WO2014008633A1 - 信道质量指示的获取方法、用户设备、演进节点b和系统 - Google Patents

信道质量指示的获取方法、用户设备、演进节点b和系统 Download PDF

Info

Publication number
WO2014008633A1
WO2014008633A1 PCT/CN2012/078435 CN2012078435W WO2014008633A1 WO 2014008633 A1 WO2014008633 A1 WO 2014008633A1 CN 2012078435 W CN2012078435 W CN 2012078435W WO 2014008633 A1 WO2014008633 A1 WO 2014008633A1
Authority
WO
WIPO (PCT)
Prior art keywords
subband
cqi
user equipment
sub
enb
Prior art date
Application number
PCT/CN2012/078435
Other languages
English (en)
French (fr)
Inventor
周永行
王建国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/078435 priority Critical patent/WO2014008633A1/zh
Priority to CN201280035676.3A priority patent/CN103718487B/zh
Priority to EP12881070.2A priority patent/EP2858284B1/en
Publication of WO2014008633A1 publication Critical patent/WO2014008633A1/zh
Priority to US14/593,423 priority patent/US9794818B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0641Differential feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for acquiring a channel quality indicator, a user equipment, an evolved node B, and a system. Background technique
  • a channel quality indicator In a communication system, a channel quality indicator (CQI) generally describes the channel quality when transmitting on a specific bandwidth, and can be used for link adaptation and scheduling, and acquires channel characteristics to improve system throughput to It is important. Furthermore, for systems using precoding, the CQI is also calculated based on the precoding matrix used, which is usually indicated by one or more indices, such as a Precoding Matrix Indicator (PMI) and precoding. The number of layers of the matrix or the Rank Indication (RI). In the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) system, the user equipment (User Equipment, UE for short) is to the Evolved Node B (eNB).
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • UE User Equipment
  • the eNB described below may include a macro base station and a low power node, for example, a micro base station (Micro), a pico base station (Pico), a remote radio head (RRH), a relay device (Relay), and a mA. Femto, Access Point, etc.
  • a macro base station for example, a micro base station (Micro), a pico base station (Pico), a remote radio head (RRH), a relay device (Relay), and a mA. Femto, Access Point, etc.
  • LTE systems feed back CSI information according to different frequency domain granularities.
  • the entire system bandwidth is divided into multiple sub-bands, where each sub-band is composed of one or more Resource Blocks (RBs), and CQI/PMI can be calculated for a single sub-band, which is called sub-band CQI/PMI.
  • CQI/PMI can also be calculated for the entire system bandwidth, called wideband CQI/PMI.
  • RI is usually for the whole The system bandwidth is calculated.
  • the sub-bands represented by the sub-band CQI do not overlap each other, that is, the RBs constituting each sub-band are different from each other.
  • the subband CQI is usually obtained by using the Signal to Interference plus Noise Ratio (SINR) on each RB included in the RB. Due to the channel correlation, the subband CQI will better reflect the subband center position. The channel quality of the RB may deviate from the channel quality corresponding to the RB of the subband edge.
  • the prior art may cause the eNB to perform frequency selection scheduling or link adaptation on the RBs of its corresponding subband edge.
  • multi-user pairing in multiple user-multiplex input multiple output (MU-MIMO) transmissions is further affected, resulting in a decrease in system throughput.
  • the present application provides a method for acquiring a channel quality indicator, a user equipment, an evolved Node B, and a system, which can solve the problem that the channel quality indicator of the sub-band edge RB cannot be effectively obtained in the prior art, and improve each sub-band, especially The feedback accuracy of the channel quality corresponding to the resource block of its edge region.
  • the application provides a method for acquiring a channel quality indicator, where the method includes: calculating a subband channel quality indicator CQI, where adjacent subbands have overlapping resource blocks; sending to an evolved Node B eNB The sub-band CQI, used by the eNB to obtain channel quality based on the sub-band CQI
  • the application further provides a method for obtaining a channel quality indicator, where the method includes: receiving a sub-band CQ I sent by a user equipment, where adjacent sub-bands have overlapping resource blocks; The subband CQI gets the channel quality.
  • the present application further provides a user equipment, where the user equipment includes: a calculating unit, configured to calculate a sub-band channel quality indicator CQI, where adjacent sub-bands have overlapping resource blocks ; And a sending unit, configured to send the sub-band CQ I to the evolved Node B eNB, where the eNB obtains channel quality based on the sub-band CQ I.
  • a calculating unit configured to calculate a sub-band channel quality indicator CQI, where adjacent sub-bands have overlapping resource blocks ;
  • a sending unit configured to send the sub-band CQ I to the evolved Node B eNB, where the eNB obtains channel quality based on the sub-band CQ I.
  • the present application further provides an eNB, where the eNB includes: a receiving unit, configured to receive a sub-band CQ I sent by the user equipment, where the adjacent sub-bands have overlapping resource blocks. ;
  • an obtaining unit configured to obtain channel quality based on the subband CQ I.
  • the present application further provides an acquisition system for channel quality indication, including the foregoing eNB and user equipment.
  • Quality improves the channel quality of the resource blocks of each subband, especially the subband overlap region, thereby improving the granularity of frequency selective scheduling, improving frequency selective scheduling and link adaptation, thereby improving the system.
  • FIG. 1 is a flowchart of a first embodiment of a method for acquiring a channel quality indicator according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a second embodiment of a method for acquiring a channel quality indicator according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a fourth embodiment of a method for obtaining a channel quality indicator according to an embodiment of the present invention
  • FIG. 5 is a fifth embodiment of a method for acquiring a channel quality indicator according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a sixth embodiment of a method for acquiring a channel quality indicator according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a system for acquiring a channel quality indicator according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a user equipment UE according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an eNB according to an embodiment of the present disclosure.
  • FIG. 10 is another schematic diagram of a user equipment UE according to an embodiment of the present invention
  • FIG. 11 is another schematic diagram of an eNB according to an embodiment of the present invention. detailed description
  • the CQI information can be transmitted to the eNB by using the physical uplink control channel (PUCCH) and the physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • FIG. 1 is a flowchart of a first embodiment of a method for obtaining a channel quality indicator according to the present invention. As shown in the figure, the embodiment specifically includes the following steps:
  • Step 101 Calculate a subband channel quality indicator CQI of at least two subbands, where the subbands have overlapping resource blocks RB;
  • the reference signal sent by the eNB may be received, and then the subband CQI is calculated according to the reference signal.
  • the subband CQI can be supported on the sub-band for transmission, and the sub-band CQI is calculated.
  • the reference signal sent by the eNB may include a channel state information reference signal.
  • the user equipment UE may obtain the resource configuration of the reference signal by receiving a notification of the eNB, such as radio resource control (RRC) signaling or downlink control information (Downlink Control Information, DCI for short) or based on the cell identifier ID.
  • RRC radio resource control
  • DCI Downlink Control Information
  • channel measurement values can be obtained based on the reference signal such as CSI RS or CRS.
  • the reference signal such as CSI RS or CRS.
  • CSI RS channel measurement reference signal
  • CRS channel measurement reference signal
  • a channel block on a resource block (RB) or a resource element (RE) can be obtained, thereby obtaining the following system equations, as follows
  • y H e s + n (1)
  • H e the effective channel matrix, which can be measured by the channel
  • s the transmitted symbol vector
  • n the interference and measurement noise
  • a signal to interference and noise ratio SINR or a signal to noise ratio (SNR) on the resource block RB or RE can be obtained, which is generally referred to as SINR.
  • SINR signal to interference and noise ratio
  • EESM Exponential Effective SNR Mapping
  • MI-ESM Mutual Information Based Effective SNR Mapping
  • the signal can be dry on multiple REs or RBs in a subband.
  • the ratio SINR is mapped to a valid SNR.
  • the channel quality indication CQI can be obtained based on the quantization of the effective SNR on the above subband.
  • the effective SNR can be quantized into a 4-bit CQI index.
  • EESM or MI-ESM is an existing technology and will not be further described herein.
  • calculating the subband CQI can be performed in the following manner: Assuming that the transmission is performed only on the subband, the subband CQI of the subband is calculated. The sub-band is transmitted on the sub-band, and the physical downlink shared channel (PDSCH) transmission is not performed on the sub-band. In addition, it is also assumed that transmission of other traffic channels is performed on the subband. The subband CQI can be used for transmission of the traffic channel.
  • PDSCH physical downlink shared channel
  • the sub-band described above may be composed of a plurality of consecutive resource blocks RB. Multiple consecutive subbands can make up the system bandwidth.
  • the adjacent sub-bands have overlapping resource blocks RB, for example, may have one overlapping RB or two overlapping RBs.
  • the system bandwidth is composed of 9 RBs, and the RBs included in the subband S1 are RBI, RB2, RB3, and RB4 in sequence; the RBs in the subband S2 corresponding to the subband CQI are RB4, RB5, RB6, and RB7 in sequence; subband CQI
  • the RBs included in the sub-band S3 are RB7, RB8, and RB9. The same RB exists between the sub-bands S1 and S2, and the same RB is the RB7 between the sub-bands S2 and S3.
  • step 101 may further include:
  • Step 102 Send a sub-band CQI to the eNB, where the sub-band CQI can be used by the eNB to obtain channel quality according to the sub-band CQI.
  • the user equipment UE may send the sub-band CQI to the eNB through a Physical Uplink Control Channel (PUCCH) and a Physical Uplink Shared Channel (PUSCH).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • step 102 may further include:
  • the transmitting the sub-band CQI to the eNB may specifically be sending differential coding of the sub-band CQI relative to the wideband CQI to the eNB.
  • the eNB obtains channel quality such as SINR or modulation order or coding mode or code rate or transport block size or a combination thereof according to differential coding of the subband CQI or the wideband CQI and the subband CQI with respect to the wideband CQI, such as the second The embodiment is described in step 202.
  • an adjacent resource block has overlapping resource blocks, and different sub-bands are used to obtain channel quality of a sub-band, in particular, an overlapping area resource block, thereby improving each sub-band, in particular
  • the feedback accuracy of the channel quality of the resource blocks in the subband overlap region thereby improving the granularity of the frequency selective scheduling, improving the frequency selective scheduling and the link adaptation, thereby improving the throughput of the system.
  • the differential encoding of the subband CQI relative to the wideband CQI can further reduce feedback overhead.
  • FIG. 2 is a flowchart of a second embodiment of a method for obtaining a channel quality indicator according to the present invention. As shown in the figure, the embodiment specifically includes the following steps:
  • Step 201 Receive a sub-band CQI of at least two sub-bands sent by the user equipment, where the sub-bands have overlapping resource blocks RB;
  • Step 202 Obtain channel quality based on the subband CQI.
  • the step 202 may be implemented in the following manner: if the overlapping resource blocks are located in the first sub-band and the second sub-band of the at least two sub-bands, Obtaining channel quality of the overlapping resource blocks according to the subband CQI of the first subband and the subband CQI of the second subband.
  • the first channel quality information of the overlapping resource blocks and the second channel quality information of the overlapping resource blocks are respectively obtained according to the subband CQI of the first subband and the subband CQI of the second subband, respectively.
  • One of the first channel quality information and the second channel quality information is selected as the channel quality of the overlapping resource blocks.
  • obtaining channel quality of the overlapping resource blocks may also be implemented in the following manner: the subband of the first subband
  • the CQI, the subband CQI of the second subband, and the channel quality of the overlapping resource blocks have a certain functional relationship, and according to the functional relationship, the channel quality of the overlapping resource blocks is calculated.
  • the step 202 may be implemented by: obtaining, according to the subband CQI of the first subband, first channel quality information of the overlapping resource blocks; according to the subband CQI of the second subband, The second channel quality information of the overlapping resource blocks; averaging the first channel quality information and the second channel quality information to obtain channel quality of the overlapping resource blocks.
  • the reference signal may be sent to the user equipment, and the user equipment calculates the sub-band CQI based on the reference signal.
  • the reference signal it can be assumed that transmission is performed on the subband, and the subband CQI is calculated.
  • the reference signal sent by the eNB may include a CSI RS or a CRS or a stealing RS.
  • the eNB may notify the reference signal sent by the user equipment by signaling, such as RRC signaling or downlink control information DCI, or send a reference signal on the resource of the reference signal based on the cell identifier ID.
  • the user equipment calculates a subband CQI based on the reference signal as described in the first embodiment.
  • the eNB may receive, by using a physical uplink control channel (Physical Network Control Channel), and a Physical Uplink Shared Channel (PUSCH), the user equipment, the UE, Subband CQI.
  • a physical uplink control channel Physical Network Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the step 202 may further include receiving a broadband CQI sent by the user equipment; at this time, the sub-band CQI sent by the receiving user equipment may be specifically a difference between the sub-band CQI sent by the receiving user equipment and the broadband CQI.
  • the eNB utilizes the received wideband CQI and the received subband
  • the CQI is differentially encoded with respect to the wideband CQI, and a subband CQI can be obtained based on a predefined differential encoding.
  • the differential coding can make full use of the frequency domain correlation of the channel, thereby reducing the overhead of feedback.
  • the eNB obtaining the channel quality based on the sub-band CQI may be that the eNB obtains the effective SNR estimation of each sub-band by using a threshold of effective SNR quantization according to the sub-band CQI.
  • the effective SNR estimation of each subband is obtained by linear averaging or weighted averaging or other mapping methods; the effective SNR of each subband non-overlapping RB can be estimated by the effective SNR of the subband to which it belongs. It can be obtained that the effective SNR estimation of the overlapping RBs or the effective SNR estimation of the sub-bands can also be obtained by interpolation or linear averaging or weighted averaging or other mapping methods.
  • link performance such as SNR and block error rate (BLER Error Ra te , BLER for short) or bit error rate (Bi t ) using a specific modulation or coding method or code rate Er ror Ra te , referred to as BER ) curve, is valid
  • the transport block size can be further obtained.
  • the sub-band described above may be composed of a plurality of consecutive resource blocks RB. Multiple consecutive subbands can make up the system bandwidth.
  • the adjacent sub-bands have overlapping resource blocks RB, for example, may have one overlapping RB or two overlapping RBs.
  • the system bandwidth is composed of 9 RBs, and the RBs included in the subband S1 are RBI, RB2, RB3, and RB4; the subbands S2 corresponding to the subband CQI include RB4, RB5, RB6, and RB7; subband CQI
  • the sub-band S 3 contains RBs in the order of RB7, RB8 and RB9. The same RB exists between the subbands S1 and S2, and the same RB between the subbands S2 and S3 is RB7.
  • FIG. 3 is a flowchart of a third embodiment of a method for obtaining a channel quality indicator according to the present invention. As shown in the figure, the embodiment specifically includes the following steps:
  • Step 301 Receive a reference signal sent by an eNB.
  • the reference signal sent by the eNB may include a CSI RS or a CRS or an RS.
  • the user equipment UE may obtain a reference signal by receiving a notification of the eNB (such as RRC signaling or downlink control information DCI) or based on the cell identification ID.
  • the eNB may include a common base station, a relay, a transmission point, an access point, or a receiving point.
  • Step 302 Select a precoding matrix based on the reference signal, and assume that the transmission is performed on a system bandwidth.
  • channel measurement values can be obtained based on the reference signal such as CSI RS or CRS.
  • the reference signal such as CSI RS or CRS.
  • a channel block on a resource block (RB) or a resource element (RE) can be obtained, thereby obtaining a pre-coded system equation, as follows
  • y HPs + n (2)
  • H the channel matrix, which can be measured by the channel
  • s the transmitted symbol vector
  • n the interference and measurement noise.
  • a precoding matrix can be selected from a codebook such as LTE R8 or R10 or a codebook of a future system, and the above precoding matrix is selected to be assumed throughout The system bandwidth is transmitted, and the same precoding matrix is used on each RB of the entire system bandwidth.
  • the hypothesis is transmitted on the system bandwidth, and it may be assumed that a physical downlink shared channel (PDSCH) transmission is performed on the system bandwidth.
  • PDSCH physical downlink shared channel
  • it may be disposed on the sub-band to perform transmission of other traffic channels.
  • Step 303 Calculate, according to the reference signal, a subband channel quality indicator of at least two subbands.
  • the CQI in which the subband CQI is calculated, can be assumed to be transmitted on the subband and assumes that the selected precoding matrix is used, with overlapping resource blocks between the subbands.
  • the signal to interference and noise ratio SINR on the resource block RB or RE can be obtained.
  • the method of obtaining the sub-band CQI by obtaining the SINRs on multiple REs or RBs is similar to that of the first embodiment, and is not described here.
  • the sub-band described above may be composed of a plurality of consecutive resource blocks RB. Multiple consecutive subbands can make up the system bandwidth. Therefore, the physical downlink shared channel (PDSCH) transmission is performed on the sub-band and the selected pre-coding matrix is set and used.
  • PDSCH physical downlink shared channel
  • H does not perform transmission of other traffic channels on the subband.
  • the subband CQI can be used for transmission of the traffic channel.
  • the adjacent sub-bands have overlapping resource blocks RB, that is, the same RB exists.
  • RB resource blocks RB
  • the system bandwidth is composed of 9 RBs
  • the RBs included in the subband S1 are RBI, RB2, RB3, and RB4
  • the RBs included in the subband S2 are RB4, RB5, RB6, and RB7
  • the RBs in the subband S3 are RB7.
  • the same RB exists between the subbands S1 and S2, and the same RB between the subbands S2 and S3 is RB7.
  • step 303 may further include:
  • a wideband channel quality indicator CQI is calculated, wherein the wideband CQI is calculated assuming that the selected precoding matrix is used on the system bandwidth and is assumed to be transmitted over the system bandwidth.
  • Step 304 Send a broadband precoding matrix indication PMI to the eNB, where the broadband PMI corresponds to the selected precoding matrix.
  • Step 305 Send the sub-band CQI to an eNB, where the eNB obtains channel quality based on the sub-band CQI.
  • step 305 may further include:
  • the transmitting the sub-band CQI to the eNB may specifically be sending differential coding of the sub-band CQI relative to the wideband CQI to the eNB.
  • the eNB obtains channel quality such as SINR or modulation order or coding mode or code rate or transport block size or a combination thereof according to differential coding of the subband CQI or the wideband CQI and the subband CQI with respect to the wideband CQI, such as the second The embodiment is described in step 202.
  • the differential coding can make full use of the frequency domain correlation of the channel, thereby reducing the overhead of feedback.
  • the user equipment UE may send the broadband PMI, the subband CQI or the wideband CQI and the differential coding of the subband CQI with respect to the wideband CQI to the eNB through the PUCCH or the PUSCH.
  • the differential encoding of the wideband PMI, the subband CQI or the wideband CQI, and the subband CQI with respect to the wideband CQI may be transmitted in the same or different subframes.
  • the resource blocks RB are overlapped between adjacent sub-bands, and the channel quality of the resource blocks of the sub-bands, especially the overlapping areas, is obtained by using different sub-bands, and the sub-bands are improved. It is the feedback accuracy of the channel quality of the resource blocks with overlapping regions, thereby improving the granularity of frequency selective scheduling, improving frequency selective scheduling and link adaptation, thereby improving the throughput of the system.
  • FIG. 4 is a flowchart of a fourth embodiment of a method for obtaining a channel quality indicator according to the present invention. As shown in the figure, the embodiment specifically includes the following steps:
  • Step 401 Send a reference signal to the user equipment, where the user equipment calculates a broadband PMI and a subband CQI based on the reference signal.
  • the reference signal sent by the eNB may include a CSI RS or a CRS or a stealing RS.
  • the eNB may notify the reference signal sent by the user equipment by signaling, such as RRC signaling or downlink control information DCI, or send a reference signal on the resource of the reference signal based on the cell identifier ID.
  • the user equipment calculates a wideband PMI and a subband CQI based on the reference signal, as described in the third embodiment.
  • the reference signal may also be used by the user equipment to calculate a wideband CQI based on the reference signal, as described in the third embodiment.
  • Step 402 Receive a broadband PMI sent by the user equipment UE, where the broadband PMI is used to indicate a precoding matrix selected by the user equipment, where the precoding matrix is selected based on the reference signal and is set on a system bandwidth. transmission.
  • the broadband PMI may include one or more index values.
  • Step 403 Receive a subband CQI of at least two subbands sent by the user equipment UE, and obtain a channel quality based on the subband CQI, where the subband CQI is calculated to be transmitted on the subband and assume that the selected prea is used.
  • the coding matrix has overlapping resource blocks RB between the adjacent sub-bands.
  • the step 403 may further include: receiving a broadband CQI sent by the user equipment; at this time, the sub-band CQI sent by the receiving user equipment may be specifically a difference between the sub-band CQI sent by the receiving user equipment and the broadband CQI. coding.
  • the eNB utilizes the received wideband CQI and the differential encoding of the received subband CQI relative to the wideband CQI to obtain a subband CQI based on a predefined differential encoding.
  • the eNB obtains channel quality such as SINR or modulation P-intermediate or coding mode or code rate or transport block size or a combination thereof according to differential coding of sub-band CQI or wideband CQI and sub-band CQI with respect to the wideband CQI, such as The second embodiment is described in step 202.
  • the differential coding can make full use of the frequency domain correlation of the channel, thereby reducing the overhead of feedback.
  • the adjacent sub-bands have overlapping resource blocks RB.
  • the RBs included in the subband S1 corresponding to the subband CQI 1 are RB1, RB2, RB3, and RB4, and the RBs corresponding to the subband S2 corresponding to the subband CQI 2 are RB4, RB5, RB6, and RB7, respectively;
  • CQI 1 can obtain SINR1 of RB1, RB2, RB3 and RB4 based on mapping of SINR and CQI, and eNB can be based on sub-band CQI 2
  • the mapping of SINR to CQI yields SINR2 for RB4, RB5, RB6 and RB7.
  • SINR3 has a higher precision than SINR1 and SINR2.
  • RB4 has different SINR values from RB1, RB2 and RB3 and RB5, RB6 and RB7, thereby improving the granularity of frequency selective scheduling.
  • the eNB may receive the differential coding of the wideband PMI, the subband CQI or the wideband CQI and the subband CQI relative to the wideband CQI sent by the user equipment UE by receiving the PUCCH or PUSCH channel.
  • the differential encoding of the wideband PMI, the subband CQI or the wideband CQI and the subband CQI with respect to the wideband CQI may be received on the same or different subframes.
  • the resource blocks RB are overlapped between adjacent sub-bands, and the channel quality of the resource blocks of the sub-bands, especially the overlapping areas, is obtained by using different sub-bands, and the sub-bands are improved. It is the feedback accuracy of the channel quality of the resource blocks with overlapping regions, thereby improving the granularity of frequency selective scheduling, improving frequency selective scheduling and link adaptation, thereby improving the throughput of the system.
  • FIG. 5 is a flowchart of a fifth embodiment of a method for obtaining a channel quality indicator according to the present invention. As shown in the figure, the embodiment specifically includes the following steps:
  • Step 501 Receive a reference signal sent by an eNB.
  • the eNB includes a common base station, a relay, a transmission point, an access point, or a receiving point.
  • the reference signal sent by the eNB may include a CSI RS or a CRS or an RS.
  • the user equipment UE may obtain a reference signal by receiving an eNB notification such as RRC signaling or downlink control information DCI or based on a cell identification ID.
  • Step 502 Select a precoding matrix based on the reference signal, and select the precoding matrix to assume that the transmission is only performed on the subband.
  • channel measurement values may be obtained based on the reference signal such as CSI RS or CRS.
  • the reference signal such as CSI RS or CRS.
  • one resource block RB or one of the resource elements RE may be obtained.
  • y HPs + n (3)
  • y the received signal vector
  • H the channel matrix, which can be measured by the channel
  • s the transmitted symbol vector
  • n the interference and measurement noise.
  • a precoding matrix can be selected from a codebook such as LTE R8 or R10 or a codebook of a future system. When the precoding matrix is selected, only the precoding matrix is selected. The transmission is performed on the subbands, and the same precoding matrix is used on each RB of the subband.
  • the precoding matrix when the precoding matrix is selected, it is assumed that the transmission is performed only on the subband, and it may be assumed that the physical downlink shared channel (PDSCH) transmission is performed on the subband. It is also assumed that the selected precoding matrix is used. In addition, it is also assumed that transmission of other traffic channels is performed on the subband.
  • PDSCH physical downlink shared channel
  • one precoding matrix may be separately selected for each subband in the system or one precoding matrix may be selected separately for one or more subbands selected by the predefined or user equipment.
  • Step 503 Calculate, according to the reference signal, a subband channel quality indicator CQI of at least two subbands, where the subband CQI is calculated to be transmitted on a subband and assuming that the selected precoding matrix is used, adjacent There are overlapping resource blocks between the sub-bands.
  • the signal to interference and noise ratio SINR on the resource block RB or RE can be obtained.
  • the method of obtaining the sub-band CQI by obtaining the SINRs on multiple REs or RBs is similar to that of the first embodiment, and is not described here.
  • the sub-band described above may be composed of a plurality of consecutive resource blocks RB. Multiple consecutive subbands can make up the system bandwidth.
  • the subband CQI when calculating the subband CQI, it is assumed that transmission is performed on a subband and assuming that the selected precoding matrix is used, it may be assumed that a physical downlink shared channel is performed on the subband.
  • the sub-band CQI can be used for the traffic channel transmission.
  • the adjacent sub-bands have overlapping resource blocks RB, that is, the same RB exists. For example, there may be one overlapping RB or two overlapping RBs.
  • the system bandwidth is composed of 9 RBs
  • the RBs included in the subband S1 are RBI, RB2, RB3, and RB4
  • the RBs included in the subband S2 are RB4, RB5, RB6, and RB7
  • the RBs in the subband S3 are RB7. , RB8 and RB9.
  • the same RBs between the above subbands S1 and S2 and between the subbands S2 and S3 are RB4 and RB7, respectively.
  • step 503 may further include:
  • a wideband channel quality indicator CQI is calculated, wherein the wideband CQI line transmission is calculated.
  • Equation (3) based on equation (3) and setting the precoding matrix P in equation (3) to use the corresponding selected precoding matrix on each subband, it can be obtained on each resource block RB or RE on the system bandwidth.
  • Signal dry noise ratio SINR A method for obtaining a wideband CQI from a plurality of REs or SINRs on the RB of the system bandwidth by using the EESM or the MI-ESM method and the SNR of the equivalent SNR is similar to the first embodiment, and is not described here.
  • Step 504 Send a subband precoding matrix indication PMI to the eNB, where the subband PMI corresponds to the selected precoding matrix on the subband.
  • Step 505 Send the sub-band CQI to an eNB, where the eNB obtains channel quality based on the sub-band CQI.
  • step 505 may further include:
  • the transmitting the sub-band CQI to the eNB may specifically be sending differential coding of the sub-band CQI relative to the wideband CQI to the eNB.
  • the eNB obtains channel quality such as SINR or modulation order or coding mode or code rate or transport block size or a combination thereof according to differential coding of the subband CQI or the wideband CQI and the subband CQI with respect to the wideband CQI, such as the second The embodiment is described in step 202.
  • the differential coding can make full use of the frequency domain correlation of the channel, thereby reducing the overhead of feedback.
  • the user equipment UE may send the broadband PMI, the subband CQI or the wideband CQI and the differential coding of the subband CQI with respect to the wideband CQI to the eNB through the PUCCH or the PUSCH.
  • the differential encoding of the wideband PMI, the subband CQI or the wideband CQI, and the subband CQI with respect to the wideband CQI may be transmitted in the same or different subframes.
  • the subband size corresponding to the subband CQI may be equal to or different from the subband size corresponding to the subband PMI.
  • the calculation of the sub-band CQI assumes that the precoding matrix of each RB of the sub-band corresponding to the sub-band PMI is used on each RB of the corresponding sub-band and is transmitted on the sub-band corresponding to the sub-band CQI, and the feature may be The subband size corresponding to the subband CQI may be different from the subband size corresponding to the subband PMI.
  • the sub-bands S2 corresponding to the sub-band CQI include RBs, RB8, RB9, and sub-bands corresponding to the sub-band PMI.
  • S3 includes 5 RBs (assumed to be RBI, RB2, RB3, RB4, and RB5), and H is not transmitted on the subband corresponding to the subband CQI, and each resource block of the subband CQI corresponding subband can use the resource.
  • the precoding matrix indicated by the sub-band PMI corresponding to the sub-band of the sub-band for example, the pre-coding matrix on the RB4 of the sub-band corresponding to the sub-band PMI may be used on the RB4 of the sub-band S1 corresponding to the sub-band CQI.
  • subband CQI can also be calculated for a plurality of transmitted codewords, subbands of different codewords
  • the CQI can be differentially encoded with respect to the subband CQI of other codewords. For example, there are two codewords, CW0 and CW1, and the subband CQI of CW1 is differentially encoded with respect to the subband CQI of CW0.
  • the resource blocks RB are overlapped between adjacent sub-bands, and the channel quality of the resource blocks of the sub-bands, especially the overlapping areas, is obtained by using different sub-bands, and the sub-bands are improved. It is the feedback accuracy of the channel quality of the resource blocks with overlapping regions, thereby improving the granularity of frequency selective scheduling, improving frequency selective scheduling and link adaptation, thereby improving the throughput of the system.
  • FIG. 6 is a flowchart of a sixth embodiment of a method for obtaining a channel quality indicator according to the present invention. As shown in the figure, the embodiment specifically includes the following steps:
  • Step 601 Send a reference signal to the user equipment, where the user equipment calculates the subband PMI and the subband CQI based on the reference signal.
  • the reference signal sent by the eNB may include a CSI RS or a CRS or a stealing RS.
  • the eNB may notify the reference signal sent by the user equipment by signaling, such as RRC signaling or downlink control information DCI, or send a reference signal on the resource of the reference signal based on the cell identifier ID.
  • the eNB may include a common base station, a relay, a transmission point, an access point, or a receiving point.
  • the user equipment calculates a subband PMI and a subband CQI based on the reference signal, as described in the fifth embodiment.
  • the reference signal may also be used by the user equipment to calculate a wideband CQI based on the reference signal, as described in the third embodiment.
  • Step 602 Receive a sub-band PMI sent by the user equipment UE.
  • the sub-band PMI is used to indicate a precoding matrix selected by the user equipment, where the precoding matrix is obtained based on the reference signal selection and is assumed to be performed on the subband. transmission.
  • the subband PMI may include one or more index values.
  • Step 603 Receive a subband CQI of at least two subbands sent by the UE, and obtain a channel quality according to the subband CQI, where the subband CQI is calculated to be transmitted on a subband and assume that the selected precoding matrix is used. There are overlapping resource blocks RB between the sub-bands.
  • the step 603 may further include receiving a broadband CQI sent by the user equipment.
  • the sub-band CQI sent by the receiving user equipment may be specifically a difference between the sub-band CQI sent by the receiving user equipment and the broadband CQI. coding.
  • the eNB utilizes the received wideband CQI and the differential encoding of the received subband CQI relative to the wideband CQI to obtain a subband CQI based on a predefined differential encoding.
  • the eNB obtains channel quality such as SINR or modulation order or coding mode or code rate or transport block size or a combination thereof according to differential coding of the subband CQI or the wideband CQI and the subband CQI with respect to the wideband CQI, such as the second The embodiment is described in step 202.
  • the differential coding can make full use of the frequency domain correlation of the channel, thereby reducing the overhead of feedback.
  • the adjacent sub-bands have overlapping resource blocks RB.
  • subband CQI 1 pair The RBs of the subband SI should be RB1, RB2, RB3 and RB4, and the RBs of the subband S2 corresponding to the subband CQI 2 are RB4, RB5, RB6 and RB7 in sequence; the eNB based on the subband CQI 1 can be based on SINR and The CQI mapping obtains SINR1 of RB1, RB2, RB3, and RB4, and the eNB may obtain SINR2 of RB4, RB5, RB6, and RB7 based on the mapping of SINR and CQI based on the sub-band CQI 2 .
  • SINR3 has a higher precision than SINR1 and SINR2.
  • RB4 has different SINR values than RBI, RB2 and RB3 and RB5, RB6 and RB7, thereby improving the granularity of frequency selective scheduling.
  • the eNB may receive the PUCCH or
  • the PUSCH channel receives the differential encoding of the wideband PMI, the subband CQI or the wideband CQI and the subband CQI transmitted by the user equipment UE with respect to the wideband CQI.
  • the wideband PMI, the subband CQI or the wideband CQI and the differential encoding of the subband CQI with respect to the wideband CQI may be received on the same or different subframes.
  • the resource blocks RB are overlapped between adjacent sub-bands, and the channel quality of the resource blocks of the sub-bands, especially the overlapping areas, is obtained by using different sub-bands, and the sub-bands are improved. It is the feedback accuracy of the channel quality of the resource blocks with overlapping regions, thereby improving the granularity of frequency selective scheduling, improving frequency selective scheduling and link adaptation.
  • the division of overlapping and non-overlapping regions further improves the granularity of the CQI that can be resolved in the frequency domain, thereby further improving the granularity of scheduling. This improves the granularity of multi-user pairing during MU-MIM0 transmission, thereby improving system throughput.
  • FIG. 8 is a schematic diagram of a user equipment UE according to an embodiment of the present invention.
  • the user equipment for obtaining the channel quality indicator specifically includes: a computing unit 11 and a sending unit 12.
  • the calculating unit 11 is configured to calculate a subband channel quality indicator CQI of at least two subbands, wherein the subbands have overlapping resource blocks between them;
  • the sending unit 12 is configured to send the sub-band CQI to the evolved Node B eNB, where the sub-band CQI can be used by the eNB to obtain channel quality based on the sub-band CQI.
  • FIG. 10 is another schematic diagram of a user equipment UE according to an embodiment of the present invention. As shown in FIG. 10, the UE in this embodiment may further include a receiving unit 10 and a selecting unit 13.
  • the receiving unit 10 is configured to receive a reference signal sent by the eNB;
  • the reference signal sent by the eNB may include a CSI RS or a CRS or an RS.
  • the user equipment UE may obtain a reference signal by receiving an eNB notification such as RRC signaling or downlink control information DCI or based on a cell identification ID.
  • the calculating unit 11 calculates a subband channel quality indicator CQI based on the reference signal
  • the subband CQI is calculated to be transmitted on the subband, and the adjacent subbands have overlapping resource blocks RB.
  • channel measurement values can be obtained based on the reference signal such as CSI RS or CRS. Based on the channel measurement value, the sub-band CQI is obtained, as described in step 101 of the first embodiment shown in FIG.
  • the calculating unit may further include: calculating, according to the reference signal, a wideband channel quality indicator CQI, where the broadband CQI is calculated to be transmitted on a system bandwidth; specifically, the foregoing calculating process is as shown in the first As described in the examples.
  • the selection unit 13 is operative to select a precoding matrix based on the reference signal and based on transmission over the system bandwidth.
  • the calculation unit calculates the sub-band CQI based on the use of the selected precoding matrix and transmission on the subband.
  • the transmitting unit is configured to send a broadband precoding matrix indication PMI to the eNB, where the broadband PMI corresponds to the selected precoding matrix.
  • the calculating unit is configured to calculate a subband channel quality indicator CQI based on the reference signal, where the subband CQI is calculated Assuming that the transmission is performed on the subband and that the selected precoding matrix is used, there are overlapping resource blocks between the adjacent subbands.
  • the calculating unit is configured to select a precoding matrix based on the reference signal and perform transmission according to the subband, and send, by the sending unit, a subband precoding matrix indicating PMI, the subband
  • the PMI is applied to the selected precoding matrix to calculate a wideband channel quality indicator CQI based on the reference signal, wherein the wideband CQI is calculated assuming that the selected precoding matrix is used on the system bandwidth and is assumed to be performed on the system bandwidth Transmission
  • the selecting unit 13 may include: selecting, according to the reference signal, a precoding matrix, and selecting a precoding matrix to perform transmission only on a subband; the calculating unit is configured to select according to usage Precoding the matrix and transmitting on the subband, calculating the subband
  • the CQI is configured to send a subband precoding matrix indication PMI to the eNB, where the subband PMI corresponds to the selected precoding matrix.
  • the calculating unit may further comprise: calculating a wideband channel quality indicator CQI based on the reference signal, wherein the calculating the wideband CQI assumes that a corresponding selected precoding matrix is used on each subband and assumes that Transmission on the system bandwidth;
  • the sending unit 12 is configured to send the sub-band CQI to the eNB, where the eNB obtains channel quality according to the sub-band CQI.
  • the sending unit may pass a physical uplink control channel (Phys i ca l Upl ink)
  • the Cont rol Channe l, PUCCH) and the Physical Uplink Shared Channel (PUSCH) transmit the subband CQI to the eNB.
  • the sending unit may further include: sending the broadband CQI to the eNB; the transmitting the sub-band CQI to the eNB may be specifically sending the sub-band CQI to the eNB with respect to the broadband CQI. Differential encoding.
  • the sending unit may further include: sending a broadband precoding matrix finger to the eNB Showing a PMI, the broadband PMI corresponding to the selected precoding matrix;
  • the sending unit may further include: sending the broadband CQI to the eNB; the transmitting the sub-band CQI to the eNB may be specifically sending the sub-band CQI to the eNB with respect to the broadband CQI. Differential encoding.
  • the wideband CQI and the subband CQI are calculated based on the selected precoding matrix or wideband PMI.
  • the sending unit may further include: sending, to the eNB, a subband precoding matrix indication PMI, where the subband PMI corresponds to the selected precoding matrix on the subband.
  • the sending unit may further include: sending the broadband CQI to the eNB; the transmitting the sub-band CQI to the eNB may be specifically sending the sub-band CQI to the eNB with respect to the broadband CQI. Differential encoding.
  • the wideband CQI and the subband CQI are calculated based on the selected precoding matrix or subband PMI on the respective subbands;
  • the eNB obtains channel quality such as SINR or modulation order or coding mode or code rate or transport block size or a combination thereof according to differential coding of the subband CQI or the wideband CQI and the subband CQI with respect to the wideband CQI, such as the second The embodiment is described in step 202.
  • the adjacent sub-bands have overlapping resource blocks RB, that is, the same RB exists.
  • RB resource blocks RB
  • the system bandwidth is composed of 9 RBs
  • the RBs included in the subband S1 are RBI, RB2, RB3, and RB4
  • the RBs included in the subband S2 are RB4, RB5, RB6, and RB7
  • the RBs in the subband S3 are RB7.
  • the same RBs between the above subbands S1 and S2 and between the subbands S2 and S3 are RB4 and RB7, respectively.
  • the sending unit may send, by using a PUCCH or a PUSCH, a differential PMI, a subband CQI, or a wideband CQI, and a differential encoding of the subband CQI with respect to the wideband CQI to the eNB.
  • the differential encoding of the wideband PMI, the subband CQI or the wideband CQI, and the subband CQI with respect to the wideband CQI may be transmitted in the same or different subframes.
  • the subband size corresponding to the subband CQI may be equal to the subband size corresponding to the subband PMI. Etc. or not equal.
  • the calculation of the subband CQI assumes that the precoding matrices of the respective RBs of the subbands corresponding to the subband PMI are used on the respective RBs of the corresponding subband and are assumed to be transmitted on the subbands corresponding to the subband CQI.
  • the user equipment UE provided by the embodiment of the present invention has overlapping resource blocks RB between adjacent sub-bands, and uses different sub-bands to obtain channel quality of sub-bands, especially resource blocks of overlapping areas, and improves each sub-band, especially The feedback accuracy of the channel quality of the resource blocks in the subband overlap region, thereby improving the granularity of the frequency selective scheduling, improving the frequency selective scheduling and the link adaptation, thereby improving the throughput of the system.
  • FIG. 9 is a schematic diagram of an eNB according to an embodiment of the present invention.
  • the eNB that obtains the channel quality indication specifically includes: a receiving unit 22 and an obtaining unit 23.
  • the receiving unit 22 is configured to receive subband CQIs of at least two subbands sent by the user equipment, where the subbands have overlapping resource blocks; and the obtaining unit 23 is configured to obtain channel quality based on the subband CQIs.
  • the acquiring unit may be configured to use the sub-band CQI according to the first sub-band
  • the sub-band CQI of the second sub-band obtains the channel quality of the overlapping resource blocks.
  • the first channel quality information of the overlapping resource blocks and the second channel quality information of the overlapping resource blocks are respectively obtained according to the subband CQI of the first subband and the subband CQI of the second subband, respectively.
  • One of the first channel quality information and the second channel quality information is selected as the channel quality of the overlapping resource blocks.
  • the acquiring unit may be configured to use a function relationship between a subband CQI of the first subband and a subband CQI of the second subband and a channel quality of the overlapping resource blocks, The channel quality of the overlapping resource blocks is obtained.
  • the acquiring unit is further configured to obtain, according to the subband CQI of the first subband, first channel quality information of the overlapping resource blocks, according to the subband CQ I of the second subband, Obtaining second channel quality information of the overlapping resource blocks, and averaging the first channel quality information and the second channel quality information to obtain channel quality of the overlapping resource blocks.
  • FIG. 11 is another schematic diagram of an eNB according to an embodiment of the present invention, as shown in FIG.
  • the eNB of the embodiment further includes a sending unit 21, configured to send a reference signal to the user equipment, where the user equipment calculates a subband CQI based on the reference signal;
  • the reference signal sent by the eNB may include a CSI RS or a CRS or a stealing RS.
  • the eNB may notify the reference signal sent by the user equipment by signaling, such as RRC signaling or downlink control information DCI, or send a reference signal on the resource of the reference signal based on the cell identifier ID.
  • the user equipment calculates a CQI or a broadband PMI or a subband PMI or a broadband CQI based on the reference signal, as described in the first embodiment, the third embodiment, and the fifth embodiment or the embodiment in FIG. Narration.
  • the receiving unit 22 is configured to receive a sub-band CQI sent by the user equipment, and obtain a channel quality based on the sub-band CQI, where the sub-band CQI is calculated to be transmitted on a sub-band, and the adjacent sub-bands have Overlapping resource blocks RB.
  • the receiving unit may receive the user by receiving a physical uplink control channel (Physical Control Channel), and a Physical Uplink Shared Channel (PUSCH). Subband CQI sent by the device UE.
  • Physical Control Channel Physical Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the receiving unit is further configured to receive the broadband CQI sent by the user equipment, and receive a differential encoding of the subband CQI sent by the user equipment with respect to the broadband CQI; the bandwidth CQI is The user equipment is calculated based on the reference signal and based on the use of the selected precoding matrix over the system bandwidth and transmission over the system bandwidth.
  • the receiving unit is further configured to receive a broadband precoding matrix indication PMI sent by the user equipment, where the PMI corresponds to a precoding matrix selected by the user equipment.
  • PMI corresponds to a precoding matrix selected by the user equipment.
  • the receiving unit is further configured to receive a broadband CQI sent by the user equipment, and receive a differential encoding of a subband CQI sent by the user equipment with respect to the broadband CQI; the broadband CQI is the user equipment. Based on the reference signal and calculated based on transmission over the system bandwidth. Or the receiving unit is further configured to receive a subband precoding matrix indication PMI sent by the user equipment, where the subband PMI corresponds to the selected precoding matrix. Obtaining channel quality based on the sub-band CQI, wherein the sub-band CQI calculation assumes transmission on a sub-band and assumes that the selected pre-coding matrix is used, and adjacent resource blocks RB between the adjacent sub-bands ;
  • the receiving unit may further include: receiving a broadband CQI sent by the user equipment; at this time, the sub-band CQI sent by the receiving user equipment may be specifically a difference between the sub-band CQI sent by the receiving user equipment and the broadband CQI. coding.
  • the eNB utilizes the received wideband CQI and the differential encoding of the received subband CQI relative to the wideband CQI to obtain a subband CQI based on a predefined differential encoding.
  • the eNB obtains channel quality such as SINR or modulation order or coding mode or code rate or transport block size or a combination thereof according to differential coding of the subband CQI or the wideband CQI and the subband CQI with respect to the wideband CQI, such as the second The embodiment is described in step 202.
  • the differential coding can make full use of the frequency domain correlation of the channel, thereby reducing the overhead of feedback.
  • the adjacent sub-bands have overlapping resource blocks RB, for example, may have one overlapping RB or two overlapping RBs.
  • the system bandwidth is composed of 9 RBs, and the RBs included in the subband S1 are RBI, RB2, RB3, and RB4; the subbands S2 corresponding to the subband CQI include RB4, RB5, RB6, and RB7; subband CQI
  • the sub-band S3 contains RBs in the order of RB7, RB8 and RB9. The same RB exists between the subbands S1 and S2, and the same RB between the subbands S2 and S3 is RB7.
  • the eNB of the embodiment of the present invention has overlapping resource blocks RB between adjacent sub-bands, and uses different sub-bands to obtain channel quality of sub-bands, especially resource blocks of overlapping areas, and improves sub-bands, especially sub-band overlap.
  • the feedback accuracy of the channel quality of the resource blocks of the region improves the granularity of the frequency selective scheduling, improves the frequency selective scheduling and the link adaptation, thereby improving the throughput of the system.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other form of storage known in the art. In the medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种信道质量指示的获取方法、用户设备、演进节点B和系统。所述方法包括:计算至少两个子带的子带信道质量指示CQI,其中,所述子带之间具有重叠的资源块;向演进节点B eNB发送所述子带CQI。在本申请信道质量指示的获取方法、用户设备、演进节点B和系统中,相邻子带之间具有重叠的资源块,同时利用不同的子带得到该资源块的信道质量,提高了各个子带特别是子带重叠区域的资源块的信道质量的反馈精度,由此提高了频率选择性调度的颗粒度,改进频率选择性调度和链路自适应,从而提高了系统的吞吐量。

Description

说 明 书
信道质量指示的获取方法、 用户设备、 演进节点 B和系统 技术领域
本发明涉及通信领域, 尤其涉及一种信道质量指示的获取方法、 用户设 备、 演进节点 B和系统。 背景技术
在通信系统中, 信道质量指示(Channel Quality Indicator, 简称 CQI) 通常描述了在特定带宽上传输时的信道质量, 可以用于链路自适应和调度, 对获取信道特性从而提高系统的吞吐量至关重要。 此外, 对于使用预编码的 系统, CQI还基于所使用的预编码矩阵计算, 所述预编码矩阵通常由一个或者 多个索引指示, 如预编码矩阵指示(Precoding Matrix Indicator, 简称 PMI ) 和预编码矩阵的层数或者秩指示(Rank Indication, 简称 RI) 。 在第三代伙 伴计划( The 3rd Generation Partnership Project,简称 3GPP )长期演进( Long Term Evolution, 简称 LTE) 系统中, 用户设备(User Equipment,简称 UE ) 向演进节点 B ( Evolved Node B,简称 eNB )反馈信道状态信息( Channel State Information, 简称 CSI ) , 其中 CSI包括 CQI/PMI/RI。 此外, 以下所述 eNB 可以包括宏基站和低功率节点, 例如: 微基站(Micro)、 微微基站(Pico) 、 远端射频头 (Remote Radio Head, 简称 RRH) 、 中继设备(Relay)和毫微微 基站 (Femto),接入点 (Access Point )等。
现有 LTE系统按照不同的频域粒度反馈 CSI信息。 整个系统带宽被划分 为多个子带, 其中每个子带由一个或者多个资源块 (Resource Block, 简称 RB)构成, 可以针对其中的单个子带计算 CQI/PMI, 称之为子带 CQI/PMI; 也 可以针对整个系统带宽计算 CQI/PMI, 称之为宽带 CQI/PMI。 RI则通常针对整 个系统带宽计算得到。
而现有的反馈子带 CQI的方式中, 子带 CQI表示的子带之间是互不重叠 的, 也就是说, 构成各个子带的 RB互不相同。 子带 CQI通常利用其中包含的 各个 RB上的信干噪比 (Signal to Interference plus Noise Ratio, 简称 SINR)得到, 由于信道的相关性, 子带 CQI将会更好的反映子带中心位置的各 个 RB的信道质量, 而可能偏离子带边缘的 RB对应的信道质量。
所以,现有技术会导致 eNB对其对应子带边缘的 RB不能很好地进行频选 调度或者链路自适应。 另外, 还会进一步影响多用户 -多路输入多路输出 (Multiple User - Multiple Input Multiple Output, MU-MIMO )传输中多 用户的配对, 从而导致系统吞吐量下降。 发明内容
本申请提供了一种信道质量指示的获取方法、 用户设备、 演进节点 B和 系统, 可以解决现有技术中存在的不能有效获取子带边缘 RB的信道质量指示 的问题, 提高各个子带特别是其边缘区域的资源块对应的信道质量的反馈精 度。
一方面,本申请提供了一种信道质量指示的获取方法, 所述方法包括: 计算子带信道质量指示 CQI,其中, 相邻的子带之间具有重叠的资源块; 向演进节点 B eNB发送所述子带 CQI, 用于所述 eNB基于所述子带 CQI 得到信道质量
一方面,本申请还提供了一种信道质量指示的获取方法, 所述方法包括: 接收用户设备发送的子带 CQ I ,其中,相邻的子带之间具有重叠的资源块; 基于所述子带 CQI得到信道质量。
另一方面, 相应地, 本申请还提供了一种用户设备, 所述用户设备包括: 计算单元, 用于计算子带信道质量指示 CQI,其中, 相邻的子带之间具有 重叠的资源块; 发送单元, 用于向演进节点 B eNB发送所述子带 CQ I , 用于所述 eNB基于 所述子带 CQ I得到信道质量。
另一方面, 相应地, 本申请还提供了一种 eNB , 所述 eNB包括: 接收单元, 用于接收用户设备发送的子带 CQ I , 其中, 相邻的子带之间具 有重叠的资源块;
获取单元, 用于基于所述子带 CQ I得到信道质量。
再一方面, 相应地, 本申请还提供了一种信道质量指示的获取系统, 包 括上述 eNB和用户设备。
本申请的信道质量指示的获取方法、 用户设备、 演进节点和系统, 因为 计算子带 CQ I 时的相邻子带之间具有重叠的资源块, 同时利用不同的子带得 到该资源块的信道质量, 提高了各个子带特别是子带重叠区域的资源块的信 道质量的反馈精度, 由此提高了频率选择性调度的颗粒度, 改进频率选择性 调度和链路自适应, 从而提高了系统的吞吐量。 附图说明
图 1为本发明实施例信道质量指示的获取方法的第一实施例流程图; 图 2为本发明实施例信道质量指示的获取方法的第二实施例流程图; 图 3为本发明实施例信道质量指示的获取方法的第三实施例流程图; 图 4为本发明实施例信道质量指示的获取方法的第四实施例流程图; 图 5为本发明实施例信道质量指示的获取方法的第五实施例流程图; 图 6为本发明实施例信道质量指示的获取方法的第六实施例流程图; 图 Ί为本发明实施例提供的一种信道质量指示的获取系统的结构组成示 意图;
图 8为本发明实施例提供的一种用户设备 UE的示意图;
图 9为本发明实施例提供的一种 eNB的示意图;
图 1 0为本发明实施例提供的一种用户设备 UE的另一示意图; 图 11为本发明实施例提供的一种 eNB的另一示意图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 UE可以通过周期性和非周期性两种模式向 eNB反馈 CQI,分别通过物理上 行控制信道 (Physical Uplink Control Channel, 简称 PUCCH )和物理上行 共享信道(Physical Uplink Shared Channel, 简称 PUSCH)传输 CQI信息。
图 1为本发明信道质量指示的获取方法的第一实施例流程图, 如图所示, 本实施例具体包括如下步骤:
步骤 101, 计算至少两个子带的子带信道质量指示 CQI; 其中所述子带之 间具有重叠的资源块 RB;
优选的, 在计算子带 CQI之前, 可以接收 eNB发送的参考信号, 然后根 据该参考信号计算所述子带 CQI。 另外, 可以 支设在子带上进行传输, 计算所 述子带 CQI。
具体地, 所述 eNB 发送的参考信号,可以包括信道状态信息参考信号
( channel state information Reference Signal , CSI RS )或者小区特定 的参考信号( cell-specific RS, CRS )或者解调参考信号( demodulat ion RS, DM RS ) 。 用户设备 UE可以通过接收 eNB的通知, 例如无线资源控制 (Radio Resource Control , 简称 RRC)信令或者下行控制信息 (Downlink Control Information, 简称 DCI )或者基于小区标识 ID得到所述参考信号的资源配置 并在对应的资源或者子帧得到参考信号。
具体地, 基于所述参考信号如 CSI RS或者 CRS, 可以得到信道测量值。 例如, 对于 LTE系统, 可以得到一个资源块(Resource Block,简称 RB)或者其 中某一资源单元 ( Resource Element,简称 RE )上的信道测量值, 从而得到以 下系统方程, 如下
y = Hes + n (1) 其中 y是接收信号矢量, He是有效信道矩阵, 可以由信道测量得到, s 是发射的符号矢量, n是干扰和测量噪声。
基于上述方程( 1 ) 可以得到该资源块 RB或者 RE上的信干噪比 SINR或 者信噪比(Signal to Noi se Rat io,简称 SNR),此处通称 SINR。 对于由多个 RB 或者 RE组成的子带而言, 可以得到其中多个 RE或者 RB上的信干噪比 SINR。 利用指数有效 SNR映射 (Exponential Effective SNR Mapping,简称 EESM ) 或者基于互信息的有效 映射 (Mutual Information based Effective SNR Mapping,简称 MI-ESM)可以将一个子带中多个 RE或者 RB上的信干噪比 SINR 映射为一个有效 SNR。基于对上述子带上的有效 SNR的量化可以得到信道质量 指示 CQI, 例如, 现有 LTE系统中可以将有效 SNR量化为 4比特的 CQI索引。 EESM或者 MI-ESM为现有技术, 此处不进一步赘述。 在得到上述 CQI时, 假设 在所述子带上进行传输。
具体的, 根据在子带上进行传输, 计算所述子带 CQI 可以通过以下方式 进行: 假设仅在子带上进行传输, 计算该子带的子带 CQI。 其中, 在子带上进 行传输,可以是 H没在所述子带上进行物理下行共享信道( Physical Downl ink Shared Channel,简称 PDSCH )传输。 此外,也可以是假设在所述子带上进行其 它业务信道的传输。 所述子带 CQI可以用于所述业务信道的传输。
以上所述子带, 可以由多个连续的资源块 RB构成。 多个连续的子带可以 组成系统带宽。
具体, 所述相邻的子带之间具有重叠的资源块 RB, 例如可以具有一个重 叠的 RB或者两个重叠的 RB。 例如系统带宽由 9个 RB构成, 子带 S1含有的 RB依次为 RBI, RB2 ,RB3,RB4;子带 CQI对应的子带 S2含有的 RB依次为 RB4, RB5 ,RB6,RB7; 子带 CQI对应的子带 S3含有的 RB依次为 RB7 , RB8, RB9.子带 S1与 S2之间存在相同的 RB为 RB4,子带 S2与 S3之间存在相同的 RB为 RB7。
进一步地, 所述步骤 101还可以包括:
基于所述参考信号, 计算宽带信道质量指示 CQI,其中, 假设传输在系统 带宽上进行, 计算所述宽带 CQI;
步骤 102, 向 eNB发送子带 CQI, 该子带 CQI可以用于 eNB根据子带 CQI 得到信道质量。
具体地, 用户设备 UE 可以通过物理上行控制信道 ( Physical Uplink Control Channel, 简称 PUCCH )和物理上行共享信道(Phys ical Upl ink Shared Channel, 简称 PUSCH)向 eNB发送子带 CQI。
进一步地, 所述步骤 102还可以包括:
向所述 eNB发送所述宽带 CQI;
此时, 所述向 eNB发送子带 CQI可以具体为向所述 eNB发送子带 CQI相 对于所述宽带 CQI的差分编码。
所述 eNB根据子带 CQI或者宽带 CQI与子带 CQI相对于所述宽带 CQI的 差分编码得到信道质量如 SINR或者调制阶数或者编码方式或者码率或者传输 块大小或者它们的组合,如第二实施例步骤 202中所述。
本发明实施例信道质量指示的获取方法, 相邻子带之间具有重叠的资源 块, 同时利用不同的子带得到子带特别是重叠区域的资源块的信道质量, 提 高了各个子带特别是子带重叠区域的资源块的信道质量的反馈精度, 由此提 高了频率选择性调度的颗粒度, 改进频率选择性调度和链路自适应, 从而提 高了系统的吞吐量。 所述子带 CQI相对于所述宽带 CQI 的差分编码可以进一 步减小反馈开销。
图 2为本发明信道质量指示的获取方法的第二实施例流程图, 如图所示, 本实施例具体包括如下步骤:
步骤 201, 接收用户设备发送的至少两个子带的子带 CQI, 其中, 所述子 带之间具有重叠的资源块 RB;
步骤 202, 基于所述子带 CQI得到信道质量。
在本发明实施例的一个优选实现方式中, 步骤 202 可以采用以下方式实 现: 如果所述重叠的资源块位于所述至少两个子带中的第一子带和第二子带, 根据所述第一子带的子带 CQI和第二子带的子带 CQI ,得到所述重叠的资源块 的信道质量。 例如, 根据所述第一子带的子带 CQI和第二子带的子带 CQI分 别得到所述重叠的资源块的第一信道质量信息和所述重叠的资源块的第二信 道质量信息, 选择第一信道质量信息和第二信道质量信息中的一个作为所述 重叠的资源块的信道质量。
优选地, 根据所述第一子带的子带 CQI和第二子带的子带 CQI ,得到所述 重叠的资源块的信道质量还可以采用以下方式实现: 所述第一子带的子带 CQI、 所述第二子带的子带 CQI和所述重叠的资源块的信道质量之间具有一定 的函数关系, 根据该函数关系, 计算得到所述重叠的资源块的信道质量。
例如,步骤 202可以通过下面的方式实现:根据所述第一子带的子带 CQI , 得到所述重叠的资源块的第一信道质量信息; 根据所述第二子带的子带 CQI , 得到所述重叠的资源块的第二信道质量信息; 对所述第一信道质量信息和第 二信道质量信息取平均 , 得到所述重叠的资源块的信道质量。
优选地, 在接收用户设备发送的子带 CQI 之前, 可以向用户设备发送参 考信号, 用于所述用户设备基于所述参考信号计算子带 CQI。 其中, 可以假设 在子带上进行传输, 计算所述子带 CQI。
具体地, 所述 eNB发送的参考信号,可以包括 CSI RS或者 CRS或匿 RS。 eNB可以通过信令如 RRC信令或者下行控制信息 DCI通知用户设备所发送的参 考信号或者基于小区标识 ID在所述参考信号的资源上发送参考信号。
所述用户设备基于所述参考信号计算子带 CQI,如第一实施例所述。
具体地, eNB 可以通过物理上行控制信道 ( Phys i ca l Up l ink Cont rol Channe l ,简称 PUCCH )和物理上行共享信道(Phys ica l Upl ink Shared Channe l , 简称 PUSCH)接收用户设备 UE发送的子带 CQI。
进一步地,所述步骤 202还可以包括接收用户设备发送的宽带 CQI ;此时, 所述接收用户设备发送的子带 CQI 可以具体为接收用户设备发送的子带 CQI 相对于所述宽带 CQI的差分编码。 eNB利用所接收的宽带 CQI和所接收的子带 CQI 相对于所述宽带 CQI 的差分编码,基于预定义的差分编码可以得到子带 CQI。 所述差分编码可以充分利用信道的频域相关性,从而减小反馈的开销。
具体地, eNB基于所述子带 CQI得到信道质量可以是 eNB根据子带 CQI , 利用有效 SNR量化的门限得到各个子带的有效 SNR估计。 根据各个子带的有 效 SNR估计, 利用线性平均或者加权平均或者其它映射方法得到各个子带重 叠的 RB的有效 SNR估计; 各个子带非重叠的 RB的有效 SNR可以由所属子带 的有效 SNR估计得到, 也可以利用重叠的 RB的有效 SNR估计或者子带的有效 SNR估计通过内插或者线性平均或者加权平均或者其它映射方法得到。
进一步地, 基于上述子带 CQI得到上述有效 SNR估计之后, 利用特定调 制或者编码方式或者码率的链路性能如 SNR 与误块率 (BLock Error Ra te , 简称 BLER )或者误比特率 (Bi t Er ror Ra te , 简称 BER ) 的曲线, 得到有效
后, 基于所传输使用 RB数, 可以进一步得到传输块大小。
以上所述子带, 可以由多个连续的资源块 RB构成。 多个连续的子带可以 组成系统带宽。
具体, 所述相邻的子带之间具有重叠的资源块 RB , 例如可以具有一个重 叠的 RB或者两个重叠的 RB。 例如系统带宽由 9个 RB构成, 子带 S1含有的 RB依次为 RBI , RB2 , RB3和 RB4 ; 子带 CQI对应的子带 S2含有的 RB依次为 RB4 , RB5 , RB6和 RB7 ; 子带 CQI对应的子带 S 3含有的 RB依次为 RB7 , RB8 和 RB9。 子带 S1与 S2之间存在相同的 RB为 RB4 , 子带 S2与 S 3之间存在相 同的 RB为 RB7。
本发明实施例信道质量指示的获取方法, 相邻子带之间具有重叠的资源 块 RB, 同时利用不同的子带得到子带特别是重叠区域的资源块的信道质量, 提高了各个子带特别是子带重叠区域的资源块的信道质量的反馈精度, 由此 提高了频率选择性调度的颗粒度, 改进频率选择性调度和链路自适应, 从而 提高了系统的吞吐量。 图 3为本发明信道质量指示的获取方法的第三实施例流程图,如图所示, 本实施例具体包括如下步骤:
步骤 301 , 接收 eNB发送的参考信号。
具体地,所述 eNB发送的参考信号,可以包括 CSI RS或者 CRS或者匿 RS。 用户设备 UE可以通过接收 eNB的通知 (如 RRC信令或者下行控制信息 DCI ) 或者基于小区标识 ID得到参考信号。
具体的, 所述 eNB可以包括普通基站、 中继、 发射点、 接入点或接收点 等。
步骤 302 ,基于所述参考信号, 选择一个预编码矩阵,假设在系统带宽上 进行传输;
具体地, 基于所述参考信号如 CSI RS或者 CRS , 可以得到信道测量值。 例如, 对于 LTE系统, 可以得到一个资源块(Resource Block,简称 RB)或者其 中某一资源单元 ( Resource Element,简称 RE )上的信道测量值, 从而得到预 编码的系统方程, 如下
y = HPs + n (2) 其中 y是接收信号矢量, H是信道矩阵, 可以由信道测量得到, s是发 射的符号矢量, n是干扰和测量噪声。 基于上述方程, 利用预定义的准则如容 量或者吞吐量最大化准则, 可以从码本如 LTE R8或者 R10或者未来系统的码 本中选择得到一个预编码矩阵, 选择上述预编码矩阵时假设在整个系统带宽 上进行传输, 在所述整个系统带宽的各个 RB上使用相同的预编码矩阵。
具体地, 所述假设在系统带宽上进行传输,可以是假设在所述系统带宽上 进行物理下行共享信道 ( Phys i ca l Downl ink Shared Channe l,简称 PDSCH ) 传输。 此外,也可以是^^设在所述子带上进行其它业务信道的传输。
步骤 303 , 基于所述参考信号, 计算至少两个子带的子带信道质量指示 CQI,其中计算所述子带 CQI 时可以假设在子带上进行传输并假设使用所选择 的预编码矩阵,所述子带之间具有重叠的资源块。
具体地, 基于上述方程( 2 )并设定其中方程( 2 ) 中的预编码矩阵 P使用 所选择的预编码矩阵, 可以得到该资源块 RB或者 RE上的信干噪比 SINR。 由 上述得到多个 RE或者 RB上的 SINR得到子带 CQI的方法,与第一实施例类似, 此处不赘述。 以上所述子带, 可以由多个连续的资源块 RB构成。 多个连续的 子带可以组成系统带宽。 以是^ ^设在所述子带上进行物理下行共享信道(Phys i ca l Downl ink Shared Channe l ,简称 PDSCH )传输并设定使用所选择的预编码矩阵。 此外,也可以是 H没在所述子带上进行其它业务信道的传输。 所述子带 CQI 可以用于所述业 务信道的传输。
具体地, 所述相邻的子带之间具有重叠的资源块 RB, 即存在相同的 RB。 例如可以具有一个重叠的 RB或者两个重叠的 RB。 例如系统带宽由 9个 RB构 成, 子带 S1含有的 RB依次为 RBI , RB2, RB3和 RB4; 子带 S2含有的 RB依次 为 RB4 , RB5 ,RB6和 RB7 ; 子带 S3含有的 RB依次为 RB7 , RB8和 RB9。 子带 S1与 S2之间存在相同的 RB为 RB4 ,子带 S2与 S3之间存在相同的 RB为 RB7。
进一步地, 所述步骤 303还可以包括:
基于所述参考信号, 计算宽带信道质量指示 CQI,其中计算所述宽带 CQI 时假设在系统带宽上使用所选择的预编码矩阵并假设在系统带宽上进行传 输。
具体地, 基于方程( 2 )并设定其中方程( 2 ) 中的预编码矩阵 p在系统带 宽上使用所选择的预编码矩阵, 可以得到系统带宽上各个资源块 RB或者 RE 上的信干噪比 SINR。 利用 EESM或者 MI-ESM方法以及等效 SNR的量化, 由上 述系统带宽上多个 RE或者 RB上的 SINR得到宽带 CQI的方法, 与第一实施例 类似, 此处不赘述。 步骤 304 , 向所述 eNB发送宽带预编码矩阵指示 PMI , 所述宽带 PMI与所 选择的预编码矩阵相对应。
步骤 305 , 向 eNB发送所述子带 CQI , 用于所述 eNB基于所述子带 CQI得 到信道质量。
进一步地, 所述步骤 305还可以包括:
向所述 eNB发送所述宽带 CQI ;
此时, 所述向 eNB发送子带 CQI可以具体为向所述 eNB发送子带 CQI相 对于所述宽带 CQI的差分编码。
所述 eNB根据子带 CQI或者宽带 CQI与子带 CQI相对于所述宽带 CQI的 差分编码得到信道质量如 SINR或者调制阶数或者编码方式或者码率或者传输 块大小或者它们的组合,如第二实施例步骤 202中所述。 所述差分编码可以充 分利用信道的频域相关性,从而减小反馈的开销。
具体地,所述步骤 304和步骤 305 ,用户设备 UE可以通过 PUCCH或者 PUSCH 向 eNB发送宽带 PMI、 子带 CQI或者宽带 CQI 以及子带 CQI相对于所述宽带 CQI的差分编码。 其中所述宽带 PMI、 子带 CQI或者宽带 CQI以及子带 CQI相 对于所述宽带 CQI的差分编码可以在相同或者不同的子帧发送。
本发明实施例信道质量指示的获取方法, 相邻子带之间具有重叠的资源 块 RB, 同时利用不同的子带得到子带特别是重叠区域的资源块的信道质量, 提高了各个子带特别是子带重叠区域的资源块的信道质量的反馈精度, 由此 提高了频率选择性调度的颗粒度, 改进频率选择性调度和链路自适应, 从而 提高了系统的吞吐量。
图 4为本发明信道质量指示的获取方法的第四实施例流程图, 如图所示, 本实施例具体包括如下步骤:
步骤 401 , 向用户设备发送参考信号, 用于所述用户设备基于所述参考信 号计算宽带 PMI和子带 CQI。
具体地, 所述 eNB发送的参考信号,可以包括 CSI RS或者 CRS或匿 RS。 eNB可以通过信令如 RRC信令或者下行控制信息 DCI通知用户设备所发送的参 考信号或者基于小区标识 ID在所述参考信号的资源上发送参考信号。
所述用户设备基于所述参考信号计算宽带 PMI和子带 CQI,如第三实施例 所述。
进一步地, 所述参考信号还可以用于所述用户设备基于所述参考信号计 算宽带 CQI ,如第三实施例所述。
步骤 402 , 接收用户设备 UE发送的宽带 PMI , 所述宽带 PMI用于指示所 述用户设备选择的预编码矩阵, 所述预编码矩阵是基于所述参考信号选择的 并^ ^设在系统带宽上传输。
具体地, 所述宽带 PMI可以包含一个或者多个索引值。
步骤 403 , 接收用户设备 UE发送的至少两个子带的子带 CQI , 基于所述 子带 CQI得到信道质量, 其中所述子带 CQI计算时假设在子带上进行传输并 假设使用所选择的预编码矩阵, 相邻的所述子带之间具有重叠的资源块 RB。
进一步地,所述步骤 403还可以包括接收用户设备发送的宽带 CQI ;此时, 所述接收用户设备发送的子带 CQI 可以具体为接收用户设备发送的子带 CQI 相对于所述宽带 CQI的差分编码。 eNB利用所接收的宽带 CQI和所接收的子带 CQI 相对于所述宽带 CQI 的差分编码,基于预定义的差分编码可以得到子带 CQI。
所述 eNB根据子带 CQI或者宽带 CQI与子带 CQI相对于所述宽带 CQI的 差分编码得到信道质量如 SINR或者调制 P介数或者编码方式或者码率或者传输 块大小或者它们的组合,如第二实施例步骤 202中所述。 所述差分编码可以充 分利用信道的频域相关性,从而减小反馈的开销。
具体地, 所述相邻的子带之间具有重叠的资源块 RB。 例如, 子带 CQI 1对 应的子带 S1含有的 RB依次为 RB1, RB2 , RB3和 RB4,子带 CQI 2对应的子带 S2 含有的 RB依次为 RB4 , RB5,RB6和 RB7 ; eNB基于子带 CQI 1可以基于 SINR与 CQI的映射得到 RB1,RB2 , RB3和 RB4的 SINR1 , eNB基于子带 CQI 2可以基于 SINR与 CQI的映射得到 RB4 , RB5 , RB6和 RB7的 SINR2。子带 CQI 1和子带 CQI 2 对应的子带具有重叠的 RB即 RB4, eNB可以利用基于 SINR1和 SINR2得到更为 精确的 RB4的 SINR3 , 如 SINR3 = ( SINR1+ SINR2 ) /2 , 此时 RB4对应的 SINR3 具有比 SINR1和 SINR2更高的精度。 同时, RB4具有既不同于 RB1, RB2和 RB3 也不同与 RB5, RB6和 RB7的 SINR取值,从而提高了频率选择性调度的颗粒度。
具体地, 所述步骤 402和步骤 403 , eNB可以通过接收 PUCCH或者 PUSCH 信道接收用户设备 UE发送的宽带 PMI、 子带 CQI或者宽带 CQI以及子带 CQI 相对于所述宽带 CQI 的差分编码。 其中可以在相同或者不同的子帧上接收所 述宽带 PMI、子带 CQI或者宽带 CQI以及子带 CQI相对于所述宽带 CQI的差分 编码。
本发明实施例信道质量指示的获取方法, 相邻子带之间具有重叠的资源 块 RB, 同时利用不同的子带得到子带特别是重叠区域的资源块的信道质量, 提高了各个子带特别是子带重叠区域的资源块的信道质量的反馈精度, 由此 提高了频率选择性调度的颗粒度, 改进频率选择性调度和链路自适应, 从而 提高了系统的吞吐量。
图 5为本发明信道质量指示的获取方法的第五实施例流程图, 如图所示, 本实施例具体包括如下步骤:
步骤 501 , 接收 eNB发送的参考信号。
具体的, 所述 eNB包括普通基站、 中继、 发射点、 接入点或接收点等。 具体地,所述 eNB发送的参考信号,可以包括 CSI RS或者 CRS或者匿 RS。 用户设备 UE可以通过接收 eNB通知如 RRC信令或者下行控制信息 DCI或者基 于小区标识 ID得到参考信号。
步骤 502 , 基于所述参考信号, 选择一个预编码矩阵, 选择所述预编码矩 阵时假设仅在子带上进行传输。
具体地, 基于所述参考信号如 CSI RS或者 CRS , 可以得到信道测量值。 例如, 对于 LTE系统, 可以得到一个资源块 RB或者其中某一资源单元 RE上 的信道测量值, 从而得到预编码的系统方程, 如下
y = HPs + n (3) 其中 y是接收信号矢量, H是信道矩阵, 可以由信道测量得到, s是发 射的符号矢量, n是干扰和测量噪声。 基于上述方程, 利用预定义的准则如容 量或者吞吐量最大化准则, 可以从码本如 LTE R8或者 R10或者未来系统的码 本中选择得到一个预编码矩阵, 选择上述预编码矩阵时设定仅在子带上进行 传输, 在所述子带的各个 RB上使用相同的预编码矩阵。
具体地, 所述选择所述预编码矩阵时假设仅在子带上进行传输,可以是假 设在所述子带上进行物理下行共享信道(Phys i ca l Downl ink Shared Channe l , 简称 PDSCH )传输并假设使用所选择的预编码矩阵。 此外,也可以是假设在所 述子带上进行其它业务信道的传输。
进一步地,可以针对系统中各个子带分别选择一个预编码矩阵或者针对 预定义的或者用户设备选择的一个或者多个子带分别选择一个预编码矩阵。
步骤 503 , 基于所述参考信号, 计算至少两个子带的子带信道质量指示 CQI,其中计算所述子带 CQI 时假设在子带上进行传输并假设使用所选择的预 编码矩阵,相邻的所述子带之间具有重叠的资源块。
具体地, 基于上述方程( 3 )并设定其中方程( 3 ) 中的预编码矩阵 p使用 所选择的预编码矩阵, 可以得到该资源块 RB或者 RE上的信干噪比 SINR。 由 上述得到多个 RE或者 RB上的 SINR得到子带 CQI的方法,与第一实施例类似, 此处不赘述。 以上所述子带, 可以由多个连续的资源块 RB构成。 多个连续的 子带可以组成系统带宽。
具体地, 所述计算所述子带 CQI 时假设在子带上进行传输并假设使用所 选择的预编码矩阵,可以是假设在所述子带上进行物理下行共享信道
( Phys i ca l Downl ink Shared Channe l,简称 PDSCH )传输并假设使用所选择 的预编码矩阵。 此外,也可以是 H没在所述子带上进行其它业务信道的传输。 所述子带 CQI可以用于所述业务信道传输。 具体地, 所述相邻的子带之间具有重叠的资源块 RB, 即存在相同的 RB。 例如可以具有一个重叠的 RB或者两个重叠的 RB。 例如系统带宽由 9个 RB构 成, 子带 S1含有的 RB依次为 RBI , RB2,RB3和 RB4; 子带 S2含有的 RB依次 为 RB4 , RB5 , RB6, RB7 ; 子带 S3含有的 RB依次为 RB7 , RB8和 RB9。 上述子 带 S1与 S2之间和子带 S2与 S3之间存在相同的 RB分别为 RB4和 RB7。
进一步地, 所述步骤 503还可以包括:
基于所述参考信号, 计算宽带信道质量指示 CQI,其中计算所述宽带 CQI 行传输。
具体地, 基于方程( 3 )并设定其中方程( 3 ) 中的预编码矩阵 P在各个子 带上使用对应的所选择的预编码矩阵, 可以得到系统带宽上各个资源块 RB或 者 RE上的信干噪比 SINR。 利用 EESM或者 MI-ESM方法以及等效 SNR的量化, 由上述系统带宽上多个 RE或者 RB上的 SINR得到宽带 CQI的方法, 与第一实 施例类似, 此处不赘述。
步骤 504 , 向所述 eNB发送子带预编码矩阵指示 PMI , 所述子带 PMI与子 带上所选择的预编码矩阵相对应。
步骤 505 , 向 eNB发送所述子带 CQI , 用于所述 eNB基于所述子带 CQI得 到信道质量。
进一步地, 所述步骤 505还可以包括:
向所述 eNB发送所述宽带 CQI ;
此时, 所述向 eNB发送子带 CQI可以具体为向所述 eNB发送子带 CQI相 对于所述宽带 CQI的差分编码。
所述 eNB根据子带 CQI或者宽带 CQI与子带 CQI相对于所述宽带 CQI的 差分编码得到信道质量如 SINR或者调制阶数或者编码方式或者码率或者传输 块大小或者它们的组合,如第二实施例步骤 202中所述。 所述差分编码可以充 分利用信道的频域相关性,从而减小反馈的开销。 具体地,所述步骤 304和步骤 305 ,用户设备 UE可以通过 PUCCH或者 PUSCH 向 eNB发送宽带 PMI、 子带 CQI或者宽带 CQI 以及子带 CQI相对于所述宽带 CQI的差分编码。 其中所述宽带 PMI、 子带 CQI或者宽带 CQI以及子带 CQI相 对于所述宽带 CQI的差分编码可以在相同或者不同的子帧发送。
进一步地, 子带 CQI对应的子带大小可以与子带 PMI对应的子带大小相 等或者不相等。 优选地, 子带 CQI的计算假定在对应子带的各个 RB上使用子 带 PMI对应的子带的各个 RB的预编码矩阵并且^ ^定在子带 CQI对应的子带上 传输, 该特征可以用于子带 CQI对应的子带大小可以与子带 PMI对应的子带 大小不相等的情况。例如,如果子带 CQI对应的子带 S1含有的 RB依次为 RB4 , RB5 , RB6, RB7 ; 子带 CQI对应的子带 S2含有的 RB依次为 RB7 , RB8, RB9 , 子 带 PMI对应的子带 S3包括 5个 RB (假设是 RBI , RB2 , RB3 , RB4 , 和 RB5 ) , 且 H没在子带 CQI对应的子带上传输, 则子带 CQI对应子带的每个资源块可 以使用该资源块所在子带对应的子带 PMI指示的预编码矩阵, 例如, 子带 CQI 对应的子带 S1的 RB4上可以使用子带 PMI对应的子带的 RB4上的预编码矩阵。
进一步地, 子带 CQI 也可以针对多个传输的码字计算, 不同码字的子带
CQI可以相对于其它码字的子带 CQI进行差分编码。例如,存在两个码字分别 为 CW0和 CW1 , CW1的子带 CQI相对于 CW0的子带 CQI进行差分编码。
本发明实施例信道质量指示的获取方法, 相邻子带之间具有重叠的资源 块 RB, 同时利用不同的子带得到子带特别是重叠区域的资源块的信道质量, 提高了各个子带特别是子带重叠区域的资源块的信道质量的反馈精度, 由此 提高了频率选择性调度的颗粒度, 改进频率选择性调度和链路自适应, 从而 提高了系统的吞吐量。
图 6为本发明信道质量指示的获取方法的第六实施例流程图, 如图所示, 本实施例具体包括如下步骤:
步骤 601 , 向用户设备发送参考信号, 用于所述用户设备基于所述参考信 号计算子带 PMI和子带 CQI。 具体地, 所述 eNB发送的参考信号,可以包括 CSI RS或者 CRS或匿 RS。 eNB可以通过信令如 RRC信令或者下行控制信息 DCI通知用户设备所发送的参 考信号或者基于小区标识 ID在所述参考信号的资源上发送参考信号。
具体的, 所述 eNB可以包括普通基站、 中继、 发射点、 接入点或接收点 等。
所述用户设备基于所述参考信号计算子带 PMI和子带 CQI,如第五实施例 所述。
进一步地, 所述参考信号还可以用于所述用户设备基于所述参考信号计 算宽带 CQI ,如第三实施例所述。
步骤 602 , 接收用户设备 UE发送的子带 PMI ; 所述子带 PMI用于指示用 户设备选择的预编码矩阵, 所述预编码矩阵是基于所述参考信号选择的得到 并假设在子带上进行传输。
具体地, 所述子带 PMI可以包含一个或者多个索引值。
步骤 603 , 接收 UE发送的至少两个子带的子带 CQI , 基于所述子带 CQI 得到信道质量, 其中所述子带 CQI 计算时假设在子带上进行传输并假设使用 所选择的预编码矩阵,所述子带之间具有重叠的资源块 RB。
进一步地,所述步骤 603还可以包括接收用户设备发送的宽带 CQI ;此时, 所述接收用户设备发送的子带 CQI 可以具体为接收用户设备发送的子带 CQI 相对于所述宽带 CQI的差分编码。 eNB利用所接收的宽带 CQI和所接收的子带 CQI 相对于所述宽带 CQI 的差分编码,基于预定义的差分编码可以得到子带 CQI。
所述 eNB根据子带 CQI或者宽带 CQI与子带 CQI相对于所述宽带 CQI的 差分编码得到信道质量如 SINR或者调制阶数或者编码方式或者码率或者传输 块大小或者它们的组合,如第二实施例步骤 202中所述。 所述差分编码可以充 分利用信道的频域相关性,从而减小反馈的开销。
具体地, 所述相邻的子带之间具有重叠的资源块 RB。 例如, 子带 CQI 1对 应的子带 SI含有的 RB依次为 RB1, RB2, RB3和 RB4,子带 CQI 2对应的子带 S2 含有的 RB依次为 RB4 , RB5 , RB6和 RB7 ; eNB基于子带 CQI 1可以基于 SINR 与 CQI的映射得到 RB1,RB2, RB3和 RB4的 SINR1 , eNB基于子带 CQI 2可以基 于 SINR与 CQI的映射得到 RB4 , RB5, RB6和 RB7的 SINR2。 因为子带 CQI 1和 子带 CQI 2对应的子带具有重叠的 RB即 RB4, eNB可以利用基于 SINR1和 SINR2 得到更为精确的 RB4的 SINR3 , 如 SINR3 = ( SINR1+ SINR2 ) /2 , 此时 RB4 对应的 SINR3具有比 SINR1和 S INR2更高的精度。 同时, RB4具有既不同于 RBI, RB2和 RB3也不同于 RB5, RB6和 RB7的 SINR取值, 从而提高了频率选择 性调度的颗粒度。
具体地, 在所述步骤 602和步骤 603 中, eNB可以通过接收 PUCCH或者
PUSCH信道接收用户设备 UE发送的宽带 PMI、 子带 CQI或者宽带 CQI以及子 带 CQI相对于所述宽带 CQI 的差分编码。 其中可以在相同或者不同的子帧上 接收所述宽带 PMI、 子带 CQI或者宽带 CQI以及子带 CQI相对于所述宽带 CQI 的差分编码。
本发明实施例信道质量指示的获取方法, 相邻子带之间具有重叠的资源 块 RB, 同时利用不同的子带得到子带特别是重叠区域的资源块的信道质量, 提高了各个子带特别是子带重叠区域的资源块的信道质量的反馈精度, 由此 提高了频率选择性调度的颗粒度, 改进频率选择性调度和链路自适应。 此外, 重叠与非重叠区域的划分进一步改进了频域可以分辨的 CQI 的颗粒度, 从而 进一步改进了调度的颗粒度。 由此可以改进 MU-MIM0传输时多用户配对的颗 粒度, 从而改进了系统吞吐量。
图 Ί 是本发明实施例提供的一种信道质量指示的获取系统的结构组成 示意图。 本发明实施例的所述系统包括用户设备 UE11和 eNB12。 其中, 所 述用户设备 UE11的结构请参见图 8和图 10 , 所述 eNB12的结构示意图请 参见图 9和图 11。 具体地, 所述用户设备 UE11和所述 eNB12如以下实施 例所述。 图 8为本发明实施例提供的一种用户设备 UE的示意图, 如图所示, 信道 质量指示的获取的用户设备具体包括: 计算单元 11和发送单元 12。
计算单元 11用于计算至少两个子带的子带信道质量指示 CQI,其中,所述 子带之间具有重叠的资源块;
发送单元 12用于向演进节点 B eNB发送所述子带 CQI , 该子带 CQI可以 用于所述 eNB基于所述子带 CQI得到信道质量。
另外, 图 10为本发明实施例提供的一种用户设备 UE的另一示意图, 如 图 10所示, 本实施例 UE还可以包括接收单元 10和选择单元 13。
接收单元 10用于接收 eNB发送的参考信号;
具体地,所述 eNB发送的参考信号,可以包括 CSI RS或者 CRS或者匿 RS。 用户设备 UE可以通过接收 eNB通知如 RRC信令或者下行控制信息 DCI或者基 于小区标识 ID得到参考信号。
计算单元 11基于所述参考信号计算子带信道质量指示 CQI ;
其中, 计算所述子带 CQI 时假设在子带上进行传输, 相邻的子带之间具 有重叠的资源块 RB。
具体地, 基于所述参考信号如 CSI RS或者 CRS , 可以得到信道测量值。 基于所述信道测量值, 得到所述子带 CQI , 如图 1所示第一实施例步骤 101所 述。
进一步地, 所述计算单元还可以包括用于基于所述参考信号, 计算宽带 信道质量指示 CQI,其中计算所述宽带 CQI时支设在系统带宽上进行传输; 具体地, 上述计算过程如第一实施例所述。
选择单元 13用于基于所述参考信号, 并根据在系统带宽上进行传输, 选 择一个预编码矩阵。 计算单元根据使用所选择的预编码矩阵和在所述子带上 进行传输, 计算所述子带 CQI。发送单元用于向所述 eNB发送宽带预编码矩阵 指示 PMI , 所述宽带 PMI与所选择的所述预编码矩阵相对应。 所述计算单元用 于基于所述参考信号, 计算子带信道质量指示 CQI,其中计算所述子带 CQI时 假设在子带上进行传输并假设使用所选择的预编码矩阵,相邻的所述子带之 间具有重叠的资源块。
进一步地, 所述计算单元用于基于所述参考信号, 并根据在子带上进行 传输, 选择预编码矩阵; 发送单元用于向所述 eNB发送子带预编码矩阵指示 PMI , 所述子带 PMI与所选择的预编码矩阵相对应用于基于所述参考信号, 计 算宽带信道质量指示 CQI,其中计算所述宽带 CQI时假设在系统带宽上使用所 选择的预编码矩阵并假设在系统带宽上进行传输;
具体地, 上述计算过程如第三实施例所述。
或者, 所述选择单元 13计算单元可以包括用于基于所述参考信号, 选择 一个预编码矩阵, 选择预编码矩阵时假设仅在子带上进行传输; 所述计算单 元用于根据使用所选择的预编码矩阵和在子带上进行传输, 计算所述子带
CQI ; 所述发送单元用于向所述 eNB发送子带预编码矩阵指示 PMI , 所述子带 PMI与所选择的预编码矩阵相对应
进一步地, 所述计算单元还可以包括用于基于所述参考信号, 计算宽带 信道质量指示 CQI,其中计算所述宽带 CQI时假设在各个子带上使用对应的所 选择的预编码矩阵并假设在系统带宽上进行传输;
具体地, 上述计算过程如第五实施例所述。
发送单元 12 , 用于向 eNB发送所述子带 CQI , 用于所述 eNB根据所述子 带 CQI得到信道质量。
具体地, 所述发送单元可以通过物理上行控制信道( Phys i ca l Upl ink
Cont rol Channe l, PUCCH ) 和物理上行共享信道(Phys i ca l Upl ink Shared Channe l , 简称 PUSCH)向 eNB发送子带 CQI。
进一步地, 所述发送单元还可以包括用于向所述 eNB发送所述宽带 CQI ; 此时, 所述向 eNB发送子带 CQI可以具体为向所述 eNB发送子带 CQI相 对于所述宽带 CQI的差分编码。
或者, 所述发送单元还可以包括用于向所述 eNB发送宽带预编码矩阵指 示 PMI , 所述宽带 PMI与所选择的预编码矩阵相对应;
进一步地, 所述发送单元还可以包括用于向所述 eNB发送所述宽带 CQI ; 此时, 所述向 eNB发送子带 CQI可以具体为向所述 eNB发送子带 CQI相 对于所述宽带 CQI的差分编码。
其中所述宽带 CQI和子带 CQI基于所述选择的预编码矩阵或者宽带 PMI 计算。
或者, 所述发送单元还可以包括用于向所述 eNB发送子带预编码矩阵指 示 PMI , 所述子带 PMI与子带上所选择的预编码矩阵相对应。
进一步地, 所述发送单元还可以包括用于向所述 eNB发送所述宽带 CQI ; 此时, 所述向 eNB发送子带 CQI可以具体为向所述 eNB发送子带 CQI相 对于所述宽带 CQI的差分编码。
其中, 所述宽带 CQI和子带 CQI基于所述各个子带上所选择的预编码矩 阵或者子带 PMI计算;
所述 eNB根据子带 CQI或者宽带 CQI与子带 CQI相对于所述宽带 CQI的 差分编码得到信道质量如 SINR或者调制阶数或者编码方式或者码率或者传输 块大小或者它们的组合,如第二实施例步骤 202中所述。
具体地, 所述相邻的子带之间具有重叠的资源块 RB, 即存在相同的 RB。 例如可以具有一个重叠的 RB或者两个重叠的 RB。 例如系统带宽由 9个 RB构 成, 子带 S1含有的 RB依次为 RBI , RB2,RB3和 RB4; 子带 S2含有的 RB依次 为 RB4 , RB5 ,RB6和 RB7 ; 子带 S3含有的 RB依次为 RB7 , RB8和 RB9.上述子 带 S1与 S2之间和子带 S2与 S3之间存在相同的 RB分别为 RB4和 RB7。
具体地, 所述发送单元可以通过 PUCCH或者 PUSCH向 eNB发送宽带 PMI、 子带 CQI或者宽带 CQI 以及子带 CQI相对于所述宽带 CQI的差分编码。 其中 所述宽带 PMI、子带 CQI或者宽带 CQI以及子带 CQI相对于所述宽带 CQI的差 分编码可以在相同或者不同的子帧发送。
进一步地, 子带 CQI对应的子带大小可以与子带 PMI对应的子带大小相 等或者不相等。 子带 CQI的计算假定在对应子带的各个 RB上使用子带 PMI对 应的子带的各个 RB的预编码矩阵并且假定在子带 CQI对应的子带上传输。
本发明实施例提供的用户设备 UE , 相邻子带之间具有重叠的资源块 RB , 同时利用不同的子带得到子带特别是重叠区域的资源块的信道质量, 提高了 各个子带特别是子带重叠区域的资源块的信道质量的反馈精度, 由此提高了 频率选择性调度的颗粒度, 改进频率选择性调度和链路自适应, 从而提高了 系统的吞吐量。
图 9为本发明实施例提供的一种 eNB的示意图, 如图所示, 信道质量指 示的获取的 eNB具体包括: 接收单元 22和获取单元 2 3。
接收单元 22用于接收用户设备发送的至少两个子带的子带 CQI , 其中, 所述子带之间具有重叠的资源块; 获取单元 23用于基于所述子带 CQI得到信 道质量。
其中, 在所述重叠的资源块位于所述至少两个子带中的第一子带和第二 子带的情况下, 所述获取单元可以用于根据所述第一子带的子带 CQI 和第二 子带的子带 CQI , 得到所述重叠的资源块的信道质量。 例如, 根据所述第一子 带的子带 CQI和第二子带的子带 CQI分别得到所述重叠的资源块的第一信道 质量信息和所述重叠的资源块的第二信道质量信息, 选择第一信道质量信息 和第二信道质量信息中的一个作为所述重叠的资源块的信道质量。
优选地, 所述获取单元可以用于根据所述第一子带的子带 CQI 和所述第 二子带的子带 CQI 与所述所述重叠的资源块的信道质量之间的函数关系, 得 到所述重叠的资源块的信道质量。
优选地, 所述获取单元还可以用于根据所述第一子带的子带 CQI , 得到所 述重叠的资源块的第一信道质量信息, 根据所述第二子带的子带 CQ I ,得到所 述重叠的资源块的第二信道质量信息, 以及对所述第一信道质量信息和第二 信道质量信息取平均, 得到所述重叠的资源块的信道质量。
图 11为本发明实施例提供的一种 eNB的另一示意图, 如图 1 1所示, 本 实施例的 eNB还包括发送单元 21, 用于向所述用户设备发送参考信号, 用于 所述用户设备基于所述参考信号计算子带 CQI ;
具体地, 所述 eNB发送的参考信号,可以包括 CSI RS或者 CRS或匿 RS。 eNB可以通过信令如 RRC信令或者下行控制信息 DCI通知用户设备所发送的参 考信号或者基于小区标识 ID在所述参考信号的资源上发送参考信号。
所述用户设备基于所述参考信号计算 CQI或者宽带 PMI或者子带 PMI或 者宽带 CQI,如第一实施例、 第三实施例和第五实施例或者图 8所述实施例所 述, 此处不赘述。
接收单元 22用于接收用户设备发送的子带 CQI , 基于所述子带 CQI得到 信道质量, 其中所述子带 CQI 计算时假设在子带上进行传输, 相邻的所述子 带之间具有重叠的资源块 RB。
具体地,所述接收单元可以通过接收物理上行控制信道( Phys i ca l Upl ink Cont rol Channe l ,简称 PUCCH )和物理上行共享信道(Phys i ca l Upl ink Shared Channe l , 简称 PUSCH)接收用户设备 UE发送的子带 CQI。
进一步地, 所述接收单元还用于接收所述用户设备发送的所述宽带 CQI , 以及接收所述用户设备发送的所述子带 CQI相对于所述宽带 CQI的差分编码; 所述带宽 CQI 为所述用户设备基于所述参考信号, 以及根据在系统带宽上使 用所选择的预编码矩阵和在系统带宽上进行传输而计算的。
或者, 所述接收单元还用于接收所述用户设备发送的宽带预编码矩阵指 示 PMI , 所述 PMI与所述用户设备所选择的预编码矩阵相对应。基于所述子带 CQI得到信道质量,其中所述子带 CQI计算时假设在子带上进行传输并假设使 用所选择的预编码矩阵, 相邻的所述子带之间具有重叠的资源块 RB;
进一步地, 所述接收单元还用于接收所述用户设备发送的宽带 CQI , 以及 接收所述用户设备发送的子带 CQI相对于所述宽带 CQI 的差分编码; 所述宽 带 CQI 为所述用户设备基于所述参考信号, 并根据在系统带宽上进行传输而 计算的。 或者, 所述接收单元还用于接收所述用户设备发送的子带预编码矩阵指 示 PMI , 所述子带 PMI与所选择的预编码矩阵相对应。基于所述子带 CQI得到 信道质量, 其中所述子带 CQI 计算时假设在子带上进行传输并假设使用所选 择的预编码矩阵, 相邻的所述子带之间具有重叠的资源块 RB;
进一步地,所述接收单元还可以包括接收用户设备发送的宽带 CQI ;此时, 所述接收用户设备发送的子带 CQI 可以具体为接收用户设备发送的子带 CQI 相对于所述宽带 CQI的差分编码。 eNB利用所接收的宽带 CQI和所接收的子带 CQI 相对于所述宽带 CQI 的差分编码,基于预定义的差分编码可以得到子带 CQI。
所述 eNB根据子带 CQI或者宽带 CQI与子带 CQI相对于所述宽带 CQI的 差分编码得到信道质量如 SINR或者调制阶数或者编码方式或者码率或者传输 块大小或者它们的组合,如第二实施例步骤 202中所述。 所述差分编码可以充 分利用信道的频域相关性,从而减小反馈的开销。
具体, 所述相邻的子带之间具有重叠的资源块 RB, 例如可以具有一个重 叠的 RB或者两个重叠的 RB。 例如系统带宽由 9个 RB构成, 子带 S1含有的 RB依次为 RBI , RB2 , RB3和 RB4; 子带 CQI对应的子带 S2含有的 RB依次为 RB4 , RB5 , RB6和 RB7 ; 子带 CQI对应的子带 S3含有的 RB依次为 RB7 , RB8 和 RB9。 子带 S1与 S2之间存在相同的 RB为 RB4 , 子带 S2与 S3之间存在相 同的 RB为 RB7。
本发明实施例的 eNB, 相邻子带之间具有重叠的资源块 RB, 同时利用不 同的子带得到子带特别是重叠区域的资源块的信道质量, 提高了各个子带特 别是子带重叠区域的资源块的信道质量的反馈精度 , 由此提高了频率选择性 调度的颗粒度, 改进频率选择性调度和链路自适应, 从而提高了系统的吞吐 量。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器
( RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 R0M、 电可擦除可编程 R0M、 寄存器、 硬盘、 可移动磁盘、 CD-R0M、 或技术领域内所公知的任意其它形式 的存储介质中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书 CP12144
1、 一种信道质量指示的获取方法, 其特征在于, 所述方法包括: 计算至少两个子带的子带信道质量指示 CQI,其中, 所述子带之间具有重 叠的资源块;
向演进节点 B eNB发送所述子带 CQI。
2、 根据权利要求 1所述的方法,其特征在于,所述计算至少两个子带的 子带 CQI包括:
接收所述 eNB发送的参考信号;
基于所述参考信号, 计算所述子带 CQI。
3、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 基于所述参考信号, 并根据在系统带宽上进行传输, 选择一个预编码矩 阵;
所述计算至少两个子带的子带 CQI 包括: 根据使用所选择的预编码矩阵 和在所述子带上进行传输, 计算所述子带 CQI ;
向所述 eNB发送宽带预编码矩阵指示 PMI ,所述宽带 PMI与所选择的所述 预编码矩阵相对应。
4、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 基于所述参考信号, 并根据在系统带宽上进行传输, 计算宽带 CQI ; 所述向 eNB发送所述子带 CQI包括: 向所述 eNB发送所述宽带 CQI , 以及 向所述 eNB发送所述子带 CQI相对于所述宽带 CQI的差分编码。
5、 根据权利要求 3所述的方法, 其特征在于, 所述方法还包括: 基于所述参考信号, 以及根据在系统带宽上使用所选择的预编码矩阵和 在系统带宽上进行传输计算宽带 CQI ;
所述向 eNB发送所述子带 CQI包括: 向所述 eNB发送所述宽带 CQI , 以及 向所述 eNB发送所述子带 CQI相对于所述宽带 CQI的差分编码。
6、 根据权利要求 2所述的方法, 其特征在于, 所述方法还包括: 基于所述参考信号, 并根据在子带上进行传输, 选择预编码矩阵; 所述计算至少两个子带的子带 CQI 包括: 根据使用所选择的预编码矩阵 和在子带上进行传输, 计算所述子带 CQI ;
向所述 eNB发送子带预编码矩阵指示 PMI ,所述子带 PMI与所选择的预编 码矩阵相对应。
7、 根据权利要求 6所述的方法,其特征在于,所述子带 CQI对应的子带 大小与所述子带 PMI对应的子带大小相等或不相等。
8、 根据权利要求 6或 Ί所述的方法,其特征在于,所述根据使用所选择 的预编码矩阵和在子带上进行传输, 计算所述子带 CQI 还包括: 根据所述子 带 CQI对应子带的各个资源块上使用所述子带 PMI对应子带的各个资源块上 的预编码矩阵, 以及在所述子带 CQI 对应的子带上进行传输, 计算所述子带 CQI。
9、 根据权利要求 1-8任一所述的方法,其特征在于,所述相邻的子带之 间具有重叠的资源块为, 相邻的所述子带之间具有一个或者两个重叠的资源 块。
10、 根据权利要求 1-9任一所述的方法, 其特征在于, 所述计算子 带 CQI还包括:
根据在子带上进行传输, 计算所述子带 CQI。
11、 根据权利要求 1-10任一所述的方法, 其特征在于, 所述信道质 量包括以下至少之一: 信干噪比、 调制阶数、 编码方式、 传输块大小和码率。
12、 一种信道质量指示的获取方法, 其特征在于, 所述方法包括: 接收用户设备发送的至少两个子带的子带 CQI , 其中, 所述子带之间具有 重叠的资源块;
基于所述子带 CQI得到信道质量。
13、 根据权利要求 12所述的方法, 其特征在于, 所述基于所述子带
CQI得到信道质量包括: 如果所述重叠的资源块位于所述至少两个子带中的第一子带和第二子 带,根据所述第一子带的子带 CQI和第二子带的子带 CQI , 得到所述重叠的资 源块的信道质量。
14、 根据权利要求 1 3所述的方法, 其特征在于, 根据所述第一子带 的子带 CQI和所述第二子带的子带 CQI ,得到所述重叠的资源块的信道质量包 括:
根据所述第一子带的子带 CQ I、所述第二子带的子带 CQI和所述重叠的资 源块的信道质量之间的函数关系, 得到所述重叠的资源块的信道质量。
15、 根据权利要求 14所述的方法, 其特征在于, 根据所述第一子带 的子带 CQI和所述第二子带的子带 CQI与所述重叠的资源块的信道质量之间 的函数关系 , 得到所述重叠的资源块的信道质量包括:
根据所述第一子带的子带 CQ I ,得到所述重叠的资源块的第一信道质量信 息;
根据所述第二子带的子带 CQ I ,得到所述重叠的资源块的第二信道质量信 息;
对所述第一信道质量信息和第二信道质量信息取平均, 得到所述重叠的 资源块的信道质量。
16、 根据权利要求 12所述的方法, 其特征在于, 所述方法还包括: 向所述用户设备发送参考信号, 用于所述用户设备基于所述参考信号计 算子带 CQI。
17、 根据权利要求 16所述的方法, 其特征在于, 所述方法还包括: 接收所述用户设备发送的宽带预编码矩阵指示 PMI , 其中, 所述宽带 PMI 与所述用户设备所选择的预编码矩阵相对应, 所述预编码矩阵是所述用户设 备根据所述参考信号和在系统带宽上进行传输选择得到的, 所述子带 CQI 是 所述用户设备根据使用所选择的预编码矩阵和在所述子带上进行传输和计算 得到的。
18、 根据权利要求 16所述的方法, 其特征在于, 所述接收用户设备 发送的至少两个子带的子带 CQI包括:
接收所述用户设备发送的宽带 CQI , 以及接收所述用户设备发送的子带 CQI相对于所述宽带 CQI的差分编码, 其中, 所述宽带 CQI为所述用户设备基 于所述参考信号, 并根据在系统带宽上进行传输而计算得到的。
19、 根据权利要求 17所述的方法, 其特征在于, 所述接收用户设备 发送的至少两个子带的子带 CQI包括:
接收所述用户设备发送的所述宽带 CQI , 以及接收所述用户设备发送的所 述子带 CQI相对于所述宽带 CQI的差分编码, 其中, 所述带宽 CQI为所述用 户设备基于所述参考信号, 以及根据在系统带宽上使用所选择的预编码矩阵 和在系统带宽上进行传输而计算得到的。
20、 根据权利要求 17所述的方法, 其特征在于, 所述方法还包括: 接收所述用户设备发送的子带预编码矩阵指示 PMI , 其中, 所述子带 PMI 与所述用户设备所选择的预编码矩阵相对应, 所述预编码矩阵是所述用户设 备基于所述参考信号和在子带上进行传输选择得到的, 所述子带 CQI 是所述 用户设备根据使用所选择的预编码矩阵和在子带上进行传输计算得到的。
21、 根据权利要求 20所述的方法, 其特征在于, 所述子带 CQI对应 的子带大小与所述子带 PMI对应的子带大小相等或不相等。
22、 根据权利要求 12-21任一所述的方法, 其特征在于, 所述相邻 的子带之间具有重叠的资源块为, 所述相邻的所述子带之间具有一个或者两 个重叠的资源块。
23、 根据权利要求 12-22任一所述的方法, 其特征在于, 所述信道 质量包括以下至少之一: 信干噪比、 调制阶数、 编码方式、 传输块大小和码 率。
24、 一种用户设备, 其特征在于, 所述用户设备包括:
计算单元, 用于计算至少两个子带的子带信道质量指示 CQI,其中, 所述 子带之间具有重叠的资源块;
发送单元, 用于向演进节点 B eNB发送所述子带 CQI。
25、 根据权利要求 24所述的用户设备, 其特征在于, 所述用户设备 还包括接收单元, 用于接收所述 eNB发送的参考信号, 所述计算单元用于基 于所述参考信号计算所述子带 CQI。
26、 根据权利要求 25所述的用户设备, 其特征在于, 所述用户设备 还包括:
选择单元, 用于基于所述参考信号, 并根据在系统带宽上进行传输, 选 择一个预编码矩阵; 所述计算单元用于根据使用所选择的预编码矩阵和在所述子带上进行传 输, 计算所述子带 CQI ;
所述发送单元用于向所述 eNB发送宽带预编码矩阵指示 PMI , 所述宽带 PMI与所选择的所述预编码矩阵相对应。
27、 根据权利要求 25所述的用户设备, 其特征在于:
所述计算单元还用于基于所述参考信号, 并根据在系统带宽上进行传输, 计算宽带 CQI ;
所述发送单元还用于向所述 eNB发送所述宽带 CQI ,以及向所述 eNB发送 所述子带 CQI相对于所述宽带 CQI的差分编码。
28、 根据权利要求 26所述的用户设备, 其特征在于:
所述计算单元还用于基于所述参考信号, 以及根据在系统带宽上使用所 选择的预编码矩阵和在系统带宽上进行传输计算宽带 CQI ;
所述发送单元还用于向所述 eNB发送所述宽带 CQI ,以及向所述 eNB发送 所述子带 CQI相对于所述宽带 CQI的差分编码。
29、 根据权利要求 25所述的用户设备, 其特征在于, 所述用户设备 还包括:
选择单元, 用于基于所述参考信号, 并根据在子带上进行传输, 选择预 编码矩阵; 计算所述子带 CQI ;
所述发送单元用于向所述 eNB发送子带预编码矩阵指示 PMI , 所述子带 PMI与所选择的预编码矩阵相对应。
30、 根据权利要求 29所述的用户设备, 其特征在于, 所述子带 CQI 对应的子带大小与所述子带 PMI对应的子带大小相等或不相等。
31、 根据权利要求 29或 30所述的用户设备, 其特征在于, 所述计 算单元还用于根据所述子带 CQI 对应子带的各个资源块上使用所述子带 PMI 对应子带的各个资源块上的预编码矩阵, 以及在所述子带 CQI 对应的子带上 进行传输, 计算所述子带 CQI。
32、 根据权利要求 24-31任一所述的用户设备, 其特征在于, 所述 相邻的子带之间具有重叠的资源块为, 相邻的所述子带之间具有一个或者两 个重叠的资源块。
33、 根据权利要求 24-31任一所述的用户设备, 其特征在于, 所述 计算单元还用于根据在子带上进行传输, 计算所述子带 CQI。
34、 根据权利要求 24-31任一所述的用户设备, 其特征在于, 所述 信道质量包括以下至少之一: 信干噪比、 调制阶数、 编码方式、 传输块大小 和码率。
35、 一种演进节点 B eNB, 其特征在于, 所述 eNB包括:
接收单元, 用于接收用户设备发送的至少两个子带的子带 CQI , 其中, 所 述子带之间具有重叠的资源块;
获取单元, 用于基于所述子带 CQI得到信道质量。
36、 根据权利要求 35所述的 eNB , 其特征在于,
在所述重叠的资源块位于所述至少两个子带中的第一子带和第二子带的 情况下, 所述获取单元用于根据所述第一子带的子带 CQI 和第二子带的子带 CQI , 得到所述重叠的资源块的信道质量。
37、 根据权利要求 36所述的 eNB , 其特征在于,
所述获取单元用于根据所述第一子带的子带 CQI 和所述第二子带的子带 CQI与所述所述重叠的资源块的信道质量之间的函数关系,得到所述重叠的资 源块的信道质量。
38、 根据权利要求 37所述的 eNB , 其特征在于,
所述获取单元用于根据所述第一子带的子带 CQI ,得到所述重叠的资源块 的第一信道质量信息, 根据所述第二子带的子带 CQI ,得到所述重叠的资源块 的第二信道质量信息, 以及对所述第一信道质量信息和第二信道质量信息取 平均, 得到所述重叠的资源块的信道质量。
39、 根据权利要求 35所述的 eNB, 其特征在于, 所述 eNB还包括: 发送单元, 用于向所述用户设备发送参考信号, 用于所述用户设备基于 所述参考信号计算子带 CQI。
40、 根据权利要求 39所述的 eNB, 其特征在于:
所述接收单元还用于接收所述用户设备发送的宽带预编码矩阵指示 PMI , 其中, 所述宽带 PMI 与所述用户设备所选择的预编码矩阵相对应, 所述预编 码矩阵是所述用户设备根据所述参考信号和在系统带宽上进行传输选择得到 的, 所述子带 CQI 是所述用户设备根据使用所选择的预编码矩阵和在所述子 带上进行传输和计算得到的。
41、 根据权利要求 39所述的 eNB, 其特征在于, 所述接收单元还用 于接收所述用户设备发送的宽带 CQI , 以及接收所述用户设备发送的子带 CQI 相对于所述宽带 CQI 的差分编码, 其中, 所述宽带 CQI为所述用户设备基于 所述参考信号 , 并根据在系统带宽上进行传输而计算得到的。
42、 根据权利要求 40所述的 eNB, 其特征在于, 所述接收单元还用 于接收所述用户设备发送的所述宽带 CQI ,以及接收所述用户设备发送的所述 子带 CQI相对于所述宽带 CQI的差分编码, 其中, 所述带宽 CQI为所述用户 设备基于所述参考信号, 以及根据在系统带宽上使用所选择的预编码矩阵和 在系统带宽上进行传输而计算得到的。
43、 根据权利要求 39所述的 eNB , 其特征在于, 所述接收单元还用 于接收所述用户设备发送的子带预编码矩阵指示 PMI , 其中, 所述子带 PMI与 所述用户设备所选择的预编码矩阵相对应, 所述预编码矩阵是所述用户设备 基于所述参考信号和在子带上进行传输选择得到的, 所述子带 CQI 是所述用 户设备根据使用所选择的预编码矩阵和在子带上进行传输计算得到的。
44、 根据权利要求 43所述的 eNB, 其特征在于, 所述子带 CQ I对应 的子带大小与所述子带 PMI对应的子带大小相等或不相等。
45、 根据权利要求 38-44任一所述的 eNB,其特征在于,所述相邻的 子带之间具有重叠的资源块为, 所述相邻的所述子带之间具有一个或者两个 重叠的资源块。
46、 根据权利要求 35-44任一所述的 eNB,其特征在于,所述信道质 量包括以下至少之一: 信干噪比、 调制阶数、 编码方式、 传输块大小和码率。
47、 一种计算信道质量指示的系统, 其特征在于, 包括: 用户设备 和演进节点 B eNB;
其中, 所述用户设备包括如权利要求 24-34任一所述的用户设备; 所述 eNB包括如权利要求 35-46任一所述的 eNB。
PCT/CN2012/078435 2012-07-10 2012-07-10 信道质量指示的获取方法、用户设备、演进节点b和系统 WO2014008633A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/078435 WO2014008633A1 (zh) 2012-07-10 2012-07-10 信道质量指示的获取方法、用户设备、演进节点b和系统
CN201280035676.3A CN103718487B (zh) 2012-07-10 2012-07-10 信道质量指示的获取方法、用户设备、演进节点b和系统
EP12881070.2A EP2858284B1 (en) 2012-07-10 2012-07-10 Channel quality indicator acquisition method, user equipment, and evolved node b and system
US14/593,423 US9794818B2 (en) 2012-07-10 2015-01-09 Method for acquiring channel quality indicator, user equipment, evolved node B and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/078435 WO2014008633A1 (zh) 2012-07-10 2012-07-10 信道质量指示的获取方法、用户设备、演进节点b和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/593,423 Continuation US9794818B2 (en) 2012-07-10 2015-01-09 Method for acquiring channel quality indicator, user equipment, evolved node B and system

Publications (1)

Publication Number Publication Date
WO2014008633A1 true WO2014008633A1 (zh) 2014-01-16

Family

ID=49915310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078435 WO2014008633A1 (zh) 2012-07-10 2012-07-10 信道质量指示的获取方法、用户设备、演进节点b和系统

Country Status (4)

Country Link
US (1) US9794818B2 (zh)
EP (1) EP2858284B1 (zh)
CN (1) CN103718487B (zh)
WO (1) WO2014008633A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140120002A (ko) * 2013-04-01 2014-10-13 삼성전자주식회사 채널 관련 정보 송수신 방법 및 장치
CN104066092B (zh) * 2014-06-27 2018-01-16 电信科学技术研究院 一种频谱分配方法、装置和系统
WO2016163819A1 (ko) * 2015-04-08 2016-10-13 엘지전자 주식회사 채널 상태 보고를 위한 방법 및 이를 위한 장치
CN107181514B (zh) * 2016-03-11 2020-09-15 电信科学技术研究院 一种csi反馈方法、预编码方法及装置
WO2017166287A1 (en) * 2016-04-01 2017-10-05 Qualcomm Incorporated Ue-rs-based open-loop and semi-open-loop mimo
CN109391312B (zh) * 2017-08-11 2022-11-25 华为技术有限公司 数据传输方法和装置
CN111277360B (zh) * 2019-01-11 2023-02-21 维沃移动通信有限公司 信道状态信息csi报告的传输方法、终端及网络设备
US11337234B2 (en) 2019-06-10 2022-05-17 At&T Intellectual Property I, L.P. Facilitating frequency selective scheduling in advanced networks

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868925A (zh) * 2007-11-20 2010-10-20 三星电子株式会社 无线通信系统中报告信道质量指示的设备和方法
EP2315366A1 (en) * 2009-10-23 2011-04-27 Agence Spatiale Européenne Automatic identification system receiver and satellite payload comprising the same
CN102045142A (zh) * 2009-10-22 2011-05-04 华为技术有限公司 一种间接信道信息反馈方法、接收方法、设备及系统
CN102064908A (zh) * 2009-11-18 2011-05-18 中兴通讯股份有限公司 一种分类反馈全带宽上的子带信道质量信息的方法及终端
CN102263616A (zh) * 2011-08-15 2011-11-30 中兴通讯股份有限公司 指示控制信道的方法及装置
CN102291752A (zh) * 2010-06-21 2011-12-21 电信科学技术研究院 信道状态信息反馈的方法及设备
CN102461240A (zh) * 2009-06-10 2012-05-16 高通股份有限公司 用于lte-a多载波的联合参数确定和单独cqi生成报告

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7746952B2 (en) * 2007-01-08 2010-06-29 Samsung Electronics, Co., Ltd. Apparatus for generating precoding codebook for MIMO system and method using the apparatus
US8699602B2 (en) * 2007-12-13 2014-04-15 Texas Instruments Incorporated Channel quality report processes, circuits and systems
ES2728204T3 (es) * 2007-08-14 2019-10-22 Panasonic Corp Dispositivo de radiocomunicación y procedimiento de radiocomunicación
WO2009022970A1 (en) * 2007-08-15 2009-02-19 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for feeding back cqi values in a telecommunication system
US20090116570A1 (en) * 2007-11-02 2009-05-07 Interdigital Patent Holdings, Inc. Method and apparatus for generating channel quality indicator, precoding matrix indicator and rank information
KR101684969B1 (ko) * 2009-07-27 2016-12-09 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US8460166B2 (en) * 2010-10-01 2013-06-11 Elekta Ab (Publ) Radiotherapy planning and delivery
US20120088455A1 (en) * 2010-10-08 2012-04-12 Motorola Mobility, Inc. Inter-modulation distortion reduction in multi-mode wireless communication device
US9253791B2 (en) * 2011-12-09 2016-02-02 Lg Electronics Inc. Method and apparatus of reference signal dropping

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868925A (zh) * 2007-11-20 2010-10-20 三星电子株式会社 无线通信系统中报告信道质量指示的设备和方法
CN102461240A (zh) * 2009-06-10 2012-05-16 高通股份有限公司 用于lte-a多载波的联合参数确定和单独cqi生成报告
CN102045142A (zh) * 2009-10-22 2011-05-04 华为技术有限公司 一种间接信道信息反馈方法、接收方法、设备及系统
EP2315366A1 (en) * 2009-10-23 2011-04-27 Agence Spatiale Européenne Automatic identification system receiver and satellite payload comprising the same
CN102064908A (zh) * 2009-11-18 2011-05-18 中兴通讯股份有限公司 一种分类反馈全带宽上的子带信道质量信息的方法及终端
CN102291752A (zh) * 2010-06-21 2011-12-21 电信科学技术研究院 信道状态信息反馈的方法及设备
CN102263616A (zh) * 2011-08-15 2011-11-30 中兴通讯股份有限公司 指示控制信道的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858284A4 *

Also Published As

Publication number Publication date
EP2858284A4 (en) 2015-07-29
US9794818B2 (en) 2017-10-17
EP2858284A1 (en) 2015-04-08
US20150117249A1 (en) 2015-04-30
EP2858284B1 (en) 2019-12-04
CN103718487A (zh) 2014-04-09
CN103718487B (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
US11653240B2 (en) CSI definitions and feedback modes for coordinated multi-point transmission
US11140569B2 (en) Method and radio node for handling CSI reporting
CN109478971B (zh) 用于报告无线通信系统中的信道状态的方法及其设备
US9912430B2 (en) Method and apparatus for channel state information feedback reporting
US10432371B2 (en) Data transmission method, user equipment, and base station
CN105991231B (zh) 获取信道状态信息csi的方法及装置
WO2014008633A1 (zh) 信道质量指示的获取方法、用户设备、演进节点b和系统
CN105359607B (zh) 消除相邻小区数据传输的方法及用户设备
TWI432073B (zh) 依據差別方案來傳輸通道資訊的方法
US20140126402A1 (en) Configuration of interference measurement resources for enhanced downlink measurements and mu-mimo
US20150327095A1 (en) Interference measurement method and apparatus for use in mobile communication system
US20140355468A1 (en) Methods and devices for notifying interference measurement signaling, interference measurement and feedback
US20120063500A1 (en) System and Method for Channel State Information Feedback in Wireless Communications Systems
US20120218968A1 (en) Method for transmitting channel quality information, and apparatus for same
WO2014063647A1 (zh) 一种确定信道状态信息的方法及终端
WO2012155520A1 (zh) 一种干扰测量参考信息的通知方法、干扰测量方法及装置
WO2014116155A1 (en) Configuration of interference averaging for channel measurements
WO2014101242A1 (zh) 报告信道状态信息csi的方法、用户设备和基站
WO2012062197A1 (zh) 一种信道质量信息的上报方法及其装置
WO2020052755A1 (en) Configuration of resources for downlink csi measurements
US9479994B2 (en) Retransmission method and device
WO2014107981A1 (zh) 反馈控制装置、反馈装置及多用户mimo反馈方法
CN113728698A (zh) 用于频域基报告的中间集合大小的配置
WO2018119714A1 (zh) 信号发送方法、信号接收方法、基站及用户设备
US20130039283A1 (en) Quantizing relative phase and relative amplitude for coordinated multipoint (comp) transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012881070

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE