴2aの周部に当接された状態で天井2に取り付けられる。 The appliance 3 has a lamp housing portion 3a and a circuit housing portion 3b embedded in an embedded hole 2a penetrating the ceiling 2, and an outer flange portion 3c that contacts the peripheral portion of the embedded hole 2a on the lower surface 2b of the ceiling 2. It is attached to the ceiling 2 in a contacted state.
 回路ユニット4は、ランプユニット6を点灯させる回路が組み込まれている。また回路ユニット4は、ランプユニット6と電気的に接続される電源線4aを有している。電源線4aの先端にはランプユニット6のリード線71のコネクタ72と着脱自在に接続されるコネクタ4bが取り付けられている。 The circuit unit 4 incorporates a circuit for lighting the lamp unit 6. The circuit unit 4 has a power supply line 4 a that is electrically connected to the lamp unit 6. A connector 4b detachably connected to the connector 72 of the lead wire 71 of the lamp unit 6 is attached to the tip of the power supply line 4a.
 なお、照明装置1では、ランプユニット6と回路ユニット4とが別々にユニット化されているが、回路ユニット4に相当する回路がランプユニットに内蔵された構成であっても良い。 In the lighting device 1, the lamp unit 6 and the circuit unit 4 are separately unitized. However, a circuit corresponding to the circuit unit 4 may be built in the lamp unit.
 <ランプユニット6>
 図2は、ランプユニット6の斜視図であり、図3は、ランプユニット6の分解斜視図である。
<Lamp unit 6>
FIG. 2 is a perspective view of the lamp unit 6, and FIG. 3 is an exploded perspective view of the lamp unit 6.
 ランプユニット6は、光源として発光モジュール10を内蔵し、ベース80、ホルダ30、化粧カバー40、カバー50、カバー押え部材60および配線部材70等を備える。 The lamp unit 6 includes the light emitting module 10 as a light source, and includes a base 80, a holder 30, a decorative cover 40, a cover 50, a cover pressing member 60, a wiring member 70, and the like.
 ベース80は、アルミダイキャスト製の円板状であって、上面側の中央に搭載部81を有する。この搭載部81に発光モジュール10が搭載されている。ベース80の上面側には、搭載部81を挟んだ両側に、ホルダ30固定用の組立ねじ35を螺合するためのねじ孔82が設けられている。ベース80の周部には、挿通孔83、ボス孔84および切欠部85が設けられている。 The base 80 has a disk shape made of aluminum die cast and has a mounting portion 81 in the center on the upper surface side. The light emitting module 10 is mounted on the mounting portion 81. On the upper surface side of the base 80, screw holes 82 for screwing the assembly screws 35 for fixing the holder 30 are provided on both sides of the mounting portion 81. An insertion hole 83, a boss hole 84, and a notch 85 are provided in the peripheral portion of the base 80.
 ホルダ30は、有底円筒状であって、円板状の押え板部31と、当該押え板部31の周縁からベース80側に延設された円筒状の周壁部32とを有する。発光モジュール10は押え板部31で搭載部81に押えつけられてベース80に固定されている。 The holder 30 has a bottomed cylindrical shape, and includes a disc-shaped presser plate portion 31 and a cylindrical peripheral wall portion 32 extending from the periphery of the presser plate portion 31 to the base 80 side. The light emitting module 10 is pressed against the mounting portion 81 by the pressing plate portion 31 and fixed to the base 80.
 押え板部31の中央には、発光モジュール10からの光を通過させる窓孔33が形成されている。また、窓孔33と連通して開口部34が形成され、発光モジュール10に接続されたリード線71がホルダ30に干渉するのを防止している。さらに、ホルダ30の押え板部31の周部には、ベース80のねじ孔82に対応する位置に、組立ねじ35を挿通する挿通孔36が貫設されている。 A window hole 33 through which light from the light emitting module 10 passes is formed in the center of the pressing plate portion 31. Further, an opening 34 is formed in communication with the window hole 33 to prevent the lead wire 71 connected to the light emitting module 10 from interfering with the holder 30. Furthermore, an insertion hole 36 through which the assembly screw 35 is inserted is provided in a circumferential portion of the holding plate portion 31 of the holder 30 at a position corresponding to the screw hole 82 of the base 80.
 ホルダ30をベース80に取り付ける際には、まず、ホルダ30の窓孔33から発光モジュール10の封止部材13等が露出する状態で、ベース80とホルダ30とで発光モジュール10を挟持する。次に、組立ねじ35を、ホルダ30の押え板部31の上方からねじ挿通孔36に挿通し、ベース80のねじ孔82に螺合させることによって、ホルダ30がベース80に取り付けられる。 When attaching the holder 30 to the base 80, first, the light emitting module 10 is sandwiched between the base 80 and the holder 30 in a state where the sealing member 13 of the light emitting module 10 is exposed from the window hole 33 of the holder 30. Next, the assembly screw 35 is inserted into the screw insertion hole 36 from above the holding plate portion 31 of the holder 30 and screwed into the screw hole 82 of the base 80, so that the holder 30 is attached to the base 80.
 化粧カバー40は、白色不透明の樹脂等の非透光性材料からなる円環状であって、ホルダ30とカバー50との間に配置されており、開口部34から露出したリード線71や組立ねじ35等を覆い隠している。化粧カバー40の中央にも窓孔41が形成されている。 The decorative cover 40 is an annular shape made of a non-translucent material such as a white opaque resin, and is disposed between the holder 30 and the cover 50, and the lead wire 71 and the assembly screw exposed from the opening 34 are provided. Covering 35 mag. A window hole 41 is also formed in the center of the decorative cover 40.
 カバー50は、シリコーン樹脂、アクリル樹脂、ガラス等の透光性材料により形成され、封止部材13から出射された光はカバー50を透過してランプユニット6の外部へ取り出される。このカバー50はドーム状であって、レンズ機能を有する本体部51と、当該本体部51の周縁部から外方へ延設された外鍔部52とを有し、外鍔部52がベース80に固定されている。 The cover 50 is formed of a translucent material such as silicone resin, acrylic resin, glass, and the light emitted from the sealing member 13 passes through the cover 50 and is taken out of the lamp unit 6. The cover 50 has a dome shape, and includes a main body 51 having a lens function and an outer flange 52 extending outward from the peripheral edge of the main body 51, and the outer flange 52 is a base 80. It is fixed to.
 カバー押え部材60は、アルミニウム等の金属や白色不透明の樹脂のような非透光性材料からなり、カバー50の本体部51から出射される光を妨げないように円環板状になっている。カバー50の外鍔部52は、カバー押え部材60とベース80とで挟持され固定されている。 The cover pressing member 60 is made of a non-translucent material such as a metal such as aluminum or a white opaque resin, and has a circular plate shape so as not to block light emitted from the main body 51 of the cover 50. . The outer flange portion 52 of the cover 50 is sandwiched and fixed between the cover pressing member 60 and the base 80.
 カバー押え部材60の下面側には、ベース80側へ突出する円柱状のボス部61が設けられ、カバー50の外鍔部52には、ボス部61に対応する位置に半円状の切欠部53が形成されている。さらに、ベース80の周縁部には、ボス部61に対応する位置にボス部61を挿通させるボス孔84が形成されている。 A columnar boss portion 61 that protrudes toward the base 80 is provided on the lower surface side of the cover pressing member 60, and a semicircular cutout portion is formed on the outer flange portion 52 of the cover 50 at a position corresponding to the boss portion 61. 53 is formed. Further, a boss hole 84 through which the boss portion 61 is inserted is formed at a peripheral portion of the base 80 at a position corresponding to the boss portion 61.
 カバー押え部材60をベース80に固定する際は、カバー押え部材60のボス部61をベース80のボス孔84に挿通させ、ベース80の下側からボス部61の先端部にレーザ光を照射して、先端部をボス孔84から抜けない形状に塑性変形させる。それによって、カバー押え部材60はベース80に固定される。 When fixing the cover pressing member 60 to the base 80, the boss portion 61 of the cover pressing member 60 is inserted into the boss hole 84 of the base 80, and the tip of the boss portion 61 is irradiated with laser light from below the base 80. Then, the tip portion is plastically deformed into a shape that does not come out of the boss hole 84. Thereby, the cover pressing member 60 is fixed to the base 80.
 カバー50の外鍔部52及びカバー押え部材60の周縁部には、ベース80の挿通孔83に対応する各位置に半円状の切欠部54,62が形成され、挿通孔83に挿通させる取付ねじ(不図示)がカバー押え部材60やカバー50に当たらないようになっている。 Semicircular cutouts 54 and 62 are formed at positions corresponding to the insertion hole 83 of the base 80 on the outer peripheral portion 52 of the cover 50 and the cover pressing member 60, and are attached to be inserted into the insertion hole 83. Screws (not shown) are prevented from hitting the cover pressing member 60 and the cover 50.
 配線部材70は、発光モジュール10と電気的に接続された一組のリード線71を有している。リード線71は、ベース80の切欠部85を介してランプユニット6の外部へ導出され、その端部にコネクタ72が取り付けられている。 The wiring member 70 has a set of lead wires 71 electrically connected to the light emitting module 10. The lead wire 71 is led out of the lamp unit 6 through the notch 85 of the base 80, and a connector 72 is attached to the end thereof.
 <発光モジュール10>
 図4は、発光モジュール10の一例を示す平面図である。当図における紙面縦方向を縦方向、紙面横方向を横方向とする。
<Light emitting module 10>
FIG. 4 is a plan view illustrating an example of the light emitting module 10. In the figure, the vertical direction of the paper surface is the vertical direction, and the horizontal direction of the paper surface is the horizontal direction.
 図4に示すように、発光モジュール10は、基板11、基板11上に行列状に配列された複数の発光素子12、列ごとに発光素子12を覆う封止部材13、端子部14,15、配線16,17などを備える。 As shown in FIG. 4, the light emitting module 10 includes a substrate 11, a plurality of light emitting elements 12 arranged in a matrix on the substrate 11, a sealing member 13 covering the light emitting elements 12 for each column, terminal portions 14, 15, Wirings 16 and 17 are provided.
 図4に示すように、基板11の上面の実装領域20には、発光素子12が行列状に実装されている。すなわち、実装領域20には、複数の発光素子12が横方向に一列に並んで発光素子列21,22が形成され、その発光素子列21,22が複数列、縦方向に平行に並べられている。 As shown in FIG. 4, the light emitting elements 12 are mounted in a matrix in the mounting region 20 on the upper surface of the substrate 11. That is, in the mounting region 20, a plurality of light emitting elements 12 are arranged in a row in the horizontal direction to form light emitting element rows 21 and 22, and the light emitting element rows 21 and 22 are arranged in a row in parallel in the vertical direction. Yes.
 図4に示す発光モジュール10では、発光素子列21,22が、縦方向に等間隔で12列並んでいる。そして、中央部から上下に離れた位置(上下端部に近い位置)の発光素子列ほど、各発光素子列を構成する発光素子12の数が少なくなり、列の長さも短くなっている。実装領域20は破線の円で囲んだ領域であって円形状である。 In the light emitting module 10 shown in FIG. 4, the light emitting element rows 21 and 22 are arranged in twelve rows at equal intervals in the vertical direction. And the light emitting element row | line | column away from the center part up and down (position close | similar to an upper-lower-end part) has few light emitting element 12 which comprises each light emitting element row | line | column, and the length of row | line | column is also shortened. The mounting area 20 is an area surrounded by a broken-line circle and has a circular shape.
 実装領域20には、総数120個の発光素子12が配されている。各発光素子列における発光素子12の配列数は図4に示す通りである。 In the mounting area 20, a total of 120 light emitting elements 12 are arranged. The number of light emitting elements 12 arranged in each light emitting element array is as shown in FIG.
 基板11:
 基板11は、セラミックあるいは熱伝導樹脂などの絶縁性材料からなる絶縁層を有している。基板11は、全体が絶縁層であってもよいし、絶縁層と、アルミ板からなる金属層の2層構造を有していてもよい。
Substrate 11:
The substrate 11 has an insulating layer made of an insulating material such as ceramic or heat conductive resin. The entire substrate 11 may be an insulating layer, or may have a two-layer structure of an insulating layer and a metal layer made of an aluminum plate.
 基板11の形状は特に限定されないが、ここでは方形状の板である。 The shape of the substrate 11 is not particularly limited, but here is a square plate.
 発光素子12:
 発光素子12は、例えば、約430nm~470nmに主波長を有する青色光を出射するGaN系のLEDチップである。発光素子12は、基板11の上面にCOB(Chip on Board)技術を用いて実装されている。
Light emitting element 12:
The light emitting element 12 is, for example, a GaN-based LED chip that emits blue light having a main wavelength of about 430 nm to 470 nm. The light emitting element 12 is mounted on the upper surface of the substrate 11 using COB (Chip on Board) technology.
 各発光素子12の素子サイズ(チップサイズ)は、例えば、390μm×520μm、346μm角などである。 The element size (chip size) of each light emitting element 12 is, for example, 390 μm × 520 μm, 346 μm square, and the like.
 なお、ここでは発光素子12はLEDであって、発光モジュール10はLEDモジュールであるが、発光素子12は、LD(レーザダイオード)であっても良く、EL素子(エレクトリックルミネッセンス素子)であっても良い。 Here, the light emitting element 12 is an LED and the light emitting module 10 is an LED module. However, the light emitting element 12 may be an LD (laser diode) or an EL element (electric luminescence element). good.
 封止部材13:
 発光素子列21,22には、発光素子列ごとに、複数の発光素子12を覆うように、横方向に伸びるライン状の封止部材13が設けられている。この封止部材13は、波長変換材料が混入された透光性材料で形成され、発光素子12から出射される光の一部を、別の波長の光に変換する。また、各発光素子12は、封止部材13によって封止される。
Sealing member 13:
The light emitting element rows 21 and 22 are each provided with a line-shaped sealing member 13 extending in the lateral direction so as to cover the plurality of light emitting elements 12 for each light emitting element row. The sealing member 13 is formed of a translucent material mixed with a wavelength conversion material, and converts part of the light emitted from the light emitting element 12 into light of another wavelength. Each light emitting element 12 is sealed by a sealing member 13.
 波長変換材料としては、蛍光体粒子を用いることができる。透光性材料としては、例えばシリコーン樹脂、フッソ樹脂、シリコーン・エポキシのハイブリッド樹脂、ユリア樹脂等を用いることができる。 Fluorescent particles can be used as the wavelength conversion material. As the light-transmitting material, for example, a silicone resin, a fluorine resin, a silicone-epoxy hybrid resin, a urea resin, or the like can be used.
 発光素子12から出射された約430nm~470nmに主波長を有する青色光の一部は、封止部材13中の波長変換材料によって、例えば約540nm~640nmに主波長を有する光に変換される。その結果、変換後の波長帯の光と未変換の青色光との混色によって、白色光が出射される。 Part of the blue light having a dominant wavelength of about 430 nm to 470 nm emitted from the light emitting element 12 is converted into light having a dominant wavelength of, for example, about 540 nm to 640 nm by the wavelength conversion material in the sealing member 13. As a result, white light is emitted by the color mixture of the converted wavelength band light and the unconverted blue light.
 なお、封止部材13に用いる蛍光体の発光色は、発光素子列ごとに緑色や黄色に変えてもよい。それによって、全体の白色光の色温度を2700~6500℃程度の範囲で調節することができる。 In addition, the emission color of the phosphor used for the sealing member 13 may be changed to green or yellow for each light emitting element array. Thereby, the color temperature of the entire white light can be adjusted in the range of about 2700 to 6500 ° C.
 図6(a)は、発光素子列21を横方向に切断した断面図であり、図6(b)は、並べられた発光素子列21,22を縦方向に切断した断面図である。図6(a)中のP1は、発光素子列21において隣同士で実装された発光素子12のピッチ幅を示している。図6(b)中のP2は、発光素子列21,22の列どうしのピッチ幅(縦方向のピッチ)を示している。 6A is a cross-sectional view of the light-emitting element array 21 cut in the horizontal direction, and FIG. 6B is a cross-sectional view of the light-emitting element arrays 21 and 22 arranged in the vertical direction. P1 in FIG. 6A indicates the pitch width of the light emitting elements 12 mounted next to each other in the light emitting element row 21. P2 in FIG. 6B indicates the pitch width (vertical pitch) between the light emitting element rows 21 and 22. FIG.
 図6(b)に示されるように、各発光素子12は、発光素子列21,22ごとにライン状の封止部材13で封止され、封止部材13の縦断面はドーム形状である。従って、各発光素子12から出射される光は、封止部材13から外に効率よく出射されるので、各発光素子12からの光取り出し効率がよい。 As shown in FIG. 6B, each light emitting element 12 is sealed with a line-shaped sealing member 13 for each of the light emitting element rows 21 and 22, and the longitudinal section of the sealing member 13 has a dome shape. Therefore, the light emitted from each light emitting element 12 is efficiently emitted outside from the sealing member 13, so that the light extraction efficiency from each light emitting element 12 is good.
 端子部、配線、ランド:
 端子部14,15および配線16,17は、基板11の絶縁層上に形成された導体パターンである。端子部14,15は、発光素子12への給電用であって、図4に示すように、基板11の上面周縁部に形成されている。この端子部14,15は、図1~3に示すリード線71と電気接続されている。
Terminal, wiring, land:
The terminal portions 14 and 15 and the wirings 16 and 17 are conductor patterns formed on the insulating layer of the substrate 11. The terminal portions 14 and 15 are for supplying power to the light emitting element 12 and are formed on the peripheral edge of the upper surface of the substrate 11 as shown in FIG. The terminal portions 14 and 15 are electrically connected to the lead wire 71 shown in FIGS.
 配線16は、基板11上の各発光素子列21,22の一端部と端子部14とを電気的に接続している。配線17は各発光素子列21,22の他端部と端子部15とを電気的に接続されている。 The wiring 16 electrically connects one end portion of each light emitting element row 21, 22 on the substrate 11 and the terminal portion 14. The wiring 17 electrically connects the other end of each light emitting element row 21, 22 and the terminal portion 15.
 また実装領域20内において、基板11上の各発光素子12に隣接する位置に、ボンディング用のランド19が配されている。各発光素子12とランド19とはワイヤボンディングによって電気的に接続されている。各ランド19によって横方向に隣接する発光素子12は直接接続されている。さらに、実装領域20内において、隣接する発光素子列にまたがって、配線18a~18eが配置されている。 Further, in the mounting area 20, bonding lands 19 are arranged at positions adjacent to the light emitting elements 12 on the substrate 11. Each light emitting element 12 and the land 19 are electrically connected by wire bonding. The light emitting elements 12 adjacent in the horizontal direction are directly connected by the lands 19. Further, in the mounting region 20, wirings 18a to 18e are arranged across adjacent light emitting element rows.
 このような配線によって、実装領域20内に実装された複数の発光素子12は、15個の発光素子12を直列接続したものが8並列に接続され、15直8並の接続形態となっている。 With such wiring, the plurality of light emitting elements 12 mounted in the mounting region 20 are connected in parallel with 15 light emitting elements 12 connected in series, and are in a 15-by-8 parallel connection form. .
 接続形態については、ここでは15直8並としたが、実装領域20内に実装されている複数の発光素子12に対して均一的に電力を供給できる接続形態であれば、特に限定されない。 Here, the connection form is set to 15 to 8 in parallel, but is not particularly limited as long as the connection form can uniformly supply power to the plurality of light emitting elements 12 mounted in the mounting region 20.
 なお、本実施の形態においては、発光素子間をランド19を介してワイヤで電気接続しているが、ランド19を介することなく直接発光素子間をワイヤで電気接続することも可能である。ランド19の位置の制約を受けずに発光素子を基板上に実装することが可能となる。また、ランド19による光吸収損失が生じない。 In the present embodiment, the light emitting elements are electrically connected by wires via the lands 19. However, the light emitting elements can be directly electrically connected by wires without using the lands 19. The light emitting element can be mounted on the substrate without being restricted by the position of the land 19. Further, no light absorption loss due to the land 19 occurs.
 回路ユニット4:
 回路ユニット4は、AC/DCコンバータを備える回路で構成され、外部の商用交流電源(不図示)と電気的に接続され、商用交流電源から入力される電力を、発光素子12の素子列に適した直流電圧に変換して供給する。それによって、すべての発光素子12は一括して点灯制御される。
Circuit unit 4:
The circuit unit 4 is configured by a circuit including an AC / DC converter, and is electrically connected to an external commercial AC power supply (not shown), and power input from the commercial AC power supply is suitable for the element array of the light emitting elements 12. Converted to DC voltage and supplied. Thereby, all the light emitting elements 12 are controlled to be turned on collectively.
 (発光モジュール10における発光素子12の配列ピッチの形態と効果)
 図4に示すように、発光モジュール10の実装領域20は、複数の発光素子列21及び発光素子列22が、縦に配列されて形成されている。
(Form and effect of arrangement pitch of light emitting elements 12 in light emitting module 10)
As shown in FIG. 4, the mounting region 20 of the light emitting module 10 is formed by vertically arranging a plurality of light emitting element rows 21 and light emitting element rows 22.
 発光素子列内での横方向のピッチ幅P1は一律であるが、発光素子列によってそのピッチ幅P1が大きいものと小さいものがある。すなわち、各発光素子列における横方向のピッチ幅P1については、発光素子列21は、発光素子12のピッチ幅P1が、比較的小さい第1の範囲内にあり、発光素子列22は、発光素子12のピッチ幅P1が第1の範囲の上限より大きい第2の範囲内にある。 The horizontal pitch width P1 in the light emitting element array is uniform, but there are a light emitting element array having a larger pitch width P1 and a smaller one. That is, with respect to the lateral pitch width P1 in each light emitting element row, the light emitting element row 21 has a first range in which the pitch width P1 of the light emitting elements 12 is relatively small, and the light emitting element row 22 Twelve pitch widths P1 are in the second range which is larger than the upper limit of the first range.
 具体的には、実装領域20全体において、発光素子列のピッチ幅の和を全発光素子列数で除することによって得られる平均的なピッチ幅を基準にして、その値を、第1の範囲の上限値としている。発光素子列21は、発光素子12のピッチ幅P1がこの上限値以下の範囲内にあり、発光素子列22では発光素子12のピッチ幅P1がこの上限値よりも大きい範囲にある。一方、発光素子列同士の縦方向のピッチ幅P2は一律である。 Specifically, with respect to the average pitch width obtained by dividing the sum of the pitch widths of the light emitting element rows by the total number of light emitting element rows in the entire mounting region 20, the value is set to the first range. The upper limit is set. In the light emitting element row 21, the pitch width P1 of the light emitting elements 12 is in the range below the upper limit value, and in the light emitting element row 22, the pitch width P1 of the light emitting elements 12 is in the range larger than the upper limit value. On the other hand, the vertical pitch width P2 between the light emitting element rows is uniform.
 各発光素子列のピッチ幅P1がすべて一定の発光モジュールに対して、発光素子列21ではピッチ幅P1を若干狭くし、発光素子列22ではピッチ幅P1を若干広くすることによって実現できる。すなわち、従来の発光モジュールに対して、ピッチ幅を増減するだけでいいので、実施するのも容易である。 This can be realized by slightly reducing the pitch width P1 in the light emitting element array 21 and slightly increasing the pitch width P1 in the light emitting element array 22 for the light emitting modules in which the pitch width P1 of each light emitting element array is constant. That is, since it is only necessary to increase or decrease the pitch width with respect to the conventional light emitting module, it is easy to implement.
 以下に、実装領域20における発光素子12の配列形態について、実施例に基づいて説明する。 Hereinafter, the arrangement form of the light emitting elements 12 in the mounting area 20 will be described based on examples.
 実施例Aは、上記図4に示す発光モジュール10であって、発光素子列21,22が、全部で12列並んでいる。上半分の6列では、中央部側の素子列から上端側の素子列にかけて、素子数は13,13,12,10,8,4個に設定されている。下半分の6列でも、中央部側の発光素子列から下端側の発光素子列にかけて、上半分と同様の素子数に設定され、180°回転対称に実装されている。 Example A is the light emitting module 10 shown in FIG. 4 described above, and the light emitting element rows 21 and 22 are arranged in a total of 12 rows. In the upper six rows, the number of elements is set to 13, 13, 12, 10, 8, and 4 from the element row on the center side to the element row on the upper end side. The six rows in the lower half are also set to the same number of elements as those in the upper half from the light emitting element row on the center side to the light emitting element row on the lower end side, and are mounted in 180 ° rotational symmetry.
 実施例Bは、基本的な構成は上記図4に示す発光モジュール10と同様であるが、発光素子列21,22の配列形態及び各発光素子列21,22における発光素子列21のピッチ幅P1の設定が実施例Aと異なっている。 The basic configuration of Example B is the same as that of the light emitting module 10 shown in FIG. 4 except that the arrangement of the light emitting element rows 21 and 22 and the pitch width P1 of the light emitting element rows 21 in each of the light emitting element rows 21 and 22 are as follows. Is different from that of the embodiment A.
 各実施例A,Bにおいて、各発光素子列におけるピッチ幅P1は、図5(a)の表及び図5(b)のグラフに示す値に設定されている。 In each of Examples A and B, the pitch width P1 in each light emitting element array is set to a value shown in the table of FIG. 5A and the graph of FIG. 5B.
 実施例Aでは1.40~1.53mmの範囲、実施例Bでは1.40~1.48mmの範囲である。実施例Aでは、1列目から6列目のピッチ幅の和が8.72mmであるから全列数6で割るとその平均値は1.45mmである。同じく実施例Bでは和が8.70mmであるからその平均値は1.45mmである。すなわち、実施例A、Bとも、すべての発光素子列におけるピッチ幅P1の平均的な値が1.45mmである。そして、この1.45mm以下を第1の範囲(1.45mmが発光素子列21のピッチ幅P1の上限)とし、第2の範囲は1.45mmを超える範囲とする。 In Example A, the range is 1.40 to 1.53 mm, and in Example B, the range is 1.40 to 1.48 mm. In Example A, the sum of the pitch widths of the 1st to 6th rows is 8.72 mm, and when divided by the total number of rows of 6, the average value is 1.45 mm. Similarly, in Example B, since the sum is 8.70 mm, the average value is 1.45 mm. That is, in both Examples A and B, the average value of the pitch width P1 in all the light emitting element rows is 1.45 mm. The first range is 1.45 mm or less (1.45 mm is the upper limit of the pitch width P1 of the light emitting element array 21), and the second range is a range exceeding 1.45 mm.
 この場合、すべての発光素子列の中で、ピッチ幅P1が1.45mm以下の範囲内にあるものが発光素子列21になり、ピッチ幅P1が1.45mmより大きい範囲内にあるものが発光素子列22になる。 In this case, among all the light emitting element rows, the one having the pitch width P1 in the range of 1.45 mm or less becomes the light emitting element row 21, and the one having the pitch width P1 in the range larger than 1.45 mm emits light. The element row 22 is obtained.
 実施例A、Bの配列形態を模式的に示したのが図8(a)、(b)である。実施例Aでは、列番号2,3と列番号5,6では発光素子列21同士が隣接して連続している。連続する列数は2列にとどまっており、発光素子列21が3列以上連続はしていない。実施例Bでは、列番号3、5に発光素子列21が連続することなく配列されている。残りの列番号1、2、4、6が発光素子列22である。 FIGS. 8A and 8B schematically show the arrangement forms of Examples A and B. FIG. In Example A, in the column numbers 2 and 3 and the column numbers 5 and 6, the light emitting element columns 21 are adjacent and continuous. The number of continuous rows is limited to two, and the light emitting element rows 21 are not continuous for three or more rows. In Example B, the light emitting element rows 21 are arranged in row numbers 3 and 5 without being continuous. The remaining column numbers 1, 2, 4, and 6 are the light emitting element columns 22.
 ここで、ピッチ幅P1が狭い発光素子列21が第1素子列群に属し、ピッチ幅P1が広い発光素子列22が第2素子列群に属するものとする。実施例A、Bともに、実装領域20において第1素子列群と第2素子列群とが、交互に繰り返して配列されていることになる。 Here, it is assumed that the light emitting element row 21 having a narrow pitch width P1 belongs to the first element row group, and the light emitting element row 22 having a wide pitch width P1 belongs to the second element row group. In both Examples A and B, the first element array group and the second element array group are alternately and repeatedly arranged in the mounting region 20.
 上記実施例A及び実施例BにおけるピッチP1の上限値(1.53mm、1.48mm)は、平均的な値(1.45mm)に対して3%~10%の範囲で増加した範囲内にあり、ピッチP1の下限値(1.40mm)は、平均的な値(1.45mm)に対して3%~10%の範囲で減らした範囲内の値となっている。 The upper limit (1.53 mm, 1.48 mm) of the pitch P1 in Example A and Example B is within a range increased by 3% to 10% with respect to the average value (1.45 mm). In other words, the lower limit value (1.40 mm) of the pitch P1 is a value within a range reduced by 3% to 10% with respect to the average value (1.45 mm).
 なお、このピッチ幅P1の範囲の下限と上限の差が小さすぎると、温度低減効果が得られにくくなる。一方、ピッチ幅P1の下限と上限の差が大きすぎると、発光素子列21と発光素子列22の素子数の差が大きくなって、発光素子列21における発光素子12の配列が難しくこともある。上記実施例A,Bのピッチ幅の範囲(1.40~1.53mm,1.40~1.48mm)は、そのような点を考慮して設定している。すなわち、発光素子列21におけるピッチ幅P1の範囲(第1の範囲)の下限としては、平均的な値に対して3%~10%の範囲内で減じた値が好ましい。発光素子列22におけるピッチ幅の範囲(第2の範囲)の上限としては、平均的なピッチ幅に対して、3%~10%の範囲内で加えた値が好ましい。 Note that if the difference between the lower limit and the upper limit of the range of the pitch width P1 is too small, it is difficult to obtain a temperature reduction effect. On the other hand, if the difference between the lower limit and the upper limit of the pitch width P1 is too large, the difference in the number of elements of the light emitting element array 21 and the light emitting element array 22 becomes large, and the arrangement of the light emitting elements 12 in the light emitting element array 21 may be difficult. . The pitch width ranges (1.40 to 1.53 mm, 1.40 to 1.48 mm) of Examples A and B are set in consideration of such points. That is, the lower limit of the range (first range) of the pitch width P1 in the light emitting element array 21 is preferably a value reduced within a range of 3% to 10% with respect to the average value. The upper limit of the pitch width range (second range) in the light emitting element array 22 is preferably a value added within a range of 3% to 10% with respect to the average pitch width.
 発光モジュール10による温度低減効果を確認するため、以下の試験を行った。 In order to confirm the temperature reduction effect by the light emitting module 10, the following tests were conducted.
 (比較試験)
 発光素子12の配列ピッチをすべての発光素子列で同一の1.45mmにした以外は、図4に示す実施例A,Bと同様の発光モジュールを比較例Cとし、駆動時の温度を比較する試験を行った。
(Comparative test)
A light emitting module similar to Example A and B shown in FIG. 4 is used as Comparative Example C, except that the arrangement pitch of the light emitting elements 12 is the same 1.45 mm in all the light emitting element rows, and the temperature during driving is compared. A test was conducted.
 実施例A,Bと比較例Cは、大きさが同等の実装領域(Φ22mm、実装面積380mm2)に同一個数(120個)の発光素子12が配列されているので、平均の実装密度は同等である。また、発光素子12一個あたりの実装密度は、いずれも380÷120=3.17mm2である。発光素子列同士のピッチ幅P2はいずれも1.8mmである。 In Examples A and B and Comparative Example C, the same number (120) of light emitting elements 12 are arranged in the mounting area (Φ22 mm, mounting area 380 mm 2 ) of the same size, so the average mounting density is the same. It is. The mounting density per light emitting element 12 is 380 ÷ 120 = 3.17 mm 2 in all cases. The pitch width P2 between the light emitting element rows is 1.8 mm.
 各発光モジュールはいずれも、定格電流IFは700mA、定格電圧VFは43.9Vである。 All the light emitting modules have a rated current IF of 700 mA and a rated voltage VF of 43.9V.
 実施例A,Bと比較例Cの各発光モジュールを、同一の電力(定格電力30.7W)で点灯させた際の実装領域20内の中央部と下端部での温度を図5(a)の表に示す。発光素子列のピッチ幅P1が同一の比較例Cでは、温度が最高となる中央部での温度が101.4℃であるのに対し、ピッチ幅P1が基準以下の第1素子列群と基準より広い第2素子列群を交互に繰り返して配列した実施例Aでは77.0℃で比較例Cに比べて24.4℃も低くなっている。同じく実施例Bでは中央部の温度が87.8℃であり比較例Cに比べて113.6℃低くなっている。また、比較例Cでは中央部と下端部の温度差が29.2℃もあるのに対して、実施例A、Bではそれぞれ12.8℃、12.4℃と半分以下になっている。 FIG. 5A shows the temperatures at the center and the lower end in the mounting area 20 when the light emitting modules of Examples A and B and Comparative Example C are turned on with the same power (rated power 30.7 W). It is shown in the table. In Comparative Example C in which the pitch width P1 of the light emitting element rows is the same, the temperature at the central portion where the temperature is highest is 101.4 ° C., whereas the pitch width P1 is equal to or less than the reference in the first element row group and the reference. In Example A in which wider second element array groups were alternately arranged, the temperature was 77.0 ° C., which was 24.4 ° C. lower than that in Comparative Example C. Similarly, in Example B, the temperature at the center is 87.8 ° C., which is 113.6 ° C. lower than that in Comparative Example C. Further, in Comparative Example C, the temperature difference between the central portion and the lower end portion is 29.2 ° C., whereas in Examples A and B, they are 12.8 ° C. and 12.4 ° C., which are less than half.
 このようにピッチ幅P1が基準以下の第1素子列群と基準より広い第2素子列群を交互に繰り返して実装した実施例A、Bは比較例Cに比べて、発光モジュール内での最高温度を下げるだけでなく、発光モジュール全体の温度を下げることも可能である。 As described above, Examples A and B in which the first element row group having the pitch width P1 equal to or smaller than the reference and the second element row group wider than the reference are alternately mounted are the highest in the light emitting module as compared with Comparative Example C. In addition to lowering the temperature, it is also possible to lower the temperature of the entire light emitting module.
 また、発光モジュール内の最高温度を低減するに加え、発光モジュール内の温度差を小さくすることができる。 In addition to reducing the maximum temperature in the light emitting module, the temperature difference in the light emitting module can be reduced.
 このように発光モジュール内の温度差を小さくできることによって、基板の反りを抑制することができる。基板が反ると破損の原因となったり、発光モジュールを搭載しているランプユニットの搭載部との間に隙間が生じ、搭載部への放熱が阻害され、発光モジュールの温度上昇の原因となるが、本実施形態によれば、その原因を抑えることができる。 Thus, the temperature difference in the light emitting module can be reduced, so that the warpage of the substrate can be suppressed. If the board is warped, it may be damaged, or a gap will be formed between the lamp unit mounting part where the light emitting module is mounted, and heat dissipation to the mounting part will be hindered, causing the temperature of the light emitting module to rise. However, according to this embodiment, the cause can be suppressed.
 本効果については、実装領域20の中央部に第2素子列群が配置されている場合に限らず、第1素子列群が配列されていても、最高温度を下げるなどの上記効果を得ることが可能である。
(考察)
 さらに、以下のように考察を行った。
This effect is not limited to the case where the second element array group is arranged in the central portion of the mounting region 20, and the above effect such as lowering the maximum temperature can be obtained even when the first element array group is arranged. Is possible.
(Discussion)
Further, the following consideration was made.
 1.発光モジュール10においては、基板11にセラミック材料からなる層が含まれているので、発光素子12で発せられる熱は、基板11の面に沿った方向に分散されにくい。一般的には、そのような場合、熱が貯まりやすく高温になりやすいが、発光モジュール10においては、温度上昇を抑えることができる。 1. In the light emitting module 10, since the substrate 11 includes a layer made of a ceramic material, the heat generated by the light emitting element 12 is not easily dispersed in the direction along the surface of the substrate 11. Generally, in such a case, heat is likely to be stored and the temperature is likely to be high, but in the light emitting module 10, an increase in temperature can be suppressed.
 従って、発光モジュール10のように、基板11にセラミック材料からなる層が含まれている場合には、特に有効である。 Therefore, it is particularly effective when the substrate 11 includes a layer made of a ceramic material like the light emitting module 10.
 2.発光モジュールの実装密度と温度上昇との関係を調べたところ、一般的に実装領域20における実装密度が低い場合(発光素子1個あたりが占める面積の平均が3.3mm2/素子より小さい場合)には、温度上昇が生じにくい。一方、実装密度が高い場合(発光素子1個あたりが占める面積の平均が3.3mm2/素子以下の場合)には温度上昇が生じやすいこともわかった。 2. When the relationship between the mounting density of the light emitting module and the temperature rise is examined, the mounting density in the mounting region 20 is generally low (when the average area occupied by one light emitting element is smaller than 3.3 mm 2 / element). In this case, the temperature rise hardly occurs. On the other hand, it was also found that when the mounting density is high (when the average area occupied by one light emitting element is 3.3 mm 2 / element or less), the temperature rises easily.
 従って、発光素子1個あたりが占める面積の平均が3.3mm2/素子以下の場合には、発光モジュール10によって得られる温度低減効果が大きくなる。 Therefore, when the average area occupied by one light emitting element is 3.3 mm 2 / element or less, the temperature reduction effect obtained by the light emitting module 10 is increased.
 3.実施例A,Bにかかる発光モジュール10は、実装両機の大きさがΦ22mmであったが、実装領域20の縦方向及び横方向の長さが20mm以上50mm以下の範囲であれば、同様に優れた温度低減効果が得られる。 3. In the light emitting module 10 according to Examples A and B, the size of both mounting machines was Φ22 mm. However, if the length in the vertical direction and the horizontal direction of the mounting region 20 is in the range of 20 mm to 50 mm, it is equally excellent. A temperature reduction effect can be obtained.
 4.発光モジュール10において、実装領域20に実装される発光素子12の総数についても、40~520の範囲、実装領域20に実装される発光素子列の本数が5本~25本、総投入電力が10W~100Wであれば、同様に優れた温度低減効果が得られる。 4. In the light emitting module 10, the total number of light emitting elements 12 mounted in the mounting area 20 is also in the range of 40 to 520, the number of light emitting element arrays mounted in the mounting area 20 is 5 to 25, and the total input power is 10W. If it is ˜100 W, an excellent temperature reduction effect can be obtained.
 5.発光モジュール10においては、実装領域20において、中央に位置する発光素子列よりも端部に位置する発光素子列の方が、各発光素子列に配列されている発光素子12の個数が少なくなっていて、実装領域20が円形状であった。しかし、実装領域20の形状についても特に限定されることはない。例えば、下記実施形態2に示すように実装領域20が長方形状である場合も同様に実施でき、同様の効果が得られる。 5. In the light emitting module 10, in the mounting region 20, the number of the light emitting elements 12 arranged in each light emitting element row is smaller in the light emitting element row located at the end than the light emitting element row located in the center. Thus, the mounting area 20 was circular. However, the shape of the mounting region 20 is not particularly limited. For example, when the mounting area 20 is rectangular as shown in the second embodiment below, the same effect can be obtained.
 [実施の形態2]
 図7(a)は実施の形態2にかかる発光モジュール100の一例を示す図である。
[Embodiment 2]
FIG. 7A is a diagram illustrating an example of the light emitting module 100 according to the second embodiment.
 この発光モジュール100は、実施の形態1にかかる発光モジュール10と同様の構成であるが、実装領域20が四角形状である。図7において、発光モジュール10の構成要素と同様の構成要素には同じ符号を付している。 The light emitting module 100 has the same configuration as that of the light emitting module 10 according to the first embodiment, but the mounting area 20 has a quadrangular shape. In FIG. 7, the same components as those of the light emitting module 10 are denoted by the same reference numerals.
 図7(a)に示す発光モジュール100では、実装領域20において、略同じ長さの発光素子列が8本並んで実装されている。この8本の発光素子列において、発光素子列21と発光素子列22が交互に繰り返して配列された形態となっている。 In the light emitting module 100 shown in FIG. 7A, eight light emitting element arrays having substantially the same length are mounted side by side in the mounting region 20. In the eight light emitting element rows, the light emitting element rows 21 and the light emitting element rows 22 are alternately and repeatedly arranged.
 発光素子列21におけるピッチ幅P1及び発光素子列22におけるピッチ幅P1については、上記実施の形態1で説明したとおりである。すなわち、発光素子列21は、ピッチ幅P1が小さい第1の範囲内に設定されて第1素子列群に属し、発光素子列22は、ピッチ幅が第1の範囲の上限より広い第2の範囲内に設定されて第2素子列群に属する。 The pitch width P1 in the light emitting element array 21 and the pitch width P1 in the light emitting element array 22 are as described in the first embodiment. That is, the light emitting element row 21 belongs to the first element row group which is set within the first range where the pitch width P1 is small, and the light emitting element row 22 has the second pitch width wider than the upper limit of the first range. It is set within the range and belongs to the second element array group.
 図8(c)~(e)は、実装領域20において、発光素子列21及び発光素子列22の配列順序パターンの例を示す図である。 FIGS. 8C to 8E are diagrams showing examples of arrangement sequence patterns of the light emitting element rows 21 and the light emitting element rows 22 in the mounting region 20.
 図8(c)は、上記図7(a)のように、発光素子列21と発光素子列22とが1列づつ交互に繰り返して配列されたパターンである。 FIG. 8C shows a pattern in which the light emitting element rows 21 and the light emitting element rows 22 are alternately and repeatedly arranged one by one as shown in FIG. 7A.
 図8(d)は、中央の2列が素子列22であって、その上下に、発光素子列21と素子列22とが1列づつ交互に繰り返して配列されたパターンである。 FIG. 8D shows a pattern in which the central two rows are the element rows 22 and the light emitting element rows 21 and the element rows 22 are alternately and repeatedly arranged above and below the row.
 図8(e)は、中央の2列が素子列22であり、その上下に、発光素子列21が2列づつ配列され、その上下に素子列22が1列つづ配列されたパターンである。 FIG. 8E shows a pattern in which the two central rows are the element rows 22, two light emitting element rows 21 are arranged above and below the element rows 22, and one element row 22 is arranged above and below the rows.
 これらいずれの配列パターンにおいても、第1素子列群と第2素子列群とが交互に配列された形態となっている。従って、実施の形態1で説明したように、温度低減効果を得ることができる。 In any of these arrangement patterns, the first element row groups and the second element row groups are alternately arranged. Therefore, as described in Embodiment 1, a temperature reduction effect can be obtained.
 (各発光素子列21,22における発光素子12の配列数について)
 発光素子列21と発光素子列22には、同一個数(例えば36個づつ)の発光素子12を配列して直列接続してもよいが、その場合、ピッチ幅P1が互いに異なっているので、発光素子列21よりも発光素子列22の全長が長くなる。
(Regarding the number of light emitting elements 12 arranged in each light emitting element row 21, 22)
In the light emitting element array 21 and the light emitting element array 22, the same number (for example, 36) of the light emitting elements 12 may be arranged and connected in series. In this case, the pitch width P1 is different from each other. The total length of the light emitting element array 22 is longer than that of the element array 21.
 そこで、発光素子列21と発光素子列22の全長を同程度にするために、発光素子列21において配列する発光素子12の個数を、発光素子列22において配列する発光素子12の個数よりも多く設定してもよい。例えば、ピッチ幅の狭い発光素子列21には発光素子12を38個配列し、ピッチ幅の広い発光素子列22には、発光素子12を34個配列する。 Therefore, in order to make the total length of the light emitting element array 21 and the light emitting element array 22 equal, the number of the light emitting elements 12 arranged in the light emitting element array 21 is larger than the number of the light emitting elements 12 arranged in the light emitting element array 22. It may be set. For example, 38 light emitting elements 12 are arranged in the light emitting element array 21 with a narrow pitch width, and 34 light emitting elements 12 are arranged in the light emitting element array 22 with a wide pitch width.
 この場合、各発光素子列21,22の発光素子12を単純に直列接続すると、発光素子列21と発光素子列22とで直列接続される発光素子12の数が異なることになる。 In this case, when the light emitting elements 12 of the light emitting element rows 21 and 22 are simply connected in series, the number of the light emitting elements 12 connected in series in the light emitting element row 21 and the light emitting element row 22 is different.
 そこで、図7(b)に示すように、配線16から発光素子列21の途中に伸びる枝配線16a、並びに隣合う発光素子列21と発光素子列22にまたがる配線18を配置する。それによって、直列接続される発光素子12の個数を同一(36個)にでき、各発光素子12に同じ電力が供給される。 Therefore, as shown in FIG. 7B, the branch wiring 16a extending from the wiring 16 to the middle of the light emitting element array 21 and the wiring 18 extending between the adjacent light emitting element array 21 and the light emitting element array 22 are arranged. Thereby, the number of light emitting elements 12 connected in series can be made the same (36), and the same power is supplied to each light emitting element 12.
 [変形例など]
 上記実施の形態にかかる発光モジュール10,100では、実装領域20において、第1素子列群と第2素子列群とが交互に配列されていた。
[Variations]
In the light emitting modules 10 and 100 according to the above embodiment, the first element row groups and the second element row groups are alternately arranged in the mounting region 20.
 実装領域20に並べられる発光素子列の数が5本以上の場合は、このように第1素子列群と第2素子列群とを交互に配列することが好ましい。 When the number of light emitting element rows arranged in the mounting area 20 is five or more, it is preferable to alternately arrange the first element row groups and the second element row groups in this way.
 しかし、実装領域20に並べられる発光素子列の数が少ない場合は、第1素子列群と第2素子列群とを交互に配列しなくてもよい。実装領域20に並べられる発光素子列が少ない場合、発光素子列21と発光素子列22とで形成され、発光素子列21が連続して並ぶ数が2本以下であれば、すべての発光素子列のピッチ幅が均一なものと比べて、温度低減効果が得られると考えられる。 However, when the number of light emitting element rows arranged in the mounting area 20 is small, the first element row groups and the second element row groups may not be alternately arranged. When there are few light emitting element rows arranged in the mounting area 20, all the light emitting element rows are formed as long as the number of the light emitting element rows 21 is continuously formed. It is considered that a temperature reduction effect can be obtained as compared with those having a uniform pitch width.
 例えば実装領域20に配列される発光素子列が全部で4本の場合、発光素子列21を2本連続して並べ、発光素子列22も2本連続して並べてもよい。 For example, when there are four light emitting element rows arranged in the mounting region 20, two light emitting element rows 21 may be arranged in succession, and two light emitting element rows 22 may be arranged in succession.
 ここまでに示した実施の形態には、いずれも封止部材中に蛍光体を含み発光素子からの光を蛍光体で波長変換する形態であるが、この形態に限らない。 In any of the embodiments shown so far, a phosphor is included in the sealing member and wavelength of light from the light emitting element is converted by the phosphor, but the present invention is not limited to this.
 発光モジュール内の最高温度を下げて、温度差を小さくする効果は、蛍光体粒子を含まない形態においても確認している。例えば、赤色、緑色、青色などの異なる発光波長の光を出射する発光素子を組み合わせて実装した発光モジュールにおいても、上記実施の形態で説明した内容を適用することによって、同様の効果を得ることができる。 The effect of lowering the maximum temperature in the light emitting module to reduce the temperature difference has been confirmed even in a form not including phosphor particles. For example, the same effect can be obtained by applying the contents described in the above embodiment even in a light emitting module mounted by combining light emitting elements that emit light of different emission wavelengths such as red, green, and blue. it can.
 発光素子を封止する形態も、発光素子列ごとに封止する形態には限らない。例えば、各発光素子を個別に封止する形態、発光素子列によらずに複数の発光素子を封止する形態、複数の発光素子列をまとめて封止する形態、全発光素子を一体封止する形態等、多様な封止形態おいて同様の効果を得ることができる。 The form for sealing the light emitting elements is not limited to the form for sealing each light emitting element row. For example, a form in which each light emitting element is individually sealed, a form in which a plurality of light emitting elements are sealed regardless of a light emitting element array, a form in which a plurality of light emitting element arrays are collectively sealed, and all light emitting elements are integrally sealed The same effect can be obtained in various sealing forms such as the form to be performed.
 発光素子列同士のピッチ幅P2についても、ピッチ幅P2を一律とする形態には限られず、ピッチ幅P2も変える形態においても同様の効果を得ることができる。 The pitch width P2 between the light emitting element rows is not limited to a form in which the pitch width P2 is uniform, and the same effect can be obtained in a form in which the pitch width P2 is also changed.
 発光素子を基板に直接実装する形態の他、発光素子がそれぞれ1次封止されたもの、いわゆる表面実装デバイス(SMD)を基板上に2次実装する場合においても、同様の効果が得られることも確認している。 The same effect can be obtained not only in the case where the light emitting element is directly mounted on the substrate, but also in the case where a so-called surface mount device (SMD) is secondarily mounted on the substrate in which each light emitting element is primarily sealed. Also confirmed.
    1  照明装置
   10  発光モジュール
   11  基板
   12  発光素子
   13  封止部材
   14,15 端子部
   16,17 配線
   18  配線
   20  実装領域
   21,22 発光素子列
   100  発光モジュール
DESCRIPTION OF SYMBOLS 1 Illuminating device 10 Light emitting module 11 Board | substrate 12 Light emitting element 13 Sealing member 14,15 Terminal part 16,17 Wiring 18 Wiring 20 Mounting area 21,22 Light emitting element row | line | column 100 Light emitting module

Claims (9)

  1.  基板上に、複数の半導体発光素子が行列状に実装され、各列ごとに半導体発光素子がライン状をした封止材で封止された発光モジュールであって、
     すべての発光素子列の中には、
     半導体発光素子が第1の範囲内にあるピッチ幅でライン状に配列されてなる第1素子列と、半導体発光素子が前記第1の範囲の上限よりも大きい第2の範囲内にあるピッチ幅で配列された第2素子列とが存在し、
     前記第1素子列同士が互いに隣接する場合、連続して隣接する列数は2列以下である、
     発光モジュール。
    A plurality of semiconductor light emitting elements are mounted in a matrix form on a substrate, and the semiconductor light emitting elements are sealed with a line-shaped sealing material for each column,
    In all the light emitting element rows,
    A first element row in which the semiconductor light emitting elements are arranged in a line with a pitch width within the first range, and a pitch width where the semiconductor light emitting elements are within a second range larger than the upper limit of the first range; And a second element array arranged in
    When the first element columns are adjacent to each other, the number of columns adjacent to each other is two or less.
    Light emitting module.
  2.  行列状に実装されている列の総数は5列以上であって、
     前記第1素子列が1列又は2列からなる第1素子列群と、前記第2素子列が1列以上からなる第2素子列群とが、交互に並べられた形態である、
     請求項1記載の発光モジュール。
    The total number of columns implemented in a matrix is 5 or more,
    The first element row group in which the first element row is composed of one or two rows and the second element row group in which the second element row is composed of one or more rows are alternately arranged.
    The light emitting module according to claim 1.
  3.  すべての半導体発光素子が実装された領域を実装領域とするとき、
     その中央部には、前記第2素子列群が配列されている、
     請求項2記載の発光モジュール。
    When the area where all semiconductor light emitting elements are mounted is the mounting area,
    In the central part, the second element array group is arranged,
    The light emitting module according to claim 2.
  4.  すべての半導体発光素子が実装された領域を実装領域とするとき、
     前記実装領域において、前記半導体発光素子1個あたりが占める面積の平均は3.3mm2以下である、
     請求項1~3のいずれかに記載の発光モジュール。
    When the area where all semiconductor light emitting elements are mounted is the mounting area,
    In the mounting region, the average area occupied by one semiconductor light emitting element is 3.3 mm 2 or less.
    The light emitting module according to any one of claims 1 to 3.
  5.  すべての半導体発光素子が実装された領域を実装領域とするとき、
     前記実装領域は、
     各発光素子列の伸長方向の長さ及びそれと直交する方向の長さが、
     共に20mm以上50mm以下である、
     請求項1~4のいずれかに記載の発光モジュール。
    When the area where all semiconductor light emitting elements are mounted is the mounting area,
    The mounting area is
    The length in the extending direction of each light emitting element row and the length in the direction perpendicular thereto are as follows:
    Both are 20 mm or more and 50 mm or less,
    The light emitting module according to any one of claims 1 to 4.
  6.  すべての半導体発光素子が実装された領域を実装領域とするとき、
     前記実装領域に実装されている半導体発光素子の総数が40以上520以下である、
     請求項1~5のいずれかに記載の発光モジュール。
    When the area where all semiconductor light emitting elements are mounted is the mounting area,
    The total number of semiconductor light emitting elements mounted in the mounting region is 40 or more and 520 or less.
    The light emitting module according to any one of claims 1 to 5.
  7.  前記基板には、
     セラミックス材料からなる層が含まれている請求項1~6のいずれかに記載の発光モジュール。
    The substrate includes
    The light emitting module according to any one of claims 1 to 6, further comprising a layer made of a ceramic material.
  8.  すべての半導体発光素子が実装された領域を実装領域とするとき、
     前記実装領域において、
     中央部に位置する発光素子列よりも端部に位置する発光素子列の方が、
     各発光素子列に配列されている半導体発光素子の個数が少ない、
     請求項1~7のいずれか記載の発光モジュール。
    When the area where all semiconductor light emitting elements are mounted is the mounting area,
    In the mounting area,
    The light emitting element row located at the end is more than the light emitting element row located at the center,
    A small number of semiconductor light emitting elements arranged in each light emitting element row,
    The light emitting module according to any one of claims 1 to 7.
  9.  前記各発光素子列に含まれる半導体発光素子同士は、
     直接ワイヤボンディングによって電気接続されている、
     請求項1~8のいずれか記載の発光モジュール。
    The semiconductor light emitting elements included in each light emitting element row are
    Electrically connected by direct wire bonding,
    The light emitting module according to any one of claims 1 to 8.
PCT/JP2013/003277 2012-07-12 2013-05-23 Light emitting module WO2014010161A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013547750A JP5453580B1 (en) 2012-07-12 2013-05-23 Light emitting module
DE112013003504.9T DE112013003504T5 (en) 2012-07-12 2013-05-23 Light emitting module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012156578 2012-07-12
JP2012-156578 2012-07-12

Publications (1)

Publication Number Publication Date
WO2014010161A1 true WO2014010161A1 (en) 2014-01-16

Family

ID=49915648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003277 WO2014010161A1 (en) 2012-07-12 2013-05-23 Light emitting module

Country Status (3)

Country Link
JP (1) JP5453580B1 (en)
DE (1) DE112013003504T5 (en)
WO (1) WO2014010161A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134474A (en) * 2009-12-22 2011-07-07 Sharp Corp Surface light emitting device
WO2012029360A1 (en) * 2010-08-30 2012-03-08 シャープ株式会社 Illumination device and display device
JP2012129542A (en) * 2010-03-11 2012-07-05 Panasonic Corp Light emitting module, light source device, liquid crystal display device, and manufacturing method of the light emitting module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134474A (en) * 2009-12-22 2011-07-07 Sharp Corp Surface light emitting device
JP2012129542A (en) * 2010-03-11 2012-07-05 Panasonic Corp Light emitting module, light source device, liquid crystal display device, and manufacturing method of the light emitting module
WO2012029360A1 (en) * 2010-08-30 2012-03-08 シャープ株式会社 Illumination device and display device

Also Published As

Publication number Publication date
DE112013003504T5 (en) 2015-05-07
JPWO2014010161A1 (en) 2016-06-20
JP5453580B1 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP6128465B2 (en) Light emitting module
US9488345B2 (en) Light emitting device, illumination apparatus including the same, and mounting substrate
JP6206795B2 (en) Light emitting module and lighting device
JP5056520B2 (en) Lighting device
JP5291268B1 (en) LIGHT EMITTING MODULE AND LIGHTING LIGHT SOURCE AND LIGHTING DEVICE USING THE SAME
JP2010129583A (en) Lighting fixture
EP2672513B1 (en) Multichip package structure for generating a symmetrical and uniform light-blending source
JP6176525B2 (en) Light emitting module, lighting device and lighting fixture
JP2017163001A (en) Light-emitting module and lighting device
JP2016167518A (en) Light emission device and luminaire
TW201538887A (en) Lighting-emitting diode assembly and LED bulb using the same
JP6008290B2 (en) Light emitting module, lighting device and lighting fixture
JP2006080334A (en) Led light emitting device
JP5656051B2 (en) Light emitting device and lighting device
JP2015106502A (en) Luminaire
JP5453580B1 (en) Light emitting module
JP2016058650A (en) Light emission device, light source for illumination and luminaire
JP2015060972A (en) Light emitting module, lighting device, and lighting fitting
JP2015018693A (en) Lighting fixture, illuminating device and light-emitting module
JP5999497B2 (en) Lighting fixture, lighting device, and light emitting module
US8888324B2 (en) Light-emitting device, method for assembling same and luminaire
JP5216948B1 (en) Substrate, light emitting device, and lighting device
JP2013073983A (en) Light-emitting device and luminaire
JP2014044814A (en) Light-emitting module device, lighting device, and light-emitting device
JP2018010800A (en) Light-emitting device and light source for illumination

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013547750

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816984

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120130035049

Country of ref document: DE

Ref document number: 112013003504

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816984

Country of ref document: EP

Kind code of ref document: A1