EP3268451A1 - Thermoplastic composition and prepreg, composite material made of said prepreg, and uses of said composite material - Google Patents

Thermoplastic composition and prepreg, composite material made of said prepreg, and uses of said composite material

Info

Publication number
EP3268451A1
EP3268451A1 EP16713546.6A EP16713546A EP3268451A1 EP 3268451 A1 EP3268451 A1 EP 3268451A1 EP 16713546 A EP16713546 A EP 16713546A EP 3268451 A1 EP3268451 A1 EP 3268451A1
Authority
EP
European Patent Office
Prior art keywords
fibers
prepreg
composite material
thermoplastic
pvdf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16713546.6A
Other languages
German (de)
French (fr)
Inventor
Gilles Hochstetter
Marc Audenaert
Sébastien TAILLEMITE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3268451A1 publication Critical patent/EP3268451A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to the field of thermoplastic composite materials. More particularly, the invention relates to a fluorinated flame retardant thermoplastic composition, to the prepreg prepared from this composition and to the composite material containing said prepreg and to processes for the manufacture and uses of said material. In addition, the invention relates to the use of a thermoplastic prepreg for the manufacture of fire-resistant composite materials.
  • Polyphenylene sulphide resins can also be used, but their very high price limits their use in the aeronautical sector.
  • the use of these resins is problematic because of their availability only in the form of reinforced plates with a fibrous reinforcement, which allows only the molding of parts of uncomplicated shape, the very high molding temperature necessary for softening resin, typically greater than 300 ° C, the low adhesion of paints, their low UV resistance, and their low toughness.
  • thermoplastic composite materials having high mechanical performances, in particular in terms of modulus, resistance to hot creep and stress at break, which evolve little to a temperature of at least 90 ° C.
  • These materials are intended for the manufacture of mechanical parts or structures such as the nose, the wing or the cabin of rockets or airplanes; off-shore flexible armor; automotive bodywork, engine chassis or automobile support parts; or the structural elements in the field of the building or the bridges and roadways.
  • thermoplastic composite materials It has now been found that by making a selection among several parameters characterizing the known thermoplastic composite materials, it is possible to provide compositions and novel composite materials having, in addition to good mechanical properties, remarkable fire resistance properties and good smoke and toxicity properties, recommending them especially for the manufacture of parts for semi-structural applications for the interior design of airplanes, trains, boats and buses, as well as for buildings receiving public.
  • the invention relates first of all to a flame-retardant composition
  • a flame-retardant composition comprising a thermoplastic fluoropolymer grafted with a polar carboxylic function and a fibrous reinforcement consisting of at least one continuous mineral or organic fiber.
  • this grafted fluoropolymer may be obtained by grafting at least one polar carboxylic monomer, for example carrying at least one carboxylic acid or anhydride function on a fluorinated polymer.
  • said continuous mineral or organic fiber is unidirectional and has a form factor greater than 1000.
  • the invention relates to a thermoplastic prepreg consisting of said flame retardant composition.
  • the mass content of said mineral or organic fibers in the prepreg is between 30 and 90%, preferably between 40 and 80%, advantageously between 45 and 65% and even more preferably between 50 and 60%. .
  • the invention relates to a composite material comprising said prepreg.
  • this composite material is of the monolithic type, namely that it consists only of the prepreg.
  • this composite material is of the sandwich type comprising a core material between two skins made of prepreg.
  • Another aspect of the invention relates to the various processes for manufacturing the composite material of the invention, namely continuous lamination in the case of two-dimensional parts, vacuum molding and thermo-compression in the case of parts. in three dimensions.
  • the invention also relates to the use of said composite materials for the manufacture of molded or rolled parts in the aeronautical field, naval, rail or road transport, or building, in particular said parts being mechanical parts or structure.
  • the invention relates to the use of a prepreg comprising a thermoplastic polymer and a fiber reinforcement consisting of at least one continuous unidirectional fiber for the manufacture of fire-resistant composite materials.
  • said thermoplastic polymer is a fluoropolymer, a polyamide, a polyolefin, in particular polypropylene, a polyester or a copolymer or a mixture of at least two of these polymers.
  • said thermoplastic polymer is a fluorinated polymer, in particular a vinylidene fluoride (VDF) -based polymer.
  • VDF vinylidene fluoride
  • said continuous fiber is chosen from glass, carbon and aramid fibers and natural fibers such as flax, hemp or sisal. DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • the invention provides a flame retardant composition
  • a flame retardant composition comprising a thermoplastic fluoropolymer grafted with a polar carboxylic function and a fibrous reinforcement consisting of at least one continuous mineral or organic fiber.
  • this grafted fluoropolymer is prepared according to a process comprising: (a) mixing, preferably in the molten state, a fluoropolymer with a polar monomer carrying an acid or carboxylic anhydride function, (b) ) the possible transformation of this mixture into granules, powder, film or plate, (c) the irradiation of this mixture, optionally in the absence of oxygen in a dose ranging from 1 to 15 Mrad of photonic or electronic irradiation, for grafting the polar monomer onto the fluoropolymer, and (d) optionally removing residual polar monomer unreacted with the fluoropolymer.
  • a preparation process of this type is described in particular in application EP 1 484 346.
  • said fluoropolymer is a "PVDF" resin, this term covering here as well a homopolymer of poly (vinylidene fluoride) or a copolymer of vinylidene fluoride (VDF) and at least one other selected comonomer among vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, 1,2-difluoroethylene, tetrafluoroethylene, hexafluoropropylene, perfluoro (methylvinyl) ether, perfluoro (ethylvinyl) ether and perfluoro (propylvinyl) ether, in which VDF represents at least 50% by weight.
  • VDF represents at least 50% by weight.
  • the polar carboxylic function grafted onto the fluoropolymer is carried by at least one polar monomer chosen from unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms, such as that acrylic, methacrylic, maleic, fumaric, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1, 2-dicarboxylic, 4-methyl-cyclohex-4-ene-1,2-dicarboxylic, bicyclo (2,2 , 1) hept-5-ene-2,3-dicarboxylic, and undecylenic, as well as their anhydrides.
  • unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms, such as that acrylic, methacrylic, maleic, fumaric, itaconic, citraconic, allylsuccinic, cyclohex
  • the mineral or organic fiber present in the composition is chosen from: carbon fibers; silica fibers such as glass fibers, especially of type E, R or S2; boron fibers; ceramic fibers, especially silicon carbide, boron carbide, boron carbonitride, silicon nitride, boron nitride; basalt fibers; fibers or filaments based on metals and their alloys; fibers based on metal oxides; natural fibers such as flax, hemp, sisal fibers; metallized carbon fibers and metallized glass fibers or mixtures of the fibers mentioned.
  • said mineral or organic fiber is chosen from glass and carbon fibers.
  • said continuous mineral or organic fiber is unidirectional and has a form factor (length to diameter ratio of the fiber) greater than 1000.
  • the fibers can be used as such, in the form of unidirectional son, or after a weaving step, in the form of a fabric consisting of a multidirectional network of fibers (2D, 3D or other).
  • composition according to the invention may also contain one or more additives, chosen from plasticizers, dyes, anti-static agents, flame retardants and lubricating agents.
  • thermoplastic prepreg consisting of said flame retardant composition.
  • This thermoplastic prepreg consists of one or more thermoplastic webs.
  • a thermoplastic web comprises a fibrous reinforcement which is a unidirectional web of continuous fibers without any overlap between the fibers and a thermoplastic polymer as the matrix impregnating mass said fibrous reinforcement.
  • This thermoplastic web is in roll form, with a width of between 5 and 1500 mm, preferably between 25 and 1000 mm and more advantageously between 100 and 800 mm.
  • This thermoplastic sheet has a thickness of between 0.1 mm and 0.7 mm, preferably between 0.15 and 0.5 mm and more advantageously between 0.2 and 0.4 mm.
  • thermoplastic prepreg is manufactured by lamination or thermocompression of said thermoplastic plies.
  • the continuous fibers of the different webs may either be oriented in the same direction (0 °), or be oriented perpendicularly (0 ° -90 °), or be oriented with particular angles, chosen for the mechanical characteristics qu they bring to the final piece, such as 0 ° -45 ° for example.
  • This prepreg enjoys high mechanical performance due to the absence of overlap of said fibers between the different plies.
  • This thermoplastic prepreg is in roll form, with a width of between 5 and 3000 mm, preferably between 20 and 1500 mm and more advantageously between 100 and 1300 mm, and a length greater than 100 meters, preferably greater than 500 meters, and more preferably greater than 1000 meters. These dimensions ensure optimum productivity conditions for the composite material manufacturer.
  • the mass content of said mineral or organic fibers is between 30 and 90%, preferably between 40 and 80%, advantageously between 45 and 65% and even more preferably between 50 and 60%. .
  • PVDF resin-based prepreg resides first and foremost in their good fire properties, and also, quite unexpectedly, in their good smoke and toxicity properties. Indeed, the emission rate of HF (hydrofluoric acid) during the combustion of a composite material comprising said prepreg is well below the maximum level allowed by FAR 25.853 and AITM 3.0005.
  • HF hydrofluoric acid
  • PVDF resin prepregs Another advantage of the PVDF resin prepregs is the possibility of molding sandwich materials with a PVDF foam or a PVDF honeycomb, by thermo-welding the PVDF resin prepreg with said foam or said honeycomb, thus ensuring perfect compatibility between the skins and the core material.
  • Said foam or said PVDF honeycomb is thermoplastic, which allows the thermoforming of the core material for parts having a complex shape.
  • PVDF resin prepregs Another advantage of PVDF resin prepregs is the low melting point (170 ° C) of the latter, which makes it possible to perform a low temperature molding, unlike polyphenylenesulphide resin, and with a very short time due to the absence of a chemical reaction during consolidation, unlike phenolic resins.
  • prepregs based on PVDF resin Another advantage of prepregs based on PVDF resin is the possibility of assembling inserts on the composite material made from said prepreg. impregnated, by welding injected parts in short fiber compounds based on PVDF resin, in place of the gluing, which is complex, or screwing, of these inserts.
  • PVDF resin prepregs used in combination or not with a PVDF core material
  • a recycling path involves grinding the waste or end-of-life parts and compounding this groyate with PVDF granules, in order to obtain a compound based on PVDF resin and short fiber. This compound is therefore a way of recycling the fiber and the PVDF matrix.
  • PVDF resin-based prepregs Another advantage of PVDF resin-based prepregs is the possibility of painting or gluing using acrylic paints or adhesives.
  • PVDF resin-based prepregs Another advantage of PVDF resin-based prepregs is their very high chemical resistance and their exceptional resistance to UV, and therefore the exceptional lifetime that it gives to the composite material.
  • PVDF resin-based prepregs Another advantage of PVDF resin-based prepregs is the possibility of molding a composite material by covering it with a decorative film to improve the final appearance of the part as well as its resistance. Films based on PVDF resin or Tedlar ® are particularly suitable for this application.
  • Another aspect of the invention therefore consists of a composite material comprising the prepreg described above.
  • Monolithic or sandwich composite materials can be made from these prepregs.
  • a monolithic composite material consists only of prepreg, while a sandwich composite material comprises a core material between two skins made of prepreg.
  • core material include foams and honeycombs, which lighten the room while maintaining a high level of rigidity.
  • Another aspect of the invention relates to the various processes for manufacturing the composite material of the invention, namely continuous lamination in the case of two-dimensional parts, vacuum molding and thermo-compression in the case of parts. in three dimensions.
  • Continuous lamination makes it possible to manufacture monolithic panels or sandwich panels continuously in a rolling mill exerting a low pressure, between 0.1 and 3 bars, preferably between 0.5 and 2 bars, and at a temperature of between 180.degree. 240 ° C, preferably between 190 and 220 ° C.
  • Vacuum molding allows the manufacture of single or complex shape parts, monolithic or sandwich.
  • the part is molded between a rigid mold and a flexible sheet, between which a vacuum is created (between 0.1 mbar and 900 mbar, preferably between 1 mbar and 200 mbar), and at a temperature between 180 ° C and 240 ° C preferably between 190 and 220 ° C.
  • the rigid mold may be of composite material or metal.
  • the flexible sheet may be a silicone sheet or a thermoplastic film (polyamide, polyimide, etc.).
  • Thermocompression allows the manufacture of simple or complex form parts, monolithic or sandwich.
  • the part is molded between a rigid mold and a rigid counter mold, between which a pressure is applied (between 0.1 bar and 50 bar, preferably between 1 bar and 15 bar), and at a temperature between 180 ° C. and 240 ° C, preferably between 190 and 220 ° C.
  • the mold is usually made of metal.
  • composite materials are used for the manufacture of molded or rolled parts in the aeronautical, naval, rail or road transport, or building, said parts being mechanical structural parts (requiring a module greater than 15 GPa) or semi-structural ( whose module is between 8 and 15 GPa).
  • the invention relates to the use of a prepreg comprising a thermoplastic polymer and a fiber reinforcement consisting of at least one continuous unidirectional fiber for the manufacture of fire-resistant composite materials.
  • thermoplastic polymer is chosen from fluorinated polymers, polyamides, polyolefms, especially polypropylene, polyesters or copolymers or mixtures between at least two of these polymers.
  • said thermoplastic polymer is a "PVDF" resin, this term covering here as well a homopolymer of poly (vinylidene fluoride) or a copolymer of vinylidene fluoride (VDF) and of at least one other selected comonomer among vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, 1,2-difluoroethylene, tetrafluoroethylene, hexafluoropropylene, perfluoro (methylvinyl) ether, perfluoro (ethylvinyl) ether and perfluoro (propylvinyl) ether, wherein VDF is at least 50% by weight.
  • PVDF polyvinylidene fluoride
  • VDF vinylidene fluoride
  • the PVDF is grafted with a polar carboxylic function carried by at least one polar monomer chosen from unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms.
  • polar monomer chosen from unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms.
  • unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms.
  • unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms.
  • unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms.
  • the PVDF is ungrafted.
  • the continuous fiber used in the composition of said prepreg is chosen from glass, carbon and aramid fibers and natural fibers such as flax, hemp or sisal.
  • the mass content of said fibers is between 30 and 90%>, preferably between 40 and 80%>, advantageously between 45 and 65%> and even more preferably between 50 and 60%, relative to the total weight of the prepreg.
  • hydrofluoric acid emissions during the combustion of said prepreg are less than 200 ppm, preferably less than 100 ppm and more preferably less than 50 ppm, according to the FAR 25.853 and AITM 3.0005 standards. This is particularly recommended for making parts for:
  • Prepregs were made from a homopolymer of PVDF grafted with about 0.6% maleic anhydride and a continuous fiber, by dusting and thermo-compression under 10 bar for 15 minutes.
  • the quantities of HF emitted during this operation were measured according to the AITM 3.0005 standard. The values obtained are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to the field of thermoplastic composite materials. Specifically, the invention relates to a fluorinated, flame-retardant thermoplastic composition, to the prepreg prepared from said composition, to the composite material containing said prepreg, to the methods enabling manufacture, and to the uses of said material. The invention also relates to the use of a thermoplastic prepreg for manufacturing fire-resistant composite materials.

Description

COMPOSITION ET PRE-IMPREGNE THERMOPLASTIQUES,  THERMOPLASTIC COMPOSITION AND PRE-IMPREGNE,
MATERIAU COMPOSITE A BASE DUDIT PRE-IMPREGNE ET UTILISATIONS DUDIT MATERIAU COMPOSITE DOMAINE DE L'INVENTION  COMPOSITE MATERIAL BASED ON THE PRE-IMPREGNATED AND USES OF SAID COMPOSITE MATERIAL FIELD OF THE INVENTION
La présente invention concerne le domaine des matériaux composites thermoplastiques. Plus particulièrement, l'invention a trait à une composition thermoplastique fluorée ignifugeante, au pré-imprégné préparé à partir de cette composition et au matériau composite contenant ledit pré-imprégné ainsi qu'aux procédés permettant la fabrication et aux utilisations dudit matériau. En outre, l'invention concerne l'utilisation d'un pré-imprégné thermoplastique pour la fabrication de matériaux composites résistant au feu.  The present invention relates to the field of thermoplastic composite materials. More particularly, the invention relates to a fluorinated flame retardant thermoplastic composition, to the prepreg prepared from this composition and to the composite material containing said prepreg and to processes for the manufacture and uses of said material. In addition, the invention relates to the use of a thermoplastic prepreg for the manufacture of fire-resistant composite materials.
ARRIERE-PLAN TECHNIQUE TECHNICAL BACKGROUND
Les pièces en matériau composite utilisées pour l'aménagement intérieur des avions, des trains, des bateaux et des bus, ainsi que pour les bâtiments recevant du public, doivent respecter, entre autres, des normes liées au comportement au feu du matériau. Ces normes prennent en compte, notamment la réaction au feu, l'émission de fumée, la toxicité des fumées et le dégagement de chaleur des matériaux lors d'un feu. Ces normes visent à assurer un niveau de sécurité optimal des usagers du moyen de transport ou du bâtiment, en leur permettant d'évacuer le lieu ou un feu se déclare, ce qui nécessite que les matériaux le constituant ne contribuent pas au développement du feu, ne génère pas de fumée ou que les produits de combustion ne soient pas toxiques. Parmi ces normes, on peut citer à titre d'exemples ΕΝ 45545 qui s'applique à l'industrie ferroviaire, la FAR 25.853 et les AITM correspondants pour l'industrie aéronautique, les IMO MSC 653 et 61 pour l'industrie marine et l'ASTM E84 pour le bâtiment.  Composite parts used for the interior design of airplanes, trains, boats and buses, as well as for buildings that are open to the public, must comply with, among other things, standards related to the fire behavior of the material. These standards take into account, in particular the reaction to fire, the emission of smoke, the toxicity of the fumes and the release of heat from the materials during a fire. These standards are intended to ensure an optimal level of safety for the users of the means of transport or the building, allowing them to evacuate the place where a fire is declared, which requires that the materials constituting it do not contribute to the development of the fire, does not generate smoke or that the products of combustion are not toxic. Examples of these standards include ΕΝ 45545 which applies to the railway industry, FAR 25.853 and the corresponding AITMs for the aviation industry, IMO MSC 653 and 61 for the marine industry and the ASTM E84 for the building.
Dans le cas des normes les plus contraignantes, notamment pour l'aménagement intérieur des avions, des bateaux ou des trains dans certains pays, seuls les matériaux composites à base de résines phénoliques peuvent être utilisés. Cependant, ces résines phénoliques présent de nombreux inconvénients, à savoir : la toxicité des composants permettant de mouler les pièces, en raison de la présence de phénol et de formaldéhyde dans la résine et de la présence d'acide très corrosif dans le durcisseur ; le faible niveau de performance mécanique des pièces, notamment les faibles contraintes de flexion et de cisaillement ; la faible tenue aux UV, l'absence de voies de recyclage pour les pièces en fin de vie ou pour les déchets de productions ; la difficulté d'assemblage de pièces rapportée sur le matériau composite à base de résine phénolique ; la faible adhésion des peintures ou colles nécessitant l'utilisation d'un primer d'accrochage, et la stabilité relativement courte des pré-imprégnés phénoliques, de quelques mois, avec la nécessité de stockage à température contrôlée. In the case of the most stringent standards, in particular for the interior design of aircraft, boats or trains in certain countries, only composite materials based on phenolic resins may be used. However, these phenolic resins have many disadvantages, namely: the toxicity of the components for molding the parts, due to the presence of phenol and formaldehyde in the resin and the presence of highly corrosive acid in the hardener; the low level of mechanical performance of the parts, in particular the low flexural and shear stresses; the low resistance to UV, the absence of recycling channels for parts in end of life or for production waste; the difficulty of assembling inserts on the phenolic resin composite material; the poor adhesion of paints or adhesives requiring the use of an attachment primer, and the relatively short stability of phenolic prepregs, of a few months, with the need for temperature-controlled storage.
Les résines polyphénylènesulphide peuvent également être utilisées, mais leur prix très élevé limite leur usage dans le secteur aéronautique. De plus, l'utilisation de ces résines pose problème en raison de leur disponibilité uniquement sous forme de plaques renforcées avec un renfort fibreux, qui ne permet que le moulage de pièces de forme peu complexe, de la température de moulage très élevée nécessaire au ramollissement de la résine, typiquement supérieure à 300°C, de la faible adhésion des peintures, de leur faible tenue aux UV, et de leur faible ténacité.  Polyphenylene sulphide resins can also be used, but their very high price limits their use in the aeronautical sector. In addition, the use of these resins is problematic because of their availability only in the form of reinforced plates with a fibrous reinforcement, which allows only the molding of parts of uncomplicated shape, the very high molding temperature necessary for softening resin, typically greater than 300 ° C, the low adhesion of paints, their low UV resistance, and their low toughness.
Il existe donc toujours un besoin de mettre au point de nouveaux matériaux composites qui remédient aux inconvénients précités.  There is therefore still a need to develop new composite materials that overcome the aforementioned drawbacks.
La demanderesse a déjà décrit, par exemple dans les documents EP 2 160 275 et EP 2 586 585, la préparation de divers matériaux composites thermoplastiques présentant des performances mécaniques élevées, en particulier en termes de module, de résistance au fluage à chaud et de contrainte à la rupture, qui évoluent peu jusqu'à une température d'au moins 90°C. Ces matériaux sont destinés à la fabrication de pièces mécaniques ou de structure comme le nez, l'aile ou la carlingue de fusées ou d'avions ; l'armure de flexible off-shore ; les éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; ou encore les éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées.  The applicant has already described, for example in documents EP 2 160 275 and EP 2 586 585, the preparation of various thermoplastic composite materials having high mechanical performances, in particular in terms of modulus, resistance to hot creep and stress at break, which evolve little to a temperature of at least 90 ° C. These materials are intended for the manufacture of mechanical parts or structures such as the nose, the wing or the cabin of rockets or airplanes; off-shore flexible armor; automotive bodywork, engine chassis or automobile support parts; or the structural elements in the field of the building or the bridges and roadways.
Il a maintenant été trouvé qu'en effectuant une sélection parmi plusieurs paramètres caractérisant les matériaux composites thermoplastiques connus, il est possible de fournir des compositions et des matériaux composites nouveaux présentant, en plus des bonnes propriétés mécaniques, des propriétés de résistance au feu remarquables et de bonnes propriétés fumée et toxicité, les recommandant notamment pour la fabrication de pièces pour applications semi- structurelles pour l'aménagement intérieur des avions, des trains, des bateaux et des bus, ainsi que pour les bâtiments recevant du public. RESUME DE L'INVENTION It has now been found that by making a selection among several parameters characterizing the known thermoplastic composite materials, it is possible to provide compositions and novel composite materials having, in addition to good mechanical properties, remarkable fire resistance properties and good smoke and toxicity properties, recommending them especially for the manufacture of parts for semi-structural applications for the interior design of airplanes, trains, boats and buses, as well as for buildings receiving public. SUMMARY OF THE INVENTION
L'invention concerne en premier lieu une composition ignifugeante comprenant un polymère fluoré thermoplastique greffé par une fonction polaire carboxylique et un renfort fibreux constitué d'au moins une fibre minérale ou organique continue.  The invention relates first of all to a flame-retardant composition comprising a thermoplastic fluoropolymer grafted with a polar carboxylic function and a fibrous reinforcement consisting of at least one continuous mineral or organic fiber.
Selon un mode de réalisation, ce polymère fluoré greffé peut être obtenu par greffage d'au moins un monomère polaire carboxylique, portant par exemple au moins une fonction acide ou anhydride carboxylique sur un polymère fluoré.  According to one embodiment, this grafted fluoropolymer may be obtained by grafting at least one polar carboxylic monomer, for example carrying at least one carboxylic acid or anhydride function on a fluorinated polymer.
Selon un mode de réalisation, ladite fibre minérale ou organique continue est unidirectionnelle et présente un facteur de forme supérieur à 1000.  According to one embodiment, said continuous mineral or organic fiber is unidirectional and has a form factor greater than 1000.
Selon un deuxième aspect, l'invention a pour objet un pré-imprégné thermoplastique consistant en ladite composition ignifugeante.  According to a second aspect, the invention relates to a thermoplastic prepreg consisting of said flame retardant composition.
Selon un mode de réalisation, la teneur massique desdites fibres minérales ou organiques dans le pré-imprégné est comprise entre 30 et 90%, de préférence entre 40 et 80%, avantageusement entre 45 et 65% et encore plus préférentiellement entre 50 et 60%.  According to one embodiment, the mass content of said mineral or organic fibers in the prepreg is between 30 and 90%, preferably between 40 and 80%, advantageously between 45 and 65% and even more preferably between 50 and 60%. .
Selon un autre aspect, l'invention concerne un matériau composite comprenant ledit pré-imprégné.  In another aspect, the invention relates to a composite material comprising said prepreg.
Selon un mode de réalisation, ce matériau composite est du type monolithique à savoir qu'il est constitué seulement du pré-imprégné.  According to one embodiment, this composite material is of the monolithic type, namely that it consists only of the prepreg.
Selon un autre mode de réalisation, ce matériau composite est du type sandwich comportant un matériau d'âme entre deux peaux constituées de pré-imprégné.  According to another embodiment, this composite material is of the sandwich type comprising a core material between two skins made of prepreg.
Un autre aspect de l'invention vise les différents procédés de fabrication du matériau composite de l'invention, à savoir la lamination en continu dans le cas de pièces en deux dimensions, le moulage sous vide et la thermo-compression dans le cas de pièces en trois dimensions.  Another aspect of the invention relates to the various processes for manufacturing the composite material of the invention, namely continuous lamination in the case of two-dimensional parts, vacuum molding and thermo-compression in the case of parts. in three dimensions.
L'invention a également pour objet l'utilisation desdits matériaux composites pour la fabrication de pièces moulées ou laminées dans le domaine aéronautique, naval, transport ferroviaire ou routier, ou du bâtiment, en particulier lesdites pièces étant des pièces mécaniques ou de structure.  The invention also relates to the use of said composite materials for the manufacture of molded or rolled parts in the aeronautical field, naval, rail or road transport, or building, in particular said parts being mechanical parts or structure.
Selon encore un autre aspect, l'invention concerne l'utilisation d'un préimprégné comprenant un polymère thermoplastique et un renfort fibreux constitué d'au moins une fibre continue unidirectionnelle pour la fabrication de matériaux composites résistant au feu. Selon un mode de réalisation, ledit polymère thermoplastique est un polymère fluoré, un polyamide, une polyoléfme, notamment le polypropylène, un polyester ou un copolymère ou un mélange entre au moins deux de ces polymères. Selon un mode de réalisation, ledit polymère thermoplastique est un polymère fluoré, notamment un polymère à base de fluorure de vinylidène (VDF). According to yet another aspect, the invention relates to the use of a prepreg comprising a thermoplastic polymer and a fiber reinforcement consisting of at least one continuous unidirectional fiber for the manufacture of fire-resistant composite materials. According to one embodiment, said thermoplastic polymer is a fluoropolymer, a polyamide, a polyolefin, in particular polypropylene, a polyester or a copolymer or a mixture of at least two of these polymers. According to one embodiment, said thermoplastic polymer is a fluorinated polymer, in particular a vinylidene fluoride (VDF) -based polymer.
Selon un mode de réalisation, ladite fibre continue est choisie parmi les fibres de verre, de carbone, d'aramide et les fibres naturelles telles que le lin, le chanvre ou le sisal. DESCRIPTION DE MODES DE REALISATION DE L'INVENTION  According to one embodiment, said continuous fiber is chosen from glass, carbon and aramid fibers and natural fibers such as flax, hemp or sisal. DESCRIPTION OF EMBODIMENTS OF THE INVENTION
L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.  The invention is now described in more detail and without limitation in the description which follows.
L'invention fournit une composition ignifugeante comprenant un polymère fluoré thermoplastique greffé par une fonction polaire carboxylique et un renfort fibreux constitué d'au moins une fibre minérale ou organique continue.  The invention provides a flame retardant composition comprising a thermoplastic fluoropolymer grafted with a polar carboxylic function and a fibrous reinforcement consisting of at least one continuous mineral or organic fiber.
Selon un mode de réalisation, ce polymère fluoré greffé est préparé selon un procédé comprenant : (a) le mélange, de préférence à l'état fondu, d'un polymère fluoré avec un monomère polaire portant une fonction acide ou anhydride carboxylique, (b) la transformation éventuelle de ce mélange en granulés, poudre, film ou plaque, (c) l'irradiation de ce mélange, éventuellement en l'absence d'oxygène sous une dose allant de 1 à 15 Mrad d'irradiation photonique ou électronique, pour réaliser le greffage du monomère polaire sur le polymère fluoré, et (d) éventuellement l'élimination du monomère polaire résiduel n'ayant pas réagi avec le polymère fluoré. Un procédé de préparation de ce type est notamment décrit dans la demande EP 1 484 346.  According to one embodiment, this grafted fluoropolymer is prepared according to a process comprising: (a) mixing, preferably in the molten state, a fluoropolymer with a polar monomer carrying an acid or carboxylic anhydride function, (b) ) the possible transformation of this mixture into granules, powder, film or plate, (c) the irradiation of this mixture, optionally in the absence of oxygen in a dose ranging from 1 to 15 Mrad of photonic or electronic irradiation, for grafting the polar monomer onto the fluoropolymer, and (d) optionally removing residual polar monomer unreacted with the fluoropolymer. A preparation process of this type is described in particular in application EP 1 484 346.
Selon un mode de réalisation, ledit polymère fluoré est une résine « PVDF », ce terme couvrant ici aussi bien un homopolymère de poly(fluorure de vinylidène) ou un copolymère de fluorure de vinylidène (VDF) et d'au moins un autre comonomère choisi parmi le fluorure de vinyle, le trifiuoroéthylène, le chlorotrifiuoroéthylène, le 1,2- difluoroéthylène, tétrafiuoroéthylène, l'hexafiuoropropylène, le perfiuoro(méthylvinyl)éther, le perfiuoro(éthylvinyl)éther et le perfiuoro(propylvinyl)éther, dans lequel le VDF représente au moins 50% en poids.  According to one embodiment, said fluoropolymer is a "PVDF" resin, this term covering here as well a homopolymer of poly (vinylidene fluoride) or a copolymer of vinylidene fluoride (VDF) and at least one other selected comonomer among vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, 1,2-difluoroethylene, tetrafluoroethylene, hexafluoropropylene, perfluoro (methylvinyl) ether, perfluoro (ethylvinyl) ether and perfluoro (propylvinyl) ether, in which VDF represents at least 50% by weight.
La fonction polaire carboxylique greffée sur le polymère fluoré est portée par au moins un monomère polaire choisi parmi les mono- et diacides carboxyliques insaturés ayant de 2 à 20 atomes de carbone, et en particulier de 4 à 10 atomes de carbone, tels que les acides acrylique, méthacrylique, maléique, fumarique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène- 1 ,2-dicarboxylique, 4-méthyl-cyclohex-4-ène- 1 ,2- dicarboxylique, bicyclo (2,2,l)hept-5-ène-2,3-dicarboxylique, et undécylénique, ainsi que leurs anhydrides. The polar carboxylic function grafted onto the fluoropolymer is carried by at least one polar monomer chosen from unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms, such as that acrylic, methacrylic, maleic, fumaric, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1, 2-dicarboxylic, 4-methyl-cyclohex-4-ene-1,2-dicarboxylic, bicyclo (2,2 , 1) hept-5-ene-2,3-dicarboxylic, and undecylenic, as well as their anhydrides.
La fibre minérale ou organique présente dans la composition est choisie parmi les : fibres de carbone ; fibres de silice comme les fibres de verre, notamment de type E, R ou S2 ; fibres de bore ; fibres céramiques, notamment de carbure de silicium, de carbure de bore, de carbonitrure de bore, de nitrure de silicium, de nitrure de bore ; fibres de basalte ; fibres ou filaments à base de métaux et leurs alliages ; fibres à base d'oxydes métalliques ; fibres naturelles telles que fibres de lin, de chanvre, de sisal ; fibres de carbone métallisées et fibres de verre métallisées ou les mélanges des fibres citées.  The mineral or organic fiber present in the composition is chosen from: carbon fibers; silica fibers such as glass fibers, especially of type E, R or S2; boron fibers; ceramic fibers, especially silicon carbide, boron carbide, boron carbonitride, silicon nitride, boron nitride; basalt fibers; fibers or filaments based on metals and their alloys; fibers based on metal oxides; natural fibers such as flax, hemp, sisal fibers; metallized carbon fibers and metallized glass fibers or mixtures of the fibers mentioned.
Selon un mode de réalisation, ladite fibre minérale ou organique est choisie parmi les fibres de verre et de carbone.  According to one embodiment, said mineral or organic fiber is chosen from glass and carbon fibers.
Selon un mode de réalisation, ladite fibre minérale ou organique continue est unidirectionnelle et présente un facteur de forme (ratio de longueur sur diamètre de la fibre) supérieur à 1000. Les fibres peuvent être utilisées telles quelles, sous forme de fils unidirectionnels, ou après une étape de tissage, sous forme de tissu constitué d'un réseau multidirectionnel de fibres (2D, 3D ou autre).  According to one embodiment, said continuous mineral or organic fiber is unidirectional and has a form factor (length to diameter ratio of the fiber) greater than 1000. The fibers can be used as such, in the form of unidirectional son, or after a weaving step, in the form of a fabric consisting of a multidirectional network of fibers (2D, 3D or other).
La composition selon l'invention peut également contenir un ou plusieurs additifs, choisis parmi les plastifiants, les colorants, les agents anti-statiques, les agents ignifugeants et les agents lubrifiants.  The composition according to the invention may also contain one or more additives, chosen from plasticizers, dyes, anti-static agents, flame retardants and lubricating agents.
Selon un deuxième aspect, l'invention a pour objet un pré-imprégné thermoplastique consistant en ladite composition ignifugeante. Ce pré-imprégné thermoplastique est constitué d'une ou plusieurs nappes thermoplastiques. Une nappe thermoplastique comprend un renfort fibreux qui est une bande unidirectionnelle de fibres continues sans aucun chevauchement entre les fibres et un polymère thermoplastique comme matrice imprégnant en masse ledit renfort fibreux. Cette nappe thermoplastique se présente sous forme de rouleau, avec une largeur comprise entre 5 et 1500 mm, préférentiellement entre 25 et 1000 mm et plus avantageusement entre 100 et 800 mm. Cette nappe thermoplastique à une épaisseur comprise entre 0,1 mm et 0,7 mm, préférentiellement entre 0,15 et 0,5 mm et plus avantageusement entre 0,2 et 0,4 mm. Ce pré-imprégné thermoplastique est fabriqué par lamination ou thermocompression des dites nappes thermoplastiques. Lors que le pré-imprégné thermoplastique comprend plusieurs nappes thermoplastiques, les fibres continues des différentes nappes peuvent soit être toutes orientées dans la même direction (0°), soit être orientées perpendiculairement (0°-90°), soit être orientées avec des angles particuliers, choisis pour les caractéristiques mécaniques qu'ils apportent à la pièce finale, tel que 0°-45° par exemple. Ce pré-imprégné bénéficie de performances mécaniques élevées grâce à l'absence de chevauchement desdites fibres entre les différentes nappes. Ce préimprégné thermoplastique se présente sous forme de rouleau, avec une largeur comprise entre 5 et 3000 mm, préférentiellement entre 20 et 1500 mm et plus avantageusement entre 100 et 1300 mm, et une longueur supérieure à 100 mètres, préférentiellement supérieure à 500 mètres, et plus avantageusement supérieure à 1000 mètres. Ces dimensions assurent des conditions optimales en termes de productivité pour le fabricant de matériau composite. According to a second aspect, the invention relates to a thermoplastic prepreg consisting of said flame retardant composition. This thermoplastic prepreg consists of one or more thermoplastic webs. A thermoplastic web comprises a fibrous reinforcement which is a unidirectional web of continuous fibers without any overlap between the fibers and a thermoplastic polymer as the matrix impregnating mass said fibrous reinforcement. This thermoplastic web is in roll form, with a width of between 5 and 1500 mm, preferably between 25 and 1000 mm and more advantageously between 100 and 800 mm. This thermoplastic sheet has a thickness of between 0.1 mm and 0.7 mm, preferably between 0.15 and 0.5 mm and more advantageously between 0.2 and 0.4 mm. This thermoplastic prepreg is manufactured by lamination or thermocompression of said thermoplastic plies. When the thermoplastic prepreg comprises several thermoplastic webs, the continuous fibers of the different webs may either be oriented in the same direction (0 °), or be oriented perpendicularly (0 ° -90 °), or be oriented with particular angles, chosen for the mechanical characteristics qu they bring to the final piece, such as 0 ° -45 ° for example. This prepreg enjoys high mechanical performance due to the absence of overlap of said fibers between the different plies. This thermoplastic prepreg is in roll form, with a width of between 5 and 3000 mm, preferably between 20 and 1500 mm and more advantageously between 100 and 1300 mm, and a length greater than 100 meters, preferably greater than 500 meters, and more preferably greater than 1000 meters. These dimensions ensure optimum productivity conditions for the composite material manufacturer.
Dans le pré-imprégné selon l'invention, la teneur massique desdites fibres minérales ou organiques est comprise entre 30 et 90%, de préférence entre 40 et 80%>, avantageusement entre 45 et 65% et encore plus préférentiellement entre 50 et 60%.  In the prepreg according to the invention, the mass content of said mineral or organic fibers is between 30 and 90%, preferably between 40 and 80%, advantageously between 45 and 65% and even more preferably between 50 and 60%. .
L'intérêt des pré-imprégnés à base de résine PVDF réside tout d'abord dans leurs bonnes propriétés feu, et également, de façon toute à fait inattendue, dans leurs bonnes propriétés fumée et toxicité. En effet, le taux d'émission d'HF (acide fluorhydrique) lors de la combustion d'un matériau composite comprenant ledit pré-imprégné est très en deçà du niveau maximal autorisé selon les normes FAR 25.853 et AITM 3.0005.  The interest of PVDF resin-based prepreg resides first and foremost in their good fire properties, and also, quite unexpectedly, in their good smoke and toxicity properties. Indeed, the emission rate of HF (hydrofluoric acid) during the combustion of a composite material comprising said prepreg is well below the maximum level allowed by FAR 25.853 and AITM 3.0005.
Un autre intérêt des pré-imprégnés à base de résine PVDF est la possibilité de mouler des matériaux sandwich avec une mousse en PVDF ou un nid d'abeille en PVDF, par thermo-soudage du pré-imprégné à base de résine PVDF avec ladite mousse ou ledit nid d'abeille, assurant ainsi une parfaite compatibilité entre les peaux et le matériau d'âme. Ladite mousse ou ledit nid d'abeille en PVDF ont un caractère thermoplastique, ce qui permet le thermoformage du matériau d'âme pour les pièces ayant une forme complexe.  Another advantage of the PVDF resin prepregs is the possibility of molding sandwich materials with a PVDF foam or a PVDF honeycomb, by thermo-welding the PVDF resin prepreg with said foam or said honeycomb, thus ensuring perfect compatibility between the skins and the core material. Said foam or said PVDF honeycomb is thermoplastic, which allows the thermoforming of the core material for parts having a complex shape.
Un autre intérêt des pré-imprégnés à base de résine PVDF est le faible point de fusion (170°C) de cette dernière, ce qui permet d'effectuer un moulage à basse température, contrairement aux résine polyphénylènesulphide, et avec un temps très court, du a l'absence de réaction chimique lors de la consolidation, contrairement aux résines phénoliques.  Another advantage of PVDF resin prepregs is the low melting point (170 ° C) of the latter, which makes it possible to perform a low temperature molding, unlike polyphenylenesulphide resin, and with a very short time due to the absence of a chemical reaction during consolidation, unlike phenolic resins.
Un autre intérêt des pré-imprégnés à base de résine PVDF est la possibilité d'assembler des pièces rapportées sur le matériau composite réalisé à partir dudit pré- imprégné, par soudure de pièces injectées en compounds fibre courte à base de résine PVDF, en lieu et place du collage, qui est complexe, ou du vissage, de ces pièces rapportées. Another advantage of prepregs based on PVDF resin is the possibility of assembling inserts on the composite material made from said prepreg. impregnated, by welding injected parts in short fiber compounds based on PVDF resin, in place of the gluing, which is complex, or screwing, of these inserts.
Un autre intérêt des pré-imprégnés à base de résine PVDF, utilisés en combinaison ou non d'un matériau d'âme en PVDF, est la possibilité de recyclage, en raison de la nature thermoplastique de la résine. Il est notamment possible de recycler les déchets de production des matériaux composites réalisés avec ledit pré-imprégné, ainsi que les pièces en fin de vie. Une voie de recyclage consiste à broyer ces déchets ou pièces en fin de vie et de compounder ce broyât avec des granulés de PVDF, afin d'obtenir un compound à base de résine PVDF et de fibre courte. Ce compound constitue donc une voie de recyclage de la fibre et de la matrice PVDF.  Another advantage of the PVDF resin prepregs, used in combination or not with a PVDF core material, is the possibility of recycling, because of the thermoplastic nature of the resin. It is in particular possible to recycle the production waste composite materials made with said prepreg, as well as parts at the end of life. A recycling path involves grinding the waste or end-of-life parts and compounding this groyate with PVDF granules, in order to obtain a compound based on PVDF resin and short fiber. This compound is therefore a way of recycling the fiber and the PVDF matrix.
Un autre intérêt des pré-imprégnés à base de résine PVDF est leur stabilité très longue, de plusieurs années, voire de plusieurs dizaines d'années, et ceci sans stockage à température contrôlée.  Another advantage of prepregs based on PVDF resin is their very long stability, of several years, even of several decades, and this without temperature-controlled storage.
Un autre intérêt des pré-imprégnés à base de résine PVDF est la possibilité de mise en peinture ou de collage en utilisant des peinture ou des colles acryliques.  Another advantage of PVDF resin-based prepregs is the possibility of painting or gluing using acrylic paints or adhesives.
Un autre intérêt des pré-imprégnés à base de résine PVDF est leur résistance chimique très élevée et leur résistance exceptionnelle aux UV, et donc la durée de vie exceptionnelle qu'il confère au matériau composite.  Another advantage of PVDF resin-based prepregs is their very high chemical resistance and their exceptional resistance to UV, and therefore the exceptional lifetime that it gives to the composite material.
Un autre intérêt des pré-imprégnés à base de résine PVDF est la possibilité de mouler un matériau composite en le couvrant d'un film décoratif pour améliorer l'aspect final de la pièce ainsi que sa résistance. Des films à base de résine PVDF ou de Tedlar® sont particulièrement adaptés à cette application. Another advantage of PVDF resin-based prepregs is the possibility of molding a composite material by covering it with a decorative film to improve the final appearance of the part as well as its resistance. Films based on PVDF resin or Tedlar ® are particularly suitable for this application.
Un autre aspect de l'invention est donc constitué par un matériau composite comprenant le pré-imprégné décrit plus haut. Des matériaux composites monolithiques ou sandwich peuvent être fabriqués à partir de ces pré-imprégnés. Un matériau composite monolithique n'est constitué que de pré-imprégné, alors qu'un matériau composite sandwich comporte un matériau d'âme entre deux peaux constituées de préimprégné. Comme matériau d'âme on peut citer les mousses et les nids d'abeilles, qui permettent d'alléger la pièce tout en gardant un niveau de rigidité élevé.  Another aspect of the invention therefore consists of a composite material comprising the prepreg described above. Monolithic or sandwich composite materials can be made from these prepregs. A monolithic composite material consists only of prepreg, while a sandwich composite material comprises a core material between two skins made of prepreg. As core material include foams and honeycombs, which lighten the room while maintaining a high level of rigidity.
Un autre aspect de l'invention vise les différents procédés de fabrication du matériau composite de l'invention, à savoir la lamination en continu dans le cas de pièces en deux dimensions, le moulage sous vide et la thermo-compression dans le cas de pièces en trois dimensions. La lamination en continu permet la fabrication de panneaux monolithiques ou sandwich en continu dans un laminoir exerçant une faible pression, entre 0,1 et 3 bars, de préférence entre 0,5 et 2 bars, et à une température comprise entre 180°C et 240°C, de préférence entre 190 et 220°C. Another aspect of the invention relates to the various processes for manufacturing the composite material of the invention, namely continuous lamination in the case of two-dimensional parts, vacuum molding and thermo-compression in the case of parts. in three dimensions. Continuous lamination makes it possible to manufacture monolithic panels or sandwich panels continuously in a rolling mill exerting a low pressure, between 0.1 and 3 bars, preferably between 0.5 and 2 bars, and at a temperature of between 180.degree. 240 ° C, preferably between 190 and 220 ° C.
Le moulage sous vide permet la fabrication de pièces à forme simple ou complexe, monolithiques ou sandwich. La pièce est moulé entre un moule rigide et une bâche souple, entre lesquels un vide est crée (entre 0,1 mbar et 900 mbar, de préférence entre 1 mbar et 200 mbar), et à une température comprise entre 180°C et 240°C de préférence entre 190 et 220°C. Le moule rigide peut être en matériau composite ou en métal. La bâche souple peut être une bâche silicone ou un film thermoplastique (polyamide, polyimide, etc .).  Vacuum molding allows the manufacture of single or complex shape parts, monolithic or sandwich. The part is molded between a rigid mold and a flexible sheet, between which a vacuum is created (between 0.1 mbar and 900 mbar, preferably between 1 mbar and 200 mbar), and at a temperature between 180 ° C and 240 ° C preferably between 190 and 220 ° C. The rigid mold may be of composite material or metal. The flexible sheet may be a silicone sheet or a thermoplastic film (polyamide, polyimide, etc.).
La thermocompression permet la fabrication de pièces à forme simple ou complexe, monolithiques ou sandwich. La pièce est moulé entre un moule rigide et un contre moule rigide, entre lesquels une pression est appliquée (entre 0,1 bar et 50 bar, de préférence entre 1 bar et 15 bar), et à une température comprise entre 180°C et 240°C de préférence entre 190 et 220°C. Le moule est généralement en métal.  Thermocompression allows the manufacture of simple or complex form parts, monolithic or sandwich. The part is molded between a rigid mold and a rigid counter mold, between which a pressure is applied (between 0.1 bar and 50 bar, preferably between 1 bar and 15 bar), and at a temperature between 180 ° C. and 240 ° C, preferably between 190 and 220 ° C. The mold is usually made of metal.
Ces matériaux composites sont utilisés pour la fabrication de pièces moulées ou laminées dans le domaine aéronautique, naval, transport ferroviaire ou routier, ou du bâtiment, lesdites pièces étant des pièces mécaniques structurelles (nécessitant un module supérieur à 15 GPa) ou semi-structurelles (dont le module est compris entre 8 et 15 GPa).  These composite materials are used for the manufacture of molded or rolled parts in the aeronautical, naval, rail or road transport, or building, said parts being mechanical structural parts (requiring a module greater than 15 GPa) or semi-structural ( whose module is between 8 and 15 GPa).
Selon un autre aspect, l'invention concerne l'utilisation d'un pré-imprégné comprenant un polymère thermoplastique et un renfort fibreux constitué d'au moins une fibre continue unidirectionnelle pour la fabrication de matériaux composites résistant au feu.  According to another aspect, the invention relates to the use of a prepreg comprising a thermoplastic polymer and a fiber reinforcement consisting of at least one continuous unidirectional fiber for the manufacture of fire-resistant composite materials.
Ledit polymère thermoplastique est choisi parmi les polymères fluorés, les polyamides, les polyoléfmes, notamment le polypropylène, les polyesters ou les copolymères ou les mélanges entre au moins deux de ces polymères.  Said thermoplastic polymer is chosen from fluorinated polymers, polyamides, polyolefms, especially polypropylene, polyesters or copolymers or mixtures between at least two of these polymers.
Selon un mode de réalisation, ledit polymère thermoplastique est une résine « PVDF », ce terme couvrant ici aussi bien un homopolymère de poly(fluorure de vinylidène) ou un copolymère de fluorure de vinylidène (VDF) et d'au moins un autre comonomère choisi parmi le fluorure de vinyle, le trif uoroéthylène, le chlorotrifluoroéthylène, le 1 ,2-dif uoroéthylène, tétrafluoroéthylène, l'hexafluoropropylène, le perfluoro(méthylvinyl)éther, le perfluoro(éthylvinyl)éther et le perfluoro(propylvinyl)éther, dans lequel le VDF représente au moins 50% en poids. According to one embodiment, said thermoplastic polymer is a "PVDF" resin, this term covering here as well a homopolymer of poly (vinylidene fluoride) or a copolymer of vinylidene fluoride (VDF) and of at least one other selected comonomer among vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene, 1,2-difluoroethylene, tetrafluoroethylene, hexafluoropropylene, perfluoro (methylvinyl) ether, perfluoro (ethylvinyl) ether and perfluoro (propylvinyl) ether, wherein VDF is at least 50% by weight.
Selon un mode de réalisation, le PVDF est greffé par une fonction polaire carboxylique portée par au moins un monomère polaire choisi parmi les mono- et diacides carboxyliques insaturés ayant de 2 à 20 atomes de carbone, et en particulier de 4 à 10 atomes de carbone, tels que les acides acrylique, méthacrylique, maléique, fumarique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène-l,2-dicarboxylique, 4-méthyl-cyclohex-4-ène- 1 ,2-dicarboxylique, bicyclo (2,2, l)hept-5-ène-2,3- dicarboxylique, et undécylénique, ainsi que leurs anhydrides.  According to one embodiment, the PVDF is grafted with a polar carboxylic function carried by at least one polar monomer chosen from unsaturated mono- and di-carboxylic acids having from 2 to 20 carbon atoms, and in particular from 4 to 10 carbon atoms. such as acrylic, methacrylic, maleic, fumaric, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1,2-dicarboxylic, 4-methyl-cyclohex-4-ene-1,2-dicarboxylic, bicyclo (2 , 2, 1) hept-5-ene-2,3-dicarboxylic, and undecylenic, as well as their anhydrides.
Selon un autre mode de réalisation, le PVDF est non greffé.  According to another embodiment, the PVDF is ungrafted.
La fibre continue entrant dans la composition dudit pré-imprégné est choisie parmi les fibres de verre, de carbone, d'aramide et les fibres naturelles telles que le lin, le chanvre ou le sisal. La teneur massique desdites fibres est comprise entre 30 et 90%>, de préférence entre 40 et 80%>, avantageusement entre 45 et 65%> et encore plus préférentiellement entre 50 et 60%, par rapport au poids total du pré-imprégné.  The continuous fiber used in the composition of said prepreg is chosen from glass, carbon and aramid fibers and natural fibers such as flax, hemp or sisal. The mass content of said fibers is between 30 and 90%>, preferably between 40 and 80%>, advantageously between 45 and 65%> and even more preferably between 50 and 60%, relative to the total weight of the prepreg.
Il a été constaté que les émissions d'acide fluorhydrique lors de la combustion dudit pré-imprégné sont inférieures à 200 ppm, préférentiellement inférieures à 100 ppm et plus préférentiellement inférieures à 50 ppm, selon les normes FAR 25.853 et AITM 3.0005. Ceci le recommande tout particulièrement pour la fabrication de pièces pour :  It has been found that the hydrofluoric acid emissions during the combustion of said prepreg are less than 200 ppm, preferably less than 100 ppm and more preferably less than 50 ppm, according to the FAR 25.853 and AITM 3.0005 standards. This is particularly recommended for making parts for:
- aménagement intérieur avion, train, bateau, bus : sièges, cloisons, parements intérieurs, planchers, meubles de cabine de pilotage, meubles de la zone passager, chariots, équipements dans les zones techniques, protections balistique, y-compris extérieur, salle de bain, toilettes ;  - Interior fittings for aircraft, train, boat, bus: seats, bulkheads, siding, floors, cockpit furniture, passenger area furniture, trolleys, equipment in technical areas, ballistic protections, including exterior, room bath, toilet;
- pièces pour le bâtiment : équipements de ventilation, protections balistiques, parements et équipements intérieurs ou extérieurs, éléments participant à la structure du bâtiment.  - building parts: ventilation equipment, ballistic protection, facings and interior or exterior equipment, elements involved in the building structure.
EXEMPLES EXAMPLES
Les exemples suivants illustrent l'invention sans la limiter.  The following examples illustrate the invention without limiting it.
Des pré-imprégnés ont été réalisés à partir d'un homopolymère de PVDF greffé avec environ 0,6%> d'anhydride maleïque et d'une fibre continue, par poudrage puis thermo-compression sous 10 bars pendant 15 minutes. Les quantités d'HF émis lors de cette opération ont été mesurées suivant la norme AITM 3.0005. Les valeurs obtenues sont présentées dans le Tableau 1. Type de Température de Taux de Epaisseur du Emissions d'HF fibre thermocompression fibre pré-imprégné Prepregs were made from a homopolymer of PVDF grafted with about 0.6% maleic anhydride and a continuous fiber, by dusting and thermo-compression under 10 bar for 15 minutes. The quantities of HF emitted during this operation were measured according to the AITM 3.0005 standard. The values obtained are shown in Table 1. Temperature Type Thickness of Emissions of HF fiber thermocompression fiber prepreg
continue keep on going
Lin 230 °C 45% 1,8 mm < 30 ppm Linen 230 ° C 45% 1.8 mm <30 ppm
Carbone 200 °C 50% 1,2 mm < 20 ppm Carbon 200 ° C 50% 1.2 mm <20 ppm
Tableau 1 Table 1

Claims

REVENDICATIONS
1. Composition ignifugeante comprenant un polymère fluoré thermoplastique greffé par une fonction polaire carboxylique et un renfort fibreux constitué d'au moins une fibre minérale ou organique continue. 1. A flame retardant composition comprising a thermoplastic fluoropolymer grafted with a polar carboxylic function and a fibrous reinforcement consisting of at least one continuous mineral or organic fiber.
2. Composition selon la revendication 1 dans laquelle ledit polymère fluoré est un poly(fluorure de vinylidène) (PVDF) ou un copolymère de fluorure de vinylidène et d'au moins un autre comonomère choisi parmi le fluorure de vinyle, le trifluoroéthylène, le chlorotrifluoroéthylène, le 1 ,2-difluoroéthylène, tétrafluoroéthylène, l'hexafluoropropylène, le perfluoro(méthylvinyl)éther, le perfluoro(éthylvinyl)éther et le perfluoro(propylvinyl)éther, dans lequel le fluorure de vinylidène représente au moins 50% en poids.  2. Composition according to claim 1 wherein said fluoropolymer is a polyvinylidene fluoride (PVDF) or a copolymer of vinylidene fluoride and at least one other comonomer selected from vinyl fluoride, trifluoroethylene, chlorotrifluoroethylene 1,2-difluoroethylene, tetrafluoroethylene, hexafluoropropylene, perfluoro (methylvinyl) ether, perfluoro (ethylvinyl) ether and perfluoro (propylvinyl) ether, wherein the vinylidene fluoride is at least 50% by weight.
3. Composition selon l'une quelconque des revendications 1 à 2 dans laquelle ladite fibre minérale ou organique est choisie parmi les : fibres de carbone ; fibres de silice comme les fibres de verre, notamment de type E, R ou S2 ; fibres de bore ; fibres céramiques, notamment de carbure de silicium, de carbure de bore, de carbonitrure de bore, de nitrure de silicium, de nitrure de bore ; fibres de basalte ; fibres ou filaments à base de métaux et leurs alliages ; fibres à base d'oxydes métalliques ; fibres naturelles telles que les fibres de lin, chanvre, sisal ; fibres de carbone métallisées et fibres de verre métallisées ou les mélanges des fibres citées.  3. Composition according to any one of claims 1 to 2 wherein said mineral or organic fiber is selected from: carbon fibers; silica fibers such as glass fibers, especially of type E, R or S2; boron fibers; ceramic fibers, especially silicon carbide, boron carbide, boron carbonitride, silicon nitride, boron nitride; basalt fibers; fibers or filaments based on metals and their alloys; fibers based on metal oxides; natural fibers such as flax fiber, hemp, sisal; metallized carbon fibers and metallized glass fibers or mixtures of the fibers mentioned.
4. Composition selon l'une quelconque des revendications 1 à 3 dans laquelle ladite fibre minérale ou organique continue est unidirectionnelle et présente un facteur de forme supérieur à 1000.  4. Composition according to any one of claims 1 to 3 wherein said continuous mineral or organic fiber is unidirectional and has a form factor greater than 1000.
5. Composition selon l'une quelconque des revendications 1 à 4 comprenant un ou plusieurs additifs choisis parmi les plastifiants, les colorants, les agents antistatiques, les agents ignifugeants et les agents lubrifiants.  5. Composition according to any one of claims 1 to 4 comprising one or more additives chosen from plasticizers, dyes, antistatic agents, flame retardants and lubricating agents.
6. Composition selon l'une quelconque des revendications 1 à 5 dans laquelle ladite fonction polaire carboxylique est portée par au moins un monomère polaire choisi parmi les mono- et diacides carboxyliques insaturés ayant de 2 à 20 atomes de carbone, et en particulier de 4 à 10 atomes de carbone, tels que les acides acrylique, méthacrylique, maléique, fumarique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène- 1 ,2-dicarboxylique, 4-méthyl-cyclohex-4-ène- 1 ,2-dicarboxylique, bicyclo (2,2,l)hept-5-ène-2,3-dicarboxylique, et undécylénique, ainsi que leurs anhydrides. 6. Composition according to any one of claims 1 to 5 wherein said polar carboxylic function is carried by at least one polar monomer selected from unsaturated mono- and di-carboxylic acids having 2 to 20 carbon atoms, and in particular 4 with 10 carbon atoms, such as acrylic, methacrylic, maleic, fumaric, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1,2-dicarboxylic, 4-methyl-cyclohex-4-ene 1,2-dicarboxylic, bicyclo (2,2,1) hept-5-ene-2,3-dicarboxylic and undecylenic, as well as their anhydrides.
7. Pré-imprégné thermoplastique consistant en la composition ignifugeante selon l'une des revendications 1 à 6.  7. Thermoplastic prepreg consisting of the flame retardant composition according to one of claims 1 to 6.
8. Pré-imprégné selon la revendication 7 dans lequel la teneur massique desdites fibres minérales ou organiques est comprise entre 30 et 90%, de préférence entre 40 et 80%, avantageusement entre 45 et 65% et encore plus préférentiellement entre 50 et 60%.  8. Prepreg according to claim 7 wherein the mass content of said mineral or organic fibers is between 30 and 90%, preferably between 40 and 80%, advantageously between 45 and 65% and even more preferably between 50 and 60%. .
9. Matériau composite comprenant le pré-imprégné selon l'une des revendications 7 ou 8.  9. Composite material comprising the prepreg according to one of claims 7 or 8.
10. Matériau composite selon la revendication 9 sous forme de panneau monolithique constitué dudit pré-imprégné.  10. Composite material according to claim 9 in the form of a monolithic panel consisting of said prepreg.
11. Matériau composite selon la revendication 9 comprenant un matériau d'âme pris en sandwich entre au moins deux desdits pré-imprégnés servant de peaux.  The composite material of claim 9 comprising a core material sandwiched between at least two of said skin prepregs.
12. Matériau composite selon la revendication 11, dans lequel ledit matériau d'âme est un matériau en mousse, notamment une mousse de PVDF, ou un matériau en nid d'abeille, notamment en PVDF.  12. Composite material according to claim 11, wherein said core material is a foam material, in particular a PVDF foam, or a honeycomb material, in particular PVDF.
13. Procédé de fabrication d'un matériau composite selon l'une des revendications 9 à 12 par la technique de lamination en continu, sous une pression de 0,1 à 3 bars, de préférence de 0,5 à 2 bars et à une température allant de 180 à 240°C, de préférence de 190 à 220°C.  13. A method of manufacturing a composite material according to one of claims 9 to 12 by the continuous lamination technique, at a pressure of 0.1 to 3 bar, preferably from 0.5 to 2 bar and a temperature ranging from 180 to 240 ° C, preferably from 190 to 220 ° C.
14. Procédé de fabrication d'un matériau composite selon l'une des revendications 9 à 12 par la technique du moulage sous vide utilisant un moule rigide en composite ou en métal, et une bâche souple avec une pression réduite allant de 0,1 à 900 mbar, de préférence de 1 à 200 mbar et à une température allant de 180 à 240°C , de préférence de 190 à 220°C.  14. A method of manufacturing a composite material according to one of claims 9 to 12 by the vacuum molding technique using a rigid mold composite or metal, and a flexible tarpaulin with a reduced pressure ranging from 0.1 to 900 mbar, preferably from 1 to 200 mbar and at a temperature ranging from 180 to 240 ° C, preferably from 190 to 220 ° C.
15. Procédé de fabrication d'un matériau composite selon l'une des revendications 9 à 12 par la technique de moulage par thermocompression dans un moule en métal, avec une pression allant de 0,1 à 50 bar, de préférence de 1 à 15 bar et à une température de 180 à 240°C, de préférence de 190 à 220°C.  15. A method of manufacturing a composite material according to one of claims 9 to 12 by the technique of thermocompression molding in a metal mold, with a pressure ranging from 0.1 to 50 bar, preferably from 1 to 15 bar and at a temperature of 180 to 240 ° C, preferably 190 to 220 ° C.
16. Utilisation des matériaux composites selon l'une des revendications 9 à 12 pour la fabrication de pièces moulées ou laminées dans le domaine aéronautique, naval, transport ferroviaire ou routier, ou du bâtiment, en particulier lesdites pièces étant des pièces mécaniques structurelles ou semi-structurelles.  16. Use of composite materials according to one of claims 9 to 12 for the manufacture of molded or rolled parts in the aeronautical field, naval, rail or road transport, or building, particularly said parts being structural mechanical parts or semi -structurelles.
EP16713546.6A 2015-03-10 2016-03-10 Thermoplastic composition and prepreg, composite material made of said prepreg, and uses of said composite material Withdrawn EP3268451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1551977A FR3033573B1 (en) 2015-03-10 2015-03-10 THERMOPLASTIC COMPOSITION AND PRE-IMPREGNE, COMPOSITE MATERIAL BASED ON SAID PRE-IMPREGN AND USES OF SAID COMPOSITE MATERIAL
PCT/FR2016/050545 WO2016142630A1 (en) 2015-03-10 2016-03-10 Thermoplastic composition and prepreg, composite material made of said prepreg, and uses of said composite material

Publications (1)

Publication Number Publication Date
EP3268451A1 true EP3268451A1 (en) 2018-01-17

Family

ID=53674044

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16713546.6A Withdrawn EP3268451A1 (en) 2015-03-10 2016-03-10 Thermoplastic composition and prepreg, composite material made of said prepreg, and uses of said composite material

Country Status (8)

Country Link
US (1) US11225607B2 (en)
EP (1) EP3268451A1 (en)
JP (1) JP6762954B2 (en)
CN (1) CN107429165A (en)
BR (1) BR112017018593B1 (en)
FR (2) FR3033573B1 (en)
RU (1) RU2706651C2 (en)
WO (1) WO2016142630A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3652248A4 (en) * 2017-07-14 2021-04-14 Arkema Inc. High strength polyvinylidene fluoride based sized reinforcing fibers
CN108129752A (en) * 2018-01-23 2018-06-08 苏州聚康新材料科技有限公司 The preparation method of suspension polymerisation nanometer silicon dioxide composite material
US10875623B2 (en) 2018-07-03 2020-12-29 Goodrich Corporation High temperature thermoplastic pre-impregnated structure for aircraft heated floor panel
US10899427B2 (en) 2018-07-03 2021-01-26 Goodrich Corporation Heated floor panel with impact layer
US11376811B2 (en) 2018-07-03 2022-07-05 Goodrich Corporation Impact and knife cut resistant pre-impregnated woven fabric for aircraft heated floor panels
US11273897B2 (en) 2018-07-03 2022-03-15 Goodrich Corporation Asymmetric surface layer for floor panels
US10920994B2 (en) 2018-07-03 2021-02-16 Goodrich Corporation Heated floor panels
EP3626764B1 (en) * 2018-09-21 2021-02-24 Evonik Operations GmbH Composite with thermoplastic matrix
CN109401143A (en) * 2018-10-30 2019-03-01 陈东南 Pressure-storage fire extinguisher bottle and preparation method thereof and pressure-storage fire extinguisher
DE102019219594A1 (en) * 2019-12-13 2021-06-17 Elringklinger Ag Sheet material, sandwich material, electrochemical storage unit and method for producing a sheet material
WO2021173042A1 (en) * 2020-02-24 2021-09-02 Ирина Анатольевна ЗАДОРОЖНАЯ Fragment-proof shielding canvas
RU2756749C2 (en) * 2020-02-24 2021-10-05 Ирина Анатольевна Задорожная Method for manufacturing anti-fragmentation shielding canvas
BR102022015861A2 (en) * 2022-08-10 2024-02-15 Tecplas Industria E Comercio Ltda PRE-IMPREGNATED, MULTI-LAYER AND MULTIDIRECTIONAL CONTINUOUS FIBER BLANTS WITH CONTROLLABLE ANGLE BETWEEN FIBERS AND ITS MANUFACTURING PROCESS

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2941785C2 (en) * 1979-10-16 1991-07-04 Technochemie Gmbh, Verfahrenstechnik, 6901 Dossenheim Laminates and processes for their manufacture
JPS62193824A (en) * 1986-02-20 1987-08-26 セントラル硝子株式会社 Glass fiber-reinforced fluororesin composite material havingflexibility
RU2029037C1 (en) * 1992-07-01 1995-02-20 Московский авиационный технологический институт им.К.Э.Циолковского Laminated panel
AUPP750598A0 (en) * 1998-12-04 1999-01-07 Cromiac International Pte Ltd Thermoplastic rubber composition
US6207085B1 (en) * 1999-03-31 2001-03-27 The Rectorseal Corporation Heat expandable compositions
JP4272153B2 (en) * 2002-07-29 2009-06-03 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Flameproof polycarbonate molding composition
FR2851566B1 (en) * 2003-02-26 2007-05-11 Hexcel Fabrics FIBROUS REINFORCEMENT AS A FLAME RETARDANT, METHOD OF MANUFACTURE AND USE THEREOF
FR2856404B1 (en) 2003-06-06 2008-08-08 Atofina METHOD OF GRAFTING FLUORINATED POLYMER AND MULTILAYER STRUCTURES COMPRISING THE GRAFT POLYMER
US20050143508A1 (en) * 2003-12-30 2005-06-30 General Electric Company Resin compositions with fluoropolymer filler combinations
US8349747B2 (en) * 2005-08-02 2013-01-08 W. L. Gore & Associates, Inc. High seam strength architectural fabric
RU2443564C2 (en) * 2007-02-21 2012-02-27 Асахи Гласс Компани, Лимитед Laminated sheet
FR2918082B1 (en) * 2007-06-27 2011-07-01 Arkema France PROCESS FOR IMPREGNATING FIBERS CONTINUOUS BY A COMPOSITE POLYMERIC MATRIX COMPRISING A FLUORINATED GRAFT POLYMER
GB2478749A (en) * 2010-03-17 2011-09-21 Hexcel Composites Ltd Composite materials of reduced electrical resistance
WO2011163365A2 (en) * 2010-06-22 2011-12-29 Ticona Llc Thermoplastic prepreg containing continuous and long fibers
FR2981653B1 (en) 2011-10-25 2014-08-22 Arkema France THERMOPLASTIC COMPOSITE MATERIAL REINFORCED WITH SYNTHETIC FIBERS AND METHOD OF MANUFACTURE
RU2516526C2 (en) * 2012-05-24 2014-05-20 Владимир Владимирович Кудинов Method of obtaining preparation for composite materials
FR3020776B1 (en) * 2014-05-12 2016-05-27 Dehondt Tech CONTINUOUS DEVICE FOR IMPREGNATING ONLY ONE STEP NATURAL FIBERS OR RIBBONS, IN PARTICULAR LIN

Also Published As

Publication number Publication date
US20180057748A1 (en) 2018-03-01
BR112017018593B1 (en) 2022-07-26
FR3033573B1 (en) 2018-03-23
BR112017018593A2 (en) 2018-04-17
CN107429165A (en) 2017-12-01
JP2018507946A (en) 2018-03-22
RU2017134340A3 (en) 2019-06-06
RU2706651C2 (en) 2019-11-19
RU2017134340A (en) 2019-04-03
US11225607B2 (en) 2022-01-18
FR3033573A1 (en) 2016-09-16
JP6762954B2 (en) 2020-09-30
FR3033574B1 (en) 2019-04-05
FR3033574A1 (en) 2016-09-16
WO2016142630A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
EP3268451A1 (en) Thermoplastic composition and prepreg, composite material made of said prepreg, and uses of said composite material
EP2160275B1 (en) Method for impregnating continuous fibres with a composite polymer matrix containing a grafted fluorinated polymer
EP2864399B1 (en) Process for making a fibrous material pre impregnated with thermoplastic polymer
CA2760080C (en) Fibrous substrate, manufacturing process and uses of such a fibrous substrate
FR2918081A1 (en) METHOD FOR IMPREGNATING FIBERS CONTINUOUS BY A COMPOSITE POLYMERIC MATRIX COMPRISING A THERMOPLASTIC POLYMER
TWI703246B (en) Reinforcing fiber bundle and carbon fiber reinforced thermoplastic resin molded article using same, and production method of reinforcing fiber bundle
EP1537989B1 (en) Use of a tube comprising a fluoropolymer grafted by irradiation for the fuel transport in a gas station
FR2579133A1 (en) FIBER-REINFORCED THERMOPLASTIC POLYMER COMPOSITE MATERIAL, METHOD FOR MANUFACTURING THE SAME
FR2981653A1 (en) THERMOPLASTIC COMPOSITE MATERIAL REINFORCED WITH SYNTHETIC FIBERS AND METHOD OF MANUFACTURE
FR2949791A1 (en) PROCESS FOR PRODUCING PRE-IMPREGNATED FIBROUS MATERIAL OF THERMOPLASTIC POLYMER
EP1393884B1 (en) Composite products and molded articles obtained therefrom
WO2017017388A1 (en) Method for preparing a fiber material, pre-impregnated by a thermoplastic polymer, using a liquid crystal polymer
EP2964452B1 (en) Method for producing a multilayer composite material, multilayer composite material obtained by the method and mechanical parts or structures produced with said material
WO2018234441A1 (en) Fibrous material impregnated with reactive thermoplastic prepolymer
EP3237182B1 (en) Method for the continuous production of a composite material profile section from thermoplastic polymer having high fluidity
CA3163639A1 (en) Multilayer structure for transporting or storing hydrogen
EP2935382B1 (en) Composition comprising a phenolic resin, composite material comprising such a composition and process for preparing a composite material
WO2019180371A2 (en) Web of impregnated fibrous material, production method thereof and use of same for the production of three-dimensional composite parts
EP1178094A1 (en) Primer composition for preparing composites by adhering them without heating
FR3105069A1 (en) POLYMERIC COMPOSITE COMPOSITION CONSISTING OF TWO ZONES CONTAINING DIFFERENT REINFORCEMENTS, ITS MANUFACTURING PROCESS, ITS USE AND ARTICLE CONTAINING IT
WO2020148507A1 (en) Semi-finished products comprising a thermoplastic resin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180906

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191214