WO2014008869A1 - 一种接入设备和系统、及数据发送方法 - Google Patents

一种接入设备和系统、及数据发送方法 Download PDF

Info

Publication number
WO2014008869A1
WO2014008869A1 PCT/CN2013/079263 CN2013079263W WO2014008869A1 WO 2014008869 A1 WO2014008869 A1 WO 2014008869A1 CN 2013079263 W CN2013079263 W CN 2013079263W WO 2014008869 A1 WO2014008869 A1 WO 2014008869A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
data packet
time synchronization
access device
base station
Prior art date
Application number
PCT/CN2013/079263
Other languages
English (en)
French (fr)
Inventor
冯烈训
王道威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13816492.6A priority Critical patent/EP2866405A4/en
Priority to KR1020157002398A priority patent/KR101621350B1/ko
Priority to JP2015520811A priority patent/JP6014923B2/ja
Publication of WO2014008869A1 publication Critical patent/WO2014008869A1/zh
Priority to US14/593,627 priority patent/US20150124801A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/28Timers or timing mechanisms used in protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0673Clock or time synchronisation among packet nodes using intermediate nodes, e.g. modification of a received timestamp before further transmission to the next packet node, e.g. including internal delay time or residence time into the packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an access device and system, and a data transmitting method.
  • each small base station When a small base station is networked, each small base station usually needs to connect to an access point transmission device, a synchronization device, and a power supply device through different cables. Due to the special application scenario of the small base station, the cable laying of the small base station is difficult, the engineering quantity is large, and the laying cost is high.
  • the present invention provides an access device and system, and a data transmission method, in order to solve the problem of cable laying, large amount of engineering, and high cost of laying a small base station in the prior art.
  • the technical solution is as follows:
  • an embodiment of the present invention provides an access device, where the device includes:
  • An IP clock server configured to acquire a time synchronization signal, and generate a time synchronization data packet based on the time synchronization signal
  • a first interface configured to connect to an access point transmission device, to receive a service data packet transmitted by the access point transmission device
  • a second interface configured to be connected to the small base station
  • a transmission module configured to receive a service data packet and the IP clock service from the first interface
  • the time synchronization data packet generated by the device is sent to the small base station through the second interface.
  • the first interface is an Ethernet interface or a Gigabit passive optical network interface.
  • the second interface is an RJ45 interface.
  • the device further includes a third interface, configured to connect to the access device of the lower level, to send the service data packet received from the first interface and the time synchronization data packet generated by the IP clock server to The access device of the lower level.
  • a third interface configured to connect to the access device of the lower level, to send the service data packet received from the first interface and the time synchronization data packet generated by the IP clock server to The access device of the lower level.
  • the device further includes:
  • a power supply module is configured to supply power to the small base station by using the transmission module.
  • the device further includes:
  • a satellite signal receiver for receiving the time synchronization signal.
  • the satellite signal receiver is integrated with the IP clock server.
  • the embodiment of the present invention further provides an access device, where the device includes: a first interface, configured to connect with an access device of a higher level, to receive a service data packet transmitted by the access device of the upper level And time synchronization packets;
  • An IP clock server configured to generate a new time synchronization data packet according to the received time synchronization data packet of the access device of the upper level
  • a second interface configured to be connected to the small base station
  • a transmission module configured to send a time synchronization data packet received from the first interface to the IP clock server, and send a service data packet received from the first interface and a new time generated by the IP clock server
  • the synchronization data packet is sent to the small base station through the second interface.
  • the device further includes:
  • the power supply module is configured to supply power to the small base station by using the second interface.
  • the device further includes a third interface, configured to connect with the access device of the subordinate, to receive the service data packet received from the first interface, and the new time synchronization data packet generated by the IP clock server. Send to the access device of the lower level.
  • the embodiment of the present invention further provides an access system, where the system includes: an access point transmission device, at least one small base station, and the foregoing access device, where the small base station passes the access device and the The access point transmission device connection.
  • the embodiment of the present invention further provides a data sending method, where the method includes: Observing, by the IP clock server in the access device, a time synchronization signal, and generating a time synchronization data packet based on the time synchronization signal, where the time synchronization data packet is generated by an IP clock server, where the IP clock server is located in the access device in;
  • the access device receives a service data packet transmitted by the access point transmission device, where the access device includes a first interface, the first interface is connected to the access point transmission device, and the service data packet is passed through The first interface receives;
  • the access device sends the service data packet received from the first interface and the time synchronization data packet generated by the IP clock server to the small base station through the second interface.
  • the method further includes:
  • the access device sends the service data packet received from the first interface and the time synchronization data packet generated by the IP clock server to the access device of the lower level through the third interface.
  • the method further includes:
  • the Ethernet power supply module in the access device supplies power to the small base station through the second interface.
  • the embodiment of the present invention further provides a data sending method, where the method includes: the access device receives, by using the first interface, a service data packet and a time synchronization data packet that are transmitted by the access device of the upper level;
  • the IP clock server in the access device generates a new time synchronization data packet according to the received time synchronization data packet of the access device of the upper level, where the IP clock server is located in the access device;
  • the isochronous data packet is sent to the small base station through the second interface.
  • the method further includes:
  • the access device sends the service data packet received from the first interface and the new time synchronization data packet generated by the IP clock server to the access device of the lower level through the third interface.
  • the method further includes:
  • the Ethernet power supply module in the access device supplies power to the small base station through the second interface.
  • the beneficial effects of the technical solution provided by the embodiment of the present invention are as follows:
  • the embodiment of the present invention generates a time synchronization data packet by using an IP clock server, and transmits a service data packet and an IP clock service transmitted by the access point transmission device.
  • the time synchronization data packet generated by the server is sent to the small base station through the same interface, so that the synchronization function and the transmission function can be simultaneously implemented, thereby effectively reducing the number and difficulty of wiring the small base station.
  • the IP clock server is integrated in the access device, and the access device is connected between the access point transmission device and the small base station, there is no need to reconfigure the existing access point transmission device, which is easy to implement and implement. low cost.
  • FIG. 1 is a structural block diagram of an access device according to Embodiment 1 of the present invention.
  • FIG. 2 is a structural block diagram of an access device according to Embodiment 1 of the present invention.
  • FIG. 3 is a structural block diagram of an access device according to Embodiment 3 of the present invention.
  • FIG. 4 is a structural block diagram of an access device according to Embodiment 4 of the present invention.
  • FIG. 5 is a structural block diagram of an access system according to Embodiment 5 of the present invention.
  • FIG. 6 is a structural block diagram of an access system according to Embodiment 6 of the present invention.
  • Embodiment 7 is a flowchart of a data transmission method according to Embodiment 7 of the present invention.
  • FIG. 8 is a flowchart of a data transmitting method according to Embodiment 8 of the present invention.
  • Example 1 DETAILED DESCRIPTION OF THE EMBODIMENTS
  • An embodiment of the present invention provides an access device. As shown in FIG. 1, the device includes an IP clock server 11, a transmission module 12, a first interface 13, and a second interface 14.
  • the IP clock server 11 is configured to acquire a time synchronization signal, and generate a time synchronization data packet based on the time synchronization signal.
  • the first interface 13 is configured to connect with the access point transmission device to receive the service transmitted by the access point transmission device. a data packet; a second interface 14 for connecting to the small base station;
  • the block 12 is configured to transmit the service data packet received from the first interface 13 and the time synchronization data packet generated by the IP clock server 11 to the small base station through the second interface 14.
  • the transmission module 12 is electrically connected to the first interface 13, the second interface 14, and the IP clock server 11, respectively.
  • the small base station includes, but is not limited to, a Micro (Micro Base Station), a Pico (Pico Base Station), and a Femto (Femto Base Station), and the system includes but is not limited to GSM (Global System of Mobile communication) , Global System for Mobile Communications, UMTS (Universal Mobile Telecommunications System), LTE (Long Term Evolution), CDMA (Code Division Multiple Access), WIMAX ( Worldwide Interoperability for Microwave Access) , Global Wave Interconnect).
  • GSM Global System of Mobile communication
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • CDMA Code Division Multiple Access
  • WIMAX Worldwide Interoperability for Microwave Access
  • Global Wave Interconnect Global Wave Interconnect
  • the time synchronization signal may be a satellite system positioning signal.
  • the satellite positioning system may be a GPS (Global Positioning System) system, a Beidou satellite positioning system, or other satellite positioning system.
  • the IP clock server 11 provides a time synchronization function according to the 1588V2 time synchronization protocol.
  • the IP clock server 11 operates in the server mode.
  • the structure and principle of the IP clock server 11 are well known to those skilled in the art and will not be described in detail herein.
  • the first interface 13 includes, but is not limited to, an Ethernet interface, a Gigabit-capable passive optical network (GPON) interface, and the interface may be an electrical interface or an optical interface.
  • GPON Gigabit-capable passive optical network
  • the second interface 14 is an RJ45 interface.
  • the RJ45 refers to a modular jack or plug that uses an 8-position (8-pin) defined by an international connector standard.
  • the RJ45 interface is usually used for data transmission. The most common application is the network card interface.
  • the transmission module 12 sends the service data packet from the access point transmission device received from the first interface 13 to the small base station through the second interface 14; meanwhile, the time synchronization data packet provided by the IP clock server 11 is passed through the The second interface 14 is sent to the small base station, thereby implementing the synchronization function and the transmission function at the same time.
  • the device may be referred to as a Smart Unit.
  • the time synchronization data packet is generated by the IP clock server, and the service data packet transmitted by the access point transmission device and the time synchronization data packet generated by the IP clock server are sent to the small base station through the same interface, so that the synchronization function can be simultaneously implemented. And transmission functions to effectively reduce small base station wiring Quantity and difficulty. Moreover, since the IP clock server is integrated in the access device, and the access device is connected between the access point transmission device and the small base station, there is no need to reconfigure the existing access point transmission device, which is easy to implement and implement. low cost.
  • Example 2 Example 2
  • An embodiment of the present invention provides an access device. As shown in FIG. 2, the device is different from the device of Embodiment 1 in that: the satellite signal receiver 25 is configured to receive a time synchronization signal.
  • the IP clock server 11 acquires a time synchronization signal through the satellite signal receiver 25.
  • satellite signal receiver 25 can be integrated with the IP clock server 11 to further reduce the size of the device and reduce the difficulty of installation.
  • the time synchronization data packet is generated by the IP clock server, and the service data packet transmitted by the access point transmission device and the time synchronization data packet generated by the IP clock server are sent to the small base station through the same interface, so that the synchronization function can be simultaneously implemented. And transmission function, effectively reducing the number and difficulty of small base station wiring.
  • the IP clock server is integrated in the access device, and the access device is connected between the access point transmission device and the small base station, there is no need to reconfigure the existing access point transmission device, which is easy to implement and implement. low cost.
  • obtaining a time synchronization signal through a satellite signal receiver is high in accuracy and low in cost.
  • An embodiment of the present invention provides an access device. As shown in FIG. 3, the device is different from the device of Embodiment 2 in that it further includes:
  • the power supply module 36 is configured to supply power to the small base station through the transmission module 12.
  • the power over Ethernet module 36 is electrically coupled to the transmission module 12.
  • four terminals in the RJ45 interface are data transmission terminals, and the other four terminals are idle; Power over Ethernet can be transmitted through four idle terminals (or portions of four idle terminals) in the RJ45 interface.
  • the power supply enables simultaneous data transmission and power supply functions via the RJ45 interface.
  • the device further includes a third interface 37, where the third interface 37 is configured to connect with the access device of the lower level, and the service data packet received from the first interface 13 and the time synchronization data packet generated by the IP clock server 11 Send to the access device of the subordinate.
  • the third interface can be connected to another access device, thereby increasing the number of the second interfaces and connecting more small base stations.
  • the third interface 37 may be an optical interface or an electrical interface, including but not limited to an Ethernet interface, a GP0N interface, an RJ45 interface, and the like.
  • the time synchronization data packet is generated by the IP clock server, and the service data packet transmitted by the access point transmission device and the time synchronization data packet generated by the IP clock server are sent to the small base station through the same interface, so that the synchronization function can be simultaneously implemented. And transmission function, effectively reducing the number and difficulty of small base station wiring.
  • the IP clock server is integrated in the access device, and the access device is connected between the access point transmission device and the small base station, there is no need to reconfigure the existing access point transmission device, which is easy to implement and implement. low cost.
  • the power supply module of the present embodiment uses the power supply of the Ethernet power supply module, the data transmission function, the time synchronization function, and the power supply function can be simultaneously implemented through the cable connected to the second interface, thereby achieving three-in-one integration, thereby further saving installation costs.
  • Example 4
  • the device includes an IP clock server 41, a transmission module 42, a first interface 43, and a second interface 44.
  • the first interface 43 is configured to be connected to the access device of the upper level to receive the service data packet and the time synchronization data packet transmitted by the access device of the upper level; and the IP clock server 41 is configured to use the access device of the upper level according to the received
  • the time synchronization data packet generates a new time synchronization data packet;
  • the second interface 44 is configured to be connected to the small base station;
  • the transmission module 42 is configured to send the time synchronization data packet received from the first interface 43 to the IP clock server 41, and
  • the service data packet received by the first interface 43 and the new time synchronization data packet generated by the IP clock server 41 are transmitted to the small base station through the second interface 44.
  • the transmission module 42 is electrically connected to the first interface 43, the second interface 44, and the IP clock server 41, respectively.
  • the service data packet and the time synchronization data packet are transmitted by the access device of the upper level to the access device of the lower level.
  • the device in this embodiment is the access device of the lower level of the access device connected to the first interface.
  • the IP clock server 41 of the access device of the lower-level device uses the BC (Boundary Clock) mode to synchronize the time with the access device (that is, the access device connected to the first interface) through a slave port.
  • the primary port synchronizes with the small base station.
  • the transmission module 42 of the lower stage receives the time synchronization data packet from the access device of the upper level through the slave port in the second interface 44, and sends the time synchronization data packet to the IP clock server 41, and is processed by the IP clock server 41. Then, it is sent to the small base station through the primary port in the second interface 44. At the same time, the transmission module 42 also sends the service data packet received from the first transmission interface 41 to the small base station through the second interface. In a specific implementation, the transmission module 42 can distinguish the data packet headers to distinguish The business data packet is also a time synchronization data packet.
  • the device further includes a power over Ethernet module 45 for powering the small base station through the second interface 44.
  • the device further includes a third interface 46, configured to connect with the access device of the lower level, to synchronize the service data packet received from the first interface 43 with the new time generated by the IP clock server 41.
  • the data packet is sent to the access device of the lower level.
  • the time synchronization data packet is generated by the IP clock server, and the service data packet transmitted by the access point transmission device and the time synchronization data packet generated by the IP clock server are sent to the small base station through the same interface, so that the synchronization function can be simultaneously implemented. And transmission function, effectively reducing the number and difficulty of small base station wiring.
  • the IP clock server is integrated in the access device, and the access device is connected between the access point transmission device and the small base station, there is no need to reconfigure the existing access point transmission device, which is easy to implement and implement. low cost.
  • the power supply module of the present embodiment uses the power supply of the Ethernet power supply module, the data transmission function, the time synchronization function, and the power supply function can be simultaneously implemented through the cable connected to the second interface, thereby achieving three-in-one integration, thereby further saving installation costs. Furthermore, with the access device of this embodiment, the number of second interfaces used to connect to the small base station can be increased to access more small base stations. Example 5
  • An embodiment of the present invention provides an access system. As shown in FIG. 5, the system includes: an access point transmission device 51, a small base station 52, and an access device 53.
  • the small base station 52 accesses through the access device 53.
  • the point transmission device 52 is connected, and the access device 53 can be the access device provided in Embodiment 1 or 1.
  • the small base station 52 is connected to the second interface of the corresponding access device 53 via a cable 52a, and the access device 53 simultaneously provides data transmission and time synchronization functions for the small base station 52 via the cable 52a.
  • the small base station 52 is connected to an external power supply device via a cable 52b.
  • the time synchronization data packet is generated by the IP clock server, and the service data packet transmitted by the access point transmission device and the time synchronization data packet generated by the IP clock server are sent to the small base station through the same interface, so that the synchronization function can be simultaneously implemented. And transmission function, effectively reducing the number and difficulty of small base station wiring.
  • the IP clock server is integrated in the access device, and the access device is connected between the access point transmission device and the small base station, there is no need to reconfigure the existing access point transmission device, which is easy to implement and implement. low cost.
  • An embodiment of the present invention provides an access system.
  • the system includes: an access point transmission device 61, a plurality of access devices 63a, 63b, and a plurality of small base stations 62.
  • the access device 63 may be The device provided in Embodiment 3, the access device 63b may be the device provided in Embodiment 4, and the small base station 62 is connected to the access point transmission device 61 through the corresponding access devices 63a, 63b, respectively.
  • the access device 63b is a lower-level access device; for the access device 63b, the access device 63a is The access device of the superior.
  • the third interface of the access device 63a of the upper level is connected to the first interface of the access device 63b of the lower level.
  • the small base station 62 is connected to the second interface of the corresponding access device 63a, 63b via a cable 62a, and the access devices 63a, 63b simultaneously provide data transmission, time synchronization and small base station 62 via the cable 62a. Power supply function.
  • the time synchronization data packet is generated by the IP clock server, and the service data packet transmitted by the access point transmission device and the time synchronization data packet generated by the IP clock server are sent to the small base station through the same interface, so that the synchronization function can be simultaneously implemented. And transmission function, effectively reducing the number and difficulty of small base station wiring.
  • the IP clock server is integrated in the access device, and the access device is connected between the access point transmission device and the small base station, there is no need to reconfigure the existing access point transmission device, which is easy to implement and implement. low cost.
  • the power supply module of the present embodiment uses the power supply of the Ethernet power supply module, the data transmission function, the time synchronization function, and the power supply function can be simultaneously implemented through the cable connected to the second interface, thereby achieving three-in-one integration, thereby further saving installation costs. Furthermore, with the access device of this embodiment, the number of second interfaces used to connect to the small base station can be increased to access more small base stations.
  • the embodiment of the present invention provides a data sending method. As shown in FIG. 7, the method includes: Step 701: An IP clock server in an access device acquires a time synchronization signal, and generates a time synchronization data packet based on the time synchronization signal;
  • Step 702 The access device receives the service data packet transmitted by the access point transmission device, where the access device includes a first interface, where the first interface is connected to the access point transmission device, and the service data packet is received by the first interface.
  • Step 703 The access device sends the service data packet received from the first interface and the time synchronization data packet generated by the IP clock server to the small base station through the second interface.
  • the method may further include:
  • the access device sends the service data packet received from the first interface and the time synchronization data packet generated by the IP clock server to the access device of the lower level through the third interface. This step can be performed simultaneously with step 703.
  • the method may further include:
  • the power-supply module in the access device supplies power to the small base station through the second interface. This step is carried out throughout the entire flow of the embodiment, i.e., simultaneously with steps 701-703.
  • the time synchronization data packet is generated by the IP clock server, and the service data packet transmitted by the access point transmission device and the time synchronization data packet generated by the IP clock server are sent to the small base station through the same interface, so that the synchronization function can be simultaneously implemented. And transmission function, effectively reducing the number and difficulty of small base station wiring.
  • the IP clock server is integrated in the access device, and the access device is connected between the access point transmission device and the small base station, there is no need to reconfigure the existing access point transmission device, which is easy to implement and implement. low cost.
  • the power supply module of the present embodiment uses the power supply of the Ethernet power supply module, the data transmission function, the time synchronization function, and the power supply function can be simultaneously implemented through the cable connected to the second interface, thereby achieving three-in-one integration, thereby further saving installation costs.
  • the embodiment of the present invention provides a data sending method. As shown in FIG. 8, the method includes: Step 801: The access device receives, by using the first interface, a service data packet and a time synchronization data packet transmitted by the access device of the upper level;
  • Step 802 The IP clock server of the access device generates a new time synchronization data packet according to the received time synchronization data packet of the access device of the upper level.
  • Step 803 The access device sends the time synchronization data packet received from the first interface to the IP clock server, and passes the service data packet received from the first interface and the new time synchronization data packet generated by the IP clock server to the second interface. Send to the small base station.
  • the method may further include:
  • the access device sends the service data packet received from the first interface and the new time synchronization data packet generated by the IP clock server to the access device of the lower level through the third interface.
  • This step can be performed simultaneously with step 803. More optionally, the method may further include:
  • the power-supply module in the access device supplies power to the small base station through the second interface. This step is carried out throughout the entire flow of the embodiment, i.e., simultaneously with steps 801-803.
  • the time synchronization data packet is generated by the IP clock server, and the service data packet transmitted by the access point transmission device and the time synchronization data packet generated by the IP clock server are sent to the small base station through the same interface, so that the synchronization function can be simultaneously implemented. And transmission function, effectively reducing the number and difficulty of small base station wiring.
  • the IP clock server is integrated in the access device, and the access device is connected between the access point transmission device and the small base station, there is no need to reconfigure the existing access point transmission device, which is easy to implement and implement. low cost.
  • the power supply module of the present embodiment uses the power supply of the Ethernet power supply module, the data transmission function, the time synchronization function, and the power supply function can be simultaneously implemented through the cable connected to the second interface, thereby achieving three-in-one integration, thereby further saving installation costs. Furthermore, with the access device of this embodiment, the number of second interfaces used to connect to the small base station can be increased to access more small base stations. It should be noted that, when the access device provided by the foregoing embodiment is connected to the small base station, only the division of each functional module is used as an example. In an actual application, the foregoing function may be allocated by different functional modules according to requirements. Upon completion, the internal structure of the device is divided into different functional modules to perform all or part of the functions described above. In addition, the access device and the system provided in the foregoing embodiment are in the same concept as the data transmission method embodiment, and the specific implementation process is described in the method embodiment, and details are not described herein.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本发明实施例提供了一种接入设备和系统、及数据发送方法,涉及通信技术领域,所述设备包括:IP时钟服务器,用于获取时间同步信号,并基于该时间同步信号产生时间同步数据包;第一接口,用于与接入点传输设备连接,以接收业务数据包;第二接口,用于与小基站连接;传输模块,用于将从第一接口接收的业务数据包和IP时钟服务器产生的时间同步数据包通过第二接口发送给小基站。本发明实施例通过IP时钟服务器产生时间同步数据包,并将接入点传输设备传输的业务数据包和IP时钟服务器产生的时间同步数据包通过同一接口发送给小基站,从而可以同时实现同步功能和传输功能,有效降低小基站布线数量和难度。

Description

一种接入设备和系统、 及数据发送方法 本申请要求于 2012 年 07 月 12 日提交中国专利局、 申请号为 201210241342. 3 , 发明名称为 "一种接入设备和系统、 及数据发送方法" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 特别涉及一种接入设备和系统、 及数据发送方 法。
背景技术
随着移动通信技术的发展, 小基站在室内和热点覆盖中的应用越来越多。 小基站组网时, 各个小基站通常需要通过不同的电缆, 分别连接到接入点传输 设备、 同步设备和供电设备。 由于小基站的应用场景特殊, 所以小基站组网时 的电缆铺设困难、 工程量大、 铺设成本高。
发明内容 为了解决现有技术中的小基站组网时电缆铺设困难、 工程量大、 铺设成本 高的问题, 本发明实施例提供了一种接入设备和系统、 及数据发送方法。 所述 技术方案如下:
一方面, 本发明实施例提供了一种接入设备, 所述设备包括:
IP时钟服务器,用于获取时间同步信号,并基于所述时间同步信号产生时 间同步数据包;
第一接口, 用于与接入点传输设备连接, 以接收通过所述接入点传输设备 传输的业务数据包;
第二接口, 用于与小基站连接;
传输模块, 用于将从所述第一接口接收的业务数据包和所述 IP时钟服务 器产生的时间同步数据包通过所述第二接口发送给所述小基站。
具体地, 所述第一接口为以太网接口或千兆比特无源光网络接口。
具体地, 所述第二接口为 RJ45接口。
可选地, 所述设备还包括第三接口, 用于与下级的接入设备连接, 以将从 所述第一接口接收的业务数据包和所述 IP时钟服务器产生的时间同步数据包 发送给所述下级的接入设备。
可选地, 所述设备还包括:
以太网供电模块, 用于通过所述传输模块为所述小基站供电。
可选地, 所述设备还包括:
卫星信号接收机, 用于接收所述时间同步信号。
进一步地, 所述卫星信号接收机与所述 IP时钟服务器集成为一体。
另一方面, 本发明实施例还提供了一种接入设备, 所述设备包括: 第一接口, 用于与上级的接入设备连接, 以接收所述上级的接入设备传输 的业务数据包和时间同步数据包;
IP时钟服务器,用于根据接收到的所述上级的接入设备的时间同步数据包 生成新的时间同步数据包;
第二接口, 用于与小基站连接;
传输模块, 用于将从所述第一接口接收的时间同步数据包发送给所述 IP 时钟服务器, 并将从所述第一接口接收的业务数据包和所述 IP时钟服务器生 成的新的时间同步数据包通过所述第二接口发送给所述小基站。
可选地, 所述设备还包括:
以太网供电模块, 用于通过所述第二接口为所述小基站供电。
可选地, 所述设备还包括第三接口, 用于与下级的接入设备连接, 以将从 所述第一接口接收的业务数据包和所述 IP时钟服务器产生的新的时间同步数 据包发送给所述下级的接入设备。 又一方面, 本发明实施例还提供了一种接入系统, 所述系统包括: 接入点 传输设备、 至少一个小基站和前述接入设备, 所述小基站通过所述接入设备与 所述接入点传输设备连接。 再一方面, 本发明实施例还提供了一种数据发送方法, 所述方法包括: 接入设备中的 IP时钟服务器获取时间同步信号, 并基于所述时间同步信 号产生时间同步数据包, 所述时间同步数据包由 IP时钟服务器产生, 所述 IP 时钟服务器设于所述接入设备中;
所述接入设备接收通过接入点传输设备传输的业务数据包, 所述接入设备 包括第一接口, 所述第一接口与所述接入点传输设备连接, 所述业务数据包通 过所述第一接口接收;
所述接入设备将从所述第一接口接收的业务数据包和所述 IP时钟服务器 产生的时间同步数据包通过第二接口发送给小基站。
可选地, 所述方法还包括:
所述接入设备将从所述第一接口接收的业务数据包和所述 IP时钟服务器 产生的时间同步数据包通过第三接口发送给下级的接入设备。
可选地, 所述方法还包括:
所述接入设备中的以太网供电模块通过所述第二接口为所述小基站供电。 再一方面, 本发明实施例还提供了一种数据发送方法, 所述方法包括: 接入设备通过第一接口接收上级的接入设备传输的业务数据包和时间同 步数据包;
所述接入设备中的 IP时钟服务器根据接收到的所述上级的接入设备的时 间同步数据包生成新的时间同步数据包, 所述 IP时钟服务器设于所述接入设 备中;
所述接入设备将从所述第一接口接收的时间同步数据包发送给所述 IP时 钟服务器, 并将从所述第一接口接收的业务数据包和所述 IP时钟服务器生成 的新的时间同步数据包通过第二接口发送给小基站。
可选地, 所述方法还包括:
所述接入设备将从所述第一接口接收的业务数据包和所述 IP时钟服务器 产生的新的时间同步数据包通过第三接口发送给下级的接入设备。
可选地, 所述方法还包括:
所述接入设备中的以太网供电模块通过所述第二接口为所述小基站供电。 本发明实施例提供的技术方案的有益效果是: 本发明实施例通过 IP时钟服 务器产生时间同步数据包, 并将接入点传输设备传输的业务数据包和 IP时钟服 务器产生的时间同步数据包通过同一接口发送给小基站,从而可以同时实现同 步功能和传输功能, 有效降低小基站布线数量和难度。 并且, 由于 IP时钟服务 器集成在接入设备中, 而接入设备连接在接入点传输设备和小基站之间, 所以 不需要对现有的接入点传输设备进行重新配置, 易于实现且实现成本低。
附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例 1提供的接入设备的结构框图;
图 2是本发明实施例 1提供的接入设备的结构框图;
图 3是本发明实施例 3提供的接入设备的结构框图;
图 4是本发明实施例 4提供的接入设备的结构框图;
图 5是本发明实施例 5提供的接入系统的结构框图;
图 6是本发明实施例 6提供的接入系统的结构框图;
图 7是本发明实施例 7提供的数据发送方法的流程图;
图 8是本发明实施例 8提供的数据发送方法的流程图。
具体实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。 实施例 1
本发明实施例提供了一种接入设备, 如图 1所示, 该设备包括 IP时钟服 务器 11、 传输模块 12、 第一接口 13和第二接口 14。
其中, IP时钟服务器 11用于获取时间同步信号, 并基于该时间同步信号 产生时间同步数据包; 第一接口 13用于与接入点传输设备连接, 以接收通过 接入点传输设备传输的业务数据包; 第二接口 14用于与小基站连接; 传输模 块 12用于将从第一接口 13接收的业务数据包和 IP时钟服务器 11产生的时 间同步数据包通过第二接口 14发送给小基站。 传输模块 12分别与第一接口 13、 第二接口 14和 IP时钟服务器 11电连接。
具体地, 小基站包括但不限于 Micro (Micro Base Station, 基站)、 Pico ( Pico Base Station, 微微基站)和 Femto ( Femto Base Station, 家庭基站), 制式包括但不限于 GSM ( Global System of Mobile communication, 全球移动 通信系统)、 UMTS (Universal Mobile Telecommunications System, 通用移 动通信系统)、 LTE (Long Term Evolution, 长期演进)、 CDMA ( Code Division Multiple Access , 码分多址)、 WIMAX ( Worldwide Interoperability for Microwave Access, 全球 波互联接入)。 该接入点传输设备用于实现核心网 设备和接入网设备之间数据传输。
具体地, 该时间同步信号可以为卫星系统定位信号。 具体地, 该卫星定位 系统可以为 GPS ( Global Positioning System, 全球定位系统) 系统、 北斗卫 星定位系统或者其他卫星定位系统。
具体地, IP时钟服务器 11根据 1588V2时间同步协议提供时间同步功能。 在本实施例中, 该 IP时钟服务器 11釆用服务器模式工作。 该 IP时钟服务器 11的结构和原理为本领域技术人员熟知, 在此不再详细描述。
其中, 第一接口 13 包括但不限于以太网接口、 GPON (Gigabit-capable passive optical network, 千兆比特无源光网络)接口, 接口形式可以为电 接口或光接口。
可选地,第二接口 14为 RJ45接口。 RJ45指的是使用由国际性的接插件标 准定义的 8个位置(8针)的模块化插孔或者插头。 RJ45接口通常用于数据传输, 最常见的应用为网卡接口。
具体地,传输模块 12将从第一接口 13接收到的来自接入点传输设备的业 务数据包通过第二接口 14发送给小基站; 同时, 将 IP时钟服务器 11提供的 时间同步数据包通过该第二接口 14发送给小基站, 从而同时实现了同步功能 和传输功能。
需要说明的是, 在具体实现中, 该设备可以被称为 Smart Unit。
本发明实施例通过 IP时钟服务器产生时间同步数据包, 并将接入点传输 设备传输的业务数据包和 IP 时钟服务器产生的时间同步数据包通过同一接口 发送给小基站, 从而可以同时实现同步功能和传输功能, 有效降低小基站布线 数量和难度。 并且, 由于 IP 时钟服务器集成在接入设备中, 而接入设备连接 在接入点传输设备和小基站之间, 所以不需要对现有的接入点传输设备进行重 新配置, 易于实现且实现成本低。 实施例 2
本发明实施例提供了一种接入设备, 如图 2所示, 该设备与实施例 1的设 备的不同之处在于, 其还包括: 卫星信号接收机 25 , 用于接收时间同步信号, 则 IP时钟服务器 11通过该卫星信号接收机 25获取时间同步信号。
进一步地,卫星信号接收机 25可以与 IP时钟服务器 11集成为一体,进一 步减小设备体积和降低安装难度。
本发明实施例通过 IP时钟服务器产生时间同步数据包,并将接入点传输设 备传输的业务数据包和 IP时钟服务器产生的时间同步数据包通过同一接口发 送给小基站, 从而可以同时实现同步功能和传输功能, 有效降低小基站布线数 量和难度。 并且, 由于 IP时钟服务器集成在接入设备中, 而接入设备连接在 接入点传输设备和小基站之间, 所以不需要对现有的接入点传输设备进行重新 配置, 易于实现且实现成本低。此外,通过卫星信号接收机获取时间同步信号, 准确度高且成本低。 实施例 3
本发明实施例提供了一种接入设备, 如图 3所示, 该设备与实施例 2的设 备的不同之处在于, 其还包括:
以太网供电模块 36 , 用于通过传输模块 12为小基站供电。 该以太网供电 模块 36与传输模块 12电连接。
具体地, 在一般情况下, RJ45接口中的 4个端子为数据传输端子, 另外 4 个端子空闲; 以太网供电可以通过 RJ45接口中的 4根空闲端子 (或 4根空闲 端子的部分)来传输电源, 从而通过 RJ45接口同时实现数据传输和供电功能。
可选地, 该设备还包括第三接口 37 , 第三接口 37用于与下级的接入设备 连接, 以将从第一接口 13接收的业务数据包和 IP时钟服务器 11产生的时间 同步数据包发送给下级的接入设备。在小基站数量较多而接入设备的第二接口 数量有限的情况下, 可以通过该第三接口与另一接入设备相连, 从而增加第二 接口的数量, 连接更多的小基站。 具体地, 第三接口 37可以是光接口也可以是电接口, 包括但不限于以太网 接口、 GP0N接口、 RJ45接口等。
本发明实施例通过 IP时钟服务器产生时间同步数据包,并将接入点传输设 备传输的业务数据包和 IP时钟服务器产生的时间同步数据包通过同一接口发 送给小基站, 从而可以同时实现同步功能和传输功能, 有效降低小基站布线数 量和难度。 并且, 由于 IP时钟服务器集成在接入设备中, 而接入设备连接在 接入点传输设备和小基站之间, 所以不需要对现有的接入点传输设备进行重新 配置, 易于实现且实现成本低。此外, 由于本实施例釆用以太网供电模块供电, 所以可以通过第二接口连接的电缆同时实现数据传输功能、 时间同步功能和供 电功能, 实现三线合一, 进一步节约安装成本。 实施例 4
本发明实施例提供了一种接入设备, 如图 4所示, 该设备包括 IP时钟服 务器 41、 传输模块 42、 第一接口 43和第二接口 44。 其中, 第一接口 43用于 与上级的接入设备连接, 以接收上级的接入设备传输的业务数据包和时间同步 数据包; IP时钟服务器 41用于根据接收到的上级的接入设备的时间同步数据 包生成新的时间同步数据包; 第二接口 44用于与小基站连接; 传输模块 42用 于将从第一接口 43接收的时间同步数据包发送给 IP时钟服务器 41 ,并将从第 一接口 43接收的业务数据包和 IP时钟服务器 41生成的新的时间同步数据包 通过第二接口 44发送给小基站。 传输模块 42分别与第一接口 43、 第二接口 44和 IP时钟服务器 41电连接。
也就是说, 业务数据包和时间同步数据包由上级的接入设备传输给下级的 接入设备, 本实施例的设备为是与其第一接口连接的接入设备的下级的接入设 备。下级的接入设备的 IP时钟服务器 41釆用 BC ( Boundary Clock,边界时钟) 模式, 通过一个从端口与上级接入设备 (即与第一接口连接的接入设备)进行 时间同步, 通过多个主端口与小基站进行时间同步。
具体地, 该下级的传输模块 42通过第二接口 44中的从端口从上级的接入 设备接收时间同步数据包, 并将该时间同步数据包发送给 IP时钟服务器 41 , 经 IP时钟服务器 41处理后, 通过第二接口 44中的主端口发送给小基站; 同 时,传输模块 42还将从第一传输接口 41收到的业务数据包通过第二接口发送 给小基站。 在具体实现中, 传输模块 42可以通过解析数据包包头, 来区分是 业务数据包还是时间同步数据包。
可选地, 该设备还包括以太网供电模块 45 , 用于通过第二接口 44为小基 站供电。
可选地, 该设备还包括第三接口 46 , 第三接口 46用于与下级的接入设备 连接, 以将从第一接口 43接收的业务数据包和 IP时钟服务器 41产生的新的 时间同步数据包发送给下级的接入设备。
本发明实施例通过 IP时钟服务器产生时间同步数据包,并将接入点传输设 备传输的业务数据包和 IP时钟服务器产生的时间同步数据包通过同一接口发 送给小基站, 从而可以同时实现同步功能和传输功能, 有效降低小基站布线数 量和难度。 并且, 由于 IP时钟服务器集成在接入设备中, 而接入设备连接在 接入点传输设备和小基站之间, 所以不需要对现有的接入点传输设备进行重新 配置, 易于实现且实现成本低。此外, 由于本实施例釆用以太网供电模块供电, 所以可以通过第二接口连接的电缆同时实现数据传输功能、 时间同步功能和供 电功能, 实现三线合一, 进一步节约安装成本。 再者, 通过本实施例的接入设 备, 可以增加用来连接小基站的第二接口的数量, 以接入更多的小基站。 实施例 5
本发明实施例提供了一种接入系统, 如图 5所示, 该系统包括: 接入点传 输设备 51、 小基站 52和接入设备 53 , 小基站 52通过该接入设备 53与接入点 传输设备 52连接, 该接入设备 53可以为实施例 1或 1中提供的接入设备。
在具体实现中, 小基站 52通过一根线缆 52a与对应的接入设备 53的第二 接口连接,接入设备 53通过电缆 52a同时为小基站 52提供数据传输和时间同 步功能。 另外, 小基站 52通过电缆 52b与外部供电设备连接。
需要说明的是, 图中小基站的个数仅为示例, 并不作为对本发明的限制。 本发明实施例通过 IP时钟服务器产生时间同步数据包,并将接入点传输设 备传输的业务数据包和 IP时钟服务器产生的时间同步数据包通过同一接口发 送给小基站, 从而可以同时实现同步功能和传输功能, 有效降低小基站布线数 量和难度。 并且, 由于 IP时钟服务器集成在接入设备中, 而接入设备连接在 接入点传输设备和小基站之间, 所以不需要对现有的接入点传输设备进行重新 配置, 易于实现且实现成本低。 实施例 6
本发明实施例提供了一种接入系统, 如图 6所示, 该系统包括: 接入点传 输设备 61、 若干接入设备 63a、 63b和若干个小基站 62 , 该接入设备 63可以 为实施例 3中提供的设备, 该接入设备 63b可以为实施例 4中提供的设备, 小 基站 62分别通过对应的接入设备 63a、 63b与接入点传输设备 61连接。
具体地, 接入设备可以有多个(图中为两个), 对于接入设备 63a而言, 接 入设备 63b为下级的接入设备; 对于接入设备 63b而言, 接入设备 63a为上级 的接入设备。上级的接入设备 63a的第三接口与下级的接入设备 63b的第一接 口连接。
在具体实现中,小基站 62通过一根线缆 62a与对应的接入设备 63a , 63b的 第二接口连接, 接入设备 63a、 63b通过电缆 62a同时为小基站 62提供数据传 输、 时间同步和供电功能。
需要说明的是, 图中小基站和接入设备的个数仅为示例, 并不作为对本发 明的限制。
本发明实施例通过 IP时钟服务器产生时间同步数据包,并将接入点传输设 备传输的业务数据包和 IP时钟服务器产生的时间同步数据包通过同一接口发 送给小基站, 从而可以同时实现同步功能和传输功能, 有效降低小基站布线数 量和难度。 并且, 由于 IP时钟服务器集成在接入设备中, 而接入设备连接在 接入点传输设备和小基站之间, 所以不需要对现有的接入点传输设备进行重新 配置, 易于实现且实现成本低。此外, 由于本实施例釆用以太网供电模块供电, 所以可以通过第二接口连接的电缆同时实现数据传输功能、 时间同步功能和供 电功能, 实现三线合一, 进一步节约安装成本。 再者, 通过本实施例的接入设 备, 可以增加用来连接小基站的第二接口的数量, 以接入更多的小基站。 实施例 7
本发明实施例提供了一种数据发送方法, 如图 7所示, 该方法包括: 步骤 701 :接入设备中的 IP时钟服务器获取时间同步信号, 并基于该时间 同步信号产生时间同步数据包;
步骤 702: 接入设备接收通过接入点传输设备传输的业务数据包, 该接入 设备包括第一接口, 该第一接口与接入点传输设备连接, 业务数据包通过该第 一接口接收; 步骤 703: 接入设备将从第一接口接收的业务数据包和 IP时钟服务器产生 的时间同步数据包通过第二接口发送给小基站。
可选地, 该方法还可以包括:
接入设备将从第一接口接收的业务数据包和 IP 时钟服务器产生的时间同 步数据包通过第三接口发送给下级的接入设备。 该步骤可以与步骤 703同时进 行。
更可选地, 该方法还可以包括:
接入设备中的以太网供电模块通过第二接口为小基站供电。 该步骤贯穿于 本实施例的整个流程中, 即与步骤 701-703同时执行。
本发明实施例通过 IP时钟服务器产生时间同步数据包,并将接入点传输设 备传输的业务数据包和 IP时钟服务器产生的时间同步数据包通过同一接口发 送给小基站, 从而可以同时实现同步功能和传输功能, 有效降低小基站布线数 量和难度。 并且, 由于 IP时钟服务器集成在接入设备中, 而接入设备连接在 接入点传输设备和小基站之间, 所以不需要对现有的接入点传输设备进行重新 配置, 易于实现且实现成本低。此外, 由于本实施例釆用以太网供电模块供电, 所以可以通过第二接口连接的电缆同时实现数据传输功能、 时间同步功能和供 电功能, 实现三线合一, 进一步节约安装成本。 实施例 8
本发明实施例提供了一种数据发送方法, 如图 8所示, 该方法包括: 步骤 801 : 接入设备通过第一接口接收上级的接入设备传输的业务数据包 和时间同步数据包;
步骤 802:接入设备种的 IP时钟服务器根据接收到的上级的接入设备的时 间同步数据包生成新的时间同步数据包;
步骤 803: 接入设备将从第一接口接收的时间同步数据包发送给 IP时钟服 务器, 并将从第一接口接收的业务数据包和 IP时钟服务器生成的新的时间同 步数据包通过第二接口发送给小基站。
可选地, 该方法还可以包括:
接入设备将从第一接口接收的业务数据包和 IP 时钟服务器产生的新的时 间同步数据包通过第三接口发送给下级的接入设备。该步骤可以与步骤 803同 时进行。 更可选地, 该方法还可以包括:
接入设备中的以太网供电模块通过第二接口为小基站供电。 该步骤贯穿于 本实施例的整个流程中, 即与步骤 801-803同时执行。
本发明实施例通过 IP时钟服务器产生时间同步数据包,并将接入点传输设 备传输的业务数据包和 IP时钟服务器产生的时间同步数据包通过同一接口发 送给小基站, 从而可以同时实现同步功能和传输功能, 有效降低小基站布线数 量和难度。 并且, 由于 IP时钟服务器集成在接入设备中, 而接入设备连接在 接入点传输设备和小基站之间, 所以不需要对现有的接入点传输设备进行重新 配置, 易于实现且实现成本低。此外, 由于本实施例釆用以太网供电模块供电, 所以可以通过第二接口连接的电缆同时实现数据传输功能、 时间同步功能和供 电功能, 实现三线合一, 进一步节约安装成本。 再者, 通过本实施例的接入设 备, 可以增加用来连接小基站的第二接口的数量, 以接入更多的小基站。 需要说明的是: 上述实施例提供的接入设备在将小基站接入时, 仅以上述 各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分 配由不同的功能模块完成, 即将设备的内部结构划分成不同的功能模块, 以完 成以上描述的全部或者部分功能。 另外, 上述实施例提供的接入设备和系统与 数据发送方法实施例属于同一构思, 其具体实现过程详见方法实施例, 这里不 再赘述。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通 过硬件来完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储 于一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘 或光盘等。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种接入设备, 其特征在于, 所述设备包括:
IP时钟服务器,用于获取时间同步信号,并基于所述时间同步信号产生时 间同步数据包;
第一接口, 用于与接入点传输设备连接, 以接收通过所述接入点传输设备 传输的业务数据包;
第二接口, 用于与小基站连接;
传输模块, 用于将从所述第一接口接收的业务数据包和所述 IP时钟服务 器产生的时间同步数据包通过所述第二接口发送给所述小基站。
2、 根据权利要求 1 所述的设备, 其特征在于, 所述第一接口为以太网接 口或千兆比特无源光网络接口。
3、根据权利要求 1所述的设备,其特征在于,所述第二接口为 RJ45接口。
4、 根据权利要求 1所述的设备, 其特征在于, 所述设备还包括第三接口, 用于与下级的接入设备连接,以将从所述第一接口接收的业务数据包和所述 IP 时钟服务器产生的时间同步数据包发送给所述下级的接入设备。
5、 根据权利要求 1所述的设备, 其特征在于, 所述设备还包括: 以太网供电模块, 用于通过所述传输模块为所述小基站供电。
6、 根据权利要求 1所述的设备, 其特征在于, 所述设备还包括: 卫星信号接收机, 用于接收所述时间同步信号。
7、 根据权利要求 6所述的设备, 其特征在于, 所述卫星信号接收机与所 述 IP时钟服务器集成为一体。
8、 一种接入设备, 其特征在于, 所述设备包括:
第一接口, 用于与上级的接入设备连接, 以接收所述上级的接入设备传输 的业务数据包和时间同步数据包;
IP时钟服务器,用于根据接收到的所述上级的接入设备的时间同步数据包 生成新的时间同步数据包;
第二接口, 用于与小基站连接;
传输模块, 用于将从所述第一接口接收的时间同步数据包发送给所述 IP 时钟服务器, 并将从所述第一接口接收的业务数据包和所述 IP时钟服务器生 成的新的时间同步数据包通过所述第二接口发送给所述小基站。
9、 根据权利要求 8所述的设备, 其特征在于, 所述设备还包括: 以太网供电模块, 用于通过所述第二接口为所述小基站供电。
10、根据权利要求 8所述的设备,其特征在于,所述设备还包括第三接口, 用于与下级的接入设备连接,以将从所述第一接口接收的业务数据包和所述 IP 时钟服务器产生的新的时间同步数据包发送给所述下级的接入设备。
11、 一种接入系统, 其特征在于, 所述系统包括: 接入点传输设备和至少 一个小基站, 其特征在于, 所述系统还包括如权利要求 1-10任一项所述的接 入设备, 所述小基站通过所述接入设备与所述接入点传输设备连接。
12、 一种数据发送方法, 其特征在于, 所述方法包括:
接入设备中的 IP时钟服务器获取时间同步信号, 并基于所述时间同步信 号产生时间同步数据包;
所述接入设备接收通过接入点传输设备传输的业务数据包, 所述接入设备 包括第一接口, 所述第一接口与所述接入点传输设备连接, 所述业务数据包通 过所述第一接口接收;
所述接入设备将从所述第一接口接收的业务数据包和所述 IP时钟服务器 产生的时间同步数据包通过第二接口发送给小基站。
1 3、 根据权利要求 12所述的方法, 其特征在于, 所述方法还包括: 所述接入设备将从所述第一接口接收的业务数据包和所述 IP时钟服务器 产生的时间同步数据包通过第三接口发送给下级的接入设备。
14、 根据权利要求 12或 1 3所述的方法, 其特征在于, 所述方法还包括: 所述接入设备中的以太网供电模块通过所述第二接口为所述小基站供电。
15、 一种数据发送方法, 其特征在于, 所述方法包括:
接入设备通过第一接口接收上级的接入设备传输的业务数据包和时间同 步数据包;
所述接入设备中的 IP时钟服务器根据接收到的所述上级的接入设备的时 间同步数据包生成新的时间同步数据包;
所述接入设备将从所述第一接口接收的时间同步数据包发送给所述 IP时 钟服务器, 并将从所述第一接口接收的业务数据包和所述 IP时钟服务器生成 的新的时间同步数据包通过第二接口发送给小基站。
16、 根据权利要求 15所述的方法, 其特征在于, 所述方法还包括: 将从所述第一接口接收的业务数据包和所述 IP时钟服务器产生的新的时 间同步数据包通过第三接口发送给下级的接入设备。
17、 根据权利要求 15或 16所述的方法, 其特征在于, 所述方法还包括: 所述接入设备中的以太网供电模块通过所述第二接口为所述小基站供电。
PCT/CN2013/079263 2012-07-12 2013-07-12 一种接入设备和系统、及数据发送方法 WO2014008869A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13816492.6A EP2866405A4 (en) 2012-07-12 2013-07-12 ACCESS DEVICE AND SYSTEM AND METHOD FOR SENDING DATA
KR1020157002398A KR101621350B1 (ko) 2012-07-12 2013-07-12 액세스 장치 및 시스템, 그리고 데이터 전송 방법
JP2015520811A JP6014923B2 (ja) 2012-07-12 2013-07-12 アクセスデバイス及びシステム並びにデータを送信するための方法
US14/593,627 US20150124801A1 (en) 2012-07-12 2015-01-09 Access device and system, and method for sending data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012102413423A CN102769617A (zh) 2012-07-12 2012-07-12 一种接入设备和系统、及数据发送方法
CN201210241342.3 2012-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/593,627 Continuation US20150124801A1 (en) 2012-07-12 2015-01-09 Access device and system, and method for sending data

Publications (1)

Publication Number Publication Date
WO2014008869A1 true WO2014008869A1 (zh) 2014-01-16

Family

ID=47096867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079263 WO2014008869A1 (zh) 2012-07-12 2013-07-12 一种接入设备和系统、及数据发送方法

Country Status (6)

Country Link
US (1) US20150124801A1 (zh)
EP (1) EP2866405A4 (zh)
JP (1) JP6014923B2 (zh)
KR (1) KR101621350B1 (zh)
CN (1) CN102769617A (zh)
WO (1) WO2014008869A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769617A (zh) * 2012-07-12 2012-11-07 华为技术有限公司 一种接入设备和系统、及数据发送方法
CN105119675B (zh) * 2015-06-29 2018-11-06 上海华为技术有限公司 一种目标设备的同步方法及同步系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378388A (zh) * 2007-08-28 2009-03-04 华为技术有限公司 一种无源光网络数据传输的方法、系统和设备
WO2011143950A1 (zh) * 2011-01-26 2011-11-24 华为技术有限公司 一种实现时间同步的方法和装置
WO2011143948A1 (zh) * 2011-01-26 2011-11-24 华为技术有限公司 一种实现时间同步的方法和系统
CN102769617A (zh) * 2012-07-12 2012-11-07 华为技术有限公司 一种接入设备和系统、及数据发送方法
CN202679413U (zh) * 2012-07-12 2013-01-16 华为技术有限公司 一种接入设备和系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI115494B (fi) * 1999-09-08 2005-05-13 Nokia Corp Tukiaseman taajuussynkronointi
US6608264B1 (en) * 2002-03-29 2003-08-19 Afshin Fouladpour Switchable data and power cable
US8958697B2 (en) * 2003-06-10 2015-02-17 Alexander I. Soto System and method for optical layer management in optical modules and remote control of optical modules
US8233432B2 (en) * 2007-08-31 2012-07-31 Silicon Image, Inc. Ensuring physical locality of entities sharing data
CN101197686A (zh) * 2007-12-04 2008-06-11 福建星网锐捷网络有限公司 一种poe交换机温度控制方法和系统
CN101227087B (zh) * 2008-01-08 2010-08-04 中兴通讯股份有限公司 PoE端口及其防雷保护装置
CN101615949A (zh) * 2008-06-27 2009-12-30 中国移动通信集团上海有限公司 实现毫微微蜂窝基站时钟同步的方法、系统及设备
US8553729B2 (en) * 2008-07-03 2013-10-08 Zte Corporation Hierarchical wireless access system and access point management unit in the system
CN101630889B (zh) * 2008-07-15 2012-05-16 鸿富锦精密工业(深圳)有限公司 平板弹片及音圈马达
CN101795008A (zh) * 2009-02-04 2010-08-04 沈阳晨讯希姆通科技有限公司 利用以太网给移动通信终端充电的系统
CN101841748B (zh) * 2009-03-17 2013-06-12 中国移动通信集团公司 信号传输系统以及相关装置
CN102110980B (zh) * 2011-02-23 2014-06-04 华为机器有限公司 一种防雷保护电路
CN102215113B (zh) * 2011-06-08 2013-12-25 北京星网锐捷网络技术有限公司 以太网供电方法、装置及网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378388A (zh) * 2007-08-28 2009-03-04 华为技术有限公司 一种无源光网络数据传输的方法、系统和设备
WO2011143950A1 (zh) * 2011-01-26 2011-11-24 华为技术有限公司 一种实现时间同步的方法和装置
WO2011143948A1 (zh) * 2011-01-26 2011-11-24 华为技术有限公司 一种实现时间同步的方法和系统
CN102769617A (zh) * 2012-07-12 2012-11-07 华为技术有限公司 一种接入设备和系统、及数据发送方法
CN202679413U (zh) * 2012-07-12 2013-01-16 华为技术有限公司 一种接入设备和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2866405A4 *

Also Published As

Publication number Publication date
KR20150036255A (ko) 2015-04-07
CN102769617A (zh) 2012-11-07
JP6014923B2 (ja) 2016-10-26
EP2866405A1 (en) 2015-04-29
JP2015530771A (ja) 2015-10-15
US20150124801A1 (en) 2015-05-07
KR101621350B1 (ko) 2016-05-16
EP2866405A4 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP4588038B2 (ja) マスター基地局とリモート無線ユニットを接続するインターフェース装置
CN105262555B (zh) 一种时间同步方法、可编程逻辑器件、单板及网元
CN104618208A (zh) 数据弹性交互综合总线系统
BR112013019376A2 (pt) método e aparelho de implementação de sincronização de tempo
WO2015196685A1 (zh) 时钟同步方法及装置
CN105281885B (zh) 用于网络设备的时间同步方法、装置及时间同步服务器
CN101854732A (zh) 一种通过WiFi无线网接入有线以太网的方法
JP3811114B2 (ja) 公衆用及び私設用の移動通信システムにおける信号供給装置及びその方法
CN102594802A (zh) 低延迟联网的方法及系统
WO2014008869A1 (zh) 一种接入设备和系统、及数据发送方法
JP2017022514A (ja) 親局通信装置、光通信ネットワークシステム、及び通信システム
WO2017211253A1 (zh) 一种串口通信方法、控制终端及单板
CN111865551A (zh) 一种基于快速总线、多级系统协调管理的装置及其管理方法
US20120096203A1 (en) Method and Apparatus for Realizing Remote Access of Terminal to USB Device
CN101132337A (zh) 一种基于e1传输的2m环路网络系统
CN216751793U (zh) 一种多功能多协议智能网关
CN201298921Y (zh) 授时装置、基站时钟装置及基站授时系统
CN103944738A (zh) 一种支持功能扩展的交换机
CN202679413U (zh) 一种接入设备和系统
WO2011124155A1 (zh) 多模基站获取外部时钟信号的方法和多模基站
KR101958374B1 (ko) 네트워크 내의 지연을 정확하게 추정하는 서비스들, 시스템들 및 방법들
CN208128259U (zh) 一种基于Dante网络连接的多通道数字功放系统
CN204539485U (zh) 一种分布式基站设备和系统
CN220043444U (zh) 一种网关设备
CN203827362U (zh) 一种支持功能扩展的交换机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015520811

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157002398

Country of ref document: KR

Kind code of ref document: A