WO2014009381A1 - Novel light composite materials, methods for manufacturing same, and uses thereof - Google Patents

Novel light composite materials, methods for manufacturing same, and uses thereof Download PDF

Info

Publication number
WO2014009381A1
WO2014009381A1 PCT/EP2013/064509 EP2013064509W WO2014009381A1 WO 2014009381 A1 WO2014009381 A1 WO 2014009381A1 EP 2013064509 W EP2013064509 W EP 2013064509W WO 2014009381 A1 WO2014009381 A1 WO 2014009381A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
composite material
reinforcement
fibers
expansion
Prior art date
Application number
PCT/EP2013/064509
Other languages
French (fr)
Inventor
Pascal Trouillot
Christian FREYDIER
Nicolas Rumeau
Original Assignee
Roxel France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roxel France filed Critical Roxel France
Publication of WO2014009381A1 publication Critical patent/WO2014009381A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/10Applying counter-pressure during expanding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1209Incorporating or moulding on preformed parts, e.g. inserts or reinforcements by impregnating a preformed part, e.g. a porous lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2311/00Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
    • B29K2311/10Natural fibres, e.g. wool or cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0285Condensation resins of aldehydes, e.g. with phenols, ureas, melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only

Definitions

  • the present invention relates to the field of composite materials based on fibrous materials and resins. It relates more particularly to the field of composite materials made from natural fibrous materials and aqueous resins.
  • composite materials are commonly used for more or less specialized applications. These composite materials are generally manufactured, in known manner, from an absorbent material, woven or non-woven, organic or not, impregnated with a thermosetting resin.
  • the application EP 0 041 054 describes in particular the formation of such materials.
  • Certain composite materials are in particular made of glass fibers, mineral fibers, cellulose or polyester fibers, impregnated with thermosetting resins based on urea-formaldehyde, phenol-formaldehyde, resorcinol-formaldehyde or melamine-formaldehyde combinations.
  • the preparation of such materials comprises impregnating the absorbent material fibers with a resin solution, for example a phenol-formaldehyde resin, in which microspheres consisting of a polymer material, of the vinylidene chloride type, are dispersed. acrylonitrile, containing an expander agent of the isobutane type, for example.
  • a resin solution for example a phenol-formaldehyde resin, in which microspheres consisting of a polymer material, of the vinylidene chloride type, are dispersed.
  • acrylonitrile containing an expander agent of the isobutane type, for example.
  • the European patent application EP 0 102 335 describes in particular, in its example, a process for producing a composite material using cellulose fibers, the process comprising mixing microspheres with a suspension of cellulose fibers. After dehumidification, the fibrous network is calendered and heated to 120 ° C to initiate the expansion. The material thus expanded is impregnated with a solution aqueous phenolic resin then dried in the microwave and the resin is crosslinked.
  • the method described in this application has the advantage of allowing a realization of the composite material in two steps which may be, to a certain extent, spaced apart in time. On the other hand it requires two baking phases, the first to react the microspheres acting as an expansion agent and initiate the expansion of the material, the second to crosslink the resin and impart rigidity to the material. As a result, the implementation of such a method has a certain complexity.
  • the patent application FR 2 956 664 describes the implementation of composite materials in a process comprising four steps, including a step of impregnating by calendering a fiber reinforcement with a resin-blowing agent mixture, followed by a step of volumic expansion under hot pressure.
  • a step of impregnating by calendering a fiber reinforcement with a resin-blowing agent mixture followed by a step of volumic expansion under hot pressure.
  • this type of process proves unsuitable for the production of lightened composite material having a high mechanical and thermal resistance, in particular because of difficulties in control and reliability of the impregnation rate of the resin-blowing agent mixture within the fibrous reinforcement.
  • a lightened material having both a contained density and an excellent fire resistance is implemented by means of a simple and reliable alternative method.
  • the lightened material has a large proportion of thermosetting resin, which generates the formation by pyrolysis of a high carbon film, generally called carbonaceous tank by the skilled person, to significantly limit the heat propagation at through the material.
  • the fibrous substrate of the material ensures satisfactory mechanical strength of the material, which makes it possible to avoid any breakage or collapse of the structure on which the material is mounted (door, partition, etc.).
  • the definition of the composite material associated with the implementation of a suitable manufacturing process makes it possible to have an industrializable product that is reasonably priced and whose performance is highly competitive for the applications envisaged for the material.
  • Another advantage described by the present invention consists in the implementation of steps consisting of the addition of reinforcing skins to the surface of the composite material advantageously for mechanically reinforcing the composite material.
  • the subject of the invention is a lightened composite material consisting of:
  • a natural fiber substrate having the structure of a felt, the felt being needled on these two surfaces by providing a complementary fiber polyethylene;
  • thermosetting matrix integrated into the substrate by impregnation, formed of an aqueous base resin and an expansion agent dispersed in the matrix whose expansion is initiated by bringing it to a given temperature; the mass proportion of expansion agent in the matrix being between 10% and 15%, and in that the mass proportions of substrate and thermosetting matrix are defined so as to obtain a final composite material having the following mass proportions:
  • thermosetting matrix between 10% and 20% of natural fiber substrate, between 80% and 90% of thermosetting matrix
  • the invention also relates to a method for manufacturing the composite material described above and comprising the following steps:
  • thermosetting matrix a first step of impregnating the substrate with the thermosetting matrix, the impregnation being carried out by capillarity by at least one face of the substrate,
  • the dehumidification being carried out by steaming and forced ventilation, the steaming being carried out at a controlled temperature of between 27 ° C. and 33 ° C. for a duration of between 25 and 30 hours,
  • the material according to the invention can advantageously be used to produce thermal insulation and protection elements. particularly in the field of aeronautics and, more generally, transport, where the concern to make gains on the onboard mass is a constant concern.
  • the material according to the invention can thus advantageously be used to produce:
  • thermal protective coatings for hoods in particular hoods allowing access to mechanical shafts on aircraft or helicopter engines,
  • FIG. 2 an illustration of a preferred embodiment of the impregnation stage of the process according to the invention
  • FIGS. 4 and 5 are illustrations of the implementation of the expansion step of the method according to the invention.
  • FIG. 6 an illustration of a preferred embodiment of a complementary step of draping the material by a prepreg composite material
  • FIG. 7 a statistical measurement result of the Weibull module made on a sample of short basalt fibers selected for producing the composite material.
  • the present invention therefore relates to a new type of lightened composite material comprising a support, a substrate, formed of fibers of natural origin, impregnated with a mixture of one or more thermosetting resins and a expansion agent.
  • the fibers of natural origin are mineral or vegetable fibers in the form of felt, basalt, flax, hemp, corn, sunflower, or bamboo fibers in particular.
  • the natural fibers that can be used according to the invention can come from up to 30% of recyclable materials.
  • Felt means a nonwoven manufactured sheet consisting of webs or webs of fibers oriented in a particular direction or at random. Said felt can be in any form giving it sufficient porosity to be impregnated.
  • the use of natural fibers in the form of a felt advantageously allows a voluminal expansion of the fibers (i.e. in the three dimensions).
  • the fibers can thus be distributed uniformly in the thickness of the substrate thus ensuring homogeneity of the final product.
  • This volume expansion further contributes to the mechanical strength as well as the acoustic, phonic and thermal performance of the composite material formed.
  • the use of a felt also makes it possible to achieve only one cooking phase, unlike the patent application EP 0102335, thus limiting the energy consumption.
  • fibers of natural origin used for the manufacture of felts are generally obtained by grinding, which makes their moisture content completely random. This water content, very variable, makes their specific use compared to the fibers usually used to make composite materials, such as glass fibers. Indeed, the presence of water strongly impacts the reproducibility of the final product if the manufacturing processes used do not take into account the variability of the moisture of the fibers.
  • the use of fibers of natural origin therefore requires the evacuation of water vapor, which is not the case for the glass or cellulose fibers usually used in composite materials.
  • the methods described in the EP 0 041 054 and EP 0 1 02 335 can not be applied as such to natural fibers.
  • the fibers of the substrate, used to produce the composite material according to the invention are fibers of natural origin, among which mention may notably be made of basalt, flax, hemp, sunflower, bamboo or corn.
  • the fibers used are preferably basalt fibers.
  • fibers of plant origin whose degradation under the action of a heat flux occurs at a lower temperature are not adapted to the constitution of a final material intended to be subjected to constrictive thermal environments.
  • short fibers also known by the Anglo-Saxon name chopped fibers, of basalt of Ukrainian origin are used, or in the absence of Russian origin which are characterized in particular by a relatively high olivine content, typically greater than 1 5% (mass percentage).
  • This olivine level advantageously makes it possible to obtain a good regularity of the diameter of the fibers obtained by spinning and confers on these fibers advantageous mechanical strength and thermal performance.
  • the short basalt fiber used in the present invention preferably has the characteristics referenced in Table 1 below.
  • a first important characteristic relates to the average diameter of the fibers, between 1 3 and 1 7 ⁇ .
  • These so-called short fibers make it possible to have a felt which is destructured, or in other words does not have a preferential alignment, unlike a felt made by weaving longer fibers.
  • the implementation of such a felt advantageously makes it possible to ensure, even for high felt thickness, to maintain a fast and effective impregnation of the resin in the heart of the felt. It becomes possible to implement felts of significant thickness while preserving limited impregnation times of the felt by the resin.
  • a second key characteristic is the resistance of the fibers to fracture; this characteristic is quantified by means of the Weibull modulus, a parameter well known to those skilled in the art, measured by uni-axial tensile tests on unit fibers.
  • the Weibull module reports on the distribution of defects and the sensitivity of the material to these defects. It is determined empirically statistically on a unit fiber sample. The classical determination is made from the following function called "two parameters":
  • the Weibull modulus can be determined by the following formula:
  • FIG. 7 represents an experimental result of measurement of the Weibull modulus carried out on a sample of short basalt fibers used for the implementation of the composite material according to the invention.
  • the felts used are preferably needled on both sides, according to techniques known elsewhere, to ensure the integrity of the felt during the production cycle of the expanded composite material.
  • the needling is preferably carried out by the addition of a complementary polyethylene fiber.
  • the felts will have a thickness of between 4 and 6 mm, the variation in thickness constituting a lever for setting the density level of the expanded composite material.
  • the lightened composite material produced by means of the impregnation method according to the invention advantageously allows to tolerate a sizing rate between
  • the resins used to make the composite material are preferably water-based resins such as phenolic resins and especially phenol-formaldehyde resins. These resins are, advantageously, particularly powerful to ensure the final composite material excellent heat resistance. Indeed, their exposure to heat produced on the surface, by a very endothermic chemical transformation phenomenon, a protective carbon layer that hinders the progression of this heat. In addition, while burning, these resins do not produce toxic fumes, which allows their use for interior equipment cabins intended to equip passenger vehicles.
  • the resins used may be natural water-based resins derived from the bio-source, such as wood resins or phenolic resins of vegetable origin (grape or wood tannins).
  • the viscosity of the resin used is adapted to the density of the felt used to make the material, so as to impregnate the felt thickness, homogeneously.
  • the use of a resin whose viscosity is not suitable, will lead to the constitution of a final product inhomogeneous or having a ratio between the mass percentage of resin and the mass percentage of fibers away from the values conferring on the final product the mechanical, thermal and acoustic characteristics.
  • a resin with a viscosity of 300 mPa.s allows the homogeneous impregnation of a basalt felt with a density of 780 g / m 2. It should be noted that, if necessary, it is possible to add a solvent to adjust the viscosity level.
  • the blowing agent may be chosen from the expander usually used for this type of use.
  • the blowing agent is preferably composed of Expancel® type microspheres marketed by Akzo Nobel.
  • the blowing agent may also be of the Isobutane type or may also be chosen from natural or chemical yeasts.
  • the final composite material comprises by weight between 10% and 20% of fibers of natural origin and between 80% and 90% of thermosetting matrix consisting of thermosetting resin and the blowing agent.
  • the expander is between 5% and 25% by weight of the final composite material.
  • the thermosetting matrix consists of 85% resin, 10% blowing agent and 5% solvent, which in this case will be water.
  • a composite material with very advantageous performance is produced.
  • the composite material provides both very competitive mechanical and thermal performance while having a reduced density. These performances make it a particularly suitable material for applications in the field of transport (aircraft cabin layout, thermal boxes and bulkheads, aircraft inspection hatches, etc.).
  • variable density and adjustable, by manufacture between 100 kg / m3 and 500 Kg / m3.
  • the adaptation of the density to the intended application thus makes it possible to make gains on the on-board masses;
  • variable and adjustable thickness by manufacture, between 6 mm and 30 mm;
  • the material can be considered as a structural element, in particular in certain interior fittings applications for passenger vehicle cabs, the characteristics of strength and appearance of the vehicle, material obtained being for example suitable to make its use attractive for the realization of civil aircraft cabin furniture;
  • the composite materials according to the invention make it possible in particular to produce structures meeting the fire / smoke standards in force in the various fields of activity, such as in particular air transport, in particular the ISO 2685 (Edition 1998) or the FAA AC 20 standard. -135, or even fireproof structures within the meaning of this latter standard, their fire resistance being a function of the thickness and density of the material used.
  • the composite material according to the invention also does not alter the transmission of radio waves and can thus be used in protection applications for transmitting equipment, reception, in radar equipment for example.
  • the composite material according to the invention may comprise ingredients additional to those described above, with the aim of conferring on it additional properties such as the resistance to chemical contaminating agents or even an increase or a decrease in its electrical resistivity, or even an aesthetic character.
  • ingredients may in particular be added to the aqueous mixture of resin and blowing agent, in particular when it comes, for example, to anti-bacterial agents (of the lauryl-dimethyl-benzyl ammonium chloride type) or of organometallic pigments (dyes) dispersed in aqueous phase.
  • the composite material according to the invention may also comprise other materials and additives generally used for the envisaged applications: release agents, and flame retardants for fibers of vegetable origin in particular.
  • the composite material according to the invention is produced by implementing the original method described in the rest of the text and summarized by the flowchart of FIG.
  • the manufacturing process implemented comprises the following steps: a first step 1 1 of impregnating the substrate 15, constituted by the fiber felt, by the thermosetting matrix 16,
  • thermosetting matrix 16 is preceded by a preliminary step of preparation of the thermosetting matrix 16, carried out in a controlled thermal environment in order to control the rheology of the thermosetting matrix 16.
  • the impregnation step 1 1 of the fibers constituting the substrate 15 is preferably carried out according to the application of the principle of capillarity, the resin and blowing agent mixture constituting the thermosetting matrix 16 deposited. at the surface diffusing within the substrate 15, as represented by the arrows 21.
  • the mass content of resin and blowing agent 16 in the felt 15, or impregnation rate is in this case a function of the flow rate of the resin / blowing agent mixture, as well as the running speed of the felt.
  • the impregnation is carried out by applying a displacement speed 22 of the substrate 15, or fibrous reinforcement, slaved to the diffusion capacity of the resin as well as the permeability level of the fibrous reinforcement.
  • it will optionally be impregnated by capillarity on both sides of the felt, this operation being in the case of the present invention carried out continuously during the movement of the felt. fibrous reinforcement.
  • the impregnation of the substrate can also be performed within a multi-cast mold that allows the production of monolithic parts of complex and functionalized geometries (device integration or measurement sensors for example), thus limiting the mechanical assembly operations in the fields of application concerned.
  • an impregnated substrate 23 of thermosetting matrix is obtained, which has substantially the following mass proportions:
  • thermosetting matrix 16 80 to 90% of thermosetting matrix 16
  • the second step 12 of dehumidification of the impregnated substrate 23 consists, before the expansion step 13, to bring the water content of the impregnated substrate 23 to a lowest possible value such that the mass loss of the substrate is between 55 % and 65%.
  • the impregnated substrate 23, previously placed on a porous support, a metal grid for example, is maintained for a period of time adapted to a fixed temperature within an enclosure that it can be assimilated to an oven, an enclosure whose atmosphere will be continually renewed in order to evacuate the humidity.
  • a preferred embodiment of this step is to maintain the impregnated substrate 23 at a temperature maintained between 27 and 33 ° C for a period of between 25 and 30 hours.
  • the impregnated substrate is characterized in that the loss of mass caused is between 55 and 65% of the initial mass, which makes possible the implementation of the next step 13 .
  • the impregnated substrate 23 is dehumidified while it is mounted on the template, corresponding to this form, the assembly being placed in the thermally controlled enclosure mentioned above.
  • the high efficiency of the dehumidification step 12 as proposed in the invention advantageously makes it possible to dispense with a step of evaporation of volatile compounds such as envisaged by the known methods.
  • the third step 13 of the process for manufacturing a composite material according to the invention concerns the expansion of the dehumidified impregnated substrate.
  • This step is intended to ensure the activation of the agent expansion and crosslinking of the thermosetting resin. It is preferably carried out by heating equipment, by raising the temperature of the substrate, to a temperature greater than or equal to the expansion temperature of the blowing agent, for example, at a temperature generally between 75 ° C. and 180 ° C. ° C, preferably between 90 ° and 150 ° C.
  • it can be performed by exposing the impregnated and dehumidified substrate to low or high frequency electromagnetic radiation.
  • this step is carried out by means of a heating press, the heating temperature preferably being between 135 ° C. and 145 ° C., which temperature allows the both the activation of the blowing agent and the crosslinking of the resin.
  • the heating press advantageously makes it possible to apply a pressure limiting the expansion of the material caused by the heating.
  • the duration of the setting in press is further defined according to the thickness (and therefore the density) of the material to be produced for the application in question.
  • the use of a heating press advantageously makes it possible to control the final thickness, after expansion, of the composite material 17 produced.
  • the step 13 of expanding the composite material according to the invention comprises carrying out the following operations:
  • This release agent is for example made of parchment paper
  • pressurization of the press the pressure values to be applied depending on the thickness that the element must have after expansion being, for example, previously recorded in the control and control system of the press.
  • the third stage 13 of expansion is advantageously carried out by means of a heating press allowing to apply on the material a pressure value able to limit the expansion caused by the heating; the pressure value applied being determined as a function of a crosslinking temperature of the material, and / or geometric characteristics of the material expected at the end of this step.
  • the pressure value applied by the press is a slave value on a pressure level generated by the blowing agent.
  • the pressure applied by the press is between 65 and 75 bars.
  • a final stabilization step 14 of leaving the composite material element 17 to rest. on a horizontal plane for a sufficient time to return naturally to room temperature.
  • the resting of the element of material is of a minimum duration of 2 hours.
  • This final stabilization step notably allows the relaxation of the mechanical stresses within the material, relaxation which guarantees its integrity, that is to say the absence of internal defects, as well as the maintenance of its dimensional characteristics.
  • the material according to the invention thus produced may, depending on the use for which it is intended, undergo complementary operations such as painting, removal of a surface coating forming a mechanical reinforcement or conferring on the material certain aesthetic characteristics.
  • Figure 6 illustrates a preferred embodiment of a complementary step of draping the material, of depositing on the surface of the composite material 51, a surface reinforcement 71, more commonly called skin.
  • the surface reinforcement 71 is constituted by a prepreg such that the fiber reinforcement is made of basalt fibers and the resin is a phenolic resin.
  • the fibrous reinforcement of the prepreg is geometrically organized. One thinks in particular of organized surface reinforcements of type 2D fabric or twill.
  • the method according to the invention advantageously comprises a complementary step of draping a reinforcement 19 on the upper and / or lower surface of the material.
  • the reinforcement consists of a composite material based on basalt fibers and phenolic resin.
  • the composite material reinforcement may advantageously have a geometry of the 2D woven or twill type.
  • the reinforcement has a density of between 90 and 10 kg / m 3.
  • the draping step of depositing on the material a reinforcement of pre-impregnated type is followed by a heating step capable of permitting the crosslinking of the composite material constituting the pre-impregnated reinforcement. impregnated.
  • This heating step intended, by crosslinking the resin of the prepreg, to adhere said prepreg on the core composite material previously produced, is preferably applied between 1 10 ° C and 140 ° C over a range of time between 1 and 5 minutes. A reinforced end product 72 is thus obtained.
  • the layup step may be performed after the dehumidification step 12 and before the expansion step 13.
  • the crosslinking of the composite constituting the pre-impregnated reinforcement is carried out by the step 13 of expanding the material.
  • the process is limited to a single heating step, to limit the energy requirements of the process.
  • Example 1 Production of a composite material with basalt fibers for aeronautical application. This material is called ROXALTE® by the applicant.
  • the material is a composite material according to the invention, produced by following the steps of the method according to the invention, which are recalled below:
  • the material in question is obtained from a mixture 16 of resin, blowing agent and water, the whole being mechanically stirred within a vertical mixer of the emulsifier type, or on a device of the return type barrel. over a range of 25 to 35 minutes.
  • the phenolic resin / blowing agent mixture is here produced so that the proportions of the final mixture are as shown in Table 2 below.
  • the mixture described above is mechanically stirred in a vertical mixer over a range of between 25 and 35 minutes (time of attaining the homogeneity of the mixture).
  • the above mixture is used to perform the 1 1 double-face impregnation by capillarity of a felt 1 5 whose grammage is 780 g / m 2 , this felt being commercially distributed by Basaltex under the reference 6/1 30 of the range.
  • the felt 1 1 After impregnation with the phenolic resin the felt 1 1 undergoes a dehumidification step 12 of about 25 hours.
  • the expansion step 1 3 is here carried out by means of a press with a machine pressure of 75 bar / m 2 for the production of a surface plate equivalent to 1 m 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention relates to a light composite material consisting of a substrate (15) made of natural fibers and having the structure of felt, wherein: the felt is needle-punched on both surfaces thereof by providing complementary polyethylene fibers; a heat-curable matrix (16) consisting of an aqueous-base resin and an expansion agent is dispersed in the matrix, the expansion of which is initiated by heating same to a given temperature; the weight proportion of the expansion agent in the matrix (16) is between 10% and 15%; and said heat-curable matrix (16) is integrated into the substrate by impregnation. The weight proportions of the substrate (15) and the heat-curable matrix (16) are defined so as to obtain an impregnated substrate having the following weight proportions after a dehumidifying step (12): 10% to 20% of substrate (15) that consists of natural fibers, and 80% to 90% of heat-curable matrix (16).

Description

Nouveaux matériaux composites allégés, leurs procédés de fabrication et leurs utilisations  New lightweight composite materials, their manufacturing processes and their uses
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention concerne le domaine des matériaux composites à base de matériaux fibreux et de résines. Elle concerne plus particulièrement le domaine des matériaux composites réalisés à partir de matériaux fibreux naturels et de résines aqueuses. The present invention relates to the field of composite materials based on fibrous materials and resins. It relates more particularly to the field of composite materials made from natural fibrous materials and aqueous resins.
CONTEXTE DE L'INVENTION - ART ANTERIEUR De nos jours les matériaux composites sont couramment utilisés pour des applications plus ou moins spécialisées. Ces matériaux composites sont généralement fabriqués, de manière connue, à partir d'un matériau absorbant, tissé ou non tissé, organique ou non, imprégné d'une résine thermodurcissable. La demande EP 0 041 054 décrit notamment la formation de tels matériaux. Certains matériaux composites sont en particulier constitués de fibres de verre, de fibres minérales, de fibres de cellulose ou polyester, imprégnées de résines thermodurcissables à base d'associations urée-formaldéhyde, phénol-formaldéhyde, résorcinol-formaldéhyde ou encore mélamine-formaldéhyde. BACKGROUND OF THE INVENTION - PRIOR ART Nowadays, composite materials are commonly used for more or less specialized applications. These composite materials are generally manufactured, in known manner, from an absorbent material, woven or non-woven, organic or not, impregnated with a thermosetting resin. The application EP 0 041 054 describes in particular the formation of such materials. Certain composite materials are in particular made of glass fibers, mineral fibers, cellulose or polyester fibers, impregnated with thermosetting resins based on urea-formaldehyde, phenol-formaldehyde, resorcinol-formaldehyde or melamine-formaldehyde combinations.
De manière générale, la préparation de tels matériaux comprend l'imprégnation des fibres de matériau absorbant par une solution de résine, une résine phénol-formaldéhyde par exemple, dans laquelle sont dispersées des microsphères constituées d'un matériau polymère, de type chlorure de vinylidène/acrylonitrile, renfermant un agent expanseur de type isobutane par exemple.  In general, the preparation of such materials comprises impregnating the absorbent material fibers with a resin solution, for example a phenol-formaldehyde resin, in which microspheres consisting of a polymer material, of the vinylidene chloride type, are dispersed. acrylonitrile, containing an expander agent of the isobutane type, for example.
La demande de brevet européen EP 0 102 335 décrit notamment, dans son exemple, un procédé pour réaliser un matériau composite en utilisant des fibres de cellulose, le procédé comprenant le mélange de microsphères à une suspension de fibres de cellulose. Après déshumidification, le réseau fibreux est calandré et chauffé à 120°C pour initier l'expansion. Le matériau ainsi expansé est imprégné avec une solution aqueuse de résine phénolique puis séché aux micro-ondes puis la résine est réticulée. The European patent application EP 0 102 335 describes in particular, in its example, a process for producing a composite material using cellulose fibers, the process comprising mixing microspheres with a suspension of cellulose fibers. After dehumidification, the fibrous network is calendered and heated to 120 ° C to initiate the expansion. The material thus expanded is impregnated with a solution aqueous phenolic resin then dried in the microwave and the resin is crosslinked.
Le procédé décrit dans cette demande présente l'avantage de permettre une réalisation du matériau composite en deux étapes qui peuvent être, dans une certaine mesure, espacées dans le temps. En revanche il nécessite deux phases de cuisson, la première pour faire réagir les microsphères agissant comme agent d'expansion et initier l'expansion du matériau, la seconde pour réticuler la résine et conférer sa rigidité au matériau. Par suite, la mise en œuvre d'un tel procédé présente une complexité certaine.  The method described in this application has the advantage of allowing a realization of the composite material in two steps which may be, to a certain extent, spaced apart in time. On the other hand it requires two baking phases, the first to react the microspheres acting as an expansion agent and initiate the expansion of the material, the second to crosslink the resin and impart rigidity to the material. As a result, the implementation of such a method has a certain complexity.
La demande de brevet FR 2 956 664 décrit quant à elle la mise en œuvre de matériaux composites suivant un processus comprenant quatre étapes, comprenant notamment une étape d'imprégnation par calandrage d'un renfort fibreux par un mélange résine-agent d'expansion, suivie d'une étape d'expansion volumique à chaud sous pression. Bien que présentant l'avantage de ne nécessiter qu'une seule étape de cuisson (réticulation), ce type de procédé s'avère inadapté pour la réalisation de matériau composite allégée présentant une résistance mécanique et thermique élevée, notamment en raison de difficultés pour la maîtrise et fiabilisation du taux d'imprégnation du mélange résine-agent d'expansion au sein du renfort fibreux.  The patent application FR 2 956 664 describes the implementation of composite materials in a process comprising four steps, including a step of impregnating by calendering a fiber reinforcement with a resin-blowing agent mixture, followed by a step of volumic expansion under hot pressure. Although having the advantage of requiring only one baking step (crosslinking), this type of process proves unsuitable for the production of lightened composite material having a high mechanical and thermal resistance, in particular because of difficulties in control and reliability of the impregnation rate of the resin-blowing agent mixture within the fibrous reinforcement.
On connaît aussi de la demande de brevet WO201 1 /101 343, déposée par la demanderesse, un matériau composite constitué d'une proportion importante de renfort fibreux et le principe d'un processus en quatre étapes pour la mise en œuvre de tels matériaux. Si certaines performances de ce matériau, notamment la tenue mécanique et thermique, sont avantageuses, sa masse volumique élevée ne permet pas d'envisager une application industrielle dans le domaine des transports, et notamment dans le domaine aéronautique. De plus, le procédé proposé est relativement complexe et difficile à fiabiliser. Comme précédemment décrit, la phase d'imprégnation réalisée suivant un processus de calandrage peut s'avérer en pratique difficile à maitriser, conduisant à des gradients de concentration pouvant s'avérer critique vis-à-vis de la résistance du matériau dans des environnements mécaniques et thermiques particuliers. De plus, le processus tel que décrit fait appel à une phase de déshumidification complexe puisque requérant un enchaînement de cycles thermiques en enceinte climatique. Enfin, la phase d'élimination des éléments volatils en fin de cycle de compression complexifie également le processus, en particulier lorsque des cadences industrielles significatives sont recherchées. Also known from patent application WO201 1 / 101,343, filed by the Applicant, a composite material consisting of a significant proportion of fibrous reinforcement and the principle of a four-step process for the implementation of such materials. If certain performances of this material, in particular the mechanical and thermal strength, are advantageous, its high density does not allow to consider an industrial application in the field of transport, and in particular in the aeronautical field. In addition, the proposed method is relatively complex and difficult to make reliable. As previously described, the impregnation phase carried out according to a calendering process may in practice prove to be difficult to control, leading to concentration gradients that may be critical with respect to the resistance of the material in mechanical environments. and particular thermal. In addition, the process as described uses a dehumidification phase complex since requiring a sequence of thermal cycles in climatic chamber. Finally, the elimination phase of the volatile elements at the end of the compression cycle also complicates the process, in particular when significant industrial rates are sought.
PRESENTATION DE L'INVENTION PRESENTATION OF THE INVENTION
Dans la présente invention, un matériau allégé, présentant à la fois une masse volumique contenue et une excellente résistance au feu, est mis en œuvre au moyen d'un procédé alternatif simple et fiable. In the present invention, a lightened material having both a contained density and an excellent fire resistance is implemented by means of a simple and reliable alternative method.
Le matériau allégé présente une proportion importante de résine thermodurcissable, qui génère la formation par pyrolyse d'un film à haute teneur en carbone, généralement appelé char carboné par l'homme du métier, permettant de limiter de façon significative la propagation de la chaleur au travers du matériau. Par ailleurs, le substrat fibreux du matériau assure une tenue mécanique satisfaisante du matériau, qui permet d'éviter toute rupture ou effondrement de la structure sur laquelle est monté le matériau (porte, cloison, ...). La définition du matériau composite associée à la mise d'un procédé de fabrication adapté permet de disposer d'un produit industrialisable, à coût raisonnable et dont les performances se révèlent très compétitives pour les applications envisagées pour le matériau.  The lightened material has a large proportion of thermosetting resin, which generates the formation by pyrolysis of a high carbon film, generally called carbonaceous tank by the skilled person, to significantly limit the heat propagation at through the material. Moreover, the fibrous substrate of the material ensures satisfactory mechanical strength of the material, which makes it possible to avoid any breakage or collapse of the structure on which the material is mounted (door, partition, etc.). The definition of the composite material associated with the implementation of a suitable manufacturing process makes it possible to have an industrializable product that is reasonably priced and whose performance is highly competitive for the applications envisaged for the material.
Un autre avantage décrit par la présente invention consiste en la mise en œuvre d'étapes consistant en l'adjonction de peaux de renfort à la surface du matériau composite permettant avantageusement de renforcer mécaniquement le matériau composite.  Another advantage described by the present invention consists in the implementation of steps consisting of the addition of reinforcing skins to the surface of the composite material advantageously for mechanically reinforcing the composite material.
A cet effet l'invention a pour objet un matériau composite allégé constitué par:  For this purpose, the subject of the invention is a lightened composite material consisting of:
- un substrat en fibre naturelle présentant la structure d'un feutre, le feutre étant aiguilleté sur ces deux surfaces par l'apport d'une fibre complémentaire en polyéthylène ;  - A natural fiber substrate having the structure of a felt, the felt being needled on these two surfaces by providing a complementary fiber polyethylene;
- une matrice thermodurcissable, intégrée au substrat par imprégnation, formée d'une résine en base aqueuse et d'un agent d'expansion dispersé dans la matrice dont l'expansion est initiée en le portant à une température donnée ; la proportion massique d'agent d'expansion dans la matrice étant comprise entre 10% et 15 %, et en ce que les proportions massiques de substrat et de matrice thermodurcissable sont définies de façon à obtenir un matériau composite final présentant les proportions massiques suivantes: a thermosetting matrix, integrated into the substrate by impregnation, formed of an aqueous base resin and an expansion agent dispersed in the matrix whose expansion is initiated by bringing it to a given temperature; the mass proportion of expansion agent in the matrix being between 10% and 15%, and in that the mass proportions of substrate and thermosetting matrix are defined so as to obtain a final composite material having the following mass proportions:
- entre 10% et 20% de substrat en fibre naturelle, - entre 80% et 90% de matrice thermodurcissable;  between 10% and 20% of natural fiber substrate, between 80% and 90% of thermosetting matrix;
L'invention porte aussi sur un procédé pour fabriquer le matériau composite précédemment décrit et comportant les étapes suivantes : The invention also relates to a method for manufacturing the composite material described above and comprising the following steps:
- une première étape d'imprégnation du substrat par la matrice thermodurcissable, l'imprégnation étant réalisée par capillarité par au moins une face du substrat,  a first step of impregnating the substrate with the thermosetting matrix, the impregnation being carried out by capillarity by at least one face of the substrate,
- une deuxième étape de déshumidification du substrat imprégné, la déshumidification étant réalisée par étuvage et ventilation forcée, l'étuvage étant réalisé à une température régulée comprise entre 27 °C et 33 °C pour une durée comprise entre 25 et 30 heures,  a second stage of dehumidification of the impregnated substrate, the dehumidification being carried out by steaming and forced ventilation, the steaming being carried out at a controlled temperature of between 27 ° C. and 33 ° C. for a duration of between 25 and 30 hours,
- une troisième étape d'expansion, apte à activer l'agent d'expansion et à réticuler la résine par élévation de température du substrat imprégné; le substrat étant mis sous contrainte de pression. De par ses caractéristiques intrinsèques, et en particulier la combinaison d'une masse volumique contenue et des performances très compétitives de tenues mécanique et thermique, le matériau selon l'invention peut avantageusement être utilisé pour réaliser des éléments d'isolation thermique et de protection au feu, en particulier dans le domaine aéronautique et plus généralement des transports où le souci de réaliser des gains sur la masse embarquée constitue une préoccupation constante. Le matériau selon l'invention peut ainsi avantageusement être utilisé pour réaliser:  a third expansion step, capable of activating the blowing agent and of crosslinking the resin by raising the temperature of the impregnated substrate; the substrate being under pressure stress. Because of its intrinsic characteristics, and in particular the combination of a contained density and the very competitive performances of mechanical and thermal behavior, the material according to the invention can advantageously be used to produce thermal insulation and protection elements. particularly in the field of aeronautics and, more generally, transport, where the concern to make gains on the onboard mass is a constant concern. The material according to the invention can thus advantageously be used to produce:
- des trappes de visite montées sur la structure d'avions ou hélicoptères et permettant d'inspecter l'intérieur de certaines parties de cette structure,  - inspection hatches mounted on the structure of airplanes or helicopters and for inspecting the interior of certain parts of this structure,
- des cloisons intérieures destinés à aménager l'intérieur de véhicules, notamment des aéronefs (cabine et cockpit), des cavaliers (éléments de fixation au sol et au plafond) destinés à maintenir en position lesdites cloisons ou encore des éléments de mobilier destinés à équiper ces mêmes véhicules, - interior bulkheads intended to accommodate the interior of vehicles, in particular aircraft (cabin and cockpit), riders (floor and ceiling fasteners) intended to hold said vehicle in position bulkheads or furniture items intended to equip the same vehicles,
- des revêtements de protection thermiques de capots, notamment de capots permettant l'accès à des arbres mécaniques sur des moteurs d'avions ou hélicoptères,  thermal protective coatings for hoods, in particular hoods allowing access to mechanical shafts on aircraft or helicopter engines,
- des éléments de protection thermique de nacelles moteurs,  thermal protection elements of engine nacelles,
- des emballages de protection et transport d'objets sensibles aux agressions thermiques.  - protective packaging and transport of objects sensitive to thermal attack.
- des matériaux d'âme pour l'isolation phonique, acoustique, thermique et mécanique.  - core materials for sound, acoustic, thermal and mechanical insulation.
DESCRIPTION DES FIGURES DESCRIPTION OF THE FIGURES
Les caractéristiques et avantages de l'invention seront mieux appréciés grâce à la description qui suit, description qui s'appuie sur les figures annexées qui représentent: The characteristics and advantages of the invention will be better appreciated thanks to the following description, which is based on the appended figures which represent:
- la figurel , l'organigramme de principe de l'enchainement des étapes du procédé de fabrication du matériau composite selon l'invention; the figurel, the flowchart of principle of the sequence of steps of the method of manufacturing the composite material according to the invention;
- la figure 2, une illustration d'un mode préféré d'exécution de l'étape d'imprégnation du procédé selon l'invention;  FIG. 2, an illustration of a preferred embodiment of the impregnation stage of the process according to the invention;
- la figure 3, un chronogramme de principe de l'étuvage mis en œuvre dans le cadre d'un mode préféré d'exécution de l'étape de déshumidification du procédé selon l'invention;  - Figure 3, a timing diagram of the stoving implemented in the context of a preferred embodiment of the dehumidification step of the method according to the invention;
- les figures 4 et 5, des illustrations de la mise en œuvre de l'étape d'expansion du procédé selon l'invention,  FIGS. 4 and 5 are illustrations of the implementation of the expansion step of the method according to the invention,
- la figure 6, une illustration d'un mode préféré d'exécution d'une étape complémentaire de drapage du matériau par un matériau composite préimprégné,  FIG. 6, an illustration of a preferred embodiment of a complementary step of draping the material by a prepreg composite material,
- la figure 7, un résultat de mesure statistique du module de Weibull réalisé sur un échantillon de fibres courtes de basalte sélectionné pour la réalisation du matériau composite.  FIG. 7, a statistical measurement result of the Weibull module made on a sample of short basalt fibers selected for producing the composite material.
Par souci de clarté, les mêmes éléments porteront les mêmes repères dans les différentes figures. DESCRIPTION DETAILLEE For the sake of clarity, the same elements will bear the same references in the different figures. DETAILED DESCRIPTION
Selon un premier objet, la présente invention concerne donc un nouveau type de matériau composite allégé comprenant un support, un substrat, formé de fibres d'origine naturelle, imprégné d'un mélange formé d'une ou de plusieurs résines thermodurcissables et d'un agent d'expansion. According to a first object, the present invention therefore relates to a new type of lightened composite material comprising a support, a substrate, formed of fibers of natural origin, impregnated with a mixture of one or more thermosetting resins and a expansion agent.
Les fibres d'origine naturelle sont des fibres minérales ou végétales sous forme de feutre, des fibres de basalte, de lin, de chanvre, de maïs, de tournesol, ou de bambou en particulier. Les fibres naturelles utilisables selon l'invention peuvent provenir jusqu'à hauteur de 30% de matériaux recyclables.  The fibers of natural origin are mineral or vegetable fibers in the form of felt, basalt, flax, hemp, corn, sunflower, or bamboo fibers in particular. The natural fibers that can be used according to the invention can come from up to 30% of recyclable materials.
On entend par feutre, une feuille manufacturée non tissée, constituée de voiles ou de nappes de fibres orientées dans une direction particulière ou au hasard. Ledit feutre peut se présenter sous toutes formes lui conférant une porosité suffisante pour pouvoir être imprégné.  Felt means a nonwoven manufactured sheet consisting of webs or webs of fibers oriented in a particular direction or at random. Said felt can be in any form giving it sufficient porosity to be impregnated.
L'utilisation de fibres naturelles sous forme d'un feutre permet avantageusement une expansion volumique des fibres (i.e. dans les trois dimensions). Les fibres peuvent ainsi se répartir de manière uniforme dans l'épaisseur du substrat assurant ainsi une homogénéité du produit final. Cette expansion volumique contribue en outre à la résistance mécanique ainsi qu'aux performances acoustiques, phoniques et thermiques du matériau composite formé. L'usage d'un feutre permet également de ne réaliser qu'une seule phase de cuisson, contrairement à la demande de brevet EP 0102335, limitant ainsi la consommation énergétique.  The use of natural fibers in the form of a felt advantageously allows a voluminal expansion of the fibers (i.e. in the three dimensions). The fibers can thus be distributed uniformly in the thickness of the substrate thus ensuring homogeneity of the final product. This volume expansion further contributes to the mechanical strength as well as the acoustic, phonic and thermal performance of the composite material formed. The use of a felt also makes it possible to achieve only one cooking phase, unlike the patent application EP 0102335, thus limiting the energy consumption.
II est à noter que les fibres d'origine naturelle utilisée pour la fabrication de feutres sont généralement obtenues par défibrage ce qui rend leur taux d'humidité totalement aléatoire. Cette teneur en eau, très variable, en rend leur utilisation spécifique par rapport aux fibres habituellement utilisées pour réaliser des matériaux composites, telles que les fibres de verre. En effet, la présence d'eau impacte fortement la reproductibilité du produit final si les procédés de fabrication utilisés ne prennent pas en compte la variabilité de l'humidité des fibres. L'utilisation de fibres d'origine naturelle nécessite par conséquent l'évacuation de la vapeur d'eau, ce qui n'est pas le cas des fibres de verre ou cellulose habituellement utilisées dans les matériaux composites. Ainsi, les procédés décrits dans les demandes de brevet EP 0 041 054 et EP 0 1 02 335 ne peuvent être appliqués tels quels aux fibres naturelles. It should be noted that fibers of natural origin used for the manufacture of felts are generally obtained by grinding, which makes their moisture content completely random. This water content, very variable, makes their specific use compared to the fibers usually used to make composite materials, such as glass fibers. Indeed, the presence of water strongly impacts the reproducibility of the final product if the manufacturing processes used do not take into account the variability of the moisture of the fibers. The use of fibers of natural origin therefore requires the evacuation of water vapor, which is not the case for the glass or cellulose fibers usually used in composite materials. Thus, the methods described in the EP 0 041 054 and EP 0 1 02 335 can not be applied as such to natural fibers.
Comme cela a été dit précédemment, les fibres du substrat, utilisées pour réaliser le matériau composite selon l'invention, sont des fibres d'origine naturelle, parmi lesquelles on peut notamment citer le basalte, le lin, le chanvre, le tournesol, le bambou ou le maïs. Cependant, dans le cas où le produit final désiré, se caractérise par une excellente résistance à la chaleur ainsi que par une résistance à des contraintes mécaniques fortes, les fibres utilisées sont préférentiellement des fibres de basalte. En effet, les fibres d'origine végétales dont la dégradation sous l'action d'un flux de chaleur intervient à plus basse température ne sont pas adaptées à la constitution d'un matériau final destiné à être soumis à des environnements thermiques contraignants.  As has been said previously, the fibers of the substrate, used to produce the composite material according to the invention, are fibers of natural origin, among which mention may notably be made of basalt, flax, hemp, sunflower, bamboo or corn. However, in the case where the desired final product is characterized by excellent heat resistance as well as resistance to strong mechanical stresses, the fibers used are preferably basalt fibers. In fact, fibers of plant origin whose degradation under the action of a heat flux occurs at a lower temperature are not adapted to the constitution of a final material intended to be subjected to constrictive thermal environments.
Selon un mode de réalisation préféré d'un matériau selon l'invention adapté à des environnements thermiques contraignants, on utilise des fibres courtes, aussi connues par l'appellation anglo-saxonne chopped fibers, de basalte d'origine Ukrainienne, ou à défaut d'origine Russe qui sont caractérisées en particulier par un taux d'olivine relativement élevé, typiquement supérieur à 1 5% (pourcentage massique). Ce taux d'olivine permet avantageusement d'obtenir une bonne régularité du diamètre des fibres obtenues par filage et confère à ces fibres des performances de résistance mécanique et thermiques avantageuses.  According to a preferred embodiment of a material according to the invention adapted to constrictive thermal environments, short fibers, also known by the Anglo-Saxon name chopped fibers, of basalt of Ukrainian origin are used, or in the absence of Russian origin which are characterized in particular by a relatively high olivine content, typically greater than 1 5% (mass percentage). This olivine level advantageously makes it possible to obtain a good regularity of the diameter of the fibers obtained by spinning and confers on these fibers advantageous mechanical strength and thermal performance.
Ainsi, la fibre courte de basalte utilisée dans la présente invention possède préférentiellement les caractéristiques référencées dans le tableau 1 ci-après.  Thus, the short basalt fiber used in the present invention preferably has the characteristics referenced in Table 1 below.
Caractéristiques Valeurs UnitésCharacteristics Values Units
Diamètre moyen 13 à 17 μηι Average diameter 13 to 17 μηι
Taux d'olivine 15 - 25 %  Olivine content 15 - 25%
Température de fusion > 1000 °C  Melting temperature> 1000 ° C
Contrainte à rupture 1350 à 1700 MPa  Breaking strain 1350 to 1700 MPa
Module élastique 60 à 80 GPa  60 to 80 GPa elastic module
Elongation à la rupture 2,5 à 4 o //o  Elongation at break 2.5 to 4 o // o
Module de Weibull 3,9 à 5,2 m  Weibull module 3.9 to 5.2 m
densité 2,7 g/cm3 Tableau 1 : caractéristiques des fibres courtes de basalte density 2.7 g / cm 3 Table 1: characteristics of short basalt fibers
La sélection des fibres naturelles est déterminante des performances du matériau composite final. Une première caractéristique importante concerne le diamètre moyen des fibres, compris entre 1 3 et 1 7 μηι. Ces fibres dites courtes permettent de disposer d'un feutre déstructuré, ou autrement dit ne présentant pas d'alignement préférentiel, à l'inverse d'un feutre réalisé par tissage de fibres plus longues. La mise en œuvre d'un tel feutre permet avantageusement d'assurer, même pour des épaisseurs de feutre élevés, de maintenir une imprégnation rapide et efficace de la résine au cœur du feutre. Il devient possible de mettre en œuvre des feutres d'épaisseur significatives tout en préservant des durées d'imprégnation limitées du feutre par la résine. The selection of natural fibers determines the performance of the final composite material. A first important characteristic relates to the average diameter of the fibers, between 1 3 and 1 7 μηι. These so-called short fibers make it possible to have a felt which is destructured, or in other words does not have a preferential alignment, unlike a felt made by weaving longer fibers. The implementation of such a felt advantageously makes it possible to ensure, even for high felt thickness, to maintain a fast and effective impregnation of the resin in the heart of the felt. It becomes possible to implement felts of significant thickness while preserving limited impregnation times of the felt by the resin.
Une seconde caractéristique clé est la résistance des fibres à la rupture ; cette caractéristique est quantifiée au moyen du module de Weibull, paramètre bien connu de l'homme du métier, mesuré par des essais de traction uni-axiale faite sur des fibres unitaires.  A second key characteristic is the resistance of the fibers to fracture; this characteristic is quantified by means of the Weibull modulus, a parameter well known to those skilled in the art, measured by uni-axial tensile tests on unit fibers.
Le module de Weibull rend compte de la distribution des défauts et de la sensibilité du matériau à ces défauts. Il se détermine empiriquement de manière statistique sur un échantillon de fibres unitaires. La détermination classique se fait à partir de la fonction suivante dite à « deux paramètres » :  The Weibull module reports on the distribution of defects and the sensitivity of the material to these defects. It is determined empirically statistically on a unit fiber sample. The classical determination is made from the following function called "two parameters":
PR = 1 - Jv exp (-(σ/σοΓ ) dV, dans laquelle PR représente la probabilité de rupture, σ la contrainte de rupture, σ0 une contrainte de normalisation, V le volume testé et m le module de Weibull. P R = 1 - Jv exp (- (σ / σοΓ) dV, where PR represents the rupture probability, σ the breaking stress, σ 0 a normalization stress, V the tested volume and m the Weibull modulus.
Dans le cas d'un volume testé constant, le module de Weibull peut être déterminé au moyen de la formule suivante :  In the case of a constant tested volume, the Weibull modulus can be determined by the following formula:
Ln Ln (1 / (1 - PR)) = m Ln (σ) + K , dans laquelle K = - m Ln (σ0) + Ln V. La figure 7 représente un résultat expérimental de mesure du module de Weibull réalisé sur un échantillon de fibres courtes de basalte utilisées pour la mise en œuvre du matériau composite selon l'invention. Ln Ln (1 / (1 - P R )) = m Ln (σ) + K, in which K = - m Ln (σ 0 ) + Ln V. FIG. 7 represents an experimental result of measurement of the Weibull modulus carried out on a sample of short basalt fibers used for the implementation of the composite material according to the invention.
La sélection des fibres courtes comprenant un module de Weibull compris entre 3.9 et 5.2 m assure des performances très compétitives notamment en termes de tenue mécanique, comme décrit dans la suite par le tableau 3.  The selection of short fibers comprising a Weibull modulus of between 3.9 and 5.2 m ensures very competitive performance, particularly in terms of mechanical strength, as described below in Table 3.
Les feutres utilisés sont préférentiellement aiguilletés sur les deux faces, selon des techniques connues par ailleurs, afin d'assurer l'intégrité du feutre au cours du cycle de production du matériau composite expansé. The felts used are preferably needled on both sides, according to techniques known elsewhere, to ensure the integrity of the felt during the production cycle of the expanded composite material.
L'aiguilletage est préférentiellement réalisé par l'apport d'une fibre complémentaire en polyéthylène. The needling is preferably carried out by the addition of a complementary polyethylene fiber.
Dans un mode de réalisation préféré de l'invention, les feutres présenteront une épaisseur comprise entre 4 et 6 mm, la variation d'épaisseur constituant un levier de paramétrage du niveau de densité du matériau composite expansé.  In a preferred embodiment of the invention, the felts will have a thickness of between 4 and 6 mm, the variation in thickness constituting a lever for setting the density level of the expanded composite material.
Pour des raisons de maîtrise du processus d'imprégnation du feutre For reasons of control of the felt impregnation process
(mouillage optimisé des fibres dans les trois directions de l'espace) par la résine, on cherchera à éviter tout traitement préalable de la fibre, du type ensimage, par exemple un silane. Toutefois, le matériau composite allégé réalisé au moyen du procédé d'imprégnation selon l'invention, décrit par la suite, permet avantageusement de tolérer un taux d'ensimage compris entre(Optimized wetting of the fibers in the three directions of space) by the resin, it will be sought to avoid any pretreatment of the fiber, of the sizing type, for example a silane. However, the lightened composite material produced by means of the impregnation method according to the invention, described below, advantageously allows to tolerate a sizing rate between
0.1 et 0.5%. Les résines utilisées pour réaliser le matériau composite sont préférentiellement des résines à base aqueuse telles que les résines de type phénolique et notamment les résines phénol-formaldéhyde. Ces résines sont, avantageusement, particulièrement performantes pour assurer au matériau composite final une excellente résistance à la chaleur. En effet, leur exposition à la chaleur produit en surface, par un phénomène de transformation chimique très endothermique, une couche carbonée protectrice qui fait obstacle à la progression de cette chaleur. De surcroit, en se consumant, ces résines ne produisent pas de fumées toxiques, ce qui permet leur utilisation pour l'équipement intérieur de cabines destinées à équiper des véhicules de transport de passagers. Alternativement, les résines utilisées peuvent être des résines naturelles à base aqueuse issues de la bio-source, telles que les résines de bois ou les résines phénoliques d'origines végétales (tanins du raisin ou du bois). 0.1 and 0.5%. The resins used to make the composite material are preferably water-based resins such as phenolic resins and especially phenol-formaldehyde resins. These resins are, advantageously, particularly powerful to ensure the final composite material excellent heat resistance. Indeed, their exposure to heat produced on the surface, by a very endothermic chemical transformation phenomenon, a protective carbon layer that hinders the progression of this heat. In addition, while burning, these resins do not produce toxic fumes, which allows their use for interior equipment cabins intended to equip passenger vehicles. Alternatively, the resins used may be natural water-based resins derived from the bio-source, such as wood resins or phenolic resins of vegetable origin (grape or wood tannins).
La viscosité de la résine utilisée est adaptée à la densité du feutre utilisé pour réaliser le matériau, de façon à imprégner ce feutre en épaisseur, de manière homogène. L'utilisation d'une résine dont la viscosité n'est pas adaptée, conduira à la constitution d'un produit final inhomogène ou présentant un rapport entre le pourcentage massique de résine et le pourcentage massique de fibres éloigné des valeurs conférant au produit final les caractéristiques mécaniques, thermiques et acoustiques recherchées.  The viscosity of the resin used is adapted to the density of the felt used to make the material, so as to impregnate the felt thickness, homogeneously. The use of a resin whose viscosity is not suitable, will lead to the constitution of a final product inhomogeneous or having a ratio between the mass percentage of resin and the mass percentage of fibers away from the values conferring on the final product the mechanical, thermal and acoustic characteristics.
Ainsi, on peut noter, à titre indicatif, qu'une résine de viscosité 300 mPa.s permet l'imprégnation homogène d'un feutre de basalte de densité 780 g/m2. Il est à noter que, si nécessaire, il est possible d'y ajouter un solvant afin d'en ajuster le niveau de viscosité.  Thus, it may be noted, by way of indication, that a resin with a viscosity of 300 mPa.s allows the homogeneous impregnation of a basalt felt with a density of 780 g / m 2. It should be noted that, if necessary, it is possible to add a solvent to adjust the viscosity level.
L'agent d'expansion peut être choisi parmi les expanseurs habituellement utilisés pour ce type d'utilisation. Dans une forme de réalisation préférée de l'invention l'agent d'expansion est préférentiellement constitué de microsphères de type Expancel® commercialisées par la société Akzo Nobel. L'agent d'expansion peut également être du type Isobutane ou bien encore être choisi parmi des levures naturelles ou chimiques. The blowing agent may be chosen from the expander usually used for this type of use. In a preferred embodiment of the invention, the blowing agent is preferably composed of Expancel® type microspheres marketed by Akzo Nobel. The blowing agent may also be of the Isobutane type or may also be chosen from natural or chemical yeasts.
Selon l'invention, le matériau composite final comprend en poids entre 10% et 20% de fibres d'origine naturelle et entre 80% et 90% de matrice thermodurcissable constitué de résine thermodurcissable et de l'agent d'expansion. According to the invention, the final composite material comprises by weight between 10% and 20% of fibers of natural origin and between 80% and 90% of thermosetting matrix consisting of thermosetting resin and the blowing agent.
L'agent expanseur est compris entre 5% et 25% en poids du matériau composite final.  The expander is between 5% and 25% by weight of the final composite material.
Dans le mélange aqueux initial, mis en œuvre pour l'imprégnation du substrat, la matrice thermodurcissable est constitué de 85% de résine, de 10% d'agent d'expansion et 5% de solvant qui dans le cas présent sera de l'eau. Ainsi, en respectant de telles proportions, et en particulier en maintenant une proportion massique de renfort fibreux inférieure à 20%, on réalise au moyen du procédé de fabrication décrit dans la suite du texte, un matériau composite aux performances très avantageuses. En premier lieu, le matériau composite assure à la fois des performances de tenue mécanique et thermiques très compétitives tout en présentant une masse volumique réduite. Ces performances en font donc un matériau particulièrement adapté à des applications dans le domaine des transports (aménagement cabine aéronefs, caissons et cloisons thermiques, trappes de visite aéreonefs, ...). In the initial aqueous mixture, used for the impregnation of the substrate, the thermosetting matrix consists of 85% resin, 10% blowing agent and 5% solvent, which in this case will be water. Thus, by respecting such proportions, and in particular by maintaining a mass proportion of fibrous reinforcement of less than 20%, using the manufacturing method described in the following text, a composite material with very advantageous performance is produced. In the first place, the composite material provides both very competitive mechanical and thermal performance while having a reduced density. These performances make it a particularly suitable material for applications in the field of transport (aircraft cabin layout, thermal boxes and bulkheads, aircraft inspection hatches, etc.).
Le matériau composite présente également les caractéristiques suivantes :  The composite material also has the following characteristics:
- une bonne homogénéité en fibres ce qui permet une dilatation cohérente dans les 3 axes. Cette homogénéité étant définie par une distribution (aléatoire) de concentration en fibres quasi constante dans les trois dimensions du matériau;  - good fiber homogeneity which allows a consistent expansion in the 3 axes. This homogeneity being defined by a distribution (random) of fiber concentration almost constant in the three dimensions of the material;
- une densité variable et ajustable, par fabrication, entre 100 kg/m3 et 500 Kg/m3. L'adaptation de la densité à l'application visée permet ainsi de réaliser des gains sur les masses embarquées;  - A variable density and adjustable, by manufacture, between 100 kg / m3 and 500 Kg / m3. The adaptation of the density to the intended application thus makes it possible to make gains on the on-board masses;
- une épaisseur variable et ajustable, par fabrication, entre 6 mm et 30 mm;a variable and adjustable thickness, by manufacture, between 6 mm and 30 mm;
- des caractéristiques mécaniques conforment aux exigences du domaine aéronautique et des transports faisant que le matériau peut être envisagé comme élément structurel, notamment dans certaines applications d'équipement intérieur de cabines de véhicules de transport de passagers, les caractéristiques de résistance et d'aspect du matériau obtenu étant par exemple propres à rendre son utilisation attractive pour la réalisation de mobilier de cabine d'aéronefs civils; - mechanical characteristics in accordance with the requirements of the aeronautical and transport sectors, such that the material can be considered as a structural element, in particular in certain interior fittings applications for passenger vehicle cabs, the characteristics of strength and appearance of the vehicle, material obtained being for example suitable to make its use attractive for the realization of civil aircraft cabin furniture;
- des caractéristiques thermiques et acoustiques qui le rendent propre à être utilisé comme matériau d'isolation thermique et acoustique pour tout type d'application requérant d'excellentes capacités d'atténuation thermique (y compris des applications de protection contre le feu) et/ou acoustique. Les matériaux composites selon l'invention permettent notamment de réaliser des structures répondant aux normes feu/fumée en vigueur dans les différents domaines d'activité tels que notamment le transport aérien, notamment la norme ISO 2685 (Edition 1998) ou la norme FAA AC 20-135, ou même des structures à l'épreuve du feu au sens de cette dernière norme, leur résistance au feu étant fonction de l'épaisseur et de la densité du matériau employé. - thermal and acoustic characteristics that make it suitable for use as a thermal and acoustic insulation material for any type of application requiring excellent thermal attenuation capabilities (including fire protection applications) and / or acoustic. The composite materials according to the invention make it possible in particular to produce structures meeting the fire / smoke standards in force in the various fields of activity, such as in particular air transport, in particular the ISO 2685 (Edition 1998) or the FAA AC 20 standard. -135, or even fireproof structures within the meaning of this latter standard, their fire resistance being a function of the thickness and density of the material used.
- une facilité d'élimination liée à l'emploi de fibres naturelles, de fibres de basalte en particulier, qui ne constituent pas, de par les caractéristiques physiques intrinsèques (diamètre minimum de la fibre filée, fissuration quasi impossible sur la longueur de la fibre), un danger pour la santé de l'utilisateur du matériau (diamètre de fibre supérieur à la limite de « respirabilité ») et par la suite pour celle des personnes chargées des opérations de démantèlement, en fin de vie, des objets fabriqués à partir du matériau composite selon l'invention.  - an ease of elimination related to the use of natural fibers, in particular basalt fibers, which do not constitute, by intrinsic physical characteristics (minimum diameter of the spun fiber, almost impossible cracking along the length of the fiber ), a health hazard for the user of the material (fiber diameter greater than the limit of "breathability") and subsequently for those responsible for the dismantling operations, at the end of life, of articles made from composite material according to the invention.
Le matériau composite selon l'invention n'altère par ailleurs pas la transmission des ondes radio et peut être ainsi utilisé dans les applications de protection de matériels d'émission, de réception, dans des équipements radar par exemple.  The composite material according to the invention also does not alter the transmission of radio waves and can thus be used in protection applications for transmitting equipment, reception, in radar equipment for example.
Dans des modes de réalisation particuliers, le matériau composite selon l'invention peut comprendre des ingrédients supplémentaires à ceux décrits précédemment, dans le but de lui conférer des propriétés additionnelles telles que la résistance aux agents contaminants chimiques ou bien encore une augmentation ou une diminution de sa résistivité électrique, ou même un caractère esthétique. Ces ingrédients peuvent notamment être ajoutés au mélange aqueux de résine et d'agent d'expansion, en particulier lorsqu'il s'agit, par exemple, d'agents anti-bactériens (du type chlorure de lauryl-diméthyl-benzyl ammonium) ou de pigments organométalliques (colorants) dispersés en phase aqueuse. In particular embodiments, the composite material according to the invention may comprise ingredients additional to those described above, with the aim of conferring on it additional properties such as the resistance to chemical contaminating agents or even an increase or a decrease in its electrical resistivity, or even an aesthetic character. These ingredients may in particular be added to the aqueous mixture of resin and blowing agent, in particular when it comes, for example, to anti-bacterial agents (of the lauryl-dimethyl-benzyl ammonium chloride type) or of organometallic pigments (dyes) dispersed in aqueous phase.
Le matériau composite selon l'invention peut également comprendre d'autres matériaux et additifs généralement utilisés pour les applications envisagés: agents de démoulage, et produits ignifugeant pour les fibres d'origine végétale notamment.  The composite material according to the invention may also comprise other materials and additives generally used for the envisaged applications: release agents, and flame retardants for fibers of vegetable origin in particular.
Le matériau composite selon l'invention, tel que décrit dans le texte qui précède, est réalisé en mettant en œuvre le procédé original décrit dans la suite du texte et résumé par l'organigramme de la figure 1 . Le procédé de fabrication mis en œuvre comprend les étapes suivantes : - une première étape 1 1 d'imprégnation du substrat 15, constitué du feutre de fibres, par la matrice thermodurcissable 16, The composite material according to the invention, as described in the preceding text, is produced by implementing the original method described in the rest of the text and summarized by the flowchart of FIG. The manufacturing process implemented comprises the following steps: a first step 1 1 of impregnating the substrate 15, constituted by the fiber felt, by the thermosetting matrix 16,
- une deuxième étape 12 de déshumidification du substrat imprégné 23, a second dehumidification step 12 of the impregnated substrate 23,
- une troisième étape 13 d'expansion du substrat imprégné et déshumidifié, apte à activer l'agent d'expansion puis à réticuler, a third step 13 for expanding the impregnated and dehumidified substrate, capable of activating the blowing agent and then of crosslinking,
Avantageusement, ces trois étapes sont précédées d'une étape préalable de préparation de la matrice thermodurcissable 16, réalisée en ambiance thermique contrôlée afin de maîtriser la rhéologie de la matrice thermodurcissable 16.  Advantageously, these three steps are preceded by a preliminary step of preparation of the thermosetting matrix 16, carried out in a controlled thermal environment in order to control the rheology of the thermosetting matrix 16.
Enfin, ces étapes de fabrication sont avantageusement suivies d'une étape finale 14 de stabilisation du matériau fabriqué.  Finally, these manufacturing steps are advantageously followed by a final step 14 of stabilizing the material manufactured.
Comme l'illustre la figure 2, l'étape 1 1 d'imprégnation des fibres constituant le substrat 15 est préférentiellement réalisée suivant l'application du principe de capillarité, le mélange résine et agent d'expansion, constituant la matrice thermodurcissable 16, déposé en surface diffusant au sein du substrat 15, comme figuré par les flèches 21 . Le taux massique de résine et agent d'expansion 16 au sein du feutre 15, ou taux d'imprégnation, est dans ce cas fonction du débit d'écoulement du mélange résine/agent d'expansion, ainsi que de la vitesse de défilement du feutre. Idéalement, l'imprégnation est réalisée en appliquant une vitesse de déplacement 22 du substrat 15, ou renfort fibreux, asservie sur la capacité de diffusion de la résine ainsi que le niveau de perméabilité du renfort fibreux. Afin d'assurer une parfaite isotropie de concentration dans tout le volume du feutre, il sera éventuellement pratiqué une imprégnation par capillarité sur les deux faces du feutre, cette opération étant dans le cas de la présente invention réalisée de manière continue au cours du déplacement du renfort fibreux. As illustrated in FIG. 2, the impregnation step 1 1 of the fibers constituting the substrate 15 is preferably carried out according to the application of the principle of capillarity, the resin and blowing agent mixture constituting the thermosetting matrix 16 deposited. at the surface diffusing within the substrate 15, as represented by the arrows 21. The mass content of resin and blowing agent 16 in the felt 15, or impregnation rate, is in this case a function of the flow rate of the resin / blowing agent mixture, as well as the running speed of the felt. Ideally, the impregnation is carried out by applying a displacement speed 22 of the substrate 15, or fibrous reinforcement, slaved to the diffusion capacity of the resin as well as the permeability level of the fibrous reinforcement. In order to ensure a perfect concentration isotropy throughout the volume of the felt, it will optionally be impregnated by capillarity on both sides of the felt, this operation being in the case of the present invention carried out continuously during the movement of the felt. fibrous reinforcement.
Alternativement, l'imprégnation du substrat peut également être réalisée au sein d'un moule multicoquille qui permet la réalisation de pièces monolithiques de géométries complexes et fonctionnalisées (intégration dispositif ou capteurs de mesures par exemple), limitant ainsi les opérations d'assemblages mécaniques dans les domaines d'applications visés. A la fin de l'étape d'imprégnation, on obtient un substrat imprégné 23 de matrice thermodurcissable, qui présente sensiblement les proportions massiques suivantes : Alternatively, the impregnation of the substrate can also be performed within a multi-cast mold that allows the production of monolithic parts of complex and functionalized geometries (device integration or measurement sensors for example), thus limiting the mechanical assembly operations in the fields of application concerned. At the end of the impregnation stage, an impregnated substrate 23 of thermosetting matrix is obtained, which has substantially the following mass proportions:
- 80 à 90% de matrice thermodurcissable 16,  80 to 90% of thermosetting matrix 16,
- 10 à 20 % de substrat 15.  - 10 to 20% of substrate 15.
La deuxième étape 12 de déshumidification du substrat imprégné 23 consiste, avant l'étape d'expansion 13, à amener la teneur en eau du substrat imprégné 23 à une valeur la plus faible possible telle que la perte de masse du substrat est comprise entre 55% et 65%. The second step 12 of dehumidification of the impregnated substrate 23 consists, before the expansion step 13, to bring the water content of the impregnated substrate 23 to a lowest possible value such that the mass loss of the substrate is between 55 % and 65%.
Dans un mode de mise en œuvre préféré de cette étape de déshumidification 12, le substrat imprégné 23, préalablement placé sur un support poreux, une grille métallique par exemple, est maintenu pendant une durée adaptée à une température fixe au sein d'une enceinte que l'on peut assimiler à une étuve, enceinte dont l'atmosphère sera continuellement renouvelée afin d'en évacuer l'humidité. Comme l'illustre la figure 3, un mode de réalisation préféré de cette étape consiste à maintenir le substrat imprégné 23 à une température maintenue entre 27 et 33 °C pendant une durée comprise entre 25 et 30 heures.  In a preferred embodiment of this dehumidification step 12, the impregnated substrate 23, previously placed on a porous support, a metal grid for example, is maintained for a period of time adapted to a fixed temperature within an enclosure that it can be assimilated to an oven, an enclosure whose atmosphere will be continually renewed in order to evacuate the humidity. As illustrated in Figure 3, a preferred embodiment of this step is to maintain the impregnated substrate 23 at a temperature maintained between 27 and 33 ° C for a period of between 25 and 30 hours.
A la fin de l'étape de déshumidification 12, le substrat imprégné est caractérisé en ce que la perte de masse occasionnée est comprise entre 55 et 65% de la masse initiale, ce qui rend possible la mise en œuvre de l'étape suivante 13.  At the end of the dehumidification step 12, the impregnated substrate is characterized in that the loss of mass caused is between 55 and 65% of the initial mass, which makes possible the implementation of the next step 13 .
Il est à noter que, généralement, il est préférable de déshumidifier le substrat imprégné 23 dans la forme désirée pour le matériau final. Dans ce cas le substrat imprégné est déshumidifié alors qu'il est monté sur le gabarit, correspondant à cette forme, l'ensemble étant placé dans l'enceinte régulée thermiquement mentionnée précédemment. L'efficacité élevée de l'étape de déshumidification 12 telle que proposée dans l'invention permet avantageusement de se passer d'une étape d'évaporation de composés volatils tels qu'envisagée par les procédés connus.  It should be noted that, generally, it is preferable to dehumidify the impregnated substrate 23 in the desired shape for the final material. In this case the impregnated substrate is dehumidified while it is mounted on the template, corresponding to this form, the assembly being placed in the thermally controlled enclosure mentioned above. The high efficiency of the dehumidification step 12 as proposed in the invention advantageously makes it possible to dispense with a step of evaporation of volatile compounds such as envisaged by the known methods.
La troisième étape 13 du processus de fabrication d'un matériau composite selon l'invention concerne l'expansion du substrat imprégné déshumidifié. Cette étape a pour but d'assurer l'activation de l'agent d'expansion puis la réticulation de la résine thermodurcissable. Elle est préférentiellement réalisée par un outillage chauffant, en portant la température du substrat, à une température supérieure ou égale à la température d'expansion de l'agent d'expansion, par exemple, à une température généralement comprise entre 75 °C et 180°C, de préférence entre 90° et 150°C. Alternativement elle peut être réalisée par exposition du substrat imprégné et déshumidifié à un rayonnement électromagnétique basse ou hyper-fréquence. The third step 13 of the process for manufacturing a composite material according to the invention concerns the expansion of the dehumidified impregnated substrate. This step is intended to ensure the activation of the agent expansion and crosslinking of the thermosetting resin. It is preferably carried out by heating equipment, by raising the temperature of the substrate, to a temperature greater than or equal to the expansion temperature of the blowing agent, for example, at a temperature generally between 75 ° C. and 180 ° C. ° C, preferably between 90 ° and 150 ° C. Alternatively, it can be performed by exposing the impregnated and dehumidified substrate to low or high frequency electromagnetic radiation.
Selon un mode de mise en œuvre préféré, illustré par les figures 4 et 5, cette étape est réalisée au moyen d'une presse chauffante, la température de chauffage étant préférentiellement comprise entre 135°C et 145°C, température qui permet à la fois l'activation de l'agent d'expansion et la réticulation de la résine. La presse chauffante permet avantageusement d'appliquer une pression limitant l'expansion du matériau occasionnée par le chauffage.  According to a preferred embodiment, illustrated by FIGS. 4 and 5, this step is carried out by means of a heating press, the heating temperature preferably being between 135 ° C. and 145 ° C., which temperature allows the both the activation of the blowing agent and the crosslinking of the resin. The heating press advantageously makes it possible to apply a pressure limiting the expansion of the material caused by the heating.
Dans ce mode de mise en œuvre préféré, la durée de la mise sous presse est par ailleurs définie en fonction de l'épaisseur (et donc de la densité) du matériau à réaliser pour l'application considéré. A ce titre, l'utilisation d'une presse chauffante permet avantageusement de contrôler l'épaisseur finale, après expansion, du matériau composite 17 réalisé.  In this preferred embodiment, the duration of the setting in press is further defined according to the thickness (and therefore the density) of the material to be produced for the application in question. In this respect, the use of a heating press advantageously makes it possible to control the final thickness, after expansion, of the composite material 17 produced.
Selon ce mode de mise en œuvre préféré, l'étape 13 d'expansion du matériau composite selon l'invention comporte la réalisation des opérations suivantes:  According to this preferred embodiment, the step 13 of expanding the composite material according to the invention comprises carrying out the following operations:
- préchauffage de la presse;  - preheating the press;
- mise en place d'équipements, de moyens, permettant de contrôler l'épaisseur ainsi que la géométrie de l'élément de matériau composite à réaliser. Dans le cas d'un élément plan 51 , ces moyens sont par exemple constitués par des cales métalliques 52 interposées entre les tables supérieure 53 et inférieure 54 de la presse, tandis que dans le cas d'une pièce 61 présentant un volume donné ces moyens sont par exemple constitués, comme l'illustre la figure 5, par des empreintes 62 et 63 épousant la forme de la pièce, les empreintes ayant servi à former le substrat imprégné par exemple :  - Establishment of equipment, means to control the thickness and the geometry of the composite material element to achieve. In the case of a planar element 51, these means are for example constituted by metal shims 52 interposed between the upper tables 53 and lower 54 of the press, whereas in the case of a part 61 having a given volume these means are for example constituted, as illustrated in FIG. 5, by indentations 62 and 63 conforming to the shape of the part, the imprints used to form the impregnated substrate, for example:
- dépose d'un agent de démoulage (non représenté sur les figures 4 et 5) sur la table inférieure de la presse, ainsi que sur la face supérieure du substrat imprégné. Cet agent de démoulage est par exemple constitué de papier sulfurisé; - Removal of a release agent (not shown in Figures 4 and 5) on the lower table of the press, as well as on the upper face of the impregnated substrate. This release agent is for example made of parchment paper;
- dépose du substrat imprégné sur la table inférieure de la presse; - Removal of the impregnated substrate on the lower table of the press;
- mise en pression de la presse, les valeurs de pression à appliquer en fonction de l'épaisseur que l'élément doit présenter après expansion étant, par exemple, préalablement enregistrés dans le système de commande et de contrôle de la presse. pressurization of the press, the pressure values to be applied depending on the thickness that the element must have after expansion being, for example, previously recorded in the control and control system of the press.
Ainsi, la troisième étape 13 d'expansion est avantageusement réalisée au moyen d'une presse chauffante permettant d'appliquer sur le matériau une valeur de pression apte à limiter l'expansion occasionnée par le chauffage ; la valeur de pression appliquée étant déterminée en fonction d'une température de réticulation du matériau, et/ou de caractéristiques géométriques du matériau attendues à l'issue de cette étape.  Thus, the third stage 13 of expansion is advantageously carried out by means of a heating press allowing to apply on the material a pressure value able to limit the expansion caused by the heating; the pressure value applied being determined as a function of a crosslinking temperature of the material, and / or geometric characteristics of the material expected at the end of this step.
Avantageusement, la valeur de pression appliquée par la presse est une valeur asservie sur un niveau de pression générée par l'agent d'expansion.  Advantageously, the pressure value applied by the press is a slave value on a pressure level generated by the blowing agent.
Avantageusement, la pression appliquée par la presse est comprise entre 65 et 75 bars. Avant l'utilisation du matériau ainsi obtenu à l'issue des trois étapes de fabrication proprement dites, 1 1 , 12 et 13, celui-ci est soumis à une étape finale 14 de stabilisation consistant à laisser l'élément de matériau composite 17 reposer sur un plan horizontal durant une durée suffisante pour revenir naturellement à température ambiante. Selon une mise en œuvre préférée de cette étape finale, la mise au repos de l'élément de matériau est d'une durée minimale de 2 heures. Cette étape finale de stabilisation permet notamment la relaxation des contraintes mécaniques au sein du matériau, relaxation qui garantit son intégrité, c'est-à-dire l'absence de défauts internes, ainsi que le maintien de ses caractéristiques dimensionnelles. On obtient alors un élément de matériau composite 18 prêt à être utilisé pour réaliser l'objet ou la structure souhaités.  Advantageously, the pressure applied by the press is between 65 and 75 bars. Before using the material thus obtained at the end of the three manufacturing steps proper, 1 1, 12 and 13, it is subjected to a final stabilization step 14 of leaving the composite material element 17 to rest. on a horizontal plane for a sufficient time to return naturally to room temperature. According to a preferred implementation of this final step, the resting of the element of material is of a minimum duration of 2 hours. This final stabilization step notably allows the relaxation of the mechanical stresses within the material, relaxation which guarantees its integrity, that is to say the absence of internal defects, as well as the maintenance of its dimensional characteristics. This produces a composite material element 18 ready to be used to produce the desired object or structure.
Par ailleurs, le matériau selon l'invention ainsi réalisé peut, en fonction de l'utilisation à laquelle il est destiné, subir des opérations complémentaires telles que mise en peinture, dépose d'un revêtement de surface formant un renfort mécanique ou conférant au matériau certaines caractéristiques esthétiques. Furthermore, the material according to the invention thus produced may, depending on the use for which it is intended, undergo complementary operations such as painting, removal of a surface coating forming a mechanical reinforcement or conferring on the material certain aesthetic characteristics.
La figure 6 illustre un mode préféré d'exécution d'une étape complémentaire de drapage du matériau, consistant à déposer en surface du matériau composite 51 , un renfort de surface 71 , plus communément appelé peau. Selon l'invention le renfort de surface 71 est constitué par un préimprégné tel que le renfort fibreux est en fibres de basalte et la résine est une résine phénolique. Dans un cas préféré de l'invention, le renfort fibreux du pré-imprégné est géométriquement organisé. On pense notamment à des renforts de surface organisés de type tissu 2D ou sergé.  Figure 6 illustrates a preferred embodiment of a complementary step of draping the material, of depositing on the surface of the composite material 51, a surface reinforcement 71, more commonly called skin. According to the invention the surface reinforcement 71 is constituted by a prepreg such that the fiber reinforcement is made of basalt fibers and the resin is a phenolic resin. In a preferred case of the invention, the fibrous reinforcement of the prepreg is geometrically organized. One thinks in particular of organized surface reinforcements of type 2D fabric or twill.
Ainsi, le procédé selon l'invention comprend avantageusement une étape complémentaire de drapage 19 d'un renfort en surface supérieure et/ou inférieure du matériau.  Thus, the method according to the invention advantageously comprises a complementary step of draping a reinforcement 19 on the upper and / or lower surface of the material.
Avantageusement, le renfort est constitué d'un matériau composite à base de fibres de basalte et de résine phénolique. Le renfort en matériau composite pourra avantageusement présenter une géométrie du type tissé 2D ou sergé. Typiquement, le renfort présente une densité comprise entre 90 et 1 10 kg/m3.  Advantageously, the reinforcement consists of a composite material based on basalt fibers and phenolic resin. The composite material reinforcement may advantageously have a geometry of the 2D woven or twill type. Typically, the reinforcement has a density of between 90 and 10 kg / m 3.
Dans une mise en œuvre privilégiée de l'invention, l'étape de drapage consistant à déposer sur le matériau un renfort de type pré-imprégné est suivie d'une étape de chauffage apte à permettre la réticulation du matériau composite constituant le renfort pré-imprégné. Cette étape de chauffage destinée, par réticulation de la résine du pré-imprégné, à faire adhérer le dit pré-imprégné sur le matériau composite d'âme préalablement réalisé, est préférentiellement appliquée entre 1 10°C et 140°C sur une plage de temps comprise entre 1 et 5 minutes. Un produit final renforcé 72 est ainsi obtenu.  In a preferred embodiment of the invention, the draping step of depositing on the material a reinforcement of pre-impregnated type is followed by a heating step capable of permitting the crosslinking of the composite material constituting the pre-impregnated reinforcement. impregnated. This heating step intended, by crosslinking the resin of the prepreg, to adhere said prepreg on the core composite material previously produced, is preferably applied between 1 10 ° C and 140 ° C over a range of time between 1 and 5 minutes. A reinforced end product 72 is thus obtained.
Notons aussi que dans un mode de réalisation alternatif, l'étape de drapage pourra être réalisée après l'étape 12 de déshumidification et avant l'étape 13 d'expansion. Ainsi, la réticulation du composite constituant le renfort pré-imprégné est réalisée par l'étape 13 d'expansion du matériau. Le procédé se limite à une seule étape de chauffage, permettant de limiter les besoins en énergie du procédé.  Note also that in an alternative embodiment, the layup step may be performed after the dehumidification step 12 and before the expansion step 13. Thus, the crosslinking of the composite constituting the pre-impregnated reinforcement is carried out by the step 13 of expanding the material. The process is limited to a single heating step, to limit the energy requirements of the process.
Ainsi, en mettant en œuvre le procédé selon l'invention avec les ingrédients décrits dans la présente demande on obtient avantageusement un matériau composite présentant des caractéristiques de composition et de structure, ainsi que des caractéristiques physiques (mécaniques, thermiques et acoustiques) de nature à constituer une solution aux problèmes évoqués précédemment, problèmes auxquels les matériaux composites existant n'apportent pas de solution satisfaisante. Thus, by carrying out the process according to the invention with the ingredients described in the present application, it is advantageously obtained a composite material having characteristics of composition and structure, as well as physical characteristics (mechanical, thermal and acoustic) likely to constitute a solution to the problems mentioned above, problems which existing composite materials do not provide a satisfactory solution.
L'exemple de réalisation suivant est présenté à des fins d'illustration de la présente invention. Exemple 1 : Réalisation d'un matériau composite à fibres de basalte pour application aéronautique. Ce matériau est dénommé ROXALTE® par la déposante. The following exemplary embodiment is presented for purposes of illustration of the present invention. Example 1: Production of a composite material with basalt fibers for aeronautical application. This material is called ROXALTE® by the applicant.
Le matériau est un matériau composite selon l'invention, réalisé en suivant les étapes du procédé selon l'invention rappelées ci-après :  The material is a composite material according to the invention, produced by following the steps of the method according to the invention, which are recalled below:
Le matériau considéré est obtenu à partir d'un mélange 16 de résine, d'agent d'expansion et d'eau, le tout étant brassé mécaniquement au sein d'un mélangeur vertical du type émulseur, ou sur un dispositif du type retourne fût, sur une plage comprise entre 25 et 35 minutes.  The material in question is obtained from a mixture 16 of resin, blowing agent and water, the whole being mechanically stirred within a vertical mixer of the emulsifier type, or on a device of the return type barrel. over a range of 25 to 35 minutes.
Le mélange 16 résine phénolique / agent d'expansion, est ici réalisé de façon à ce que les proportions du mélange final soient celle présentées dans le tableau 2 ci-après.  The phenolic resin / blowing agent mixture is here produced so that the proportions of the final mixture are as shown in Table 2 below.
Figure imgf000020_0001
Figure imgf000020_0001
Tableau 2 : exemple de formulation ROXALTE® pour application aéronautique Table 2: example of formulation ROXALTE® for aeronautical application
Le mélange décrit précédemment est brassé mécaniquement au sein d'un mélangeur vertical sur une plage comprise entre 25 et 35 minutes (temps d'atteinte de l'homogénéité du mélange). Le mélange précédent est utilisé pour réaliser l'imprégnation 1 1 double face par capillarité d'un feutre 1 5 dont le grammage est de 780 g/m2, ce feutre étant distribué commercialement par Basaltex sous la référence 6/1 30 de la gamme BCF Fibres Needlefelts/Mats, le ratio massique final renfort/résine, ajusté par capillarité, devant être de 1 0/90. The mixture described above is mechanically stirred in a vertical mixer over a range of between 25 and 35 minutes (time of attaining the homogeneity of the mixture). The above mixture is used to perform the 1 1 double-face impregnation by capillarity of a felt 1 5 whose grammage is 780 g / m 2 , this felt being commercially distributed by Basaltex under the reference 6/1 30 of the range. BCF Fibers Needlefelts / Mats, the final mass ratio reinforcement / resin, adjusted by capillarity, to be 1 0/90.
Après imprégnation par la résine phénolique le feutre 1 1 subit une étape 12 de déshumidification d'environ 25 heures.  After impregnation with the phenolic resin the felt 1 1 undergoes a dehumidification step 12 of about 25 hours.
Enfin, l'étape d'expansion 1 3 est ici réalisée au moyen d'une presse avec une pression machine de 75 bars/m2 pour la production d'une plaque de surface équivalente à 1 m2. Finally, the expansion step 1 3 is here carried out by means of a press with a machine pressure of 75 bar / m 2 for the production of a surface plate equivalent to 1 m 2 .
Un échantillon du matériau ROXALTE® ainsi fabriqué, dont les caractéristiques sont rappelées ci-après, a par la suite été caractérisé dans des essais de résistance mécanique. Les principaux résultats de ces essais, analysés conformément aux normes en vigueur, sont rassemblés dans le tableau suivant.  A sample of ROXALTE® material thus manufactured, the characteristics of which are recalled below, was subsequently characterized in mechanical strength tests. The main results of these tests, analyzed in accordance with the standards in force, are summarized in the following table.
Tableau 3 : Principales performances du matériau composite allégé Roxalte Table 3: Main performances of the lightweight composite material Roxalte

Claims

REVENDICATIONS
1 . Matériau composite allégé (17) caractérisé en ce qu'il est constitué par: 1. Lightened composite material (17) characterized in that it consists of:
- un substrat (15) en fibre naturelle présentant la structure d'un feutre, le feutre étant aiguilleté sur ces deux surfaces par l'apport d'une fibre complémentaire en polyéthylène ;  - A substrate (15) made of natural fiber having the structure of a felt, the felt being needle-punched on these two surfaces by providing a complementary fiber polyethylene;
- une matrice thermodurcissable (16), intégrée au substrat (15) par imprégnation, formée d'une résine en base aqueuse et d'un agent d'expansion dispersé dans la matrice dont l'expansion est initiée en le portant à une température donnée ; la proportion massique d'agent d'expansion dans la matrice (16) étant comprise entre 10% et 15 %, et en ce que les proportions massiques de substrat (15) et de matrice thermodurcissable (16) sont définies de façon à obtenir un matériau composite final présentant les proportions massiques suivantes:  a thermosetting matrix (16), integrated into the substrate (15) by impregnation, formed of an aqueous base resin and an expansion agent dispersed in the matrix whose expansion is initiated by bringing it to a given temperature ; the mass proportion of expansion agent in the matrix (16) being between 10% and 15%, and in that the mass proportions of substrate (15) and thermosetting matrix (16) are defined so as to obtain a final composite material having the following mass proportions:
- entre 10% et 20% de substrat (15) en fibre naturelle, between 10% and 20% of substrate (15) made of natural fiber,
- entre 80% et 90% de matrice thermodurcissable (16); between 80% and 90% of thermosetting matrix (16);
2. Matériau selon la revendication 1 , caractérisé en ce que les fibres naturelles utilisées dans la mise en œuvre du substrat sont des fibres courtes de basalte, présentant un diamètre moyen compris entre 13 et 17 μιη. 2. Material according to claim 1, characterized in that the natural fibers used in the implementation of the substrate are short basalt fibers, having a mean diameter of between 13 and 17 μιη.
3. Matériau selon la revendication 2, caractérisé en ce que les fibres courtes de basalte présentent un module de Weibull compris entre 3,9 et 5,2 m. 3. Material according to claim 2, characterized in that the short basalt fibers have a Weibull modulus between 3.9 and 5.2 m.
4. Matériau selon l'une des revendications 2 à 3, caractérisé en ce que les fibres courtes de basalte présentent un taux d'ensimage compris entre 0,1 et 0,5%. 4. Material according to one of claims 2 to 3, characterized in that the short basalt fibers have a sizing rate of between 0.1 and 0.5%.
5. Matériau selon la revendication 4, caractérisé en ce que les fibres courtes de basalte comprennent un agent d'ensimage de type silane. 5. Material according to claim 4, characterized in that the short basalt fibers comprise a silane sizing agent.
6. Matériau selon l'une des revendications précédentes, caractérisé en ce qu'un renfort (71 ) est fixé en surface supérieure et/ou inférieure du matériau. 6. Material according to one of the preceding claims, characterized in that a reinforcement (71) is fixed at the upper and / or lower surface of the material.
7. Matériau selon l'une des revendications précédentes, caractérisé en ce que la renfort (71 ) est un matériau composite à base de fibres de basalte et de résine phénolique. 7. Material according to one of the preceding claims, characterized in that the reinforcement (71) is a composite material based on basalt fibers and phenolic resin.
8. Un procédé pour fabriquer le matériau composite selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte les étapes suivantes : 8. A method for manufacturing the composite material according to any one of the preceding claims, characterized in that it comprises the following steps:
- une première étape (1 1 ) d'imprégnation du substrat (15) par la matrice thermodurcissable (16), l'imprégnation étant réalisée par capillarité par au moins une face du substrat (15),  a first step (1 1) for impregnating the substrate (15) with the thermosetting matrix (16), the impregnation being carried out by capillarity by at least one face of the substrate (15),
- une deuxième étape (12) de déshumidification du substrat imprégné (23), la déshumidification étant réalisée par étuvage et ventilation forcée, l'étuvage étant réalisé à une température régulée comprise entre 27 °C et 33 °C pour une durée comprise entre 25 et 30 heures a second dehumidification step (12) of the impregnated substrate (23), the dehumidification being carried out by steaming and forced ventilation, the baking being carried out at a controlled temperature of between 27 ° C. and 33 ° C. for a duration of between and 30 hours
- une troisième étape (13) d'expansion, apte à activer l'agent d'expansion puis à réticuler la résine par élévation de température du substrat imprégné a third expansion step (13) capable of activating the blowing agent and then crosslinking the resin by raising the temperature of the impregnated substrate
(23) ; le substrat étant mis sous contrainte de pression. (23); the substrate being under pressure stress.
9. Procédé selon la revendication 8 caractérisé en ce qu'il comprend une étape préalable de préparation de la matrice thermodurcissable (16), réalisée en ambiance thermique contrôlée afin de maîtriser la rhéologie de la matrice thermodurcissable (16). 9. A method according to claim 8 characterized in that it comprises a prior step of preparing the thermosetting matrix (16), performed in a controlled thermal environment to control the rheology of the thermosetting matrix (16).
10. Procédé selon l'une des revendications 8 ou 9, caractérisé en ce que la deuxième étape (12) de déshumidification permet d'obtenir une perte de masse du substrat imprégné (23) comprise entre 55% et 65%. 10. Method according to one of claims 8 or 9, characterized in that the second step (12) of dehumidification provides a loss of mass of the impregnated substrate (23) between 55% and 65%.
1 1 . Procédé selon l'une des revendications 8 à 10, caractérisé en ce que la troisième étape (13) d'expansion est réalisée au moyen d'une presse chauffante permettant d'appliquer sur le matériau une valeur de pression apte à limiter l'expansion occasionnée par le chauffage ; la valeur de pression appliquée étant déterminée en fonction d'une température de réticulation du matériau, et/ou de caractéristiques géométriques du matériau attendues à l'issue de cette étape. 1 1. Process according to one of Claims 8 to 10, characterized in that the third expansion stage (13) is carried out by means of a heating press which makes it possible to apply to the material a pressure value capable of limiting expansion. caused by heating; the value of applied pressure being determined as a function of a crosslinking temperature of the material, and / or geometric characteristics of the material expected at the end of this step.
12. Procédé selon la revendication 1 1 , caractérisé en ce que la valeur de pression appliquée par la presse est une valeur asservie sur un niveau de pression générée par l'agent d'expansion. 12. The method of claim 1 1, characterized in that the pressure value applied by the press is a slave value on a pressure level generated by the blowing agent.
13. Procédé selon l'une des revendications 1 1 ou 12, caractérisé en ce que la pression appliquée par la presse est comprise entre 65 et 75 bars. 13. Method according to one of claims 1 1 or 12, characterized in that the pressure applied by the press is between 65 and 75 bar.
14. Procédé selon l'une des revendications 8 à 13, caractérisé en ce qu'il comprend en outre une étape complémentaire de drapage (19) d'un renfort (71 ) en surface supérieure et/ou inférieure du matériau (51 ). 14. Method according to one of claims 8 to 13, characterized in that it further comprises a complementary step of draping (19) of a reinforcement (71) on the upper surface and / or lower material (51).
15. Procédé selon la revendication 14, caractérisé en ce que le renfort (71 ) est constitué d'un matériau composite à base de fibres de basalte et de résine phénolique. 15. The method of claim 14, characterized in that the reinforcement (71) is made of a composite material based on basalt fibers and phenolic resin.
16. Procédé selon la revendication 15, caractérisé en ce que le renfort (71 ) est constitué d'un matériau composite présentant une géométrie du type tissé 2D ou sergé. 16. The method of claim 15, characterized in that the reinforcement (71) is made of a composite material having a geometry of 2D woven or twill type.
17. Procédé selon l'une des revendications 14 à 16, caractérisé en ce que le renfort (71 ) présente une densité comprise entre 90 et 1 10 kg/m3. 17. Method according to one of claims 14 to 16, characterized in that the reinforcement (71) has a density of between 90 and 1 10 kg / m3.
18. Procédé selon l'une des revendications 15 à 17, caractérisé en ce qu'il comprend en outre une étape de chauffage à une température comprise entre 1 10°C et 140°C, pour une durée comprise entre 1 et 5 minutes, réalisée après drapage du matériau, apte à permettre la réticulation du matériau composite constituant le renfort (71 ). 18. Method according to one of claims 15 to 17, characterized in that it further comprises a heating step at a temperature between 1 10 ° C and 140 ° C, for a period of between 1 and 5 minutes, performed after draping the material, able to allow the crosslinking of the composite material constituting the reinforcement (71).
PCT/EP2013/064509 2012-07-13 2013-07-09 Novel light composite materials, methods for manufacturing same, and uses thereof WO2014009381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256808A FR2993202B1 (en) 2012-07-13 2012-07-13 NOVEL ALLEGED COMPOSITE MATERIALS, METHODS OF MAKING THE SAME, AND USES THEREOF.
FR1256808 2012-07-13

Publications (1)

Publication Number Publication Date
WO2014009381A1 true WO2014009381A1 (en) 2014-01-16

Family

ID=47594858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/064509 WO2014009381A1 (en) 2012-07-13 2013-07-09 Novel light composite materials, methods for manufacturing same, and uses thereof

Country Status (2)

Country Link
FR (1) FR2993202B1 (en)
WO (1) WO2014009381A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075602A1 (en) 2014-11-14 2016-05-19 Hutchinson Composite panel with thermosetting cellular matrix, manufacturing method, and structure for covering a wall formed from an assembly of panels
CN110466175A (en) * 2018-05-11 2019-11-19 坎培诺洛有限公司 Bicycle assembly parts and relative manufacturing process made of composite material
US11377169B2 (en) 2018-05-11 2022-07-05 Campagnolo S.R.L. Bicycle crankarm and related crankset
US11401002B2 (en) 2018-05-11 2022-08-02 Campagnolo S.R.L. Bicycle crankarm having a stress/strain detector for a torque meter or a power meter, and methods for manufacturing and using the crankarm
US11577801B2 (en) 2018-05-11 2023-02-14 Campagnolo S.R.L. Bicycle component provided with a temperature-compensated stress/strain sensor
US11597469B2 (en) 2018-05-11 2023-03-07 Campagnolo S.R.L. Bicycle crankarm provided with electric/electronic system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1069625A (en) * 1962-12-04 1967-05-24 Borden Chemical Company U K Lt Improvements in or relating to the manufacture of synthetic resin articles reinforced with fibrous material
EP0041054A2 (en) 1980-05-21 1981-12-02 KemaNord AB A foam composite material impregnated with resin
US4410481A (en) * 1980-10-27 1983-10-18 Osterreichische Hiag-Werke Aktiengesellschaft Insulating plate and process for the preparation thereof
EP0102335A1 (en) 1982-08-05 1984-03-07 Casco Nobel Aktiebolag (reg. number 556026-1876) A method for the production of fibre composite materials impregnated with resin
WO2011101343A1 (en) 2010-02-19 2011-08-25 Roxel France Novel composite materials and methods for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1069625A (en) * 1962-12-04 1967-05-24 Borden Chemical Company U K Lt Improvements in or relating to the manufacture of synthetic resin articles reinforced with fibrous material
EP0041054A2 (en) 1980-05-21 1981-12-02 KemaNord AB A foam composite material impregnated with resin
US4410481A (en) * 1980-10-27 1983-10-18 Osterreichische Hiag-Werke Aktiengesellschaft Insulating plate and process for the preparation thereof
EP0102335A1 (en) 1982-08-05 1984-03-07 Casco Nobel Aktiebolag (reg. number 556026-1876) A method for the production of fibre composite materials impregnated with resin
WO2011101343A1 (en) 2010-02-19 2011-08-25 Roxel France Novel composite materials and methods for manufacturing same
FR2956664A1 (en) 2010-02-19 2011-08-26 L Aveyron Composite Atel NEW COMPOSITE MATERIALS, PROCESSES FOR THEIR MANUFACTURE AND USES THEREOF

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075602A1 (en) 2014-11-14 2016-05-19 Hutchinson Composite panel with thermosetting cellular matrix, manufacturing method, and structure for covering a wall formed from an assembly of panels
FR3028447A1 (en) * 2014-11-14 2016-05-20 Hutchinson CELLULAR THERMOSETTING MATRIX COMPOSITE PANEL, METHOD OF MANUFACTURING AND SHAPED WALL COATING STRUCTURE OF PANEL ASSEMBLY.
CN107000389A (en) * 2014-11-14 2017-08-01 哈金森公司 The structure of composite plate, manufacture method and the covering wall formed by the component of plate with thermosetting porous matrix
RU2689880C2 (en) * 2014-11-14 2019-05-29 Хатчинсон Composite panel with a cellular thermosetting matrix, a method of making and a structure for coating a wall, formed by joining panels
CN107000389B (en) * 2014-11-14 2019-07-09 哈金森公司 The structure of composite plate, manufacturing method and the covering wall formed by the component of plate with thermosetting property porous matrix
US10414119B2 (en) 2014-11-14 2019-09-17 Hutchinson Composite panel with thermosetting cellular matrix, manufacturing method, and structure for covering a wall formed from an assembly of panels
CN110466175A (en) * 2018-05-11 2019-11-19 坎培诺洛有限公司 Bicycle assembly parts and relative manufacturing process made of composite material
US11377169B2 (en) 2018-05-11 2022-07-05 Campagnolo S.R.L. Bicycle crankarm and related crankset
US11401002B2 (en) 2018-05-11 2022-08-02 Campagnolo S.R.L. Bicycle crankarm having a stress/strain detector for a torque meter or a power meter, and methods for manufacturing and using the crankarm
CN110466175B (en) * 2018-05-11 2022-10-04 坎培诺洛有限公司 Bicycle component made of composite material and relative manufacturing method
US11547004B2 (en) 2018-05-11 2023-01-03 Campagnolo S.R.L. Bicycle component made of composite material and related manufacturing process
US11577801B2 (en) 2018-05-11 2023-02-14 Campagnolo S.R.L. Bicycle component provided with a temperature-compensated stress/strain sensor
US11597469B2 (en) 2018-05-11 2023-03-07 Campagnolo S.R.L. Bicycle crankarm provided with electric/electronic system

Also Published As

Publication number Publication date
FR2993202B1 (en) 2014-08-22
FR2993202A1 (en) 2014-01-17

Similar Documents

Publication Publication Date Title
WO2011101343A1 (en) Novel composite materials and methods for manufacturing same
WO2014009381A1 (en) Novel light composite materials, methods for manufacturing same, and uses thereof
US11649574B2 (en) Thermoplastic composites with improved thermal and mechanical properties
Gupta et al. Processing and compressive properties of aerogel/epoxy composites
Xie et al. MANUFACTURE AND PROPERTIES OF ULTRA-LOW DENSITY FIBREBOARD FROM WOOD FIBRE.
WO2001098434A1 (en) Protective barrier
EP3081604B1 (en) Graphene-based sheets, method for preparing said sheets, composite material and uses of said graphene-based sheets
EP3268451A1 (en) Thermoplastic composition and prepreg, composite material made of said prepreg, and uses of said composite material
FR2949791A1 (en) PROCESS FOR PRODUCING PRE-IMPREGNATED FIBROUS MATERIAL OF THERMOPLASTIC POLYMER
Uma Devi et al. Ageing studies of pineapple leaf fiber–reinforced polyester composites
Ni et al. Synchronous improvement of loss factors and storage modulus of structural damping composite with functionalized polyamide nonwoven fabrics
Wang et al. The sound absorption of sisal fiber and sisal fiber/polyethylene film sheets: Morphology and structure
Azahari et al. Improving sound absorption property of polyurethane foams doped with natural fiber
Collings et al. Effect of high temperature spikes on a carbon fibre-reinforced epoxy laminate
RU2563498C2 (en) Novel composite materials and methods for production thereof
KR102121517B1 (en) Method for manufacturing heat insulating material having foam structure using resol type phenol resin
Zaldivar et al. Effect of cure temperature on the thermal degradation, mechanical, microstructural and moisture absorption behavior of vacuum‐only, carbon‐fiber reinforced phenolic composites
Rashid et al. An experimental study of physical, mechanical, and thermal properties of Rattan fiber reinforced hybrid epoxy resin laminated composite
CA3031011A1 (en) Unfired heat and/or sound insulation product and insulation blanket obtained therefrom
Nasution et al. Effect of pressing temperature on the mechanical properties of waste styrofoam filled sawdust composite
Kushwaha et al. Study on the effect of nanoparticles on fire resistance and smoke suppression properties of bamboo strand lumber
WO2014096685A2 (en) Composition comprising a phenolic resin, composite material comprising such a composition and process for preparing a composite material
EP3821425B1 (en) Acoustic attenuation panel with improved performance in low and medium frequencies
FR2866905A1 (en) Primary preimpregnated fabrics with a reinforcement, useful for the preparation of composite structure of aircraft and in aeronautic industry, comprises a inferior face and a superior face impregnated by a thermo hardening matrix
Lee et al. Effect of Short Fibers Reinforcement in Syntactic Foam: A Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13734456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13734456

Country of ref document: EP

Kind code of ref document: A1