WO2018119714A1 - 信号发送方法、信号接收方法、基站及用户设备 - Google Patents

信号发送方法、信号接收方法、基站及用户设备 Download PDF

Info

Publication number
WO2018119714A1
WO2018119714A1 PCT/CN2016/112500 CN2016112500W WO2018119714A1 WO 2018119714 A1 WO2018119714 A1 WO 2018119714A1 CN 2016112500 W CN2016112500 W CN 2016112500W WO 2018119714 A1 WO2018119714 A1 WO 2018119714A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
user
base station
weight
equipments
Prior art date
Application number
PCT/CN2016/112500
Other languages
English (en)
French (fr)
Inventor
楼群芳
钱锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/112500 priority Critical patent/WO2018119714A1/zh
Priority to EP16925614.6A priority patent/EP3544201B1/en
Priority to CN201680090981.0A priority patent/CN109983710B/zh
Publication of WO2018119714A1 publication Critical patent/WO2018119714A1/zh
Priority to US16/453,666 priority patent/US11012125B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0258Channel estimation using zero-forcing criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a signal sending method, a signal receiving method, a base station, and a user equipment (User Equipment, UE).
  • UE User Equipment
  • a multiple input multiple output (MIMO) communication system which utilizes spatial multiplexing technology to improve the efficiency of the used bandwidth.
  • MIMO multiple input multiple output
  • MU-MIMO multi-user multiple input multiple output
  • MU-MIMO systems usually require detailed design of various algorithms such as downlink scheduling, user equipment pairing, weight design, modulation and coding scheme (MCS) adjustment, and user equipment interference suppression cancellation.
  • each user equipment transmits a state transmission power compared to a single user (SU) because of the base station transmission power limitation. Will decrease.
  • Figure 1 shows the interference between user equipments during MU pairing. If each user equipment continues to use the single-user beamforming vector (SU-Beamforming, SU-BF) weight, the user equipment will be seriously interference. To avoid interference between paired user equipments, the downlink weight of each user equipment needs to be adjusted after MU pairing. Similarly, the user side also needs to suppress the signals of other paired user equipments in the cell and the interference outside the cell according to the capability of the user equipment receiver.
  • SU-Beamforming single-user beamforming vector
  • the existing scheme of MU-MIMO is generally as follows: The base station side first performs priority calculation according to the performance of the user equipment SU in the cell, and completes resource scheduling of the first layer user equipment, that is, completes the first layer pairing. The pairing of the second or more layers of user equipment is attempted according to a Resource Block Group (RBG) granularity or a Time Block (RB) granularity. Among them, can succeed The user equipment that performs MU pairing has equal status in the MU weight design process.
  • RBG Resource Block Group
  • RB Time Block
  • the embodiments of the present invention provide a signal sending method, a signal receiving method, a base station, and a user equipment, which not only protect the channel quality of the weak receiver capable user equipment, but also maintain the channel quality by using the excellent interference suppression capability of the strong receiver capability user equipment.
  • an embodiment of the present invention provides a signaling method.
  • the base station determines, according to the receiver capability of each user equipment, that the first user equipment is paired with the N second user equipments on the first resource block, where N is a positive integer; the base station signals the first user equipment and the N second user equipments The signal is multiplexed on the first resource block and transmitted.
  • the base station determines the pairing of multiple user equipments according to the receiver capability of each user equipment, which not only protects the channel quality of the weak receiver capability user but also the user with strong receiver capability.
  • the interference suppression capability maintains its own channel quality.
  • the base station determines the MU weight of the first user equipment and the MU weight of the N second user equipment according to the receiver capability of the first user equipment and the receiver capability of each second user equipment.
  • the base station determines that the first user equipment is paired with the N second user equipments according to the MU value of the first user equipment and the MU weight value of the N second user equipments.
  • the MU weight design scheme for the one-way zero-forcing design is designed to protect the channel quality of the weak receiver capability user and the strong receiver capability user. Excellent interference suppression capability maintains its own channel quality.
  • the first user equipment and the N second user equipments are ordered from weak to strong according to the receiver capability, and the first to the M user equipments are high-level user equipment, and the M+1 to the Nth +1 user equipments are low-level user equipments, and the MU weights of the high-level user equipments are calculated by mutually forcing zeros of the M high-level user equipments; the MU weights of the low-level user equipments are for the first use.
  • the user equipment and the N second user equipments are calculated by mutual zero-forcing.
  • the user equipment is divided into a high-level user equipment and a low-level user equipment according to the receiver capability, so that the user equipment belongs to the high-level user equipment or the low-level user equipment, and the corresponding method is used to determine the MU of the user equipment.
  • Weight is used to determine the MU of the user equipment.
  • the MU weight value of each low-level user equipment is calculated by using the MU weight calculation method to perform mutual zero-forcing calculation on the first user equipment and the N second user equipments; It is determined according to the service type of each low-level user equipment.
  • an appropriate weighting algorithm is adopted for the service type of the paired user to maintain the performance of the packet service.
  • the base station determines, according to the MU weight of the first user equipment and the MU weight of the N second user equipments, the MCS of the first user equipment and the MCS of the N second user equipments;
  • the MCS of the first user equipment and the MCS of the N second user equipments determine that the first user equipment is paired with the N second user equipments.
  • the MCS of the pre-paired plurality of user equipments is determined using the MU weights determined according to the receiver capabilities of the user equipment, thereby determining that the plurality of user equipments can be paired.
  • the first user equipment and the N second user equipments are ordered from weak to strong according to the receiver capability, and the first to the M user equipments are high-level user equipment, and the M+1 to the Nth +1 user equipment is a low-level user equipment, for each low-level user equipment: the base station determines whether the interference signal of the low-level user equipment for other user equipments in the received signal can be eliminated; the base station determines, according to the determination result, the first user equipment The MU weight and the MU weight of the N second user equipments determine the MCS of the low level user equipment. According to this embodiment, when the base station determines that the low-level user equipment can cancel the interference signal of other user equipments in the received signal, the MCS can be further increased.
  • the base station multiplexes the signal of the first user equipment and the signal of the N second user equipments on the first resource block and sends the signal to the first user equipment or the at least one second user.
  • the device sends a message, and the message includes the cancellation information of other user equipments, and the cancellation information includes at least the MCS.
  • the base station sends the cancellation information to the user equipment, which can implement demodulation and decoding of interference caused by the user equipment to other paired user equipments, and the design scheme removes such interference in the received signal, releasing the user.
  • the interference suppression capability of the device receiver is provided.
  • an embodiment of the present invention provides a signaling method.
  • the base station sends a message to the first user equipment, where the message includes the cancellation information of the second user equipment, where the cancellation information includes the MCS, and the base station sends a signal to the first user equipment by using the first resource block, where the first user equipment and the second user Assume Prepared as a paired user device on the first resource block.
  • the base station sends the cancellation information to the user equipment, and the interference generated by the user equipment to other paired user equipments may be demodulated and decoded.
  • the design scheme removes such interference in the received signal, and releases the Interference suppression capability of the user equipment receiver.
  • the cancellation information further includes a MU weight value.
  • the receiver capability of the first user equipment is stronger than the second user equipment.
  • a signal receiving method receives a message from the base station, where the message includes the cancellation information of the second user equipment, where the cancellation information includes the MCS, and the first user equipment receives the first signal from the base station by using the first resource block, where the first user equipment and the first user equipment
  • the second user equipment is a paired user equipment on the first resource block; the first user equipment performs interference cancellation on the first signal according to the MCS of the second user equipment to obtain a second signal; the first user equipment decodes the second signal.
  • the user equipment receives the cancellation information from the base station, and the user equipment may perform demodulation and decoding on the interference caused by the other paired user equipment, and the design scheme removes such interference in the received signal, and releases the Interference suppression capability of the user equipment receiver.
  • the cancellation information further includes a MU weight; the first user equipment performs interference cancellation on the first signal according to the MCS and the MU weight of the second user equipment, to obtain a second signal.
  • the receiver capability of the first user equipment is stronger than the second user equipment.
  • the embodiment of the present invention provides a base station, where the base station can implement the functions performed by the base station in the foregoing method, and the functions can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the base station includes a processor and a communication interface configured to support the base station in performing the corresponding functions of the above methods.
  • the communication interface is used to support communication between the base station and user equipment or other network elements.
  • the base station can also include a memory for coupling with the processor that holds the necessary program instructions and data for the base station.
  • the embodiment of the present invention provides a user equipment, where the user equipment can implement the functions performed by the user equipment in the foregoing method embodiment, and the functions can be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the user equipment includes a processor and a communication interface, and the The processor is configured to support the user device to perform the corresponding function in the above method.
  • the communication interface is used to support communication between the user equipment and a base station or other network element.
  • the user equipment can also include a memory for coupling with the processor that holds the program instructions and data necessary for the user equipment.
  • an embodiment of the present invention provides a communication system, where the system includes the base station and user equipment in the foregoing aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the base station, including a program designed to perform the first aspect or the second aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the user equipment, including a program designed to execute the third aspect.
  • the MU weighting design scheme of the one-way zero-forcing is designed to protect the weak receiver capability user.
  • the channel quality, and the strong receiver capability of the user, the superior interference suppression capability maintains its own channel quality.
  • FIG. 1 is a schematic diagram of interference between user equipments when MU is paired
  • FIG. 2 is a schematic diagram of an application scenario based on an embodiment of the present invention.
  • 3A is a schematic diagram of communication of a method for transmitting a signal according to an embodiment of the present invention
  • FIG. 3B is a schematic diagram of communication of another method for transmitting and receiving signals according to an embodiment of the present invention.
  • FIG. 3C is a schematic diagram of communication according to still another method for transmitting and receiving signals according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a MU scheme of a hybrid user equipment pairing scenario according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a downlink transmission of a single-edge zero-bearing base station according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a low-level user equipment side receiving process according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the difference between the existing MU weight and the one-way zero-forcing MU weight
  • FIG. 8 is a schematic flowchart of a process for processing interference cancellation of a low-level user equipment according to an embodiment of the present invention
  • FIG. 9 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of another user equipment according to an embodiment of the present invention.
  • the embodiment of the invention provides a signal sending method, which can be applied to an LTE communication system, for example, a Frequency Division Duplexing (FDD) architecture system or a Time Division Duplexing in an LTE communication system. TDD) architecture system.
  • LTE communication system for example, a Frequency Division Duplexing (FDD) architecture system or a Time Division Duplexing in an LTE communication system.
  • TDD Time Division Duplexing in an LTE communication system.
  • the main application scenario is a user with multiple receiver capabilities in a multi-antenna cell.
  • FIG. 2 is a schematic diagram of an application scenario based on an embodiment of the present invention.
  • the number of antennas of a base station is 4, and MIMO downlink transmission can be implemented by using BF weights.
  • the user equipment (User Equipment, UE) having two receiving antennas in the cell is shown in FIG. 4 UEs that receive antennas.
  • the application scenario described above is only an example. In practice, it can be applied to a base station with more antennas and a scene with more user equipment types.
  • the signal sending method provided by the embodiment of the present invention mainly involves a Media Access Control (MAC) layer and a physical layer on the base station side.
  • the scheduling control algorithm is implemented in the MAC layer of the base station side, and the MU weight design algorithm and the MCS adjustment are implemented at the physical layer on the base station side.
  • the signal receiving method provided by the embodiment of the present invention mainly involves a physical layer on the user side. Demodulation and decoding of interference, interference cancellation, and reception weight design are all implemented in the physical layer of the UE.
  • FIG. 3A is a schematic diagram of a communication method for transmitting a signal according to an embodiment of the present disclosure. The method may be based on the application scenario shown in FIG. 2, where the method includes:
  • Step 301 The base station determines, according to the receiver capability of each user equipment, that the first user equipment is paired with the N second user equipments on the first resource block, where N is a positive integer.
  • the base station determines the MU weight of the first user equipment and the MU weight of the N second user equipment according to the receiver capability of the first user equipment and the receiver capability of each second user equipment;
  • the value of the MU of a user equipment and the MU weight of the N second user equipments determine that the first user equipment is paired with the N second user equipments.
  • the base station ranks the first user equipment and the N second user equipments from weak to strong according to the receiver capability, and the first to M user equipments are high-level user equipment, the M+1.
  • the N+1th user equipment is a low-level user equipment, and the MU weights of the high-level user equipments are calculated by mutually forcing the M high-level user equipments; the MU weights of the low-level user equipments are The first user equipment and the N second user equipments are calculated by mutual zero-forcing.
  • the MU weights of the low-level user equipments are calculated by using the MU weight calculation method to perform mutual zero-forcing calculation on the first user equipment and the N second user equipments; The method is determined according to the service type of each low-level user equipment.
  • the base station determines, according to the MU weight value of the first user equipment and the MU weight value of the N second user equipments, the MCS of the first user equipment and the MCS of the N second user equipments;
  • the first user equipment is determined to be paired with the N second user equipments according to the MCS of the first user equipment and the MCS of the N second user equipments.
  • the base station ranks the first user equipment and the N second user equipments from weak to strong according to the receiver capability, and the first to M user equipments are high-level user equipment, the M+1.
  • the base station Up to the N+1th user equipment is a low-level user equipment, and for each low-level user equipment: the base station determines whether the interference signal of the low-level user equipment for other user equipments in the received signal can be eliminated; the base station determines according to the determination result
  • the MU weight of a user equipment and the MU weight of the N second user equipment determine the MCS of the low level user equipment.
  • the SINR is first calculated according to the MU weight, and the corresponding MCS is determined according to the SINR.
  • the SINR denominator does not include the interference signal, and the calculated SINR corresponds to the high-level MCS; if the determination result is that the interference signal cannot be eliminated, the SINR denominator includes the interference signal, and the calculated SINR corresponds to low. Level MCS.
  • Step 302 The base station multiplexes the signal of the first user equipment and the signal of the N second user equipments on the first resource block and sends the signal.
  • the base station sends a message to the first user equipment or the at least one second user equipment, where the message includes cancellation information of other user equipment, and the cancellation information includes at least the MCS.
  • the cancellation information is used by the user equipment to perform interference cancellation on the interference signals generated by other paired user equipments before decoding.
  • the MCS includes a modulation scheme and coding information.
  • the modulation scheme may be QPSK, 16QAM, and 64QAM, or may be an order of each modulation scheme, for example, 2nd order, 4th order, and 6th order, etc., and the encoded information may be transmitted.
  • the information of the block size for example, may be a transport block index indicating the size of the transport block. It should be noted that the description is only an example and is not limited thereto.
  • the MCS index is usually used to indicate a combination of the modulation scheme and the coding information, for example, the MCS index is 1 corresponding to 2nd order modulation, the transport block size index is 1 combination, and, for example, the MCS index is 3 corresponding to 2nd order modulation, and the transport block size is The index is a combination of 3, and for example, the MCS index is a combination of 10 corresponding to the 4th order modulation and the transport block size index is 9. It should be noted that the description is merely illustrative and not limiting.
  • the base station determines the pairing of multiple user equipments according to the receiver capability of each user equipment, which not only protects the channel quality of the weak receiver capability user but also the user with strong receiver capability.
  • the interference suppression capability maintains its own channel quality.
  • FIG. 3B is a schematic diagram of another method for transmitting and receiving a signal according to an embodiment of the present invention. The method may be based on the application scenario shown in FIG. 2, where the method includes:
  • Step 311 The base station sends a message to the first user equipment, where the message includes cancellation information of the second user equipment, and the cancellation information includes the MCS.
  • the MCS can be described with reference to the foregoing embodiments.
  • the cancellation message may include a modulation scheme and coding information, and may also include an MCS index corresponding to the modulation scheme and the coding information.
  • the receiving end can determine the code rate of the signal according to the MCS and the SINR, and demodulate and decode the received signal. The larger the MCS index value, the higher the MCS level and the higher the rate.
  • the cancellation information also includes a MU weight value.
  • Step 312 The base station sends a first signal to the first user equipment by using the first resource block.
  • the first user equipment and the second user equipment are paired user equipments on the first resource block.
  • the receiver capability of the first user equipment is stronger than the second user equipment.
  • Step 313 The first user equipment performs interference cancellation on the first signal according to the MCS of the second user equipment, to obtain a second signal.
  • the first user equipment receives a message from the base station, where the message includes the cancellation information of the second user equipment, and the cancellation information includes the MCS; the first user equipment receives the first signal from the base station by using the first resource block; wherein, the first user equipment And the second user equipment is a paired user equipment on the first resource block.
  • the cancellation information further includes a MU weight; the first user equipment performs interference cancellation on the first signal according to the MCS and the MU weight of the second user equipment, to obtain a second signal.
  • the receiver capability of the first user equipment is stronger than the second user equipment. That is to say, among the plurality of paired user equipments, only the user equipment with strong receiver capability interferes with interference signals generated by other paired user equipments.
  • Step 314 The first user equipment decodes the second signal.
  • the base station sends the cancellation information to the user equipment, and the interference generated by the user equipment to other paired user equipments may be demodulated and decoded.
  • the design scheme removes such interference in the received signal, and releases the Interference suppression capability of the user equipment receiver.
  • FIG. 3C is a schematic diagram of a communication method for transmitting and receiving a signal according to an embodiment of the present disclosure. The method may be based on the application scenario shown in FIG. 2, where the method includes:
  • Step 321 After the base station completes the pairing of the N-layer user equipment and the resource block set, the base station performs the pairing of the N+1th layer user equipment and the N-layer user equipment of the resource block set according to the receiver capability of the user equipment.
  • User equipment layering means that the user equipment is paired with the allocated user equipment of the resource block layer by layer. For example, one resource block is allocated to the first user equipment, and the first user equipment is used as the first layer user; if the resource block is allocated For the second user, the second user needs to be paired with the first user. If the pairing is successful, the second user is the second user of the resource block.
  • the user equipment is allocated for the resource block, which is called the N+1 layer pairing, and the N+1th user needs to be paired with the N user equipments on the resource block.
  • the user equipment is divided into two levels: high and low, then the user equipment level includes high and low, and the user equipment includes high level user equipment and low level user equipment, and the receiver capability ratio of the high level user equipment is
  • the receiver capability of the low-level user equipment is weak.
  • a threshold can be set.
  • the receiver capability of the user equipment is higher than the threshold for the low-level user equipment, and the receiver capability of the user equipment is lower than the threshold for the high-level user equipment.
  • the first M user equipments are high-level user equipments
  • the last N+1-M user equipments are low-level user equipments. It should be noted that the above is merely an example and is not limited thereto.
  • steps 321a and 321b are performed for each of the resource block sets and each candidate user device of the (N+1)th layer user equipment, respectively:
  • Step 321a Determine, according to the user equipment level of the user equipment of the user equipment of the (N+1)th user equipment and the user equipment level of each user equipment of the Nth layer user equipment, the MU weight of the candidate user equipment, and the N layer The MU weight of each user equipment in the user equipment.
  • the pairing scenario is mixed.
  • the candidate user equipment and the N-layer user equipment form N+1 pre-paired user equipments, and the high-level user equipments in the N+1 pre-paired user equipments perform mutual zero-forcing calculation to obtain high-level user equipments.
  • the MU weight value, and the N+1 pre-paired user equipments perform mutual zero-forcing calculation to obtain the MU weight value of the low-level user equipment.
  • the candidate user equipment and the resource block pairing can be regarded as the candidate user equipment and the resource block and the paired users on the resource block.
  • the device is paired. And, whether the candidate user equipment and the resource block can be paired, Depending on the N user equipments to which the resource blocks have been paired, if the candidate user equipment is unable to cooperate well with the paired user equipments, the candidate user equipment cannot be paired on the resource block.
  • the above zero-forcing calculation is a MU weighting design method, and the purpose is to enable the designed MU weight to make the transmission channel of one paired user equipment and other paired user equipments as orthogonal as possible, and realize the idealization of zero interference between each other. Program.
  • determining a MU weighting algorithm according to a service type of each of the N+1 pre-paired user equipments, and using the MU weights by using the N+1 pre-paired user equipments The algorithm performs mutual zero-forcing calculation to obtain the MU weight of the low-level user equipment.
  • the corresponding weight algorithm is used according to the service type to ensure the performance of the packet service; when the N+1 user equipments have the low-level user equipment carrying the packet service
  • the REZF or SLNR algorithm is used to control the linear zero forcing to maintain the target signal strength of low-level user equipment; when all low-level user equipments carry large-package services, the more aggressive EZF algorithm is used to obtain more Good zero-forcing effect reduces interference with high-level user equipment.
  • Step 321b Perform, according to the MU weight of the candidate user equipment, and the MU weight of each user equipment in the N-layer user equipment that is paired with the candidate user equipment, perform the (N+1)th user equipment and Pairing of the resource blocks.
  • the candidate user equipment and the N-layer user equipment form an N+1 pre-paired user equipment, according to the MU weight of each pre-paired user equipment of the N+1 pre-paired user equipments. Determining the MCS of each pre-paired user equipment; performing pairing of the (Nth)th layer of the user equipment with the resource block according to the MCS of each pre-paired user equipment.
  • determining, according to the MU weight value of each of the N+1 pre-paired user equipments, whether the low-level user equipment has the capability of interfering with the correct translation that is, determining whether the low-level user equipment can Detecting interference signals generated by other pre-paired user equipments; when the result of the judgment is that the low-level user equipment has the ability to correctly interpret the interference, it indicates that the low-level users can correspondingly cancel the decoded interference signals, according to each pre-
  • the MU weight of the paired user equipment and the estimated value of the interference signal are eliminated to determine the MCS of each low-level user; when the judgment result is that the low-level user equipment does not have the correct decoding capability, the MU right according to each pre-paired user equipment
  • the value determines the MCS of each low-level user equipment, which has been described in the foregoing embodiments and will not be described herein.
  • the following manner can be used to determine whether the low-level user equipment has the ability to interfere with the correct translation: taking the processing of a certain low-level user equipment as an example, according to the MU weight value that has been obtained, Calculating the interference signal strength that should be sent to the high-level user equipment but leaking to the low-level user equipment, using the interference as a signal, and using all other signals received by the low-level user equipment as noise, the SINR1 can be calculated, according to The SINR1 lookup table obtains the corresponding MCS1. The SINR2 when the high-level user equipment signal is received at the high-level user equipment is calculated, and the corresponding MCS2 is obtained according to the SINR2 table. If SINR1 is close to SINR2 or SINR1 is greater than SINR2, then the low-level user equipment is considered to have the ability to correctly interpret the interference.
  • Step 322 The base station sends the MCS and MU weights of other user equipments paired with the low-level user equipment.
  • the other user equipments mentioned above may specifically include a high-level user equipment and a low-level user equipment.
  • Step 323 The base station multiplexes the signal of the N+1 layer user equipment on the corresponding resource block according to the pairing result of the N+1 layer user equipment and the resource block set.
  • Step 324 The low-level user equipment performs interference cancellation on the received first signal by using the MCS and MU weights of the other user equipment to obtain a second signal.
  • the process of interference cancellation may specifically include: using all other information except the interference as noise, and demodulating and decoding the interference first. Then, in the received signal, the interference signal just decoded is subtracted, which completes the cancellation of the interference.
  • step 325 the low level user equipment decodes the second signal.
  • steps 322, 324, and 325 are optional steps, and only step 321 and step 323 may be combined into one solution.
  • the MU weight design scheme for one-way zero-forcing is designed according to the receiver type, and the weak receiver capability is protected.
  • the channel quality of the user equipment, and the strong interference capability of the user equipment of the strong receiver capability maintains its own channel quality.
  • FIG. 4 is a schematic diagram of a MU scheme of a hybrid user equipment pairing scenario.
  • the description of Embodiment 1 is made by taking the example of the FDD system, the number of antennas on the base station side being 4T, and the number of receiving antennas of the user equipment being 2R and 4R. It is assumed that a serving cell completes the pairing of the first layer of user equipment according to the commonly adopted proportional fairness principle. In order to improve the spectrum efficiency of the system, we hope to pair new user equipments on the basis of the first layer of user equipment to achieve MU-MIMO transmission. There is the possibility of pairing of similar user equipment and pairing of mixed user equipment during the pairing process. In the hybrid user equipment pairing scenario, the core idea of the design is to protect the performance of the weak capability terminal, so that the strong receiver capability terminal can maintain its performance by using its own capabilities.
  • FIG. 5 is a general flow chart of the single-side zero-forcing base station side downlink transmission. As shown in Figure 5, the overall process on the base station side includes:
  • the base station sets the user level for the user equipment according to the receiver capability of the user equipment, the level of the receiver capability is weak, and the level of the receiver capability is low.
  • the corresponding weight algorithm is selected for the one-way zero-forcing process;
  • the base station side calculates the MCS 2 of the high-level user equipment signal to the low-level user equipment interference path according to the receiver type of the low-level user equipment. It is judged that if MCS 2 ⁇ MCS 1 , the low-level user equipment is considered to have the ability to correctly interpret the interference, and the MCS of the low-level user equipment is re-estimated according to the complete cancellation of the interference; if the condition is not met, the result is directly calculated according to the previous weight adjustment result.
  • the MCS of the user equipment
  • the base station If the pairing is mixed, the base station always informs the PMI and MCS index values of all the transmitted codes of the other pair of user equipments of the lower-level user equipment. Implement downlink transmission.
  • FIG. 6 is a flow chart of low-level user equipment side receiving processing.
  • the processing of mainly low-level user equipment has improvements in the hybrid pairing scenario.
  • the low-level user equipment when paired with the same type of user equipment, is consistent with the previous MU processing flow. If the pairing is mixed and told to perform the interference decoding cancellation operation, the paired user interference signal is demodulated and decoded according to the PMI, MCS, and measurement channel of the other paired user equipment, and the interference signal is used to perform the interference pair.
  • the effective signal decoding is performed; if it is not informed that the interference decoding operation must be performed, only when the target signal is normally decoded, an attempt is made to interfere with the decoding and cancellation operations, and the target signal is tried again. Decoding.
  • the base station sends the downlink PMI and MCS of another paired user equipment to the low-level user equipment; Second, the base station informs the low-level user equipment whether it is designed to predict the interference of another paired user equipment based on the MCS for which the downlink transmission is designed.
  • the determination of the user equipment level is mainly to distinguish the interference suppression capability of the user equipment by the number of antennas received by the user equipment. However, in an actual system, the user equipment does not report the number of antennas. According to the description of the protocol 36.331, the user equipment only reports the maximum number of supportable layers (Rank) of the user equipment in the selected downlink transmission mode. The maximum Rank capability can also characterize the user equipment receiver capabilities in a certain sense. In the embodiment of the present invention, the user equipment level can be set by using the Rank capability reported by the user equipment. The maximum number of user devices that can support a small number of Ranks is high, and the user equipment level is low. The setting of the user equipment level is flexible, and may be a relative level or an absolute level. For example, a threshold may be specified. If the number of Ranks is greater than the threshold, the user equipment of the lower level is less than or equal to the threshold. High level user equipment.
  • the low-level user equipment needs to adjust the MU weight, which should be selected according to the specific service type. If the low-level user equipment carries the Mobile Broadband (MBB) service, it is recommended not to use the EZF scheme that may be excessively forced to zero, which leads to an excessive drop in the perceived rate.
  • MBB Mobile Broadband
  • the existing zero-forcing algorithms mainly include EZF, REZF and SLNR.
  • EZF has the best zero-forcing effect, but its own signal is often severely lost.
  • the latter two algorithms are relatively mild and can strike a balance between full zero forcing and its own target signal quality.
  • the MU weighting scheme needs to see what service is carried by the low-level user equipment. If the service carried by the low-level user equipment includes a small packet service with high channel quality requirements, the weighting scheme needs to be adopted. A relatively mild linear zero-forcing scheme.
  • the received signal model of a high-level user equipment when MU is paired is as follows:
  • H1 is a channel from the base station to the user equipment 1
  • w1 is a beamforming vector used by the base station to send a signal to the user equipment 1
  • w2 is a beamforming vector used by the base station to send a signal to the user equipment 2
  • x1 is a base station to the user equipment. 1 transmits the baseband signal
  • x2 is the baseband signal sent by the base station to the user equipment 2
  • n1 is the noise floor of the user equipment
  • y1 is the signal received by the user equipment 1.
  • the SINR before the user equipment is equalized is:
  • H1 is a channel from the base station to the user equipment 1
  • w1 is a beamforming vector used by the base station to send a signal to the user equipment 1
  • w2 is a beamforming vector used by the base station to send a signal to the user equipment 2
  • ⁇ 2 is the user equipment 1 Noise power.
  • H1 is the channel from the base station to the user 1
  • w is the weight vector of the candidate of the user equipment 1
  • w1 is the best beamforming vector used by the base station to send the signal to the user equipment 1.
  • the PMI selection criteria is to maximize correlation.
  • Ri is the channel correlation matrix of the user equipment on each RB.
  • w is the candidate weight vector for the user equipment.
  • Ri is the channel correlation matrix of the user equipment on each RB.
  • w is the candidate weight vector for the user equipment.
  • the high-level user equipment should directly use the weight reported by the SU when mixing and pairing.
  • the weight reported by the SU is directly used, otherwise all the high-level user devices in the pairing are linearly forced to zero.
  • MU weight refers to SLNR/REZF and the like. When the power is evenly distributed, the power is reduced by half compared to the SU.
  • the low-level user equipment paired with it will use the weight one-way zero forcing, and it is expected to eliminate the interference of the low-level user equipment signal to the higher user equipment;
  • the low-level user equipment adopts the PMI quantized channel in the zero-forcing calculation.
  • the weight design usually has errors, and the interference is not completely eliminated.
  • the residual interference of different weight schemes will also be different, such as REZF or SLNR, and interference residuals are allowed in the design process;
  • the SINR should be reduced by 3dB (half the power) based on the SINR reported by the user equipment to the base station, and then an empirical value ExpAdj is designed to further reduce the expected SINR.
  • the ExpAdj can be 0.
  • the design can be specifically adjusted.
  • SINR MU SINR SU -3dB-ExpAdj
  • the existing zero-forcing algorithms mainly include EZF, REZF, and SLNR.
  • EZF has the best zero-forcing effect, but its own signal is often severely lost.
  • the latter two algorithms are relatively mild and can strike a balance between full zero forcing and its own target signal quality.
  • Feature vector zero-forcing (Eigenvector Zero Forcing, EZF) algorithm principle is: the user equipment within a cell of a 1, ..., a N ⁇ S m, so that channels of other user equipment in the transmission signal set S m with each user equipment The feature directions are orthogonal. The algorithm actually uses the feature vector of the user equipment to reconstruct the channel from the base station to the user equipment.
  • the PMI of the serving cell to the paired user equipment can be obtained by the measurement of the Cell-specific Reference Signal (CRS) or the channel state information process (CSI-Process), and the PMI corresponding characteristics can be obtained.
  • the vector is used as a reconstruction of the downstream road for MU weight calculation. It is assumed that the input parameters are the feature vectors ⁇ V 1 (k), V 2 (k), ..., V n (k) ⁇ of each user. Construct the EZF joint channel matrix:
  • the first m rows of H(k) are composed of the SU weight vector of the low-level user equipment, and the latter nm rows are composed of the SU weight vector of the high-level user equipment.
  • the dimension of V i (k) is T*1, and T is the number of base station transmit antennas.
  • the first m column of W is the MU weight of the low-level user equipment or the MU weight of the low-level user equipment, where ⁇ is the column normalization factor.
  • the weight of the SU of the device, and the weights of the columns calculated according to the subsequent formula are the MU weights corresponding to the high-level user equipment.
  • the one-way zero-forcing MU weight calculation formula is different from the single-cell baseline REZF scheme.
  • the single-cell baseline MU weight is designed, the MU weights of the two paired user equipments are jointly designed, and the weights are adjusted; but in the one-way zero-forcing design, the high-level user equipment still remains in the MU pairing. With the weight of the SU, only the weight of the low-level user equipment is adjusted.
  • ⁇ i is the element of the disturbance matrix diag( ⁇ )
  • the MU weight value finally used by the low-level user equipment is the first m column of the weight matrix W.
  • SINR i represents the SINR reported by the user equipment i in the SU state.
  • the element ⁇ i in diag( ⁇ ) is a column normalization factor.
  • the weights of the paired user equipment must be adjusted, and the REZF algorithm formula L is the total number of pairing layers.
  • the REZF algorithm formula used in the embodiment of the present invention has this important difference from the existing scheme. The reason for this difference is caused by one-way forced zero.
  • Leakage maximize the signal to noise ratio (Signal to Leakage plus Noise Ratio, SLNR) algorithm principle is: the user equipment a i ⁇ S m in the cell, to maximize the power of the user equipment receives a signal with the user equipment to other paired user The ratio of interference leakage to noise power of the device. That is to say, the constraint of the weight generation is to maximize the signal power and noise of the signal power leaked to other user equipments, so that the weight can be compatible with the interference leakage problem of other user equipments and the signal-to-noise ratio of the target user equipment. problem.
  • the user equipment needs to consider the weight of the PMI corresponding to other user equipments that interfere with avoidance.
  • N R is the number of receiving antennas of the low-level user equipment
  • SINR i represents the SINR reported in the SU state of the low-level user equipment.
  • V is a matrix composed of eigenvectors after the eigenvalue decomposition of the right side of the equation
  • D is a diagonal matrix composed of eigenvalues
  • I is a unit matrix
  • the maximum eigenvector of the above formula is obtained, and the maximum eigenvector is the MU weight of the user equipment.
  • the base station side estimates that the low-level user equipment i receives the MCS of the interference signal j
  • the following three factors need to be considered: First, the channel H of the base station to the user equipment can only report the SU weight corresponding to the PMI by the low-level user equipment. To replace However, the accuracy is limited. Second, when the low-level user equipment decodes the interference, the effective signal is treated as interference, and the base station needs to know the receiver scheme of the low-level user equipment. Third, the SINR estimate reported by the bottom noise, MU The transmit power is evenly distributed when paired.
  • N represents the total number of paired user devices.
  • IRC receiver the information is limited, only the low-level user equipment can be assumed to have strong interference suppression capability, and the target signal has no residual
  • the value lookup table maps to the MCS value.
  • the base station side determines that the low-level user equipment i can successfully perform interference decoding cancellation on the interference of the user equipment set K[k1, k2...], the MCS adjustment process of the target signal can assume that interference from these user equipments has been completely eliminate.
  • the IRC receiver When the IRC receiver is used (the information is limited, it can only be assumed that the low-level user equipment has strong interference suppression capability and the target signal has no residual)
  • N represents the total number of paired user devices.
  • the MCS adjustment of the target signal needs to consider the following factors: First, the other paired high-level user equipment MU weight does not have the low-level user equipment right. The value is jointly designed to interfere with the target signal. Second, although the base station side can know which receiver is used by the low-level user equipment, the IRC cannot be reproduced on the low-level user equipment side at the base station side because the complete channel information cannot be obtained. process. If the low-level user equipment uses the IRC receiver, it can only assume that its interference cancellation (IC) capability is strong, and the interference is eliminated. Third, the channel H of the base station to the user equipment can only report the PMI corresponding to the low-level user equipment. SU weight instead However, the accuracy is limited; fourth, the power distribution of the paired user equipment is evenly distributed.
  • IC interference cancellation
  • the IRC receiver When the IRC receiver is used (the information is limited, it can only be assumed that the low-level user equipment has strong suppression capability and the target signal has no residual)
  • the processing steps are similar to the Interference Cancelation (IC) processing flow.
  • the specific processing flow is as follows:
  • the low-level user equipment obtains the channel H Low from the base station side to the low-level user equipment through CRS or CSI-RS measurement; and obtains the equivalent channel of the target signal through Demodulation Reference Signal (DMRS) measurement.
  • DMRS Demodulation Reference Signal
  • the Ruu after the interference IC is not adjusted.
  • the one-way zero-forcing scheme is adopted to protect the performance of the weak, and the interference suppression potential of the strong is exerted.
  • High-level user equipment does not perform zero-forcing calculation, and still uses the best downlink weight to protect the signal quality of high-level user equipment with weak receiver capability.
  • the low-level user equipment adopts one-way zero-forcing weight, which reduces the high level.
  • the interference experienced by the user equipment further protects the channel quality of the high-level user equipment. Low-level user equipment can still maintain better performance with its powerful receiver capabilities.
  • each network element such as a base station, a user equipment, etc.
  • each network element includes hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may divide the function modules of the base station, the user equipment, and the like according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 9 shows a possible structural diagram of the base station involved in the above embodiment.
  • the base station 900 includes a processing module 902 and a communication module 903. deal with The module 902 is configured to control and control the actions of the base station.
  • the processing module 902 is configured to support the base station to perform the processes 301 and 302 in FIG. 3A, the processes 311 and 312 in FIG. 3B, and the processes 321, 322 and 323 in FIG. 3C. And/or other processes for the techniques described herein.
  • the communication module 903 is configured to support communication between the base station and other network elements, such as communication with user equipment.
  • the base station may further include a storage module 901 for storing program codes and data of the base station.
  • the processing module 902 can be a processor or a controller, and can be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 903 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the storage module 901 can be a memory.
  • the base station involved in the embodiment of the present invention may be the base station shown in FIG.
  • the base station 1000 includes a processor 1002, a communication interface 1003, and a memory 1001.
  • the base station 1000 may further include a bus 1004.
  • the communication interface 1003, the processor 1002, and the memory 1001 may be connected to each other through a bus 1004.
  • the bus 1004 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated). EISA) bus and so on.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1004 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • FIG. 11 shows a possible structural diagram of the user equipment involved in the above embodiment.
  • the user equipment 1100 includes a processing module 1102 and a communication module 1103.
  • the processing module 1102 is configured to control and manage the actions of the user equipment.
  • the processing module 1102 is configured to support the user equipment to perform the processes 313 and 314 in FIG. 3B, the processes 324 and 325 in FIG. 3C, and/or Other processes of the described technology.
  • the communication module 1103 is configured to support communication between the user equipment and other network elements, such as communication with the base station.
  • User equipment may also include
  • the storage module 1101 is configured to store program codes and data of the user equipment.
  • the processing module 1102 can be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1103 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the storage module 1101 can be a memory.
  • the processing module 1102 is a processor
  • the communication module 1103 is a communication interface
  • the storage module 1101 is a memory
  • the user equipment involved in the embodiment of the present invention may be the user equipment shown in FIG.
  • the user equipment 1200 includes a processor 1202, a communication interface 1203, and a memory 1201.
  • the user equipment 1200 may further include a bus 1204.
  • the communication interface 1203, the processor 1202, and the memory 1201 may be connected to each other through a bus 1204.
  • the bus 1204 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (abbreviated). EISA) bus and so on.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 1204 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located at the core network interface device. in.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

本发明实施例涉及信号发送方法、信号接收方法、基站及用户设备,该方法包括:基站根据各用户设备的接收机能力确定第一用户设备与第一资源块上的N个第二用户设备配对,N为正整数;所述基站将所述第一用户设备的信号和所述N个第二用户设备的信号复用在所述第一资源块上并发送。由上可见,本发明实施例,既保护弱接收机能力用户设备的信道质量,又利用强接收机能力用户设备优异的干扰抑制能力维持自身信道质量。

Description

信号发送方法、信号接收方法、基站及用户设备 技术领域
本发明实施例涉及通信领域,尤其涉及信号发送方法、信号接收方法、基站及用户设备(User Equipment,UE)。
背景技术
现代的无线通信业务对网络容量和通信性能的需求始终在不断增长。以往如提高带宽、优化调制方式、码分复用等方式提高频谱效率的潜力有限。因此,在长期演进(Long Term Evolution,LTE)技术中提出了多输入多输出(Multiple Input Multiple Output,MIMO)通信系统,利用空间复用技术来提高所使用带宽的效率。在高负载场景下为了进一步提高小区容量,又提出了多用户多输入多输出(Multi-User Multiple Input Multiple Output,MU-MIMO)通信系统,将多个用户设备的数据复用在相同的时频资源上发送。MU-MIMO系统通常需要对下行调度、用户设备配对、权值设计、调制和编码方案(Modulation and Coding Scheme,MCS)调整、用户设备干扰抑制消除等多方面算法进行精细设计。
在服务小区内,当多个用户设备尝试多用户(Multi-User,MU)配对发送时,因为受基站发射功率限制,每个用户设备相比单用户(Single User,SU)发送状态发射功率将会降低。如图1所示为MU配对时用户设备间干扰示意图,若各个用户设备继续采用原先单用户发送的单用户波束赋形向量(SU-Beamforming,SU-BF)权值,用户设备间会存在严重干扰。为避免配对用户设备间的干扰,各个用户设备的下行权值在MU配对后需要进行调整。同样的,在用户侧也需要根据用户设备接收机的能力,使用合适的接收权值设计对小区内其他配对用户设备的信号以及小区外的干扰进行抑制。
MU-MIMO的现有方案通常如下:基站侧首先根据小区内用户设备SU性能进行优先级计算,完成第一层用户设备的资源调度,即完成第一层配对。按照时频资源块组(Resource Block Group,RBG)粒度或者时频资源块(Resource Block,RB)粒度,尝试第二层或者更多层用户设备的配对。其中,能够成功 进行MU配对的用户设备,在MU权值设计过程中地位平等。
由上可见,现有的MU-MIMO技术中,在MU权值设计过程中所有配对用户设备地位相等,随着用户设备的不断更新换代,用户设备接收天线数量会逐渐增加,而接收天线数量越多用户设备接收机的干扰抑制能力越强。一个服务小区内将会出现接收机能力不同的多种用户设备。当不同接收机能力用户设备进行MU配对时(即混合用户MU配对场景),如果再使用地位平等的MU权值设计方案,一方面会造成弱接收机能力用户设备的信号质量下降,一方面又会造成强接收机能力用户设备干扰抑制能力的浪费。
发明内容
本发明实施例提供了信号发送方法、信号接收方法、基站及用户设备,既保护弱接收机能力用户设备的信道质量,又利用强接收机能力用户设备优异的干扰抑制能力维持自身信道质量。
第一方面,本发明实施例提供了一种信号发送方法。基站根据各用户设备的接收机能力确定第一用户设备与第一资源块上的N个第二用户设备配对,N为正整数;基站将第一用户设备的信号和N个第二用户设备的信号复用在第一资源块上并发送。
本发明实施例中,在混合用户配对场景下,基站根据各用户设备的接收机能力确定多个用户设备的配对,既保护弱接收机能力用户的信道质量,又利用强接收机能力用户优异的干扰抑制能力维持自身信道质量。
在一种可能的实施方式中,基站根据第一用户设备的接收机能力与各第二用户设备的接收机能力确定第一用户设备的MU权值,以及N个第二用户设备的MU权值;基站根据第一用户设备的MU取值以及N个第二用户设备的MU权值确定第一用户设备与N个第二用户设备配对。根据该实施方式,在混合用户配对场景下,根据接收机类型,针对性的设计单向迫零的MU权值设计方案,既保护弱接收机能力用户的信道质量,又利用强接收机能力用户优异的干扰抑制能力维持自身信道质量。
在一种可能的实施方式中,第一用户设备和N个第二用户设备按接收机能力由弱到强排序,第1至M个用户设备为高等级用户设备,第M+1至第N+1个用户设备为低等级用户设备,各高等级用户设备的MU权值是对M个高等级用户设备进行相互迫零计算得到的;各低等级用户设备的MU权值是对第一用 户设备和N个第二用户设备进行相互迫零计算得到的。根据该实施方式,将用户设备根据接收机能力划分为高等级用户设备和低等级用户设备,从而可以根据用户设备属于高等级用户设备或低等级用户设备,采取相应的方法确定该用户设备的MU权值。
在一种可能的实施方式中,各低等级用户设备的MU权值是采用MU权值计算方法对第一用户设备和N个第二用户设备进行相互迫零计算得到的;MU权值计算方法是根据各低等级用户设备的业务类型确定的。根据该实施方式,在MU权值设计过程中,针对配对用户的业务类型,采用合适的权值算法以维护小包业务的性能。
在一种可能的实施方式中,基站根据第一用户设备的MU权值以及N个第二用户设备的MU权值,确定第一用户设备的MCS以及N个第二用户设备的MCS;基站根据第一用户设备的MCS以及N个第二用户设备的MCS,确定第一用户设备与N个第二用户设备配对。根据该实施方式,利用根据用户设备的接收机能力确定的MU权值,确定预配对的多个用户设备的MCS,从而确定这多个用户设备可以进行配对。
在一种可能的实施方式中,第一用户设备和N个第二用户设备按接收机能力由弱到强排序,第1至M个用户设备为高等级用户设备,第M+1至第N+1个用户设备为低等级用户设备,对于每一低等级用户设备:基站确定低等级用户设备对于接收到的信号中其他用户设备的干扰信号是否可以消除;基站根据确定结果,第一用户设备的MU权值以及N个第二用户设备的MU权值确定低等级用户设备的MCS。根据该实施方式,当基站确定低等级用户设备对于接收到的信号中其他用户设备的干扰信号可以消除时,可以进一步调高MCS。
在一种可能的实施方式中,基站将第一用户设备的信号和N个第二用户设备的信号复用在第一资源块上并发送之前,基站向第一用户设备或者至少一个第二用户设备发送消息,消息包括其他用户设备的对消信息,对消信息至少包括MCS。根据该实施方式,基站向用户设备发送对消信息,可以实现该用户设备对其他配对用户设备带来的干扰进行解调译码,设计方案在接收信号中对这类干扰进行剔除,释放该用户设备接收机的干扰抑制能力。
第二方面,本发明实施例提供了一种信号发送方法。基站向第一用户设备发送消息,消息包括第二用户设备的对消信息,对消信息包括MCS;基站通过第一资源块向第一用户设备发送信号;其中,第一用户设备与第二用户设 备为第一资源块上的配对用户设备。
本发明实施例中,基站向用户设备发送对消信息,可以实现该用户设备对其他配对用户设备带来的干扰进行解调译码,设计方案在接收信号中对这类干扰进行剔除,释放该用户设备接收机的干扰抑制能力。
在一种可能的实施方式中,对消信息还包括MU权值。
在一种可能的实施方式中,第一用户设备的接收机能力强于第二用户设备。
第三方面,提供了一种信号接收方法。第一用户设备从基站接收消息,消息包括第二用户设备的对消信息,对消信息包括MCS;第一用户设备通过第一资源块从基站接收第一信号;其中,第一用户设备与第二用户设备为第一资源块上的配对用户设备;第一用户设备根据第二用户设备的MCS对第一信号进行干扰对消,得到第二信号;第一用户设备将第二信号进行译码。
本发明实施例中,用户设备从基站接收对消信息,可以实现该用户设备对其他配对用户设备带来的干扰进行解调译码,设计方案在接收信号中对这类干扰进行剔除,释放该用户设备接收机的干扰抑制能力。
在一种可能的实施方式中,对消信息还包括MU权值;第一用户设备根据第二用户设备的MCS和MU权值对第一信号进行干扰对消,得到第二信号。
在一种可能的实施方式中,第一用户设备的接收机能力强于第二用户设备。
又一方面,本发明实施例提供了一种基站,该基站可以实现上述方法示例中基站所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该基站的结构中包括处理器和通信接口,该处理器被配置为支持该基站执行上述方法中相应的功能。该通信接口用于支持该基站与用户设备或其他网元之间的通信。该基站还可以包括存储器,该存储器用于与处理器耦合,其保存该基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种用户设备,该用户设备可以实现上述方法实施例中用户设备所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。
在一种可能的设计中,该用户设备的结构中包括处理器和通信接口,该 处理器被配置为支持该用户设备执行上述方法中相应的功能。该通信接口用于支持该用户设备与基站或其他网元之间的通信。该用户设备还可以包括存储器,该存储器用于与处理器耦合,其保存该用户设备必要的程序指令和数据。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的基站和用户设备。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述第一方面或第二方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述第三方面所设计的程序。
相较于现有技术,本发明实施例提供的方案中,在混合用户配对场景下,根据接收机类型,针对性的设计单向迫零的MU权值设计方案,既保护弱接收机能力用户的信道质量,又利用强接收机能力用户优异的干扰抑制能力维持自身信道质量。
附图说明
图1为MU配对时用户设备间干扰示意图;
图2为本发明实施例基于的应用场景示意图;
图3A为本发明实施例提供的一种信号的发送方法通信示意图;
图3B为本发明实施例提供的另一种信号的发送接收方法通信示意图;
图3C为本发明实施例提供的又一种信号的发送接收方法通信示意图;
图4为本发明实施例提供的混合用户设备配对场景的MU方案示意图;
图5为本发明实施例提供的单边迫零基站侧下行发送整体流程图;
图6为本发明实施例提供的低等级用户设备侧接收处理流程图;
图7为已有MU权值与单向迫零MU权值区别示意图;
图8为本发明实施例提供的低等级用户设备干扰对消处理流程示意图;
图9为本发明实施例提供的一种基站结构图;
图10为本发明实施例提供的另一种基站结构图;
图11为本发明实施例提供的一种用户设备结构图;
图12为本发明实施例提供的另一种用户设备结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例提供了一种信号发送方法,该方法可以应用于LTE通信系统,例如,LTE通信系统中的频分双工(Frequency Division Duplexing,FDD)架构系统或时分双工(Time Division Duplexing,TDD)架构系统。主要应用场景为一个多天线小区内存在多种不同接收机能力的用户。
如图2所示为本发明实施例基于的应用场景示意图,一个基站天线数量为4,可通过BF权值设计实现MIMO下行发送,小区内有2个接收天线的用户设备(User Equipment,UE)、4个接收天线的UE。上述应用场景仅为举例说明,实际中可应用于更多天线数量的基站以及用户设备类型更丰富的场景。
本发明实施例提供的信号发送方法在基站侧主要涉及媒体介入控制(Media Access Control,MAC)层和物理层。调度的控制算法在基站侧的MAC层中实现,MU权值设计算法以及MCS调整等在基站侧的物理层实现。
本发明实施例提供的信号接收方法在用户侧主要涉及物理层。对干扰的解调译码、干扰对消、接收权值设计等均在UE的物理层实现。
图3A为本发明实施例提供的一种信号的发送方法通信示意图,该方法可以基于图2所示的应用场景,该方法包括:
步骤301,基站根据各用户设备的接收机能力确定第一用户设备与第一资源块上的N个第二用户设备配对,N为正整数。
在一个示例中,基站根据第一用户设备的接收机能力与各第二用户设备的接收机能力确定第一用户设备的MU权值,以及N个第二用户设备的MU权值;基站根据第一用户设备的MU取值以及N个第二用户设备的MU权值确定第一用户设备与N个第二用户设备配对。
基于前述示例,在另一个示例中,基站将第一用户设备和N个第二用户设备按接收机能力由弱到强排序,第1至M个用户设备为高等级用户设备,第M+1至第N+1个用户设备为低等级用户设备,各高等级用户设备的MU权值是对M个高等级用户设备进行相互迫零计算得到的;各低等级用户设备的MU权值是对第一用户设备和N个第二用户设备进行相互迫零计算得到的。
基于前述示例,在又一个示例中,各低等级用户设备的MU权值是采用MU权值计算方法对第一用户设备和N个第二用户设备进行相互迫零计算得到的;MU权值计算方法是根据各低等级用户设备的业务类型确定的。
基于前述示例,在又一个示例中,基站根据第一用户设备的MU权值以及N个第二用户设备的MU权值,确定第一用户设备的MCS以及N个第二用户设备的MCS;基站根据第一用户设备的MCS以及N个第二用户设备的MCS,确定第一用户设备与N个第二用户设备配对。
基于前述示例,在又一个示例中,基站将第一用户设备和N个第二用户设备按接收机能力由弱到强排序,第1至M个用户设备为高等级用户设备,第M+1至第N+1个用户设备为低等级用户设备,对于每一低等级用户设备:基站确定低等级用户设备对于接收到的信号中其他用户设备的干扰信号是否可以消除;基站根据确定结果,第一用户设备的MU权值以及N个第二用户设备的MU权值确定低等级用户设备的MCS。例如,先根据MU权值计算SINR,再根据SINR确定对应的MCS。如果确定结果为干扰信号可以消除,则SINR分母中不包括干扰信号,计算出来的SINR对应高级别MCS;如果确定结果为干扰信号不能消除,则SINR分母中包括干扰信号,计算出来的SINR对应低级别MCS。
步骤302,基站将第一用户设备的信号和N个第二用户设备的信号复用在第一资源块上并发送。
在一个示例中,基站向第一用户设备或者至少一个第二用户设备发送消息,消息包括其他用户设备的对消信息,对消信息至少包括MCS。该对消信息用于用户设备先对其他配对用户设备产生的干扰信号进行干扰对消后,再进行译码。
其中,MCS包括调制方案和编码信息,这里,调制方案可以是QPSK、16QAM以及64QAM等,也可以是各调制方案的阶数,例如:2阶、4阶以及6阶等,编码信息可以是传输块大小的信息,例如,可以是指示传输块大小的传输块索引,需要说明的是此处仅是举例说明,并不以此为限制。通常用MCS索引来指示调制方案和编码信息的一个组合,例如,MCS索引为1对应2阶调制,传输块大小索引为1的组合,又例如,MCS索引为3对应2阶调制,传输块大小索引为3的组合,又例如,MCS索引为10对应4阶调制,传输块大小索引为9的组合。需要说明的是此处仅是举例说明,并不以此为限制。
本发明实施例中,在混合用户配对场景下,基站根据各用户设备的接收机能力确定多个用户设备的配对,既保护弱接收机能力用户的信道质量,又利用强接收机能力用户优异的干扰抑制能力维持自身信道质量。
图3B为本发明实施例提供的另一种信号的发送接收方法通信示意图,该方法可以基于图2所示的应用场景,该方法包括:
步骤311,基站向第一用户设备发送消息,消息包括第二用户设备的对消信息,对消信息包括MCS。
其中,MCS可以参考前述实施例说明。
对消消息中可以包括调制方案和编码信息,也可以包括调制方案和编码信息对应的MCS索引。接收端可以根据MCS和SINR确定信号的码率,并对接收到的信号进行解调和译码。MCS索引值越大代表MCS等级越高速率越高。
在一个示例中,对消信息还包括MU权值。
步骤312,基站通过第一资源块向第一用户设备发送第一信号。
其中,第一用户设备与第二用户设备为第一资源块上的配对用户设备。
在一个示例中,第一用户设备的接收机能力强于第二用户设备。
步骤313,第一用户设备根据第二用户设备的MCS对第一信号进行干扰对消,得到第二信号。
其中,第一用户设备从基站接收消息,消息包括第二用户设备的对消信息,对消信息包括MCS;第一用户设备通过第一资源块从基站接收第一信号;其中,第一用户设备与第二用户设备为第一资源块上的配对用户设备。
在一个示例中,对消信息还包括MU权值;第一用户设备根据第二用户设备的MCS和MU权值对第一信号进行干扰对消,得到第二信号。
在一个示例中,第一用户设备的接收机能力强于第二用户设备。也就是说,多个配对的用户设备中仅接收机能力强的用户设备对其他配对用户设备产生的干扰信号进行干扰对消。
步骤314,第一用户设备将第二信号进行译码。
本发明实施例中,基站向用户设备发送对消信息,可以实现该用户设备对其他配对用户设备带来的干扰进行解调译码,设计方案在接收信号中对这类干扰进行剔除,释放该用户设备接收机的干扰抑制能力。
图3C为本发明实施例提供的又一种信号的发送接收方法通信示意图,该方法可以基于图2所示的应用场景,该方法包括:
步骤321,当基站完成N层用户设备与资源块集合的配对后,根据用户设备的接收机能力进行第N+1层用户设备与该资源块集合的N层用户设备的配对。
用户设备分层就是用户设备逐层与资源块的已分配用户设备进行配对,例如,一个资源块分配给第一个用户设备,将第一个用户设备作为第一层用户;该资源块如果分配给第二个用户使用,则第二个用户需要和第一层用户进行配对,如果配对成功,则第二个用户为该资源块的第二层用户。以此类推,当资源块已经供N个用户设备使用时,再为资源块分配用户设备就叫第N+1层配对,第N+1个用户需要和该资源块上N个用户设备配对。
根据用户设备的接收机能力将用户设备划分成高和低两个等级,则用户设备等级包括高和低,用户设备包括高等级用户设备和低等级用户设备,高等级用户设备的接收机能力比低等级用户设备的接收机能力弱,例如,可以设定一个阈值,用户设备的接收机能力高于阈值的为低等级用户设备,用户设备的接收机能力低于阈值的为高等级用户设备,又或者在N+1个用户设备中,按照接收机能力从弱到强排序,前M个用户设备为高等级用户设备,后N+1-M个用户设备为低等级用户设备。需要说明的是上述只是举例,并不限于此。
在一个示例中,针对所述资源块集合中的每个资源块和所述第N+1层用户设备的每个候选用户设备分别执行步骤321a和321b:
步骤321a,根据所述第N+1层用户设备的候选用户设备与所述N层用户设备的每个用户设备的用户设备等级,确定所述候选用户设备的MU权值,以及所述N层用户设备中的每个用户设备的MU权值。
在一个示例中,如果所述第N+1层用户设备的候选用户设备与所述N层用户设备的至少一个用户设备的用户设备等级不同,则为混合配对场景。所述候选用户设备与所述N层用户设备构成N+1个预配对用户设备,将所述N+1个预配对用户设备中的高等级用户设备进行相互的迫零计算获得高等级用户设备的MU权值,以及将所述N+1个预配对用户设备进行相互的迫零计算获得低等级用户设备的MU权值。
可以理解的是,当进行第N+1层配对时,资源块已经配对了N层用户设备,因此候选用户设备与资源块配对可以认为是候选用户设备与资源块和该资源块上已配对用户设备进行配对。并且,候选用户设备与资源块能否配对, 取决于该资源块已经配对的N个用户设备,如果候选用户设备无法与这些已配对用户设备良好配合就不能在该资源块上配对该候选用户设备。
上述迫零计算为一种MU权值设计方法,目的是让所设计的MU权值,能够使一个配对用户设备与其他配对用户设备的传输信道尽量正交,实现相互之间零干扰的理想化方案。
在一个示例中,根据所述N+1个预配对用户设备中每个低等级用户设备的业务类型,确定MU权值算法;将所述N+1个预配对用户设备采用所述MU权值算法进行相互的迫零计算获得低等级用户设备的MU权值。
在低等级用户设备用迫零思想设计MU权值时,根据业务类型采用对应的权值算法,使小包业务的性能获得维护;当N+1个用户设备中有承载小包业务的低等级用户设备,采用REZF或SLNR算法,使线性迫零程度受到控制,以维持低等级用户设备目标信号强度;当所有低等级用户设备均承载大包业务时,采用更为激进的EZF算法,以求获得更好的迫零效果,减少对高等级用户设备干扰。
步骤321b,根据所述候选用户设备的MU权值和与所述候选用户设备配对的所述N层用户设备中的每个用户设备的MU权值,进行所述第N+1层用户设备与所述资源块的配对。
在一个示例中,所述候选用户设备与所述N层用户设备构成N+1个预配对用户设备,根据所述N+1个预配对用户设备中的每个预配对用户设备的MU权值,确定每个预配对用户设备的MCS;根据每个预配对用户设备的MCS,进行所述第N+1层用户设备与所述资源块的配对。
在一个示例中,根据所述N+1个预配对用户设备中的每个预配对用户设备的MU权值,判断低等级用户设备是否具备干扰正确译出能力,即判断低等级用户设备是否能够检测出其他预配对用户设备产生的干扰信号;当判断结果为低等级用户设备具备干扰正确译出能力时,则说明低等级用户可以相应地对译出的干扰信号进行消除,则根据每个预配对用户设备的MU权值以及消除了干扰信号的估计值确定每个低等级用户的MCS;当判断结果为低等级用户设备不具备干扰正确译出能力,根据每个预配对用户设备的MU权值确定每个低等级用户设备的MCS,由于在前述实施例中已经进行了说明,此处不再赘述。
在一个示例中,可以采用如下方式判断低等级用户设备是否具备干扰正确译出能力:以某个低等级用户设备的处理为例,根据已经获得的MU权值, 计算本该发给高等级用户设备却泄露到该低等级用户设备的干扰信号强度,将这个干扰当做信号,而将该低等级用户设备接收到的所有其他信号作为噪声,可以计算得到SINR1,根据SINR1查表得到对应的MCS1。再计算这个高等级用户设备信号在高等级用户设备处接收时的SINR2,根据查SINR2表得到对应的MCS2。若SINR1与SINR2相近或者SINR1大于SINR2,则认为低等级用户设备具备干扰正确译出能力。
在一个示例中,可以采用如下方式根据干扰可正确对消确定每个低等级用户设备的MCS:假设用户设备1确定能译出用户设备4的干扰,用户设备1和用户设备2为低等级用户设备,用户设备3和用户设备4为高等级用户设备。不能译出任何干扰时低等级用户设备1的SINR=S1/(I2+I3+I4+N);当判断能译出来自用户设备4的干扰时,低等级用户设备1的SINR=S1/(I2+I3+N)。显然后者的SINR值大,因此对应的MCS调制方式可以更激进,即MCS值更大,对应到物理意义上就是发送的信息速率可以更高。
步骤322,基站向低等级用户设备发送与其配对的其他用户设备的MCS和MU权值。
上述其他用户设备具体可以包括高等级用户设备和低等级用户设备。
步骤323,基站根据N+1层用户设备与资源块集合的配对结果,将N+1层用户设备的信号复用在相应的资源块上发送。
步骤324,低等级用户设备利用所述其他用户设备的MCS和MU权值对接收的第一信号进行干扰对消,得到第二信号。
干扰对消的过程具体可以包括:将这个干扰以外的所有其他信息当做噪声,对这个干扰先进行解调和译码。然后在接收信号中,减去刚才译码得到的干扰信号,这就完成了干扰的对消。
步骤325,低等级用户设备将第二信号进行译码。
本发明实施例中,步骤322、324和325为可选步骤,可以仅将步骤321和步骤323构成一个方案。
相较于现有技术,本发明实施例提供的方案中,在混合用户设备配对场景下,根据接收机类型,针对性的设计单向迫零的MU权值设计方案,既保护弱接收机能力用户设备的信道质量,又利用强接收机能力用户设备优异的干扰抑制能力维持自身信道质量。
通过下行控制信令协助,在低等级用户设备侧实现对MU干扰的解调、译 码、对消。提高低等级用户设备的干扰抑制效果。告知低等级用户设备所受配对干扰的预编码矩阵指示(Precoding Matrix Indicator,PMI)、MCS等信息,以实现干扰对消,若能够实现干扰对消,则不采用传统的接收权值设计对配对干扰进行避让。低等级用户设备可节省干扰抑制维度用于抑制其他更多的小区外干扰。因为采用了单向迫零,低等级用户设备有效信号减弱,必须提高其干扰消除或抑制的能力,才能提高其SINR,以维护其自身性能。
图4为混合用户设备配对场景的MU方案示意图。该场景以FDD系统、基站侧天线数量为4T、用户设备接收天线数量为2R和4R为例,进行实施方案一的描述。假设一个服务小区根据通常采用的比例公平原则完成了第一层用户设备的配对。为了提高系统的频谱效率,我们希望在第一层用户设备的基础上配对新的用户设备以实现MU-MIMO发送。配对过程中存在同类用户设备配对和混合用户设备配对的可能。在混合用户设备配对场景下,设计的核心思想是保护弱能力终端性能,让强接收机能力终端利用自身能力维持性能。
图5为单边迫零基站侧下行发送整体流程图。如图5所示,基站侧的整体流程包括:
1)基站根据用户设备接收机能力为用户设备设置用户等级,接收机能力弱的等级高,接收机能力强的等级低。同时,根据配对用户设备的业务类型,为单向迫零过程挑选对应的权值算法;
2)当MU调度运行过程中相同等级用户设备在相同RB资源上配对时,采用已有的MU权值设计方案,即配对用户设备均平等的方案。然后计算配对后的优先级;
3)当不同等级用户设备在相同RB资源上配对时,高等级用户设备权值采取最大化信号原则继续使用SU的权值,低等级用户设备权值进行调整,采用对应的迫零算法(EZF、REZF、SLNR等)减少对高等级用户设备干扰。重新估计高等级用户设备的MCS1
4)基站侧根据低等级用户设备的接收机类型,计算高等级用户设备信号到低等级用户设备干扰路径上的MCS2。判断若MCS2≥MCS1,则认为低等级用户设备具备干扰正确译出能力,根据干扰完全对消重新估计低等级用户设备的MCS;若不满足条件,则直接根据上一步权值调整结果计算该用户设备的MCS;
5)回到MU调度总流程,根据所有用户设备MU配对下的MCS计算优先级。 按照优先级完成配对选择;
6)若混合配对,基站始终告知低等级用户设备另一配对用户设备所有发送码子的PMI和MCS索引值。实现下行发送。
图6为低等级用户设备侧接收处理流程图。在用户侧,主要是低等级用户设备的处理过程在混合配对场景下有改进之处。如图6所示:低等级用户设备,当其与同类型用户设备配对时,与以往MU处理流程一致。若混合配对,且被告知需进行干扰译出对消操作,则根据另一配对用户设备的PMI、MCS、测量信道来解调译码配对用户干扰信号,并利用译出的干扰信号进行干扰对消,完成干扰对消后再进行有效信号译码;若没有被告知必须进行干扰译出操作,只在目标信号正常译码出现错误时,尝试干扰译出和对消操作,并再次尝试目标信号的译码。
在本发明的设计过程中,混合用户设备配对场景下,基站与低等级用户设备间需要增加两种交互信息:第一,基站向低等级用户设备发送另一配对用户设备的下行PMI、MCS;第二,基站告知低等级用户设备,在对其设计下行发送的MCS时,是否为基于预估另一配对用户设备干扰可对消进行设计的。
下面对方案中具体的实现过程进行描述
1、用户设备等级判定
用户设备等级的判定,主要是希望通过用户设备接收天线数量来区分用户设备的干扰抑制能力。但在实际系统中,用户设备并不上报天线数量。根据协议36.331描述,用户设备只上报在所选下行发送模式下,该用户设备的最大可支持层(Rank)数。最大Rank能力在一定意义上也可以表征用户设备接收机能力。本发明实施例中可以使用用户设备上报的Rank能力设定用户设备等级。最大可支持Rank数少的用户设备等级高,反之用户设备等级低。用户设备等级的设定比较灵活,可以为相对的等级,也可以为绝对的等级,例如,可规定一个阈值,Rank数大于该阈值的为低等级用户设备,Rank数小于或等于该阈值的为高等级用户设备。
2、根据业务类型选择MU权值算法
混合配对场景下,低等级用户设备需要进行MU权值调整,应该根据具体的业务类型来选择。如果低等级用户设备承载移动宽带(Mobile Broad band,MBB)业务,建议不使用可能过度迫零的EZF方案,进而导致其感知速率过度下降。
现有的迫零算法主要有EZF、REZF、SLNR三种。EZF的迫零效果最佳,但自身信号时常损失严重,后两种算法相对比较温和,能够在完全迫零和自身目标信号质量之间获得平衡。
本方案设想的迫零方案可以如表一所示:
Figure PCTCN2016112500-appb-000001
表一
由表一可见,本发明实施例中,MU权值方案需要看低等级用户设备承载什么业务,如果低等级用户设备承载的业务包括对信道质量要求较高的小包业务,权值方案就需要采用相对温和的线性迫零方案。
3、混合用户设备配对场景高等级用户设备MU权值
MU配对时一个高等级用户设备的接收信号模型如下:
y1=H1w1x1+H1w2x2+n1
其中,H1为基站到用户设备1的信道、w1为基站给用户设备1发送信号使用的波束赋形向量、w2为基站给用户设备2发送信号使用的波束赋形向量、x1为基站给用户设备1发送的基带信号、x2为基站给用户设备2发送的基带信号、n1为用户设备1的底噪、y1为用户设备1接收到的信号。
该用户设备均衡前的SINR为:
Figure PCTCN2016112500-appb-000002
其中,H1为基站到用户设备1的信道、w1为基站给用户设备1发送信号使用的波束赋形向量、w2为基站给用户设备2发送信号使用的波束赋形向量,σ2为用户设备1的噪声功率。
从高等级用户设备的SINR公式可以发现,提高该用户设备性能主要有两个路径:1)提高目标信号到达该用户设备的强度;2)降低另一配对用户设备信号的干扰。
从提高目标信号强度角度分析高等级用户设备的权值设计,需要满足下面条件:
Figure PCTCN2016112500-appb-000003
其中,H1为基站到用户1的信道,w为用户设备1候选的权值向量,w1为基站给用户设备1发送信号使用的最佳波束赋形向量。
而目前终端在上报SU权值时,用户设备上报的PMI计算过程与上述要求完全相符。
以Rank=1、R8码本为例(高等级用户设备目前天线数为2,第一层配对时Rank=1,才能够配置第二层用户设备),预编码码本为W1={w0,w1,...,w15}。PMI选择准则为最大化相关性。
子带PMI的计算公式:
Figure PCTCN2016112500-appb-000004
其中,Ri为这个用户设备在每个RB上的信道相关阵,
Figure PCTCN2016112500-appb-000005
为每个子带具有的RB数量,w为用户设备的候选权值向量。
全带PMI的计算公式:
Figure PCTCN2016112500-appb-000006
其中,Ri为这个用户设备在每个RB上的信道相关阵,
Figure PCTCN2016112500-appb-000007
为全频带具有的RB数量,w为用户设备的候选权值向量。
因此,高等级用户设备在混合配对时,应直接使用SU上报的权值。此外,对于2层以上的多用户设备混合配对时,若配对用户设备中只有一个高等级用户设备,则直接使用SU上报的权值,否则将配对中的所有高等级用户设备进行线性迫零设计MU权值。权值方案参照SLNR/REZF等。功率平均分配时,相比SU下功率减半。
高等级用户设备在配对后需要进行MCS调整,有以下几个因素需要考虑:
1)高等级用户设备因协议限制无法上报接收机类型;
2)与其配对的低等级用户设备将采用权值单向迫零,期望消除低等级用户设备信号对高等用户设备的干扰;
3)低等级用户设备在迫零计算中采用PMI量化后的信道,权值设计通常存在误差,干扰没有完全消除。而且权值方案不同残留干扰也将不同,如REZF或SLNR,设计过程中就允许存在干扰残留;
4)高等级用户设备若采用IRC接收机,Rank=1时它还存在一个维度的干扰抑制能力,配对用户设备的残留干扰,预期IRC接收机具有较好的抑制效 果。
考虑到上述几个因素应该在用户设备向基站上报的SINR基础上先降低3dB(功率减半),然后再设计一个经验值ExpAdj进一步适当调低预期的SINR,其中,ExpAdj可以为0,在实现时可具体调整设计。
SINRMU=SINRSU-3dB-ExpAdj
4、低等级用户设备MU权值算法
如上所述,现有的迫零算法主要有EZF、REZF、SLNR三种。EZF的迫零效果最佳,但自身信号时常损失严重,后两种算法相对比较温和,能够在完全迫零和自身目标信号质量之间获得平衡。这里主要介绍这三种算法的实现。
(1)EZF算法
特征向量迫零(Eigenvector Zero Forcing,EZF)算法的原理是:对小区内的用户设备a1,…,aN∈Sm,使每个用户设备发送信号与集合Sm内其它用户设备的信道特征方向正交。该算法实际上使用用户设备的特征向量来重构基站到用户设备的信道。
通过小区专用导频信号(Cell-specific Reference Signal,CRS)或者信道状态信息测量进程(Channel State Information Process,CSI-Process)的测量,可以获得服务小区到配对用户设备的PMI,将PMI对应的特性向量作为对下行行道的重构,用于MU权值计算。假设输入参数为各用户的特征向量{V1(k),V2(k),...,Vn(k)}。构造EZF联合信道矩阵:
Figure PCTCN2016112500-appb-000008
当混合配对求低等级用户设备MU权值时,H(k)的前m行由低等级用户设备的SU权值向量构成,后n-m行由高等级用户设备的SU权值向量构成。Vi(k)的维度为T*1,T为基站发射天线数。低等级用户设备在混合配对时,权值计算公式如下:
W=H(k)H(H(k)H(k)H)-1diag(β)
W的前m列就是低等级用户设备的MU权值就是低等级用户设备的MU权值,其中β为列归一化因子。
当多个高等级用户设备间需要进行迫零计算时,H(k)中只有高等级用户 设备的SU权值,且根据后续公式计算得到的各列权值就是对应高等级用户设备的MU权值。
(2)REZF算法
单向迫零的MU权值计算公式与单小区基线REZF方案有所不同。单小区基线MU权值设计时,两个配对用户设备的MU权值是联合设计的,权值均会调整;但在单向迫零设计时有所不同,高等级用户设备在MU配对时依然采用SU权值,只调整低等级用户设备的权值。
区别如图7所示:当混合用户设备配对求低等级用户设备MU权值时,令{V1(k),V2(k),...,Vn(k)}的前m列为低等级用户设备的SU权值向量,后n-m列为高等级用户设备(接收机能力弱)的SU权值向量。构成REZF联合信道矩阵:
Figure PCTCN2016112500-appb-000009
单向迫零的REZF权值计算公式如下:
W=H(k)H(H(k)H(k)H+diag(α))-1diag(β)
其中αi为扰动矩阵diag(α)的元素,
Figure PCTCN2016112500-appb-000010
低等级用户设备最终使用的MU权值为权值矩阵W的前m列。SINRi表示用户设备i在SU状态下上报的SINR。diag(β)中的元素βi为列归一化因子。
在已有的MU权值设计方案中,配对用户设备的权值均要调整,此时REZF算法公式中的
Figure PCTCN2016112500-appb-000011
L为总的配对层数,本发明实施例使用的REZF算法公式与现有方案存在这个重要区别。导致这个区别的原因就是由单向迫零引起的。
在MU权值设计的REZF方案中,针对单向迫零的应用需求,提出了对应的计算公式。提升了REZF算法在单向迫零方案中的性能。
当多个高等级用户设备间需要进行迫零计算时,H(k)中只有高等级用户设备的SU权值,且根据后续公式计算得到的各列权值就是对应高等级用户设备的MU权值。
(3)SLNR算法
最大化信号泄露噪声比(Signal to Leakage plus Noise Ratio,SLNR) 算法的原理是:对小区内的用户设备ai∈Sm,最大化该用户设备的信号接收功率与该用户设备对其他配对用户设备的干扰泄露加噪声功率之比。也就是说其权值生成约束条件是实现信号功率相对于泄露到其他用户设备的信号功率及噪声最大化,从而使权值能够兼容对其他用户设备的干扰泄露问题以及目标用户设备的信噪比问题。
针对FDD系统,Rank=1配对,在进行SLNR权值计算时,需要求MU权值的用户i上报PMI对应的权值为
Figure PCTCN2016112500-appb-000012
该用户设备需考虑干扰避让的其他用户设备上报PMI对应的权值为
Figure PCTCN2016112500-appb-000013
其中NR为这个低等级用户设备的接收天线数,SINRi表示这个低等级用户设备SU状态下上报的SINR。SLNR准侧下的权值计算公式可进一步写成如下形式:
Figure PCTCN2016112500-appb-000014
其中,V为等式右侧特征值分解后的特征向量组成的矩阵,D为特征值组成的对角矩阵,I为单位阵。
求上式的最大特征向量,最大特征向量就是该用户设备的MU权值。
5、基站侧对低等级用户设备收到干扰信号的MCS估计
在基站侧估计低等级用户设备i收到干扰信号j的MCS时,需要考虑如下三个因素:第一,基站到用户设备的信道H只能用低等级用户设备上报PMI对应的SU权值
Figure PCTCN2016112500-appb-000015
来替代
Figure PCTCN2016112500-appb-000016
但精度有限;第二、低等级用户设备对干扰进行译码时,将自身有效信号作为干扰处理,基站需要获知低等级用户设备的接收机方案;第三,底噪用上报的SINR估计,MU配对发送时发射功率平均分配。
根据上述现实,分MRC和IRC接收机计算。
(1)MRC接收机
Figure PCTCN2016112500-appb-000017
其中N表示总的配对用户设备数。
(2)IRC接收机(信息有限,只能假设低等级用户设备的干扰抑制能力强,目标信号无残留)
Figure PCTCN2016112500-appb-000018
再根据获得的
Figure PCTCN2016112500-appb-000019
值查表映射到MCS值。
6、基站侧对低等级用户设备MCS的估计
(1)干扰对消后的目标信号MCS
若基站侧判定低等级用户设备i能够成功对用户设备集合K[k1,k2…]的干扰实现干扰译码对消,则目标信号的MCS调整过程中可假定来自这些用户设备的干扰已经被完全消除。
MRC接收机时
Figure PCTCN2016112500-appb-000020
根据计算得到的
Figure PCTCN2016112500-appb-000021
查表获得对应的MCS值。
IRC接收机时(信息有限,只能假设低等级用户设备干扰抑制能力强,目标信号无残留)
Figure PCTCN2016112500-appb-000022
其中N表示总的配对用户设备数。
(2)无干扰对消的目标信号MCS
当基站侧无法确认低等级用户设备是否能够成功干扰对消时,目标信号的MCS调整需要考虑下面几个因素:第一,另一配对的高等级用户设备MU权值没有与低等级用户设备权值进行联合设计,对目标信号存在干扰;第二,基站侧虽然可以知道低等级用户设备使用何种接收机,但因为无法获得完整的信道信息,无法在基站侧重现低等级用户设备侧的IRC过程。若低等级用户设备使用IRC接收机只能假设其干扰消除(Interference Cancelation,IC)能力较强,干扰被消除;第三,基站到用户设备的信道H只能用低等级用户设备上报PMI对应的SU权值来替代
Figure PCTCN2016112500-appb-000023
但精度有限;第四,配对用户设备的功率平均分配。
MRC接收机时
Figure PCTCN2016112500-appb-000024
IRC接收机时(信息有限,只能假设低等级用户设备抑制能力强,目标信号无残留)
Figure PCTCN2016112500-appb-000025
7、低等级用户设备干扰对消处理
混合配对场景下,低等级用户设备侧为了提高目标信号的译码性能,需要对普通用户设备信号噪声的干扰进行对消处理。处理流程如图8所示:
处理步骤与上行干扰消除(Interference Cancelation,IC)处理流程相似,具体的处理流程如下:
(1)低等级用户设备通过CRS或CSI-RS测量获得基站侧到低等级用户设备的信道HLow;通过解调参考信号(DeModulation Reference Signal,DMRS)测量获得目标信号的等效信道
Figure PCTCN2016112500-appb-000026
通过基站私有的交互方案获得另一个配对用户设备的下行发送权值
Figure PCTCN2016112500-appb-000027
计算干扰信号的接收权值。并对干扰信号进行解调译码;
(2)将干扰的译码输入到DMRS测量模块,在DMRS接收信号rDMRS中减去重构的干扰信号
Figure PCTCN2016112500-appb-000028
再进行DMRS测量获得目标信号的新的等效信道
Figure PCTCN2016112500-appb-000029
以及新的Ruu估计
Figure PCTCN2016112500-appb-000030
Figure PCTCN2016112500-appb-000031
(3)用新的等效信道和Ruu重新计算目标信号的接收权。在计算目标信号的接受权值之前,Ruu的处理需要分两种情况:
第一,若干扰信号译码CRC校验正确,则干扰IC后的Ruu不再作调整。
Figure PCTCN2016112500-appb-000032
第二,若干扰信号译码CRC校验不正确,则需做如下调整:
Figure PCTCN2016112500-appb-000033
其中
Figure PCTCN2016112500-appb-000034
是干扰信号的重构频域协方差,
Figure PCTCN2016112500-appb-000035
表示干扰 信号等效信道的相关阵均值。Ruu通常按照RB或者RBG级进行计算,对应的
Figure PCTCN2016112500-appb-000036
表示的就是这个RB或者这个RBG上干扰信号等效信道的相关阵均值。
(4)将干扰的译码输入到有效信号测量模块,在接收到的数据信号中rTarget中减去重构的干扰信号
Figure PCTCN2016112500-appb-000037
Figure PCTCN2016112500-appb-000038
(5)根据IC后的数据信号,以及目标信号新的接收权,对目标信号进行解调译码。
本发明实施例中,在混合用户设备配对场景下,采用单向迫零方案使弱者性能得以保护,强者的干扰抑制潜力得以发挥。高等级用户设备不进行迫零计算,依然采用最佳下行权值,保护了接收机能力较弱的高等级用户设备发送信号质量,低等级用户设备采用单向迫零权值,减少了高等级用户设备受到的干扰,进一步保护了高等级用户设备的信道质量。而低等级用户设备利用自身强大的接收机能力依然能够维持较好的性能。通过用户设备等级的划分,以及针对性的MU权值设计,使弱者得到保护,强者的性能获得发挥。
上述主要从各个网元之间交互的角度对本发明实施例的方案进行了介绍。可以理解的是,各个网元,例如基站,用户设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对基站、用户设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的模块的情况下,图9示出了上述实施例中所涉及的基站的一种可能的结构示意图。基站900包括:处理模块902和通信模块903。处理 模块902用于对基站的动作进行控制管理,例如,处理模块902用于支持基站执行图3A中的过程301和302,图3B中的过程311和312,图3C中的过程321、322和323,和/或用于本文所描述的技术的其它过程。通信模块903用于支持基站与其他网元的通信,例如与用户设备之间的通信。基站还可以包括存储模块901,用于存储基站的程序代码和数据。
其中,处理模块902可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块903可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储模块901可以是存储器。
当处理模块902为处理器,通信模块903为通信接口,存储模块901为存储器时,本发明实施例所涉及的基站可以为图10所示的基站。
参阅图10所示,该基站1000包括:处理器1002、通信接口1003、存储器1001。可选的,基站1000还可以包括总线1004。其中,通信接口1003、处理器1002以及存储器1001可以通过总线1004相互连接;总线1004可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1004可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用集成的模块的情况下,图11示出了上述实施例中所涉及的用户设备的一种可能的结构示意图。用户设备1100包括:处理模块1102和通信模块1103。处理模块1102用于对用户设备的动作进行控制管理,例如,处理模块1102用于支持用户设备执行图3B中的过程313和314,图3C中的过程324和325,和/或用于本文所描述的技术的其它过程。通信模块1103用于支持用户设备与其他网元的通信,例如与基站之间的通信。用户设备还可以包括存 储模块1101,用于存储用户设备的程序代码和数据。
其中,处理模块1102可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1103可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储模块1101可以是存储器。
当处理模块1102为处理器,通信模块1103为通信接口,存储模块1101为存储器时,本发明实施例所涉及的用户设备可以为图12所示的用户设备。
参阅图12所示,该用户设备1200包括:处理器1202、通信接口1203、存储器1201。可选的,用户设备1200还可以包括总线1204。其中,通信接口1203、处理器1202以及存储器1201可以通过总线1204相互连接;总线1204可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1204可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备 中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (26)

  1. 一种信号发送方法,其特征在于,所述方法包括:
    基站根据各用户设备的接收机能力确定第一用户设备与第一资源块上的N个第二用户设备配对,N为正整数;
    所述基站将所述第一用户设备的信号和所述N个第二用户设备的信号复用在所述第一资源块上并发送。
  2. 如权利要求1所述的方法,其特征在于,所述基站根据各用户设备的接收机能力确定第一用户设备与第一资源块上的N个第二用户设备配对,包括:
    基站根据所述第一用户设备的接收机能力与各所述第二用户设备的接收机能力确定所述第一用户设备的多用户MU权值,以及N个所述第二用户设备的MU权值;
    所述基站根据所述第一用户设备的MU取值以及N个所述第二用户设备的MU权值确定所述第一用户设备与N个所述第二用户设备配对。
  3. 如权利要求2所述的方法,其特征在于,所述基站根据所述第一用户设备的接收机能力与各所述第二用户设备的接收机能力确定所述第一用户设备的多用户MU权值,以及N个所述第二用户设备的MU权值,包括:
    所述第一用户设备和N个所述第二用户设备按接收机能力由弱到强排序,第1至M个用户设备为高等级用户设备,第M+1至第N+1个用户设备为低等级用户设备,
    各所述高等级用户设备的MU权值是对M个所述高等级用户设备进行相互迫零计算得到的;
    各所述低等级用户设备的MU权值是对所述第一用户设备和N个所述第二用户设备进行相互迫零计算得到的。
  4. 如权利要求3所述的方法,其特征在于,
    各所述低等级用户设备的MU权值是采用MU权值计算方法对所述第一用户设备和N个所述第二用户设备进行相互迫零计算得到的;
    所述MU权值计算方法是根据各所述低等级用户设备的业务类型确定的。
  5. 如权利要求2至4中任一项所述的方法,其特征在于,所述基站根据所述第一用户设备的MU权值以及N个所述第二用户设备的MU权值确定所述 第一用户设备与N个所述第二用户设备配对,包括:
    所述基站根据所述第一用户设备的MU权值以及N个所述第二用户设备的MU权值,确定所述第一用户设备的调制编码方案MCS以及N个所述第二用户设备的MCS;
    所述基站根据所述第一用户设备的MCS以及N个所述第二用户设备的MCS,确定所述第一用户设备与N个所述第二用户设备配对。
  6. 如权利要求5所述的方法,其特征在于,所述基站根据所述第一用户设备的MU权值以及N个所述第二用户设备的MU权值,确定所述第一用户设备的MCS以及N个所述第二用户设备的MCS,包括:
    所述第一用户设备和N个所述第二用户设备按接收机能力由弱到强排序,第1至M个用户设备为高等级用户设备,第M+1至第N+1个用户设备为低等级用户设备,对于每一低等级用户设备:
    所述基站确定所述低等级用户设备对于接收到的信号中其他用户设备的干扰信号是否可以消除;
    所述基站根据所述确定结果,所述第一用户设备的MU权值以及N个所述第二用户设备的MU权值确定所述低等级用户设备的MCS。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述基站将所述第一用户设备的信号和所述N个第二用户设备的信号复用在所述第一资源块上并发送之前,所述方法还包括:
    所述基站向所述第一用户设备或者至少一个第二用户设备发送消息,所述消息包括其他用户设备的对消信息,所述对消信息至少包括MCS。
  8. 一种信号发送方法,其特征在于,所述方法包括:
    基站向第一用户设备发送消息,所述消息包括第二用户设备的对消信息,所述对消信息包括调制编码方案MCS;
    所述基站通过第一资源块向所述第一用户设备发送信号;其中,
    所述第一用户设备与所述第二用户设备为所述第一资源块上的配对用户设备。
  9. 如权利要求8所述的方法,其特征在于,所述对消信息还包括多用户MU权值。
  10. 如权利要求8或者9所述的方法,其特征在于,
    所述第一用户设备的接收机能力强于所述第二用户设备。
  11. 一种信号接收方法,其特征在于,所述方法包括:
    第一用户设备从基站接收消息,所述消息包括第二用户设备的对消信息,所述对消信息包括调制编码方案MCS;
    所述第一用户设备通过第一资源块从所述基站接收第一信号;其中,所述第一用户设备与所述第二用户设备为所述第一资源块上的配对用户设备;
    所述第一用户设备根据所述第二用户设备的MCS对所述第一信号进行干扰对消,得到第二信号;
    所述第一用户设备将所述第二信号进行译码。
  12. 如权利要求11所述的方法,其特征在于,所述对消信息还包括多用户MU权值;
    所述第一用户设备根据所述第二用户设备的MCS对所述第一信号进行干扰对消,得到第二信号,包括:
    所述第一用户设备根据所述第二用户设备的MCS和MU权值对所述第一信号进行干扰对消,得到第二信号。
  13. 如权利要求11或者12所述的方法,其特征在于,
    所述第一用户设备的接收机能力强于所述第二用户设备。
  14. 一种基站,其特征在于,所述基站包括:处理模块和通信模块;
    所述处理模块,用于根据各用户设备的接收机能力确定第一用户设备与第一资源块上的N个第二用户设备配对,N为正整数;
    所述处理模块,还用于将所述第一用户设备的信号和所述N个第二用户设备的信号复用在所述第一资源块上并通过所述通信模块发送。
  15. 如权利要求14所述的基站,其特征在于,所述处理模块,具体用于根据所述第一用户设备的接收机能力与各所述第二用户设备的接收机能力确定所述第一用户设备的多用户MU权值,以及N个所述第二用户设备的MU权值;根据所述第一用户设备的MU取值以及N个所述第二用户设备的MU权值确定所述第一用户设备与N个所述第二用户设备配对。
  16. 如权利要求15所述的基站,其特征在于,所述处理模块,具体用于 将所述第一用户设备和N个所述第二用户设备按接收机能力由弱到强排序,第1至M个用户设备为高等级用户设备,第M+1至第N+1个用户设备为低等级用户设备,各所述高等级用户设备的MU权值是对M个所述高等级用户设备进行相互迫零计算得到的;各所述低等级用户设备的MU权值是对所述第一用户设备和N个所述第二用户设备进行相互迫零计算得到的。
  17. 如权利要求16所述的基站,其特征在于,各所述低等级用户设备的MU权值是采用MU权值计算方法对所述第一用户设备和N个所述第二用户设备进行相互迫零计算得到的;所述MU权值计算方法是根据各所述低等级用户设备的业务类型确定的。
  18. 如权利要求15至17中任一项所述的基站,其特征在于,所述处理模块,具体用于根据所述第一用户设备的MU权值以及N个所述第二用户设备的MU权值,确定所述第一用户设备的调制编码方案MCS以及N个所述第二用户设备的MCS;根据所述第一用户设备的MCS以及N个所述第二用户设备的MCS,确定所述第一用户设备与N个所述第二用户设备配对。
  19. 如权利要求18所述的基站,其特征在于,所述处理模块,具体用于将所述第一用户设备和N个所述第二用户设备按接收机能力由弱到强排序,第1至M个用户设备为高等级用户设备,第M+1至第N+1个用户设备为低等级用户设备,对于每一低等级用户设备:确定所述低等级用户设备对于接收到的信号中其他用户设备的干扰信号是否可以消除;根据所述确定结果,所述第一用户设备的MU权值以及N个所述第二用户设备的MU权值确定所述低等级用户设备的MCS。
  20. 如权利要求14至19中任一项所述的基站,其特征在于,所述处理模块,还用于将所述第一用户设备的信号和所述N个第二用户设备的信号复用在所述第一资源块上并通过所述通信模块发送之前,通过所述通信模块向所述第一用户设备或者至少一个第二用户设备发送消息,所述消息包括其他用户设备的对消信息,所述对消信息至少包括MCS。
  21. 一种基站,其特征在于,所述基站包括:处理模块和通信模块;
    所述处理模块,用于通过所述通信模块向第一用户设备发送消息,所述消息包括第二用户设备的对消信息,所述对消信息包括调制编码方案MCS;通过所述通信模块通过第一资源块向所述第一用户设备发送信号;其中,所述 第一用户设备与所述第二用户设备为所述第一资源块上的配对用户设备。
  22. 如权利要求21所述的基站,其特征在于,所述对消信息还包括多用户MU权值。
  23. 如权利要求21或者22所述的基站,其特征在于,
    所述第一用户设备的接收机能力强于所述第二用户设备。
  24. 一种用户设备,其特征在于,所述用户设备为第一用户设备,所述第一用户设备包括:处理模块和通信模块;
    所述处理模块,用于通过所述通信模块从基站接收消息,所述消息包括第二用户设备的对消信息,所述对消信息包括调制编码方案MCS;
    所述处理模块,还用于通过所述通信模块通过第一资源块从所述基站接收第一信号;其中,所述第一用户设备与所述第二用户设备为所述第一资源块上的配对用户设备;根据所述第二用户设备的MCS对所述第一信号进行干扰对消,得到第二信号;将所述第二信号进行译码。
  25. 如权利要求24所述的用户设备,其特征在于,所述对消信息还包括多用户MU权值;
    所述处理模块,具体用于根据所述第二用户设备的MCS和MU权值对所述第一信号进行干扰对消,得到第二信号。
  26. 如权利要求24或者25所述的用户设备,其特征在于,
    所述第一用户设备的接收机能力强于所述第二用户设备。
PCT/CN2016/112500 2016-12-28 2016-12-28 信号发送方法、信号接收方法、基站及用户设备 WO2018119714A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/112500 WO2018119714A1 (zh) 2016-12-28 2016-12-28 信号发送方法、信号接收方法、基站及用户设备
EP16925614.6A EP3544201B1 (en) 2016-12-28 2016-12-28 Methods for transmitting and receiving signals, base station and user equipment
CN201680090981.0A CN109983710B (zh) 2016-12-28 2016-12-28 信号发送方法、信号接收方法、基站及用户设备
US16/453,666 US11012125B2 (en) 2016-12-28 2019-06-26 Signal sending and receiving method to pair user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112500 WO2018119714A1 (zh) 2016-12-28 2016-12-28 信号发送方法、信号接收方法、基站及用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/453,666 Continuation US11012125B2 (en) 2016-12-28 2019-06-26 Signal sending and receiving method to pair user equipment

Publications (1)

Publication Number Publication Date
WO2018119714A1 true WO2018119714A1 (zh) 2018-07-05

Family

ID=62707098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112500 WO2018119714A1 (zh) 2016-12-28 2016-12-28 信号发送方法、信号接收方法、基站及用户设备

Country Status (4)

Country Link
US (1) US11012125B2 (zh)
EP (1) EP3544201B1 (zh)
CN (1) CN109983710B (zh)
WO (1) WO2018119714A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891948B (zh) * 2019-01-30 2022-02-22 北京小米移动软件有限公司 检测下行传输、传输配置信息和下行传输的方法及装置
CN114666010B (zh) * 2022-03-17 2023-04-28 四川创智联恒科技有限公司 一种nr-5g中pusch时域数据的处理方法、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281124A (zh) * 2011-07-28 2011-12-14 大唐移动通信设备有限公司 一种修正用户的mcs等级的方法及装置
US20130286955A1 (en) * 2011-10-21 2013-10-31 Hitachi, Ltd. Access point and interference control method
US20140254495A1 (en) * 2013-03-06 2014-09-11 Futurewei Technologies, Inc. Systems and methods for reducing complexity in modulation coding scheme (mcs) adaptation
CN104243091A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 一种确定调制编码方式的方法及装置
CN105743824A (zh) * 2014-12-09 2016-07-06 中兴通讯股份有限公司 一种非正交用户设备间的干扰处理及信令通知方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877887B (zh) * 2009-04-30 2012-12-05 中国移动通信集团公司 协作多点传输系统的下行传输控制方法和装置
CN102055562B (zh) * 2009-11-06 2014-04-09 中兴通讯股份有限公司 多点协同传输中的多用户复用预编码的实现方法及系统
JP5720284B2 (ja) * 2011-02-10 2015-05-20 ソニー株式会社 端末装置、フィードバック制御方法、基地局、ペアリング制御方法、プログラム及び無線通信システム
US9480081B2 (en) * 2013-03-15 2016-10-25 Huawei Technologies Co., Ltd. System and method for interference cancellation using terminal cooperation
CN104980197B (zh) * 2014-04-02 2019-04-12 中兴通讯股份有限公司 一种实现透明多用户多输入多输出传输的方法及装置
US9888463B2 (en) * 2014-10-31 2018-02-06 Alcatel Lucent Interference cancellation and suppression for multi-user multiple-in/multiple out (MIMO) communication
CN106209301A (zh) * 2015-04-30 2016-12-07 电信科学技术研究院 一种干扰信息指示方法、干扰删除方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281124A (zh) * 2011-07-28 2011-12-14 大唐移动通信设备有限公司 一种修正用户的mcs等级的方法及装置
US20130286955A1 (en) * 2011-10-21 2013-10-31 Hitachi, Ltd. Access point and interference control method
US20140254495A1 (en) * 2013-03-06 2014-09-11 Futurewei Technologies, Inc. Systems and methods for reducing complexity in modulation coding scheme (mcs) adaptation
CN104243091A (zh) * 2013-06-20 2014-12-24 华为技术有限公司 一种确定调制编码方式的方法及装置
CN105743824A (zh) * 2014-12-09 2016-07-06 中兴通讯股份有限公司 一种非正交用户设备间的干扰处理及信令通知方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3544201A4 *

Also Published As

Publication number Publication date
EP3544201A1 (en) 2019-09-25
CN109983710A (zh) 2019-07-05
US11012125B2 (en) 2021-05-18
EP3544201A4 (en) 2019-11-20
EP3544201B1 (en) 2020-11-25
CN109983710B (zh) 2022-02-18
US20190319683A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP7423880B2 (ja) ネットワークアシスト干渉相殺及び抑制のためのネットワークシグナリング
CN106464322B (zh) 小区内干扰消除以及抑制的信令的方法以及用户设备
JP5745017B2 (ja) ワイヤレス通信ネットワーク中の複数ユーザのmimoのためのスケジューリング
TWI432073B (zh) 依據差別方案來傳輸通道資訊的方法
US8934565B2 (en) Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple-input multiple-output (MU-MIMO) systems
JP5712211B2 (ja) 端末及び基地局、並びに端末の動作方法
EP2534767B1 (en) Multiple input multiple output communication method and system for exchanging coordinated rank information for neighbor cell
JP6650405B2 (ja) ユーザ装置
CN102447524B (zh) 信息指示的方法及设备
US20070211813A1 (en) MIMO precoding in the presence of co-channel interference
EP2229743B1 (en) Feedback with unequal error protection
US8744473B2 (en) Downlink limited-feedback interference alignment with constant amplitude codebooks and rate balance scheduling
US9515709B2 (en) Channel estimation with precoding matrix smoothing at the transmitter
WO2014008633A1 (zh) 信道质量指示的获取方法、用户设备、演进节点b和系统
EP3610609B1 (en) Layer mapping, csi feedback and harq feedback in mobile communications
US10064197B2 (en) Network assisted interference suppression
US11012125B2 (en) Signal sending and receiving method to pair user equipment
WO2011082641A1 (zh) 一种传输信道质量信息的系统、终端及方法
WO2018196589A1 (zh) 数据发送方法、数据接收方法、网络设备和终端设备
US11552660B2 (en) Wireless communication control method, receiving station, and non-transitory storage medium
WO2019222882A1 (en) Channel state information feedback
KR101670058B1 (ko) 다중 사용자 다중 입출력 환경에서 채널 상태 정보 공유 방법 및 장치
CN110391825B (zh) 一种多天线系统发射和接收方法及装置
KR20080112070A (ko) 제어 정보 생성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016925614

Country of ref document: EP

Effective date: 20190621