WO2014007680A2 - Substrat semi-conducteur structuré en trois dimensions pour cathode à auto-émission, procédé de sa fabrication et cathode à auto-émission - Google Patents

Substrat semi-conducteur structuré en trois dimensions pour cathode à auto-émission, procédé de sa fabrication et cathode à auto-émission Download PDF

Info

Publication number
WO2014007680A2
WO2014007680A2 PCT/RU2013/000563 RU2013000563W WO2014007680A2 WO 2014007680 A2 WO2014007680 A2 WO 2014007680A2 RU 2013000563 W RU2013000563 W RU 2013000563W WO 2014007680 A2 WO2014007680 A2 WO 2014007680A2
Authority
WO
WIPO (PCT)
Prior art keywords
field emission
substrate
emission cathode
silicon
cathode
Prior art date
Application number
PCT/RU2013/000563
Other languages
English (en)
Russian (ru)
Other versions
WO2014007680A3 (fr
Inventor
Станислав Александрович ЕВЛАШИН
Александр Турсунович РАХИМОВ
Антон Сергеевич СТЕПАНОВ
Андрей Александрович ПИЛЕВСКИЙ
Виктор Александрович КРИВЧЕНКО
Павел Владимирович ПАЩЕНКО
Юрий Александрович МАНКЕЛЕВИЧ
Александр Юрьевич ПОРОЙКОВ
Original Assignee
Evlashin Stanislav Aleksandrovich
Rakhimov Alexander Tursunovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evlashin Stanislav Aleksandrovich, Rakhimov Alexander Tursunovich filed Critical Evlashin Stanislav Aleksandrovich
Publication of WO2014007680A2 publication Critical patent/WO2014007680A2/fr
Publication of WO2014007680A3 publication Critical patent/WO2014007680A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes

Definitions

  • Three-dimensionally structured semiconductor substrate for field emission cathode method for its preparation and field emission cathode
  • the field of technology relates to the field of highly efficient field emission sources of electrons that can be used in electron microscopes, vacuum microwave devices, X-ray tubes, light sources, ion beam charge compensators, and other applications.
  • the prior art The prior art.
  • the field emission electron source is also often referred to as the field emission cathode (the term “field emission cathode” is used in English literature). Since in order to initiate emission from such a cathode, it is sufficient only to place it in an external electric field and it does not need to be heated, then another name for such a field emission electron source is often used - the cold cathode (in the English language “cold cathode”). Further in this text, the terms “field emission cathode” or “field cathode” are used.
  • micro-edge field-emission cathodes Two main types of field-emission cathodes are known for the type of roughness realized: micro-edge field-emission cathodes and field-emission cathodes based on nanostructured films deposited on a conductive substrate.
  • micro-sharp field emission cathodes the surface of the cathode is modified by processing so that the surface roughness created is optimal, namely, it is an array of micro-tips.
  • the cathode can be made of metal or a semiconductor.
  • micro-tip cathodes Various methods are known for producing micro-tip cathodes.
  • Arrays of silicon micropoints, regularly and controlled with high accuracy, are formed by well-known lithography and plasma-chemical etching methods widely used in microelectronics.
  • lithography and plasma-chemical etching methods widely used in microelectronics.
  • Electrode field emission from microtip arrays Vacuum, v. 82, 2008, pp.
  • a micro-tip structure can also be formed on a silicon substrate when exposed to powerful pulsed radiation on its surface.
  • the emission characteristics of such cathodes are low.
  • European patent application EP 1003196 “Carbon material, method for manufacturing the same material, field-emission type cold cathode using the same material and method for manufacturing the same cathode ", publ. 05.24.2000 describes the carbon micro-pointed structure and the method of its preparation using plasma etching technologies.
  • micro-tip cathodes when operating at high emission currents, ion bombardment of the residual gas leads to blunting of the tip and, thereby, to a decrease in local electric field strength and a decrease in the emission current.
  • the tip is very hot and can even melt. Therefore, it is preferable to use field emission cathodes based on a nanostructured film deposited on a conductive substrate.
  • field emission cathodes based on a nanostructured film deposited on a conductive substrate.
  • the substrate can remain flat.
  • the preferred material for the formation of such a nanostructured film is carbon, since it allows one to obtain field emission structures with the highest emission current density at relatively low electric field strengths.
  • a significant drawback of continuous nanostructured emitting films is that when they are deposited on all or part of its surface, the density of the arrangement of nanoscale emission centers may turn out to be excessive, which will lead to their mutual electrostatic screening and, accordingly, to a decrease in local values of the electric field strength and a drop 85 emission current density. It is known that the optimal density of emission centers is -10 6 cm " 2, which corresponds to an average distance between them of ⁇ 10 ⁇ m. In order to avoid uneven distribution of emission centers over the area of the cathode, the emission carbon film is deposited two-dimensionally
  • the metal catalyst in the form of an array of spots is locally applied to the flat surface of the substrate by lithographic methods, the specified geometry of which determines the position and concentration of emission centers.
  • Different options for obtaining two-dimensionally structured carbon field emission are possible.
  • Such a structuring of the substrate can be carried out by plasma-chemical etching of the silicon surface through a mask created by lithographic methods.
  • a metal can be used as a mask material, which is a catalyst for the growth of carbon nanotubes, which allows selective growth of a nanostructured carbon film, only at the vertices protected by the mask and, therefore, remaining etched columns.
  • Such silicon structures and autocathodes based on them are described, in particular, in the article "Large current carbon nanotube emitter growth using nickel as a buffer layer” (Nanotechnology, v. 18, 2007, 095604).
  • Three-dimensional structures in a silicon substrate can be created by electrochemical etching stimulated by optical radiation through a mask lithographically created on the surface of the silicon substrate.
  • the method of obtaining such a structured substrate and the substrate itself are described in US patent N 6790340 "Method and apparatus for radiation assisted electrochemical etching and etched product", publ. 09/14/2004.
  • non-lithographic methods of substrate structuring in which the formation of the required micro-tip structure within the formed emitting structure occurs as a result of a self-organizing process, and its geometric parameters are determined by the processing mode of the substrate as a whole.
  • a cathode based on a nanocrystalline carbon film deposited on such a pyramidically structured silicon 150 substrate is described in the article "Field emission from carbon nanosheets on pyramidal Si (100)" (Nanotechnology, v. 18, 2007, 185706). It should be noted, however, that anisotropic etching is realized only for p-type silicon, and to obtain field emission sources of electrons with high
  • the aspect ratio of the formed pyramids with this method of roughness formation is close to 1, which is not enough to obtain a highly efficient field emission
  • the resulting microstructured structure is an array of columns, albeit with a high aspect ratio (> 5), but with a flat top, i.e. obtained by this method
  • 175 microstructured autocathode is not micro-sharp, which is not enough to obtain an autocathode with high emission characteristics.
  • the task of the claimed group of inventions is to eliminate the disadvantages of the closest analogue.
  • the claimed group of inventions provides a technical 200 result, consisting in the development of a method that allows you to create a substrate for field emission cathode with such high-quality characteristics that would ensure reliable and uninterrupted operation of the cathode.
  • the field emission cathode is usually made in the form of a structure consisting of a conductive substrate with an emitting region formed on it.
  • the substrate may be of various shapes, but for the purposes of the present invention,
  • the emitting region can also be performed in different shapes, as well as represent a single spot, a combination of several spots or their array.
  • the value of the total emission current is important for specific practical applications.
  • the specific implementation of the device into which the autocathode is installed determines the geometric dimensions of the emission region. In total, the set value of the total current and the size of the emission region
  • the cathode surface is roughened. Then, near the peaks of roughness, a local increase in the electric field strength is realized, which allows one to obtain high field emission current densities at a comparative
  • the aim of the present invention is to provide a substrate for the formation of field emission
  • cathodes on which by deposition of a carbon emitting film it is possible to obtain autocathodes with a high degree of reproducibility of the achieved electron field emission current density.
  • the specified technical result is achieved by the method of obtaining a three-dimensionally structured semiconductor substrate
  • the surface is prepared by preliminary washing the substrate from contaminants, then chemically or mechanically protect the surface area that is not to be etched, leaving the area to be etched open.
  • the substrate is placed in
  • photoelectrochemical etching is carried out by an electrolyte with an HF concentration of from 0 to 23
  • Water-based electrolytes are used, for example, such as HF: H 2 0, HF: DMSO: H 2 0, HF: C 2 H 5 OH: H 2 0, HF: HN0 3 , KOH: H 2 0, or
  • anhydrous electrolyte e.g. acetonitrile, dimethylformamide, HF.
  • 280 backlight ranges from 0.01 m to 0.5 m.
  • the three-dimensionally structured semiconductor substrate for the field emission cathode is made of p-type crystalline silicon with a conductivity of 1 to 8 Ohm * cm by the method according to any of the above paragraphs of Formula 1 -4.
  • the field emission cathode contains a substrate made according to paragraph 5 of the formula with a nanostructured carbon film deposited on it.
  • FIG. 1 is a diagram of a cell device for photoelectrochemical etching of silicon.
  • FIG. Figures 2a and 26 show micropoint silicon structures obtained by photoelectrochemical etching on ⁇ -type and p-type silicon, respectively.
  • micro-tip structures with a film of nanocrystalline graphite obtained on p- and p-type silicon substrates, respectively, are presented.
  • FIG. Figure 4 shows the Raman spectra of emission films of nanocrystalline graphite grown on substrates obtained by photostimulated electrochemical etching.
  • the spectra shown in FIG. 4a and 46 correspond to ⁇ -type silicon with an etching time of 12 minutes and 90 minutes, respectively.
  • FIG. 5 shows the emission characteristics of a field emission cathode formed on substrates of various types of silicon.
  • the emission characteristics of ⁇ -type silicon are shown in FIG. 5a, p-type silicon in FIG. 56.
  • the cathode includes the formation of three-dimensional structures in silicon using photoelectrochemical etching.
  • the semiconductor substrates can be made of silicon 315 of any type.
  • the resulting three-dimensional structures are in the form of micropoints or a quasiregular cellular-spike structure formed by a combination of conical channels of various shapes and sizes ranging from several microns to several hundred microns.
  • LEDs light emitting diodes
  • lasers lasers
  • the electrolytes used to etch silicon can be characterized by acid content.
  • Water electrolytes are usually
  • the body of the electrochemical cell was made of fluoroplastic.
  • the electrical circuit of the cell includes a source 6 with a current stabilizer (it is also possible to connect to a source with a voltage stabilizer), two electrodes - anode 2 and cathode 5, connecting wires. Electrodes 2 and 5 were made of copper and platinum, respectively.
  • the silicon wafer 1 is in contact with the electrode 2.
  • the electrode 2 is attached to the housing of the electrochemical cell by four screws, and is pressed against the silicon wafer 1, which provides
  • the electrode 2 also has an opening, which during assembly is placed opposite the corresponding holes in the fluoroplastic and the rubber seal. The electrode 2 only contacts the back of the substrate 1 and is isolated from contact with the electrolyte 4.
  • the assembly was located 370 vertically, but other options for its orientation are possible, as well as the geometric dimensions of the silicon substrate, the shape and size of the holes that provide contact between the semiconductor wafer and the electrolyte and the access of optical radiation to the electrochemical cell. After fixing the substrates, the cells are filled
  • electrolyte concentration was: HF - 0.84 M, C 2 H 5 OH - 1, 66 M, H 2 0 - 53.92 M (which
  • 380 corresponds to a volume concentration of electrolyte components HF: C 2 H 5 OH: H 2 0 equal to 5 ml: 12 ml: 102 ml).
  • An auto-emission cathode is formed on the substrate obtained by the electrochemical method, which is obtained by depositing any nanocarbon emitting film on the surface of micro-tip structures
  • PECVD Plasma-chemical vapor deposition stimulated by an electron beam
  • HF CVD Plasma-chemical vapor deposition in a hot filament reactor
  • Sputtering magnetron sputtering, laser sputtering, etc.
  • the following morphology formations can enter: graphite crystals, graphene planes, carbon nanotubes, nanodiamond crystals, amorphous carbon.
  • a nanocrystalline graphite film is characterized by a 420 Raman spectrum (Raman spectrum).
  • the Raman spectrum of the studied samples is presented in the range from 300 to 2700 cm “1 (Fig 4. (a) - (d)).
  • the Raman spectrum of a carbon film grown on photoelectrochemical etching by porous silicon is represented by several well-known lines in the range of 1100-2800 cm “1. Peaks at 1288 cm “ 1 and at 1580 cm “1 are called D and G modes. It is well known that the D mode is associated with
  • the emission film of nanocrystalline graphite grown on a substrate for a field-emission cathode with such deeper pores is characterized by an increase in the intensity of Raman peaks (Fig. 4 (a) - (b), (c) - (d)). Based on this, we can conclude
  • 450 field emission cathode is that for growing nanocarbon films with high emission characteristics on them there is no need to additionally process the silicon surface before the growth of field emission structures. Emission characteristics for various types of silicon are manifested in the fact that p-type silicon

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Weting (AREA)

Abstract

Le groupe d'inventions concerne le domaine des sources d'électrons à auto-émission hautement efficaces qui peuvent s'utiliser dans des microscopes électroniques, des instruments UHF à vide, des tubes à rayons X, des compensateurs de charge de faisceaux d'ions et dans d'autres applications. Le résultat technique consiste en la possibilité de former par un procédé simple un substrat semi-conducteur structuré en trois dimensions présentant des paramètres optimaux et destiné à la fabrication d'une cathode à auto-émission avec des caractéristiques qui assurent la création d'une auto-cathode possédant des qualités fonctionnelles élevées et formée sur ladite cathode. Le procédé de fabrication d'un substrat pour cathode à auto-émission comprend la formation de structures tridimensionnelles dans le silicium au moyen d'un procédé d'attaque photo-électrochimique. Les électrolytes utilisés pour l'attaque du silicium peuvent être aqueux ou non aqueux. Les structures obtenues ont la forme de micro-pointes ou d'une structure à alvéoles et sommets formée par un ensemble de canaux coniques de forme et de dimensions différentes dans une gamme entre plusieurs micromètres et plusieurs centaines de micromètres. On peut utiliser en tant que source lumineuse différentes types de lampes, à savoir halogènes, lampes à incandescence ordinaires, lampes à sodium et lampes luminescentes. Il est également possible d'utiliser des diodes électroluminescentes (LED) et des lasers. Le trait distinctif principal des substrats pour cathode à auto-émission obtenus par ce procédé consiste en ce qu'il n'est pas nécessaire, pour assurer la croissance sur ces substrats des films en nanocarbone à caractéristiques d'émission élevées, d'appliquer un traitement supplémentaire de la surface de silicium avant la croissance des structures à auto-émission.
PCT/RU2013/000563 2012-07-04 2013-07-03 Substrat semi-conducteur structuré en trois dimensions pour cathode à auto-émission, procédé de sa fabrication et cathode à auto-émission WO2014007680A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012127765 2012-07-04
RU2012127765/07A RU2524353C2 (ru) 2012-07-04 2012-07-04 Трехмерно-структурированная полупроводниковая подложка для автоэмиссионного катода, способ ее получения и автоэмиссионный катод

Publications (2)

Publication Number Publication Date
WO2014007680A2 true WO2014007680A2 (fr) 2014-01-09
WO2014007680A3 WO2014007680A3 (fr) 2014-04-03

Family

ID=49882560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000563 WO2014007680A2 (fr) 2012-07-04 2013-07-03 Substrat semi-conducteur structuré en trois dimensions pour cathode à auto-émission, procédé de sa fabrication et cathode à auto-émission

Country Status (2)

Country Link
RU (1) RU2524353C2 (fr)
WO (1) WO2014007680A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3669888A1 (fr) 2018-12-20 2020-06-24 Gambro Lundia AB Dispositifs extracorporels pour procédés pour le traitement de maladies associées à des anticorps cytoplasmiques anti-neutrophiles
WO2020178420A1 (fr) 2019-03-06 2020-09-10 Gambro Lundia Ab Dispositif de traitement du sang comprenant une phosphatase alcaline
RU2792040C1 (ru) * 2022-03-29 2023-03-16 Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП "Алмаз") Способ изготовления катодно-сеточного узла с автоэмиссионными катодами

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5544772A (en) * 1995-07-25 1996-08-13 Galileo Electro-Optics Corporation Fabrication of a microchannel plate from a perforated silicon
RU2074444C1 (ru) * 1994-07-26 1997-02-27 Евгений Инвиевич Гиваргизов Матричный автоэлектронный катод и электронный прибор для оптического отображения информации
EP1003196A1 (fr) * 1998-11-19 2000-05-24 Nec Corporation Matériau carboné et procédé de fabrication, cathode froide à émission de champ utilisant ce matériau et procédé de fabrication
RU2194328C2 (ru) * 1998-05-19 2002-12-10 ООО "Высокие технологии" Холодноэмиссионный пленочный катод и способ его получения

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2187860C2 (ru) * 1997-07-01 2002-08-20 Галдецкий Анатолий Васильевич Автоэмиссионный катод и электронный прибор на его основе (варианты)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2074444C1 (ru) * 1994-07-26 1997-02-27 Евгений Инвиевич Гиваргизов Матричный автоэлектронный катод и электронный прибор для оптического отображения информации
US5544772A (en) * 1995-07-25 1996-08-13 Galileo Electro-Optics Corporation Fabrication of a microchannel plate from a perforated silicon
RU2194328C2 (ru) * 1998-05-19 2002-12-10 ООО "Высокие технологии" Холодноэмиссионный пленочный катод и способ его получения
EP1003196A1 (fr) * 1998-11-19 2000-05-24 Nec Corporation Matériau carboné et procédé de fabrication, cathode froide à émission de champ utilisant ce matériau et procédé de fabrication

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3669888A1 (fr) 2018-12-20 2020-06-24 Gambro Lundia AB Dispositifs extracorporels pour procédés pour le traitement de maladies associées à des anticorps cytoplasmiques anti-neutrophiles
WO2020127969A1 (fr) 2018-12-20 2020-06-25 Gambro Lundia Ab Dispositifs extracorporels pour procédés de traitement de maladies associées à des anticorps anti-cytoplasme des neutrophiles
WO2020178420A1 (fr) 2019-03-06 2020-09-10 Gambro Lundia Ab Dispositif de traitement du sang comprenant une phosphatase alcaline
RU2792040C1 (ru) * 2022-03-29 2023-03-16 Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП "Алмаз") Способ изготовления катодно-сеточного узла с автоэмиссионными катодами

Also Published As

Publication number Publication date
RU2524353C2 (ru) 2014-07-27
RU2012127765A (ru) 2014-01-10
WO2014007680A3 (fr) 2014-04-03

Similar Documents

Publication Publication Date Title
JP3502082B2 (ja) 電子源およびその製造方法、並びに、表示装置
Bo et al. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets
Gao et al. Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template
RU2309480C2 (ru) Материал и способ изготовления многоострийного автоэмиссионного катода
Panda et al. Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films
Seelaboyina et al. Enhanced field emission from aligned multistage carbon nanotube emitter arrays
RU2455724C1 (ru) Структура и способ изготовления интегральных автоэмиссионных элементов с эмиттерами на основе наноалмазных покрытий
Chang et al. Enhancing the plasma illumination behaviour of microplasma devices using microcrystalline/ultra-nanocrystalline hybrid diamond materials as cathodes
Diehl et al. Narrow energy distributions of electrons emitted from clean graphene edges
JP4762945B2 (ja) カーボンナノウォール構造体
Choi et al. Generation of carbon nanowhiskers, nanotips, and nanodots by controlling plasma environment: Ion energy and radical effects
Shao et al. A few-layer graphene ring-cathode field emitter for focused electron/ion beam applications
RU2524353C2 (ru) Трехмерно-структурированная полупроводниковая подложка для автоэмиссионного катода, способ ее получения и автоэмиссионный катод
JP4469770B2 (ja) 電子放出用電極及びその製造方法並びに電子機器
JP2004362919A (ja) カーボンナノチューブを用いた電子放出素子の製造方法
Zheng et al. Nitrogen-doped few-layer graphene grown vertically on a Cu substrate via C60/nitrogen microwave plasma and its field emission properties
Minh et al. Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters
Saravanan et al. High-performance electron field emitters and microplasma cathodes based on conductive hybrid granular structured diamond materials
Zheng et al. Vertically Aligned Boron-Doped Diamond Hollow Nanoneedle Arrays for Enhanced Field Emission
RU2590897C1 (ru) Автоэмиссионный элемент с катодами на основе углеродных нанотрубок и способ его изготовления
JP2004243477A (ja) 炭素質ナノ構造体の製造方法、炭素質ナノ構造体及びそれを用いた電子源
Tseng et al. Field emission characteristic study on bristling few-layer graphite/diamond composite film
Lee et al. Hot-filament CVD synthesis and application of carbon nanostructures
RU2579777C1 (ru) Прибор на основе углеродосодержащих холодных катодов, расположенных на полупроводниковой подложке, и способ его изготовления
KR20010029763A (ko) 탄소 나노튜브를 이용한 전계방출 표시소자의 제조 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13812828

Country of ref document: EP

Kind code of ref document: A2