WO2014006654A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2014006654A1
WO2014006654A1 PCT/JP2012/004339 JP2012004339W WO2014006654A1 WO 2014006654 A1 WO2014006654 A1 WO 2014006654A1 JP 2012004339 W JP2012004339 W JP 2012004339W WO 2014006654 A1 WO2014006654 A1 WO 2014006654A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
signal
circuit
bias current
frequency
Prior art date
Application number
PCT/JP2012/004339
Other languages
French (fr)
Japanese (ja)
Inventor
輝世晴 尾崎
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to PCT/JP2012/004339 priority Critical patent/WO2014006654A1/en
Publication of WO2014006654A1 publication Critical patent/WO2014006654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/087Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division
    • H03L7/1974Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division
    • H03L7/1976Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division for fractional frequency division using a phase accumulator for controlling the counter or frequency divider

Definitions

  • the present invention relates to a semiconductor device, and can be suitably used for, for example, a semiconductor device having a PLL (Phase Locked Loop) circuit that generates a local signal.
  • PLL Phase Locked Loop
  • a PLL circuit is used to control the frequency of a signal such as a clock signal or a sine wave signal used internally.
  • This PLL circuit can generate a signal obtained by multiplying the reference signal, and can generate a signal having an arbitrary frequency by controlling the multiplication number.
  • the signal generated by the PLL circuit is used in demodulation processing and modulation processing on data to be transmitted / received, for example, in a semiconductor device used for communication.
  • Patent Document 1 discloses a technique for suppressing the magnitude of the phase error of the clock signal generated by the PLL circuit.
  • the phase comparison between the reference signal and the output signal is performed using clock signals whose phases are different by 180 degrees.
  • the frequency dividing ratio of the frequency divider provided in the path for feeding back the output signal to the phase comparator is suppressed, and the phase error caused by the frequency divider is suppressed.
  • two charge pump circuits corresponding to each of the phase comparison timings Have
  • the control voltage of the voltage controlled oscillator is generated by the output currents of the two charge pump circuits.
  • the PLL circuit described in Patent Document 1 when used to configure a single semiconductor device corresponding to a plurality of communication standards, it is necessary to configure the PLL circuit in accordance with the communication standard of the strictest specification for phase error. There is. In such a case, in the PLL circuit described in Patent Document 1, it is necessary to increase the number of charge pump circuits that are operated to suppress the phase error. In other words, the PLL circuit described in Patent Document 1 has a problem that the current consumption of the entire PLL circuit becomes unnecessarily large in an operation mode in which communication of a communication standard that allows a large phase error is performed. Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
  • the semiconductor device has a plurality of controls that input and output a frequency control current that controls the magnitude of the frequency control voltage used to control the frequency of the output signal generated by the voltage controlled oscillator.
  • a current generation circuit In the semiconductor device, the current input / output by one control current generation circuit is set to the inverse number of the parallel number in accordance with the parallel number of the control current generation circuits.
  • the semiconductor device can suppress the current consumption according to the magnitude of the phase error of the output signal of the PLL circuit.
  • FIG. 1 is a block diagram of a semiconductor device according to a first embodiment; 1 is a block diagram of a PLL circuit according to a first exemplary embodiment; FIG. 3 is a block diagram of a control current generation circuit according to the first exemplary embodiment.
  • 1 is a circuit diagram of a current switching circuit according to a first embodiment; 1 is a block diagram of a local signal distribution circuit according to a first exemplary embodiment;
  • FIG. 6 is a diagram for explaining an operation of a control current generation circuit that does not include the current switching circuit according to the first embodiment;
  • FIG. 3 is a block diagram of a PLL circuit for explaining an open loop gain of the PLL circuit according to the first exemplary embodiment; FIG.
  • FIG. 3 is a diagram for explaining frequency characteristics of the PLL circuit according to the first exemplary embodiment
  • FIG. 3 is a diagram for explaining the operation of the control current generating circuit according to the first embodiment. It is a figure for demonstrating the specification of the phase error of a communication standard.
  • FIG. 6 is a diagram for explaining a relationship between a consumption current of the control current generation circuit according to the first embodiment and a phase error
  • FIG. 6 is a diagram for explaining a difference in frequency characteristics of a PLL circuit due to a difference in the number of parallel control current generation circuits according to the first embodiment
  • FIG. 3 is a block diagram of a PLL circuit according to a second exemplary embodiment.
  • FIG. 6 is a block diagram of a local signal distribution circuit according to a second exemplary embodiment.
  • FIG. 6 is a block diagram of a PLL circuit according to a third exemplary embodiment.
  • FIG. 6 is a block diagram of a control current generation circuit according to a third exemplary embodiment.
  • 10 is a flowchart showing an operation of the semiconductor device according to the fourth embodiment;
  • 10 is a flowchart showing an operation of the semiconductor device according to the fifth embodiment;
  • FIG. 10 is a schematic diagram of a layout of a control current generation circuit according to a sixth embodiment;
  • Embodiment 1 relates to a semiconductor device including a PLL circuit.
  • a semiconductor device that performs transmission / reception processing in wireless communication will be described as an example of a semiconductor device including a PLL circuit.
  • a semiconductor device described below corresponds to a plurality of wireless communication schemes (for example, IEEE802.11a / b / n / p).
  • the semiconductor device can appropriately select a wireless communication method to be used from a plurality of wireless communication methods. Note that the configuration described below can be applied not only to wireless communication but also to all semiconductor devices including a PLL circuit.
  • FIG. 1 shows a block diagram of a semiconductor device 1 according to the first embodiment.
  • the semiconductor device 1 has an external terminal TM.
  • the semiconductor device 1 is connected to another semiconductor device or element via the external terminal TM.
  • the semiconductor device 1 includes a reception front end unit 101a, 101b, 102a, 102b, 103a, 103b, a reception processing unit 104a, 104b, a transmission filter 105, a transmission front end unit 106, a transmission front end unit 107, a transmission front end unit 108, A baseband processing unit 109, a PLL circuit 10, and a local signal distribution circuit 11 are included.
  • the semiconductor device 1 shown in FIG. 1 performs multi-input type reception processing. For this reason, the semiconductor device 1 includes a first system (for example, A system) reception system and a second system (for example, B system) reception system. Therefore, in FIG. 1, “a” is added to the end of the code of the block configuring the A-system reception system, and “b” is added to the end of the code of the block configuring the B-system reception system.
  • a system for example, A system
  • B system for example, B system
  • the reception front-end units 101a and 101b are reception front-end units provided corresponding to a communication method (for example, IEEE 802.11p) that performs communication using a 760 MHz band radio signal.
  • the reception front end units 102a and 102b are reception front end units provided corresponding to a communication method (for example, IEEE802.11b / g / n) that performs communication using a 2.4 GHz band radio signal.
  • the reception front-end units 103a and 103b are reception front-end units provided corresponding to a wireless system (for example, IEEE802.11a / n / p) that performs communication using a 5.9 GHz band wireless signal.
  • the reception front end unit receives a local signal having a frequency corresponding to the communication method from the local signal distribution circuit 11.
  • the reception front-end unit generates a baseband signal from a radio signal (RF signal) that is input by modulating the reception signal using a local signal. That is, the reception front end unit generates a baseband signal from the RF signal by performing a modulation process of the direct conversion method.
  • RF signal radio signal
  • the reception processing units 104a and 104b perform amplification processing of the baseband signal and conversion processing (analog / digital conversion processing) of the amplified baseband signal from an analog signal to a digital signal. That is, the reception processing units 104a and 104b generate data signals RDa and RDb from the baseband signals. Since the baseband signal has the same frequency regardless of which communication method is used, one reception processing unit is provided for a plurality of reception front end units. In the example shown in FIG. 1, one reception processing unit is provided for each of the A system and the B system.
  • the transmission filter 105 performs a filtering process on the transmission data SD output from the baseband processing circuit 109.
  • the transmission front end unit 106 is a transmission front end unit provided corresponding to a communication method (for example, IEEE802.11p) for performing communication using a 760 MHz band radio signal.
  • the transmission front end unit 107 is a transmission front end unit provided corresponding to a communication method (for example, IEEE802.11b / g / n) that performs communication using a 2.4 GHz band radio signal.
  • the reception front end unit 108 is a transmission front end unit provided corresponding to a wireless system (for example, IEEE802.11a / n / p) that performs communication using a 5.9 GHz band wireless signal.
  • the transmission front end unit receives a local signal having a frequency corresponding to the communication method from the local signal distribution circuit 11. Then, the transmission front end unit modulates the transmission data SD with the received local signal and outputs it.
  • the baseband processing circuit 109 performs a decoding process on the reception data RDa and RDb output from the reception processing units 104a and 104b and outputs them to other circuits such as an application processor.
  • the baseband processing circuit 109 receives the reception data RDa obtained through the A-system reception system and the reception data RDa obtained through the B-system reception system, which has the higher reception sensitivity. Processing such as selecting received data obtained from the system or generating received data with higher accuracy by combining received data obtained from the two receiving systems is performed. Further, the baseband processing circuit 109 performs transmission processing on the data obtained from the application processor or the like to generate transmission data SD.
  • the baseband processing circuit 109 functions as a control circuit for the PLL circuit 10. More specifically, the baseband processing circuit 109 generates the parallel number switching signal S1 and the bias current switching signal S2 according to a communication method to be used or a communication situation such as reception intensity.
  • the parallel number switching signal S1 and the bias current switching signal S2 are control signals given to a control current generation circuit described later.
  • the parallel number switching signal S1 is a signal for designating a parallel number indicating the number of control current generating circuits operated in parallel.
  • the bias current switching signal S2 is a signal that designates the inverse of the parallel number as the bias current setting value.
  • the bias current switching signal S2 may specify a bias current setting value so that the bias current decreases as the number of parallel increases.
  • the PLL circuit 10 receives the reference signal Fref from the oscillator 2 provided outside, and generates an output signal S3 obtained by multiplying the reference signal Fref.
  • the output signal S3 is a signal that is a source of the local signal.
  • the local signal distribution circuit 11 generates a plurality of local signals having a frequency corresponding to each communication method from the output signal S3.
  • the local signal distribution circuit 11 distributes the generated local signal to the corresponding transmission front end unit and transmission front end unit. Details of the PLL circuit 10 and the local signal distribution circuit 11 will be described later.
  • FIG. 2 shows a block diagram of the PLL circuit according to the first exemplary embodiment.
  • the control unit 109 is the baseband processing circuit of FIG. 1 and outputs a parallel number switching signal S1 and a bias current switching signal S2 related to the PLL circuit 10.
  • the control unit 109 increases the number of parallels specified by the parallel number switching signal S1 as the magnitude of the phase error required in the communication method to be used decreases. Further, the control unit 109 decreases the bias current setting value specified by the bias current switching signal S2 in response to the increase in the number of parallels specified by the parallel number switching signal S1.
  • the PLL circuit 10 includes control current generation circuits 211 to 21m (m is an integer indicating the number of control current generation circuits), a loop filter 26, a voltage control oscillator 27, a prescaler 28, a sigma delta modulator. 29.
  • Each of the control current generation circuits 211 to 21m includes a current source that generates a first bias current having a predetermined current value, and is generated from the first bias current based on the phase difference determination signals UP and DN. Input / output frequency control current. Further, the control current generation circuits 211 to 21m output a current obtained by adding the currents input / output by the charge pump circuits included therein as a frequency control current to be supplied to the loop filter 26.
  • the control current generation circuit 211 includes a phase comparator 221, a charge pump circuit 231, a current source 241, and a current switching circuit 251.
  • the control current generation circuits 212 to 21m have circuits corresponding to the phase comparator 221, the charge pump circuit 231, the current source 241, and the current switching circuit 251, respectively. That is, the control current generation circuits 211 to 21m have the same circuit configuration.
  • a plurality of phase comparators are provided corresponding to the control current generating circuits 211 to 21m.
  • the phase comparator is included in the control current generation circuit. However, the phase comparator can be mounted as another circuit block.
  • the phase comparator 221 outputs phase difference determination signals UP and DN indicating the phase difference between the reference signal Fref and the feedback signal Ffb generated from the output signal S3.
  • the charge pump circuit 231 flows out the frequency control current in response to the phase difference determination signal UP being enabled, and flows in the frequency control current in response to the phase difference determination signal DN being enabled.
  • the current source 241 generates a first bias current having a predetermined current value.
  • the current switching circuit 251 generates a second bias current obtained by multiplying the first bias current by a reciprocal number of the parallel number based on the bias current switching signal S2.
  • the charge pump circuit 231 inputs / outputs a current corresponding to the second bias current as a frequency control current in accordance with the phase difference determination signals UP and DN.
  • the loop filter 26 generates a frequency control voltage based on the frequency control current. Note that the total value of the frequency control currents output from the control current generation circuits 211 to 21m is input to the loop filter 26.
  • the voltage controlled oscillator 27 controls the frequency of the output signal S3 according to the frequency control voltage. For example, when the voltage controlled oscillator 27 is composed of an LC type voltage controlled oscillator, the frequency of the output signal S3 is controlled by changing the value of the capacitance by the frequency control voltage.
  • the voltage controlled oscillator 27 outputs the internal oscillation signal Fout. In the example shown in FIG. 2, the internal oscillation signal Fout is output as it is as the output signal S3.
  • the prescaler 28 is provided between the voltage controlled oscillator 27 and the phase comparators 211 to 21m, and divides the output signal S3 to generate a feedback signal Ffb.
  • the sigma delta modulator 29 generates a frequency division ratio control signal S4 that specifies the frequency division ratio of the prescaler 28. More specifically, the sigma delta modulator 29 fluctuates the frequency division ratio by the sigma delta modulation process, and realizes a frequency division ratio finer than the frequency division ratio obtained from the hardware configuration of the prescaler 28.
  • FIG. 3 shows a block diagram of the control current generating circuits 211 to 21m according to the first embodiment.
  • the parallel number switching signal S1 is input to the control current generating circuits 211 to 21m.
  • the parallel number switching signal S1 is, for example, a bundle of enable signals corresponding to the control current generating circuits 211 to 21m.
  • the control current generating circuits 211 to 21m operate when the input parallel number switching signal S1 is enabled, and stop when the parallel number switching signal S1 is disabled.
  • control current generation circuits 211 to 21m operate a circuit such as a current source when the corresponding parallel number switching signal S1 is in the enabled state, and the current when the corresponding parallel number switching signal S1 is in the disabled state.
  • the circuit such as the power source is stopped to reduce the current consumption of the circuit.
  • the control current generation circuits 211 to 21m are in a stopped state, for example, the generation of the first bias current by the current source is stopped, and the output of the charge pump circuit is set in a high impedance state.
  • control current generation circuits 211 to 21m have the same circuit configuration. Therefore, in this description, the control current generation circuit 211 will be described as a representative example of the control current generation circuit. As illustrated in FIG. 3, the control current generation circuit 211 includes a current source 241, a current switching circuit 251, a phase comparator 221, and a charge pump circuit 231.
  • the current source 241 generates a first bias current.
  • the first bias current is a current having a predetermined current value, and is generated by, for example, a band gap current source.
  • Ibias indicating the amount of the first bias current is used as the sign of the first bias current.
  • the current switching circuit 251 generates a second bias current in which the first bias current Ibias is a reciprocal multiple of the parallel number N according to the bias current setting value specified by the bias current switching signal S2.
  • Ibias / N indicating the amount of the second bias current is used as the sign of the second bias current.
  • the phase comparator 221 outputs phase difference determination signals UP and DN indicating the phase difference between the reference signal Fref and the feedback signal Ffb. More specifically, when the phase of the feedback signal Ffb is behind the phase of the reference signal Fref, the phase comparator 221 enables the phase difference determination signal UP (for example, low level), and the phase difference determination signal DN is disabled (for example, high level). On the other hand, when the phase of the feedback signal Ffb is ahead of the phase of the reference signal Fref, the phase comparator 221 disables the phase difference determination signal UP (for example, high level) and sets the phase difference determination signal DN to Enable state (for example, low level).
  • the charge pump circuit 231 inputs / outputs a current corresponding to the second bias current as a frequency control current in accordance with the phase difference determination signals UP and DN.
  • the PLL circuit 10 gives the loop filter 26 a sum of the frequency control currents output from the charge pump circuits 231 to 23m of the control current generation circuits 211 to 21m.
  • the charge pump circuits 231 to 23m each show Icp / N indicating the magnitude of the frequency control current as a sign of the frequency control current.
  • the current value Icp indicates the current value of the frequency control current applied to the loop filter 26.
  • the second bias current that serves as a reference for the current value Icp is used.
  • the frequency control current output from each of the control current generation circuits 211 to 21m according to the first embodiment is 1 / N times the current value Icp.
  • the loop filter 26 is supplied with a current obtained by adding the currents output from the N control current generation circuits, that is, a frequency control current with a current value of Icp.
  • FIG. 4 shows a detailed circuit diagram of the charge pump circuit 231, the current source 241, and the current switching circuit 251.
  • the current source 241 is shown as one circuit symbol.
  • the current source 241 is connected between the power supply terminal VDD and the current switching circuit 251 and outputs a first bias current Ibias.
  • the current switching circuit 251 includes NMOS transistors MN1 to MN3 and PMOS transistors MP1 and MP2.
  • the sources of the NMOS transistors MN1, MN2, and MN3 are connected to the ground terminal VSS.
  • the gate of the NMOS transistor MN1 is connected to the drain of the NMOS transistor MN1.
  • the first bias current Ibias is input to the drain of the NMOS transistor MN1.
  • the gates of the NMOS transistors MN2 and MN3 are connected in common with the gate of the NMOS transistor MN1.
  • the drain of the NMOS transistor MN2 is connected to the drain of the PMOS transistor MP1.
  • the drain of the NMOS transistor MN3 serves as a first output terminal of the current switching circuit 251 and outputs a current I2. That is, the NMOS transistors MN1, MN2, and MN3 constitute a current mirror circuit.
  • the NMOS transistors MN1 and MN2 have the same transistor size M0. Therefore, the current amount I1 output from the NMOS transistor MN2 is the same current amount Ibias as the first bias current.
  • the ratio between the transistor size M0 of the NMOS transistor MN1 and the transistor size M1 of the NMOS transistor MN3 is set to 1: 1 / N. 1 / N is the value of the bias current setting value specified by the bias current switching signal S2. That is, the NMOS transistor MN3 has a configuration in which the transistor size can be changed by the bias current switching signal S2. As a result, the amount of current I2 output from the NMOS transistor MN3 is 1 / N times the first bias current.
  • the transistor size is a value determined by the ratio between the gate width and the gate length of the transistor. In the following description, the transistor size will be described based on the same definition.
  • the NMOS transistor MN3 has a configuration capable of changing the transistor size. Such a configuration can be realized, for example, by switching the number of transistors that operate effectively by switching transistors connected in parallel and switching on and off the switch connected to the drain. In this embodiment, it is assumed that the parallel number of control current generation circuits is switched to 1, 2, 4, and 8. Therefore, for example, when the transistor size M0 of the NMOS transistor MN1 is set to 8 which is the smallest of the common multiples of 1, 2, 4, and 8, the transistor size M1 of the NMOS transistor MN3 is set to 8, 4, 2, 1. If set, the bias current set values of 1, 1/2, 1/4, and 1/8 can be realized.
  • the sources of the PMOS transistors MP1 and MP2 are connected to the power supply terminal VDD.
  • the gate of the PMOS transistor MP1 is connected to the drain of the PMOS transistor MP1.
  • the current I1 is input to the drain of the PMOS transistor MP1.
  • the gate of the PMOS transistor MP2 is connected in common with the gate of the PMOS transistor MP1.
  • the drain of the PMOS transistor MP2 serves as a second output terminal of the current switching circuit 251 and outputs a current I3. That is, the PMOS transistors MP1 and MP2 constitute a current mirror circuit.
  • the current mirror circuit generates I1 having the same amount of current as the first bias current Ibias.
  • the ratio between the transistor size M2 of the PMOS transistor MP1 and the transistor size M3 of the PMOS transistor MP2 is set to 1: 1 / N.
  • 1 / N is the value of the bias current setting value specified by the bias current switching signal S2. That is, the PMOS transistor MP2 has a configuration in which the transistor size can be changed by the bias current switching signal S2.
  • the amount of current I3 output from the PMOS transistor MP2 is 1 / N times the first bias current.
  • the current switching circuit 251 has a current mirror circuit composed of a first transistor and a second transistor.
  • the first transistor for example, NMOS transistor MN1, PMOS transistor MP1 has a first terminal having a first bias current Ibias, a control terminal connected to the first terminal, and a first terminal of the first transistor. And a second terminal connected to a first power supply terminal different from the first terminal.
  • the second transistor (eg, NMOS transistor MN3, PMOS transistor MP2) includes a first terminal having a second bias current, a control terminal connected to the control terminal of the first transistor, and a second terminal A second terminal connected to a first power supply terminal different from the first terminal of the transistor;
  • the current mirror circuit switches the size of the second bias current with respect to the first bias current by switching the transistor size of the second transistor according to the bias current switching signal.
  • the first power supply terminal corresponds to the ground terminal VSS when the current mirror circuit is configured by an NMOS transistor, and corresponds to the power supply terminal VDD when the current mirror circuit is configured by a PMOS transistor.
  • the charge pump circuit 231 includes NMOS transistors MN4 to MN6, PMOS transistors MP3 and MP4, and an inverter.
  • the sources of the NMOS transistors MN4 and MN5 are connected to the ground terminal VSS.
  • the gate of the NMOS transistor MN4 is connected to the drain of the NMOS transistor MN4.
  • the current I3 output from the current switching circuit 251 is input to the drain of the NMOS transistor MN4.
  • the gate of the NMOS transistor MN5 is connected in common with the gate of the NMOS transistor MN4.
  • the drain of the NMOS transistor MN5 is connected to the drain of the PMOS transistor MP4 and constitutes the output terminal of the charge pump circuit 231.
  • the NMOS transistor MN5 outputs a current I5.
  • the NMOS transistor MN6 is connected between the node connecting the gates of the MMOS transistors MN4 and MN5 and the ground terminal VSS.
  • the phase difference determination signal DN is input to the gate of the NMOS transistor MN6 via the inverter.
  • the relationship between the current amount of the current I5 and the current I3 is determined by the ratio between the transistor size of the NMOS transistor MN4 and the transistor size of the NMOS transistor MN5. For example, if the ratio between the transistor size of the NMOS transistor MN4 and the transistor size of the NMOS transistor MN5 is 1: 1, the current amount of the current I5 and the current I3 are the same. If the ratio between the transistor size of the NMOS transistor MN4 and the transistor size of the NMOS transistor MN5 is 1: 3, the current I5 has a current amount three times that of the current I3.
  • the ratio of the transistor size of the NMOS transistor MN4 and the transistor size of the NMOS transistor MN5 is set in accordance with the ratio of the amount of current between the first bias current and the frequency control current applied to the loop filter 26.
  • the sources of the PMOS transistors MP3 and MP4 are connected to the power supply terminal VDD.
  • the gate of the PMOS transistor MP3 is connected to the drain of the PMOS transistor MP3.
  • the current I2 output from the current switching circuit 251 is input to the drain of the PMOS transistor MP3.
  • the gate of the PMOS transistor MP4 is connected in common with the gate of the PMOS transistor MP3.
  • the drain of the PMOS transistor MP4 is connected to the drain of the NMOS transistor MN5 and constitutes the output terminal of the charge pump circuit 231.
  • the PMOS transistor MP4 outputs a current I4.
  • the PMOS transistor MP5 is connected between a node connecting the gates of the PMOS transistors MP3 and MP4 and the power supply terminal VDD.
  • the phase difference determination signal UP is input to the gate of the PMOS transistor MP5.
  • the relationship between the current amount of the current I4 and the current I2 is determined by the ratio between the transistor size of the PMOS transistor MP3 and the transistor size of the PMOS transistor MP4. For example, if the ratio between the transistor size of the PMOS transistor MP3 and the transistor size of the PMOS transistor MP4 is 1: 1, the current amount of the current I4 and the current I2 are the same. If the ratio between the transistor size of the PMOS transistor MP3 and the transistor size of the PMOS transistor MP4 is 1: 3, the current I4 has a current amount three times that of the current I2.
  • the ratio between the transistor size of the PMOS transistor MP3 and the transistor size of the PMOS transistor MP4 is set in accordance with the ratio of the amount of current between the first bias current and the frequency control current applied to the loop filter 26.
  • the PMOS transistor MP4 and the NMOS transistor MN5 are turned on / off by the PMOS transistor MP5 / NMOS transistor MN6 controlled by the phase difference determination signal UP / phase difference determination signal DN. It is difficult to design (timing design) that achieves both on / off operation and control of the currents I4 and I5 flowing through the PMOS transistor MP4 and the NMOS transistor MN5, and the characteristics are likely to deteriorate. Therefore, the current adjustment is preferably performed by the PMOS transistor MP2 and the NMOS transistor MN3.
  • the local signal distribution circuit 11 generates first and second local signals from the output signal S3, distributes the first local signal to the first transmission / reception circuit, and distributes the second local signal to the second transmission / reception circuit. Distribute.
  • the local signal distribution circuit 11 according to the first exemplary embodiment generates three local signals of local signals f_local1, f_local2, and f_local3. In such a case, one of the two local signals among the plurality of local signals corresponds to the first local signal, and the other corresponds to the second local signal.
  • the first transmission / reception circuit performs data transmission / reception based on a first local signal having a first frequency.
  • the first transmission / reception circuit corresponds to a plurality of different frequency bands (for example, a reception front end unit). And a circuit including a reception front end unit).
  • the second transmission / reception circuit performs data transmission / reception based on a second local signal having a second frequency different from the first frequency.
  • other transmission / reception circuits corresponding to a plurality of different frequency bands are used. It is one of.
  • the local signal distribution circuit 11 includes a 1/16 frequency divider 31, buffer circuits 32, 34, and 36, a 1/4 frequency divider 33, and a 1/2 frequency divider 35.
  • the local signal distribution circuit 11 outputs a local signal f_local1 having a frequency of 760 MHz by setting the frequency of the output signal S3 of the PLL circuit 10 to 1/16 by the 1/16 frequency divider 31.
  • the buffer circuit 32 is a drive circuit that distributes the local signal f_local1 to a plurality of circuits.
  • the local signal distribution circuit 11 outputs a local signal f_local2 having a frequency of 2.4 GHz by setting the frequency of the output signal S3 of the PLL circuit 10 to 1/4 by the 1/4 frequency divider 33.
  • the buffer circuit 34 is a drive circuit that distributes the local signal f_local2 to a plurality of circuits.
  • the local signal distribution circuit 11 outputs a local signal f_local3 having a frequency of 4.9 G to 5.9 GHz by halving the frequency of the output signal S3 of the PLL circuit 10 by the 1 ⁇ 2 divider 35. .
  • the buffer circuit 36 is a drive circuit that distributes the local signal f_local3 to a plurality of circuits.
  • the operation of the semiconductor device 1 according to the first embodiment will be described.
  • the semiconductor device 1 according to the first embodiment when the PLL circuit 10 generates a local signal, the parallel number of the control current generating circuits 211 to 21m and the frequency that one control current generating circuit inputs and outputs according to the communication method. Switches the magnitude of the control current.
  • power consumption and face error are optimally controlled, and waste of power consumption is reduced.
  • FIG. 6 is a diagram illustrating the operation of the control current generation circuit that does not include the current switching circuit according to the first embodiment.
  • the control current generation circuit shown in FIG. 6 is a circuit obtained by removing the control current switching circuits 251 to 25m from the control current generation circuit shown in FIG. 3, and each circuit block is the same as the control current generation circuit shown in FIG. The same.
  • “a” is added to the end of the reference numerals attached to each block.
  • each frequency control current includes a carrier component and a noise component.
  • Each carrier component has a size of Icp, and each noise component has a size of In_out.
  • the noise component has an uncorrelated phase relationship between the control current generation circuits 211a to 21ma, and the magnitude thereof is represented by an average value of noise.
  • the frequency control currents output from the control current generation circuits 211a to 21ma are added and given to the loop filter 26.
  • the added frequency control current carrier component Ica is expressed by the equation (1)
  • the noise component In is expressed by the equation (2).
  • the switching of the magnitude of the frequency control current output by one control current generation circuit is not performed in accordance with the switching of the parallel number of the control current generation circuits 211a to 21ma, the frequency control current that is finally generated Of the carrier component Ica increases in proportion to the parallel number. In this case, the magnitude of the noise component In of the finally generated frequency control current is increased by the square root of the parallel number.
  • the open loop gain of the PLL circuit increases or decreases, and the phase error, settling time, reference Affects spurious and phase margin. Therefore, the open loop gain of the PLL circuit will be described.
  • FIG. 7 is a block diagram of the PLL circuit for explaining the open loop gain of the PLL circuit.
  • This block diagram of the PLL circuit is also applicable to the PLL circuit described in FIG.
  • the transfer function combining the phase comparator and the charge pump circuit is expressed by Icp / 2 ⁇
  • the transfer function of the loop filter is expressed by F (S)
  • the transfer function of the voltage controlled oscillator VCO Is represented by 2 ⁇ Kv / S
  • the transfer function of the frequency divider is represented by 1 / div.
  • the open loop gain Ao of the PLL circuit is expressed by equation (3).
  • Icp is a frequency control current input / output by the charge pump circuit
  • Kv is a predetermined coefficient in the voltage controlled oscillator VCO
  • div is a frequency division ratio of the frequency divider
  • ⁇ 1 is a value expressed by the equation (4)
  • ⁇ 2 is a value expressed by the equation (5).
  • C1 and C2 are the capacitance values of the capacitors C1 and C2 constituting the loop filter, respectively
  • R2 is the resistance value of the resistor R2 of the loop filter.
  • FIG. 8 shows a diagram for explaining the frequency characteristics of the PLL circuit.
  • the graph of the frequency characteristic shown in FIG. 8 is in the vicinity of the frequency band where the open loop gain Ao is 0 dB.
  • the open loop gain Ao increases as the frequency control current Icp increases.
  • the frequency at which the gain becomes 0 dB also increases. As a result, the amount of spurious suppression is deteriorated and the phase error is increased.
  • the pole is obtained from ⁇ 1 shown in the equation (4) (1 / (2 ⁇ 1 ) in FIG. 8) and ⁇ 2.
  • the zero point (1 / 2 ⁇ 2 in FIG. 8) does not vary. Therefore, the phase with respect to the gain of the PLL circuit does not fluctuate, and the phase margin becomes small.
  • the phase margin becomes small, there arises a problem that the PLL circuit is not worst locked. That is, there is a problem that adversely affects the settling time.
  • the magnitude of the frequency control current output by one control current generation circuit is switched according to the switching of the parallel number of the control current generation circuits 211 to 21m, and the number of parallel Regardless, the final frequency control current is kept constant. Therefore, the above problem does not occur in the PLL circuit 10 of the semiconductor device 1 according to the first embodiment.
  • FIG. 9 is a diagram for explaining the operation of the control current generating circuit according to the first embodiment.
  • the block diagram shown in FIG. 9 is the same as that shown in FIG.
  • the magnitude of the noise component of the frequency control current output from one control current generation circuit is 1 / N times that when the magnitude of the frequency control current is not 1 / N times. This is because in the current switching circuits 251 to 25m, the noise component also becomes 1 / N when the first bias current Ibias is set to 1 / N times.
  • the added frequency control current carrier component Ica is expressed by the equation (6)
  • the noise component In is expressed by the equation (7).
  • the frequency control current output by each control current generation circuit is generated based on the first bias current generated from different current sources.
  • the noise component of the frequency control current has an uncorrelated phase relationship between the control current generation circuits.
  • the noise component shown in FIG. 9 represents an average value of noise magnitude per unit time.
  • Equation (7) an equal sign that means that the noise component is substantially equal is used. This is because when the bias current to the charge pump circuit 231 is set to 1 / N by the current switching circuit 252, This is because the flicker noise of the transistors constituting the charge pump circuit 231 may be strictly deviated from 1 / N.
  • the frequency control current to be finally generated is changed.
  • the size is constant regardless of the parallel number.
  • the magnitude of the noise component of the frequency control current that is finally generated is one times the square root of the parallel number. That is, the semiconductor device 1 according to the first embodiment is characterized in that the noise component of the frequency control current applied to the loop filter 26 decreases as the parallel number increases.
  • FIG. 10 is a diagram for explaining the specifications of the phase error of the communication standard.
  • transmission EVM Error Vector Magnitude
  • This transmission EVM is a value indicating the ratio between the area of the signal component and the area of the noise component in the spectrum of the signal.
  • a transmission EVM of ⁇ 25 dB is determined when the frequency band is 4.9 to 4.8 GHz.
  • IEEE 802.11a / n a transmission EVM of ⁇ 28 dB is determined when the frequency band is 4.9 to 4.8 GHz.
  • IEEE 802.11b / g a transmission EVM of ⁇ 25 dB is determined when the frequency band is 2.4 GHz.
  • IEEE802.11b / g / n a transmission EVM of ⁇ 28 dB is determined when the frequency band is 2.4 GHz.
  • IEEE802.11p a transmission EVM of ⁇ 25 dB is determined when the frequency band is 760 MHz and 5.9 GHz.
  • an EVM of ⁇ 29 dB is obtained for the local signal f_local3.
  • IEEE802.11a / n an EVM of ⁇ 32 dB is obtained for the local signal f_local3.
  • IEEE 802.11b / g an EVM of ⁇ 23 dB is obtained for the local signal f_local3.
  • IEEE 802.11b / g / n an EVM of ⁇ 26 dB is obtained for the local signal f_local3.
  • an EVM of -11 dB is obtained for the local signal f_local3.
  • -32 dB EVM is obtained for the local signal f_local3. This value includes a margin of ⁇ 4 dB from the original value in consideration of a phase error generated in the local signal distribution circuit 11, a phase error generated in the transmission front end unit, and the like.
  • the value obtained by converting the EVM required for the local signal f_local3 into a phase error is described next to the EVM of the output signal D3.
  • IEEE802.11a 1.61 deg.
  • An rms phase error is determined in the local signal f_local3.
  • IEEE 802.11a / n 1.14 deg.
  • An rms phase error is determined in the local signal f_local3.
  • IEEE 802.11b / g 3.22 deg.
  • An rms phase error is determined in the local signal f_local3.
  • IEEE802.11b / g / n 2.28 deg.
  • An rms phase error is determined in the local signal f_local3.
  • IEEE 802.11p at 760 MHz 12.83 deg. An rms phase error is determined in the local signal f_local3.
  • IEEE 802.11p 5.9 GHz 1.61 deg. An rms phase error is determined in the local signal f_local3.
  • FIG. 11 is a diagram for explaining the relationship between the current consumption of the control current generating circuit according to the first embodiment and the phase error.
  • FIG. 12 is a diagram for explaining the difference in the frequency characteristics of the PLL circuit due to the difference in the number of parallel control current generation circuits according to the first embodiment.
  • the cutoff frequency does not change even if the parallel number of the control current generating circuits is changed.
  • the phase error in the low frequency band is reduced and the gain is reduced by increasing the parallel number of the control current generating circuits.
  • the PLL circuit 10 reduces the number of parallel control current generation circuits 211 to 21m when the required phase error is large and increases when the required phase error is small. Further, the PLL circuit 10 according to the embodiment increases the magnitude of the frequency control current input / output by one control current generation circuit when the number of parallel control current generation circuits 211 to 21m is small, and generates the control current When the number of parallel circuits 211 to 21m is large, the magnitude of the frequency control current input / output by one control current generation circuit is reduced.
  • the parallel number of the control current generation circuits 211 to 21m is N and the magnitude of the frequency control current finally applied to the loop filter 26 is Icp, one control is performed.
  • the magnitude of the frequency control current input / output by the current generation circuit 211 is Icp / N.
  • the fluctuation of the frequency control current Icp due to the switching of the parallel number of the control current generating circuits 211 to 21m is suppressed, and the fluctuation of various characteristics of the PLL circuit is suppressed.
  • control current generating circuits 211 to 21m individually have current sources 241 to 24m, and the first bias current generated by the current sources 241 to 24m is individually 1 / N times (N is parallel). A second bias current is generated. Then, a frequency control current is generated based on the individually generated second bias current, and these are added together to generate a frequency control current Icp to be given to the loop filter 26.
  • the magnitude of the noise component In of the frequency control current Icp is set to (1 / ⁇ N) * (In_out) (In_out is a noise component included in the frequency control current output by one control current generation circuit). That is, in the PLL circuit according to the first embodiment, the noise component of the frequency control current Icp can be reduced as the number of parallel control current generation circuits increases. In the semiconductor device 1 according to the first embodiment, the phase error of the output signal S3 generated by the PLL circuit 10 is reduced by reducing the noise component of the frequency control current Icp according to the increase in the number of parallel control current generation circuits. Can be controlled to a size satisfying the standard value of the communication system.
  • phase error required by the communication method to be used is large, while reducing the parallel number of the control current generating circuits 211 to 21m, it is possible to reduce waste of current consumption.
  • the phase error can be made smaller than the required size.
  • each of the control current generation circuits 211 to 21m has a phase comparator.
  • flicker noise or the like generated due to the phase comparator becomes uncorrelated between the control current generation circuits. Therefore, in the PLL circuit 10 according to the first embodiment, the noise related to the phase comparator can be set to the square root of the parallel number in the finally generated frequency control current.
  • the first bias current Ibias is reciprocal times (1 / N times) the parallel number by the current switching circuits 251 to 25m provided before the charge pump circuits 231 to 23m. ) To generate a second bias current.
  • the noise component included in the frequency control current output from one control current generation circuit is 1 / N. Not N times.
  • the noise component included in the frequency control current output by one control current generation circuit is obtained by multiplying the bias current by 1 / N times before the charge pump circuit. Can be reduced to 1 / N times to reduce the noise component.
  • the phase relationship of noise components included in the frequency control current input / output by each control current generation circuit is made uncorrelated.
  • the noise component when the currents are added can be reduced to ⁇ N times to reduce the noise component.
  • the PLL circuit 10 includes the prescaler 28 that generates the feedback signal Ffb from the output signal S3.
  • the PLL circuit 10 can generate the output signal S3 having a frequency higher than that of the reference signal Fref.
  • the sigma delta modulator 29 generates a frequency division ratio control signal S 4 for controlling the frequency division ratio of the prescaler 28.
  • the division ratio control signal S4 using the sigma delta modulator 29, it is possible to set a division ratio with higher resolution than the division ratio determined from the hardware configuration of the prescaler 28. .
  • the parallel number of the control current generating circuits 211 to 21m is N and the magnitude of the frequency control current finally applied to the loop filter 26 is Icp, one control current
  • the magnitude of the frequency control current input / output by the generation circuit 211 is Icp / N
  • the magnitude of the frequency control current is not necessarily set to Icp / N.
  • the parallel number of the control current generation circuits 211 to 21m is small, the magnitude of the frequency control current input / output by one control current generation circuit is increased, and when the parallel number of the control current generation circuits 211 to 21m is large, The magnitude of the frequency control current input / output by one control current generation circuit may be reduced.
  • Embodiment 2 In the second embodiment, a PLL circuit 10a which is another form of the PLL circuit 10 will be described.
  • FIG. 13 shows a block diagram of the PLL circuit according to the second embodiment.
  • the components described in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.
  • the PLL circuit 10 a includes a 1 ⁇ 2 frequency divider 41 between the voltage controlled oscillator 27 and the prescaler 28 of the PLL circuit 10.
  • the output of the 1/2 frequency divider 41 is set as an output signal S3.
  • the 1/2 frequency divider 41 halves the frequency of the internal oscillation signal Fout to generate the output signal S3. That is, in the second embodiment, the output signal S3 has 4.8 GHz to 6.08 GHz which is half the frequency of the internal oscillation signal Fout.
  • FIG. 14 is a block diagram of the local signal distribution circuit 11a according to the second embodiment. As shown in FIG. 14, the local signal distribution circuit 11a removes the 1/2 divider 35 of the local signal distribution circuit 11 according to the first embodiment, and the 1/16 divider 31 and the 1/4 divider. 33 is replaced with a 1/8 frequency divider 51 and a 1/2 frequency divider 53, respectively.
  • the frequency of the internal oscillation signal Fout output from the voltage controlled oscillator 27 is halved and supplied to the prescaler 28 and the local signal distribution circuit 11a.
  • the prescaler 28 and the local signal distribution circuit 11a according to the second embodiment can be configured using circuit elements that are slower than the PLL circuit 10 according to the first embodiment. By doing so, the circuit configuration can be further simplified.
  • Embodiment 3 In the third embodiment, a PLL circuit 10b which is another form of the PLL circuit 10 will be described.
  • FIG. 15 shows a block diagram of the PLL circuit according to the third embodiment.
  • the components described in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.
  • the PLL circuit 10b includes control current generation circuits 611 to 61m and a phase comparator 62 instead of the control current generation circuits 211 to 21m.
  • the phase comparator 62 has substantially the same function as the phase comparators 221 to 22m.
  • This phase comparator 62 is commonly used for the control current generation circuits 611 to 61m. That is, the phase comparator 62 provides one phase difference determination signal UP, DN to the control current generation circuits 611 to 61m.
  • the control current generation circuits 611 to 61m are obtained by removing the phase comparators 221 to 22m from the control current generation circuits 211 to 21m.
  • the control current generation circuits 611 to 61m include charge pump circuits 631 to 63m, current sources 641 to 64m, and current switching circuits 651 to 65m.
  • the charge pump circuits 631 to 63m are the same circuits as the charge pump circuits 231 to 23m
  • the current sources 641 to 64m are the same circuits as the current sources 241 to 24m
  • the current switching circuits 651 to 65m This is the same circuit as the switching circuits 251 to 25m.
  • FIG. 16 shows a detailed block diagram of the control current generation circuits 611 to 61m.
  • the control current generating circuits 611 to 61m receive the phase difference determination signals UP and DN from the phase comparator 62 and operate the charge pump circuits 631 to 63m.
  • the other configurations of the control current generation circuits 611 to 61m are the same as those of the control current generation circuits 211 to 21m, and thus description thereof is omitted here.
  • the PLL circuit 10b according to the third embodiment a plurality of control current generation circuits are operated by the phase difference determination signals UP and DN generated by one phase comparator.
  • the PLL circuit 10b according to the third embodiment can reduce the circuit area related to the phase comparator.
  • the PLL circuit 10b according to the third embodiment can reduce the power consumption compared to the PLL circuit 10 according to the first embodiment by using one phase comparator.
  • Embodiment 4 In the fourth embodiment, a method for determining the parallel number specified by the parallel number switching signal S1 and the bias current setting value specified by the bias current switching signal S2 in the semiconductor device 1 according to the first embodiment will be described.
  • FIG. 17 is a flowchart showing the operation of the semiconductor device 1 according to the fourth embodiment.
  • the semiconductor device 1 first sets a communication standard to be used before starting communication (step S10).
  • the semiconductor device 1 selects a parallel number corresponding to the communication standard from the initial setting values prepared in advance (step S11).
  • the semiconductor device 1 outputs a parallel number switching signal S1 that designates the selected parallel number and a bias current switching signal S2 that indicates a bias current setting value indicating the inverse of the selected parallel number.
  • the semiconductor device 1 starts communication by operating the control current generating circuits 211 to 21m in accordance with the selected parallel number.
  • the semiconductor device 1 determines whether the received radio wave level is within a preset reference value range by using the PGA code (step S12). More specifically, the baseband processing unit 109 determines the received radio wave level. When the baseband processing unit 109 determines that the received radio wave level exceeds the range determined by the preset minimum reception sensitivity level and strong input level (NO branch of step S12), the semiconductor device 1 ends the parallel number adjustment process. This is because communication is not possible in such a case. On the other hand, when the baseband processing unit 109 determines that the received radio wave level is within a range determined by the preset minimum reception sensitivity level and strong input level (YES branch of step S12), the semiconductor device 1 Performs the adjustment process of the parallel number.
  • the baseband processing unit 109 determines whether the communication speed is equal to or higher than a reference value (step S13). More specifically, the baseband processing unit 109 determines whether the decoding process is performed by OFDM (OrthogonalgonFrequency Division Multiplexing). In step S13, when it is determined that the communication speed is less than the reference value because the decoding process is performed by BPSK (Binary Phase Shift Shift Keying) or the like (NO branch in step S13), the parallel number is reduced by one. The bias current set value is decreased by one step (step S14). And the semiconductor device 1 repeats the process of step S14 and step S13 until the communication speed becomes sufficient speed in step S13. In step S13, the semiconductor device 1 ends the parallel number adjustment process in response to the switching of the decoding process to the process based on OFDM (YES in step S13).
  • OFDM OrthogonFrequency Division Multiplexing
  • control unit for example, the baseband processing unit 109 sets the initial number of the parallel number and the bias current setting value according to the communication standard to be used, and the communication speed of communication performed based on the initial value is a reference. If it is less than the value, the parallel number switching signal S1 that specifies a new parallel number that is increased from the current parallel number, and a bias current that specifies a new bias current setting value that is a smaller current bias current setting value A switching signal S2 is generated.
  • the semiconductor device 1 can improve the phase error and prevent the communication speed from being lowered due to noise. Further, when the communication speed is sufficient, the semiconductor device 1 according to the fourth embodiment can prevent an unnecessary increase in power consumption without increasing the parallel number.
  • steps S11 and S12 in FIG. 17 are also performed in the semiconductor device 1 according to the first embodiment.
  • Embodiment 5 In the fifth embodiment, a modification of the method for determining the parallel number specified by the parallel number switching signal S1 and the bias current setting value specified by the bias current switching signal S2 in the semiconductor device 1 according to the fourth embodiment will be described.
  • FIG. 18 is a flowchart showing the operation of the semiconductor device 1 according to the fifth embodiment.
  • the parallel number adjustment procedure according to the fifth embodiment is performed after step S13 of FIG.
  • the communication speed is determined in step S13 based on whether or not decoding processing using 64QAM (64 Quadrature Amplitude Modulation) is performed. If it is determined in step S13 that the communication speed is sufficient, the parallel number is decreased by one step and the bias current set value is increased by one step (step S21).
  • 64QAM 64 Quadrature Amplitude Modulation
  • the baseband processing unit 109 determines whether or not the communication speed satisfies the reference value (step S22). More specifically, the baseband processing unit 109 determines whether or not demodulation processing is performed by 64QAM even in a smaller parallel number than in the determination processing in step S13. If it is determined in step S22 that the communication speed is sufficient (YES in step S22), the baseband processing unit 109 decreases the parallel number by one step and increases the bias current setting value by one step. (Step S23). Thereafter, the semiconductor device 1 repeats the processes in steps S23 and S22 until it is determined in step S22 that the communication speed cannot be secured sufficiently.
  • step S22 the semiconductor device 1 performs the process of step S24 when it is determined that the communication speed is insufficient.
  • step S24 the parallel number is increased by one step, and the bias current set value is decreased by one step. As a result, the semiconductor device 1 can operate with a minimum number of parallel processes that can satisfy the communication speed.
  • control unit for example, the baseband processing unit 109 performs the parallel number reduction process when the communication speed of communication performed based on the current parallel number and the bias current setting value is equal to or higher than the reference value.
  • the process of increasing the bias current set value is repeated until the communication speed becomes less than the reference value.
  • the baseband processing unit 109 has a new parallel number that is increased by one when the communication speed is less than the reference value, a new bias current setting value that is decreased by one, and a bias current setting value that is decreased by one. Is determined as the final value.
  • the semiconductor device 1 can set the minimum parallel number that can ensure the communication speed. As a result, the semiconductor device 1 can operate with only power consumption by a minimum circuit capable of ensuring a communication speed.
  • the control current generation circuits 211 to 21m need to supply the reference signal Fref and the feedback signal Ffb to the phase comparators 211 to 21m so that the delay times are equal among the plurality of phase comparators. Therefore, as shown in FIG. 19, the reference signal Fref and the feedback signal Ffb input to the plurality of phase comparators have equal-length clock wirings in which the distances from the signal sources of the respective signals to the plurality of phase comparators are equal. Is input via. For example, the length of the clock wiring from the point where the clock wiring of the reference signal Fref and the feedback signal Ffb branches to the gate electrode of the transistor that constitutes the phase comparator to which the reference signal Fref and the feedback signal Ffb are input is each path. To be equal.
  • the layout area can be reduced by arranging the current source in the region where the equal-length clock wiring is arranged.

Abstract

A semiconductor device according to an embodiment comprises: a phase comparator which generates phase difference determination signals (UP, DN); control current generation circuits (211-21m) each of which is provided with a current source for generating a first bias current having a predetermined current value, and inputs/outputs a frequency control current generated from the first bias current on the basis of the phase difference determination signals (UP, DN); a loop filter (26) which generates frequency control voltage on the basis of the frequency control current; a voltage control oscillator (27) which controls the frequency of an output signal (S3) according to the frequency control voltage; and a control unit (109) which generates a parallel number switching signal (S1) and a bias current switching signal (S2). Regarding the control current generation circuits (211-21m), the number of control current generation circuits which operate in parallel in response to the parallel number switching signal (S1) is controlled, and the frequency control current inputted/outputted by one control current generation circuit in response to the bias current switching signal (S2) is set to the reciprocal multiple of a parallel number.

Description

半導体装置Semiconductor device
 本発明は半導体装置に関し、例えば、ローカル信号を生成するPLL(Phase Locked Loop)回路を有する半導体装置に好適に利用できるものである。 The present invention relates to a semiconductor device, and can be suitably used for, for example, a semiconductor device having a PLL (Phase Locked Loop) circuit that generates a local signal.
 半導体装置では、内部で利用するクロック信号、正弦波信号等の信号の周波数を制御するためにPLL回路が利用される。このPLL回路は、基準信号を逓倍した信号を生成することができ、逓倍数を制御することで任意の周波数の信号を生成することができる。このようにPLL回路による生成された信号は、例えば、通信に利用される半導体装置では、送受信対象のデータに対する復調処理及び変調処理で利用される。ここで、通信の復調処理及び変調処理で利用される信号については、通信規格よってフェーズエラーに対する仕様が異なる。
 そこで、特許文献1にPLL回路で生成するクロック信号のフェーズエラーの大きさを抑制するための技術が開示されている。特許文献1に記載のPLL回路では、位相が180度異なるクロック信号によって、基準信号と出力信号との位相比較を行う。これにより、特許文献1に記載のPLL回路では、出力信号を位相比較器に帰還させる経路に設けられる分周器の分周比を小さく抑え、分周器に起因するフェーズエラーを抑制する。
 なお、特許文献1に記載のPLL回路では、異なるタイミングで位相比較された結果のぞれぞれに対してチャージポンプ回路を動作させるために、位相比較タイミングのそれぞれに対応した2つのチャージポンプ回路を有する。そして、特許文献1に記載のPLL回路では、この2つのチャージポンプ回路の出力電流により電圧制御発振器の制御電圧を生成する。
In a semiconductor device, a PLL circuit is used to control the frequency of a signal such as a clock signal or a sine wave signal used internally. This PLL circuit can generate a signal obtained by multiplying the reference signal, and can generate a signal having an arbitrary frequency by controlling the multiplication number. Thus, the signal generated by the PLL circuit is used in demodulation processing and modulation processing on data to be transmitted / received, for example, in a semiconductor device used for communication. Here, with respect to signals used in communication demodulation processing and modulation processing, specifications for phase errors differ depending on communication standards.
Therefore, Patent Document 1 discloses a technique for suppressing the magnitude of the phase error of the clock signal generated by the PLL circuit. In the PLL circuit described in Patent Document 1, the phase comparison between the reference signal and the output signal is performed using clock signals whose phases are different by 180 degrees. As a result, in the PLL circuit described in Patent Document 1, the frequency dividing ratio of the frequency divider provided in the path for feeding back the output signal to the phase comparator is suppressed, and the phase error caused by the frequency divider is suppressed.
In the PLL circuit described in Patent Document 1, in order to operate the charge pump circuit for each of the results of phase comparison at different timings, two charge pump circuits corresponding to each of the phase comparison timings Have In the PLL circuit described in Patent Document 1, the control voltage of the voltage controlled oscillator is generated by the output currents of the two charge pump circuits.
特許第4236998号明細書Japanese Patent No. 4236998
 しかしながら、特許文献1に記載したPLL回路を用いて、1つの半導体装置で複数の通信規格に対応するものを構成する場合、フェーズエラーについて最も厳しい仕様の通信規格に合わせてPLL回路を構成する必要がある。このような場合、特許文献1に記載のPLL回路では、フェーズエラーを抑制するほど動作させるチャージポンプ回路の数を増やす必要がある。つまり、特許文献1に記載のPLL回路では、大きなフェーズエラーが許容される通信規格の通信を行う動作モードでは、PLL回路全体の消費電流が不必要に大きくなる問題がある。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 However, when the PLL circuit described in Patent Document 1 is used to configure a single semiconductor device corresponding to a plurality of communication standards, it is necessary to configure the PLL circuit in accordance with the communication standard of the strictest specification for phase error. There is. In such a case, in the PLL circuit described in Patent Document 1, it is necessary to increase the number of charge pump circuits that are operated to suppress the phase error. In other words, the PLL circuit described in Patent Document 1 has a problem that the current consumption of the entire PLL circuit becomes unnecessarily large in an operation mode in which communication of a communication standard that allows a large phase error is performed. Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
 一実施の形態によれば、半導体装置は、電圧制御発振器が生成する出力信号の周波数を制御するために利用される周波数制御電圧の大きさを制御する周波数制御電流の入出力を行う複数の制御電流生成回路を有する。そして、半導体装置は、制御電流生成回路の並列数に応じて、1つの制御電流生成回路が入出力する電流を並列数の逆数倍とする。 According to one embodiment, the semiconductor device has a plurality of controls that input and output a frequency control current that controls the magnitude of the frequency control voltage used to control the frequency of the output signal generated by the voltage controlled oscillator. A current generation circuit; In the semiconductor device, the current input / output by one control current generation circuit is set to the inverse number of the parallel number in accordance with the parallel number of the control current generation circuits.
 一実施の形態によれば、半導体装置は、PLL回路の出力信号のフェーズエラーの大きさに応じて消費電流を抑制することができる。 According to one embodiment, the semiconductor device can suppress the current consumption according to the magnitude of the phase error of the output signal of the PLL circuit.
実施の形態1にかかる半導体装置のブロック図である。1 is a block diagram of a semiconductor device according to a first embodiment; 実施の形態1にかかるPLL回路のブロック図である。1 is a block diagram of a PLL circuit according to a first exemplary embodiment; 実施の形態1にかかる制御電流生成回路のブロック図である。FIG. 3 is a block diagram of a control current generation circuit according to the first exemplary embodiment. 実施の形態1にかかる電流切替回路の回路図である。1 is a circuit diagram of a current switching circuit according to a first embodiment; 実施の形態1にかかるローカル信号分配回路のブロック図である。1 is a block diagram of a local signal distribution circuit according to a first exemplary embodiment; 実施の形態1にかかる電流切替回路を有していない制御電流生成回路の動作を説明する図である。FIG. 6 is a diagram for explaining an operation of a control current generation circuit that does not include the current switching circuit according to the first embodiment; 実施の形態1にかかるPLL回路のオープンループゲインについて説明するためのPLL回路のブロック図である。FIG. 3 is a block diagram of a PLL circuit for explaining an open loop gain of the PLL circuit according to the first exemplary embodiment; 実施の形態1にかかるPLL回路の周波数特性を説明するための図である。FIG. 3 is a diagram for explaining frequency characteristics of the PLL circuit according to the first exemplary embodiment; 実施の形態1にかかる制御電流生成回路の動作を説明する図である。FIG. 3 is a diagram for explaining the operation of the control current generating circuit according to the first embodiment. 通信規格のフェーズエラーの仕様を説明するための図である。It is a figure for demonstrating the specification of the phase error of a communication standard. 実施の形態1にかかる制御電流生成回路の消費電流とフェーズエラーとの関係を説明するための図である。FIG. 6 is a diagram for explaining a relationship between a consumption current of the control current generation circuit according to the first embodiment and a phase error; 実施の形態1にかかる制御電流生成回路の並列数の違いによるPLL回路の周波数特性の違いを説明するための図である。FIG. 6 is a diagram for explaining a difference in frequency characteristics of a PLL circuit due to a difference in the number of parallel control current generation circuits according to the first embodiment; 実施の形態2にかかるPLL回路のブロック図である。FIG. 3 is a block diagram of a PLL circuit according to a second exemplary embodiment. 実施の形態2にかかるローカル信号分配回路のブロック図である。FIG. 6 is a block diagram of a local signal distribution circuit according to a second exemplary embodiment. 実施の形態3にかかるPLL回路のブロック図である。FIG. 6 is a block diagram of a PLL circuit according to a third exemplary embodiment. 実施の形態3にかかる制御電流生成回路のブロック図である。FIG. 6 is a block diagram of a control current generation circuit according to a third exemplary embodiment. 実施の形態4にかかる半導体装置の動作を示すフローチャートである。10 is a flowchart showing an operation of the semiconductor device according to the fourth embodiment; 実施の形態5にかかる半導体装置の動作を示すフローチャートである。10 is a flowchart showing an operation of the semiconductor device according to the fifth embodiment; 実施の形態6にかかる制御電流生成回路のレイアウトの概略図である。FIG. 10 is a schematic diagram of a layout of a control current generation circuit according to a sixth embodiment;
 実施の形態1
 以下、図面を参照して実施の形態について説明する。以下で説明する実施の形態は、PLL回路を備える半導体装置に関するものである。そこで、PLL回路を備える半導体装置の一例として無線通信において送受信処理を行う半導体装置を説明する。 また、以下で説明する半導体装置は、複数の無線通信方式(例えば、IEEE802.11a/b/n/p等)に対応する。そして、半導体装置は、利用する無線通信方式を複数の無線通信方式から適宜選択しうるものとする。なお、以下で説明する構成は、無線通信に限らずPLL回路を備える半導体装置全般に適用できるものである。
Embodiment 1
Hereinafter, embodiments will be described with reference to the drawings. The embodiment described below relates to a semiconductor device including a PLL circuit. Thus, a semiconductor device that performs transmission / reception processing in wireless communication will be described as an example of a semiconductor device including a PLL circuit. A semiconductor device described below corresponds to a plurality of wireless communication schemes (for example, IEEE802.11a / b / n / p). The semiconductor device can appropriately select a wireless communication method to be used from a plurality of wireless communication methods. Note that the configuration described below can be applied not only to wireless communication but also to all semiconductor devices including a PLL circuit.
 図1に実施の形態1にかかる半導体装置1のブロック図を示す。図1に示すように、半導体装置1は、外部端子TMを有する。そして、半導体装置1は、外部端子TMを介して他の半導体装置或いは素子と接続される。半導体装置1は、受信フロントエンド部101a、101b、102a、102b、103a、103b、受信処理部104a、104b、送信フィルタ105、送信フロントエンド部106、送信フロントエンド部107、送信フロントエンド部108、ベースバンド処理部109、PLL回路10、ローカル信号分配回路11を有する。 FIG. 1 shows a block diagram of a semiconductor device 1 according to the first embodiment. As shown in FIG. 1, the semiconductor device 1 has an external terminal TM. The semiconductor device 1 is connected to another semiconductor device or element via the external terminal TM. The semiconductor device 1 includes a reception front end unit 101a, 101b, 102a, 102b, 103a, 103b, a reception processing unit 104a, 104b, a transmission filter 105, a transmission front end unit 106, a transmission front end unit 107, a transmission front end unit 108, A baseband processing unit 109, a PLL circuit 10, and a local signal distribution circuit 11 are included.
 図1に示す半導体装置1は、マルチインプット型の受信処理を行うものである。そのため、半導体装置1では、第1の系(例えば、A系)の受信系統と、第2の系(例えば、B系)の受信系統と、を有する。そこで、図1では、A系の受信系統を構成するブロックの符号の末尾にaを付し、B系の受信系統を構成するブロックの符号の末尾にbを付した。 The semiconductor device 1 shown in FIG. 1 performs multi-input type reception processing. For this reason, the semiconductor device 1 includes a first system (for example, A system) reception system and a second system (for example, B system) reception system. Therefore, in FIG. 1, “a” is added to the end of the code of the block configuring the A-system reception system, and “b” is added to the end of the code of the block configuring the B-system reception system.
 受信フロントエンド部101a、101bは、760MHz帯の無線信号を用いて通信を行う通信方式(例えば、IEEE802.11p)に対応して設けられる受信フロントエンド部である。受信フロントエンド部102a、102bは、2.4GHz帯の無線信号を用いて通信を行う通信方式(例えば、IEEE802.11b/g/n)に対応して設けられる受信フロントエンド部である。受信フロントエンド部103a、103bは、5.9GHz帯の無線信号を用いて通信を行う無線方式(例えば、IEEE802.11a/n/p)に対応して設けられる受信フロントエンド部である。 The reception front- end units 101a and 101b are reception front-end units provided corresponding to a communication method (for example, IEEE 802.11p) that performs communication using a 760 MHz band radio signal. The reception front end units 102a and 102b are reception front end units provided corresponding to a communication method (for example, IEEE802.11b / g / n) that performs communication using a 2.4 GHz band radio signal. The reception front- end units 103a and 103b are reception front-end units provided corresponding to a wireless system (for example, IEEE802.11a / n / p) that performs communication using a 5.9 GHz band wireless signal.
 受信フロントエンド部は、ローカル信号分配回路11から、通信方式に対応した周波数のローカル信号を受信する。そして、受信フロントエンド部は、ローカル信号を用いて受信信号を変調処理して入力される無線信号(RF信号)からベースバンド信号を生成する。つまり、受信フロントエンド部は、ダイレクトコンバージョン方式の変調処理を行うことで、RF信号からベースバンド信号を生成する。 The reception front end unit receives a local signal having a frequency corresponding to the communication method from the local signal distribution circuit 11. The reception front-end unit generates a baseband signal from a radio signal (RF signal) that is input by modulating the reception signal using a local signal. That is, the reception front end unit generates a baseband signal from the RF signal by performing a modulation process of the direct conversion method.
 受信処理部104a、104bは、ベースバンド信号の増幅処理と、増幅後のベースバンド信号のアナログ信号からデジタル信号への変換処理(アナログデジタル変換処理)を行う。つまり、受信処理部104a、104bは、ベースバンド信号からデータ信号RDa、RDbを生成する。なお、ベースバンド信号はいずれの通信方式を利用した場合でも同じ周波数であるため、受信処理部は、複数の受信フロントエンド部に対して1つ設けられる。また、図1に示す例では、受信処理部は、A系とB系のそれぞれに対して1つ設けられる。 The reception processing units 104a and 104b perform amplification processing of the baseband signal and conversion processing (analog / digital conversion processing) of the amplified baseband signal from an analog signal to a digital signal. That is, the reception processing units 104a and 104b generate data signals RDa and RDb from the baseband signals. Since the baseband signal has the same frequency regardless of which communication method is used, one reception processing unit is provided for a plurality of reception front end units. In the example shown in FIG. 1, one reception processing unit is provided for each of the A system and the B system.
 送信フィルタ105は、ベースバンド処理回路109から出力される送信データSDに対するフィルタ処理を施す。送信フロントエンド部106は、760MHz帯の無線信号を用いて通信を行う通信方式(例えば、IEEE802.11p)に対応して設けられる送信フロントエンド部である。送信フロントエンド部107は、2.4GHz帯の無線信号を用いて通信を行う通信方式(例えば、IEEE802.11b/g/n)に対応して設けられる送信フロントエンド部である。受信フロントエンド部108は、5.9GHz帯の無線信号を用いて通信を行う無線方式(例えば、IEEE802.11a/n/p)に対応して設けられる送信フロントエンド部である。 The transmission filter 105 performs a filtering process on the transmission data SD output from the baseband processing circuit 109. The transmission front end unit 106 is a transmission front end unit provided corresponding to a communication method (for example, IEEE802.11p) for performing communication using a 760 MHz band radio signal. The transmission front end unit 107 is a transmission front end unit provided corresponding to a communication method (for example, IEEE802.11b / g / n) that performs communication using a 2.4 GHz band radio signal. The reception front end unit 108 is a transmission front end unit provided corresponding to a wireless system (for example, IEEE802.11a / n / p) that performs communication using a 5.9 GHz band wireless signal.
 送信フロントエンド部は、通信方式に対応した周波数のローカル信号をローカル信号分配回路11から受信する。そして、送信フロントエンド部は、受信したローカル信号により送信データSDを変調して出力する。 The transmission front end unit receives a local signal having a frequency corresponding to the communication method from the local signal distribution circuit 11. Then, the transmission front end unit modulates the transmission data SD with the received local signal and outputs it.
 ベースバンド処理回路109は、受信処理部104a、104bから出力される受信データRDa、RDbに対して復号処理等を施してアプリケーションプロセッサ等の他の回路に出力する。また、ベースバンド処理回路109は、A系の受信系統を介して得られた受信データRDaと、B系の受信系統を介して得られた受信データRDaと、のうち受信感度の高い方の受信系統から得られた受信データを選択する、或いは、2つの受信系統から得られた受信データを合成してより精度の高い受信データを生成する等の処理を行う。さらに、ベースバンド処理回路109は、アプリケーションプロセッサ等から得たデータに対して符号処理等を施して送信データSDを生成する。 The baseband processing circuit 109 performs a decoding process on the reception data RDa and RDb output from the reception processing units 104a and 104b and outputs them to other circuits such as an application processor. In addition, the baseband processing circuit 109 receives the reception data RDa obtained through the A-system reception system and the reception data RDa obtained through the B-system reception system, which has the higher reception sensitivity. Processing such as selecting received data obtained from the system or generating received data with higher accuracy by combining received data obtained from the two receiving systems is performed. Further, the baseband processing circuit 109 performs transmission processing on the data obtained from the application processor or the like to generate transmission data SD.
 ベースバンド処理回路109は、PLL回路10に対しては制御回路として機能する。より具体的には、ベースバンド処理回路109は、利用する通信方式、或いは、受信強度等の通信状況に応じて並列数切替信号S1及びバイアス電流切替信号S2を生成する。並列数切替信号S1及びバイアス電流切替信号S2は、後述する制御電流生成回路に対して与えられる制御信号である。並列数切替信号S1は、並列して動作させる制御電流生成回路の数を示す並列数を指定する信号である。バイアス電流切替信号S2は、並列数の逆数をバイアス電流設定値として指定する信号である。なお、バイアス電流切替信号S2は、並列数の増加に応じてバイアス電流が減るようにバイアス電流設定値を指定しても良い。 The baseband processing circuit 109 functions as a control circuit for the PLL circuit 10. More specifically, the baseband processing circuit 109 generates the parallel number switching signal S1 and the bias current switching signal S2 according to a communication method to be used or a communication situation such as reception intensity. The parallel number switching signal S1 and the bias current switching signal S2 are control signals given to a control current generation circuit described later. The parallel number switching signal S1 is a signal for designating a parallel number indicating the number of control current generating circuits operated in parallel. The bias current switching signal S2 is a signal that designates the inverse of the parallel number as the bias current setting value. The bias current switching signal S2 may specify a bias current setting value so that the bias current decreases as the number of parallel increases.
 PLL回路10は、外部に設けられる発振器2から基準信号Frefを受信して、当該基準信号Frefを逓倍した出力信号S3を生成する。この出力信号S3は、ローカル信号の元になる信号である。ローカル信号分配回路11は、出力信号S3から各通信方式に対応した周波数を有する複数のローカル信号を生成する。そして、ローカル信号分配回路11は、生成したローカル信号を対応する送信フロントエンド部及び送信フロントエンド部に分配する。なお、PLL回路10とローカル信号分配回路11についての詳細については後述する。 The PLL circuit 10 receives the reference signal Fref from the oscillator 2 provided outside, and generates an output signal S3 obtained by multiplying the reference signal Fref. The output signal S3 is a signal that is a source of the local signal. The local signal distribution circuit 11 generates a plurality of local signals having a frequency corresponding to each communication method from the output signal S3. The local signal distribution circuit 11 distributes the generated local signal to the corresponding transmission front end unit and transmission front end unit. Details of the PLL circuit 10 and the local signal distribution circuit 11 will be described later.
 続いて、PLL回路10の詳細について説明する。図2に実施の形態1にかかるPLL回路のブロック図を示す。図2に示したブロック図では、PLL回路10と制御部109を示した。制御部109は、図1のベースバンド処理回路であって、PLL回路10に関係する並列数切替信号S1及びバイアス電流切替信号S2を出力する。制御部109は、利用する通信方式において要求されるフェーズエラーの大きさが小さくなるに従って、並列数切替信号S1により指定する並列数を増加させる。また、制御部109は、並列数切替信号S1で指定する並列数を増加させたことに応じて、バイアス電流切替信号S2により指定するバイアス電流設定値を小さくする。 Subsequently, details of the PLL circuit 10 will be described. FIG. 2 shows a block diagram of the PLL circuit according to the first exemplary embodiment. In the block diagram shown in FIG. 2, the PLL circuit 10 and the control unit 109 are shown. The control unit 109 is the baseband processing circuit of FIG. 1 and outputs a parallel number switching signal S1 and a bias current switching signal S2 related to the PLL circuit 10. The control unit 109 increases the number of parallels specified by the parallel number switching signal S1 as the magnitude of the phase error required in the communication method to be used decreases. Further, the control unit 109 decreases the bias current setting value specified by the bias current switching signal S2 in response to the increase in the number of parallels specified by the parallel number switching signal S1.
 図2に示すように、PLL回路10は、制御電流生成回路211~21m(mは、制御電流生成回路の数を示す整数)、ループフィルタ26、電圧制御発振器27、プリスケーラ28、シグマデルタ変調器29を有する。 As shown in FIG. 2, the PLL circuit 10 includes control current generation circuits 211 to 21m (m is an integer indicating the number of control current generation circuits), a loop filter 26, a voltage control oscillator 27, a prescaler 28, a sigma delta modulator. 29.
 制御電流生成回路211~21mは、それぞれが、予め決められた電流値を有する第1のバイアス電流を生成する電流源を備え、位相差判定信号UP、DNに基づき第1のバイアス電流から生成した周波数制御電流の入出力を行う。また、制御電流生成回路211~21mは、それぞれが有するチャージポンプ回路が入出力する電流を足し合わせた電流をループフィルタ26に与える周波数制御電流として出力する。 Each of the control current generation circuits 211 to 21m includes a current source that generates a first bias current having a predetermined current value, and is generated from the first bias current based on the phase difference determination signals UP and DN. Input / output frequency control current. Further, the control current generation circuits 211 to 21m output a current obtained by adding the currents input / output by the charge pump circuits included therein as a frequency control current to be supplied to the loop filter 26.
 制御電流生成回路211は、位相比較器221、チャージポンプ回路231、電流源241、電流切替回路251を有する。また、制御電流生成回路212~21mは、それぞれ、位相比較器221、チャージポンプ回路231、電流源241、電流切替回路251に対応する回路を有する。つまり、制御電流生成回路211~21mは、同じ回路構成を有する。なお、位相比較器は、制御電流生成回路211~21mに対応して複数個が設けられる。また、図2に示したPLL回路10では、位相比較器が制御電流生成回路に含まれる構成を示したが、位相比較器は、別の回路ブロックとして実装することも可能である。 The control current generation circuit 211 includes a phase comparator 221, a charge pump circuit 231, a current source 241, and a current switching circuit 251. The control current generation circuits 212 to 21m have circuits corresponding to the phase comparator 221, the charge pump circuit 231, the current source 241, and the current switching circuit 251, respectively. That is, the control current generation circuits 211 to 21m have the same circuit configuration. A plurality of phase comparators are provided corresponding to the control current generating circuits 211 to 21m. In the PLL circuit 10 shown in FIG. 2, the phase comparator is included in the control current generation circuit. However, the phase comparator can be mounted as another circuit block.
 位相比較器221は、基準信号Frefと、出力信号S3から生成される帰還信号Ffbと、の位相差を示す位相差判定信号UP、DNを出力する。チャージポンプ回路231は、位相差判定信号UPがイネーブル状態となったことに応じて周波数制御電流を流出し、位相差判定信号DNがイネーブル状態となったことに応じて周波数制御電流を流入する。 The phase comparator 221 outputs phase difference determination signals UP and DN indicating the phase difference between the reference signal Fref and the feedback signal Ffb generated from the output signal S3. The charge pump circuit 231 flows out the frequency control current in response to the phase difference determination signal UP being enabled, and flows in the frequency control current in response to the phase difference determination signal DN being enabled.
 電流源241は、予め決められた電流値を有する第1のバイアス電流を生成する。電流切替回路251は、バイアス電流切替信号S2に基づき第1バイアス電流を前記並列数の逆数倍した第2のバイアス電流を生成する。チャージポンプ回路231は、位相差判定信号UP、DNに応じて第2のバイアス電流に対応した電流を周波数制御電流として入出力する。 The current source 241 generates a first bias current having a predetermined current value. The current switching circuit 251 generates a second bias current obtained by multiplying the first bias current by a reciprocal number of the parallel number based on the bias current switching signal S2. The charge pump circuit 231 inputs / outputs a current corresponding to the second bias current as a frequency control current in accordance with the phase difference determination signals UP and DN.
 ループフィルタ26は、周波数制御電流に基づき周波数制御電圧を生成する。なお、ループフィルタ26には、制御電流生成回路211~21mが出力する周波数制御電流の合計値が入力される。電圧制御発振器27は、周波数制御電圧に応じて出力信号S3の周波数を制御する。例えば、電圧制御発振器27をLC型電圧制御発振器で構成した場合、周波数制御電圧により、容量の値を変化させることで、出力信号S3の周波数を制御する。なお、電圧制御発振器27が内部発振信号Foutを出力するが、図2に示す例では、この内部発振信号Foutがそのまま出力信号S3として出力される。 The loop filter 26 generates a frequency control voltage based on the frequency control current. Note that the total value of the frequency control currents output from the control current generation circuits 211 to 21m is input to the loop filter 26. The voltage controlled oscillator 27 controls the frequency of the output signal S3 according to the frequency control voltage. For example, when the voltage controlled oscillator 27 is composed of an LC type voltage controlled oscillator, the frequency of the output signal S3 is controlled by changing the value of the capacitance by the frequency control voltage. The voltage controlled oscillator 27 outputs the internal oscillation signal Fout. In the example shown in FIG. 2, the internal oscillation signal Fout is output as it is as the output signal S3.
 プリスケーラ28は、電圧制御発振器27と位相比較器211~21mとの間に設けられ、出力信号S3を分周して帰還信号Ffbを生成する。シグマデルタ変調器29は、プリスケーラ28の分周比を指定する分周比制御信号S4を生成する。より具体的には、シグマデルタ変調器29は、シグマデルタ変調処理により分周比に揺らぎを与え、プリスケーラ28のハードウェア構成から得られる分周比よりも細かな分周比を実現する。 The prescaler 28 is provided between the voltage controlled oscillator 27 and the phase comparators 211 to 21m, and divides the output signal S3 to generate a feedback signal Ffb. The sigma delta modulator 29 generates a frequency division ratio control signal S4 that specifies the frequency division ratio of the prescaler 28. More specifically, the sigma delta modulator 29 fluctuates the frequency division ratio by the sigma delta modulation process, and realizes a frequency division ratio finer than the frequency division ratio obtained from the hardware configuration of the prescaler 28.
 次いで、制御電流生成回路211~21mのより詳細な構成について説明する。図3に実施の形態1にかかる制御電流生成回路211~21mのブロック図を示す。図3に示すように、制御電流生成回路211~21mには、並列数切替信号S1が入力される。この並列数切替信号S1は、例えば、制御電流生成回路211~21mのそれぞれに対応したイネーブル信号の束である。そして、制御電流生成回路211~21mは、入力される並列数切替信号S1がイネーブル状態の時に動作し、並列数切替信号S1がディスイネーブル状態のときに停止する。例えば、制御電流生成回路211~21mは、対応する並列数切替信号S1がイネーブル状態である場合に電流源等の回路を動作させ、対応する並列数切替信号S1がディスイネーブル状態である場合に電流源等の回路を停止させて回路の消費電流を削減する。ここで、制御電流生成回路211~21mは、停止状態の時は、例えば、電流源による第1のバイアス電流の生成を停止し、チャージポンプ回路の出力をハイインピーダンス状態とする。 Next, a more detailed configuration of the control current generation circuits 211 to 21m will be described. FIG. 3 shows a block diagram of the control current generating circuits 211 to 21m according to the first embodiment. As shown in FIG. 3, the parallel number switching signal S1 is input to the control current generating circuits 211 to 21m. The parallel number switching signal S1 is, for example, a bundle of enable signals corresponding to the control current generating circuits 211 to 21m. The control current generating circuits 211 to 21m operate when the input parallel number switching signal S1 is enabled, and stop when the parallel number switching signal S1 is disabled. For example, the control current generation circuits 211 to 21m operate a circuit such as a current source when the corresponding parallel number switching signal S1 is in the enabled state, and the current when the corresponding parallel number switching signal S1 is in the disabled state. The circuit such as the power source is stopped to reduce the current consumption of the circuit. Here, when the control current generation circuits 211 to 21m are in a stopped state, for example, the generation of the first bias current by the current source is stopped, and the output of the charge pump circuit is set in a high impedance state.
 図3に示すように、制御電流生成回路211~21mは、同じ回路構成を有する。そこで、ここでの説明では、制御電流生成回路211を制御電流生成回路の代表例として説明する。図3に示すように、制御電流生成回路211は、電流源241、電流切替回路251、位相比較器221、チャージポンプ回路231を有する。 As shown in FIG. 3, the control current generation circuits 211 to 21m have the same circuit configuration. Therefore, in this description, the control current generation circuit 211 will be described as a representative example of the control current generation circuit. As illustrated in FIG. 3, the control current generation circuit 211 includes a current source 241, a current switching circuit 251, a phase comparator 221, and a charge pump circuit 231.
 電流源241は、第1のバイアス電流を生成する。この第1のバイアス電流は、予め電流値が決められた電流であって、例えば、バンドギャップ電流源等により生成される。図3では、第1のバイアス電流の符号として、第1のバイアス電流の電流量を示すIbiasを使用した。 The current source 241 generates a first bias current. The first bias current is a current having a predetermined current value, and is generated by, for example, a band gap current source. In FIG. 3, Ibias indicating the amount of the first bias current is used as the sign of the first bias current.
 電流切替回路251は、第1のバイアス電流Ibiasをバイアス電流切替信号S2により指定されるバイアス電流設定値に応じて並列数Nの逆数倍とした第2のバイアス電流を生成する。図3では、第2のバイアス電流の符号として、第2のバイアス電流の電流量を示すIbias/Nを使用した。 The current switching circuit 251 generates a second bias current in which the first bias current Ibias is a reciprocal multiple of the parallel number N according to the bias current setting value specified by the bias current switching signal S2. In FIG. 3, Ibias / N indicating the amount of the second bias current is used as the sign of the second bias current.
 位相比較器221は、基準信号Frefと、帰還信号Ffbと、の位相差を示す位相差判定信号UP、DNを出力する。より具体的には、帰還信号Ffbの位相が、基準信号Frefの位相よりも遅れている場合、位相比較器221は、位相差判定信号UPをイネーブル状態(例えば、ロウレベル)し、位相差判定信号DNをディスイネーブル状態(例えば、ハイレベル)とする。一方、帰還信号Ffbの位相が、基準信号Frefの位相よりも進んでいる場合、位相比較器221は、位相差判定信号UPをディスイネーブル状態(例えば、ハイレベル)し、位相差判定信号DNをイネーブル状態(例えば、ロウレベル)とする。 The phase comparator 221 outputs phase difference determination signals UP and DN indicating the phase difference between the reference signal Fref and the feedback signal Ffb. More specifically, when the phase of the feedback signal Ffb is behind the phase of the reference signal Fref, the phase comparator 221 enables the phase difference determination signal UP (for example, low level), and the phase difference determination signal DN is disabled (for example, high level). On the other hand, when the phase of the feedback signal Ffb is ahead of the phase of the reference signal Fref, the phase comparator 221 disables the phase difference determination signal UP (for example, high level) and sets the phase difference determination signal DN to Enable state (for example, low level).
 チャージポンプ回路231は、位相差判定信号UP、DNに応じて、第2のバイアス電流に対応した電流を周波数制御電流として入出力する。そして、PLL回路10では、制御電流生成回路211~21mのチャージポンプ回路231~23mが出力する周波数制御電流を足し合わせたものをループフィルタ26に与える。図3では、チャージポンプ回路231~23mは、それぞれ周波数制御電流の符号として周波数制御電流の大きさをしめすIcp/Nを示した。本実施の形態では、電流値Icpは、ループフィルタ26に与える周波数制御電流の電流値を示すものであるが、制御電流生成回路211~21mでは、電流値Icpの基準となる第2のバイアス電流が第1のバイアス電流の電流値Ibiasの大きさの1/N倍となっている。そのため、実施の形態1にかかる制御電流生成回路211~21mのそれぞれが出力する周波数制御電流は、電流値Icpの1/N倍となる。また、図3に示すように、PLL回路10ではループフィルタ26に、N個の制御電流生成回路から出力された電流を足し合わせた電流、つまり、電流値がIcpとなる周波数制御電流を与える。 The charge pump circuit 231 inputs / outputs a current corresponding to the second bias current as a frequency control current in accordance with the phase difference determination signals UP and DN. The PLL circuit 10 gives the loop filter 26 a sum of the frequency control currents output from the charge pump circuits 231 to 23m of the control current generation circuits 211 to 21m. In FIG. 3, the charge pump circuits 231 to 23m each show Icp / N indicating the magnitude of the frequency control current as a sign of the frequency control current. In the present embodiment, the current value Icp indicates the current value of the frequency control current applied to the loop filter 26. In the control current generation circuits 211 to 21m, the second bias current that serves as a reference for the current value Icp is used. Is 1 / N times the magnitude of the current value Ibias of the first bias current. Therefore, the frequency control current output from each of the control current generation circuits 211 to 21m according to the first embodiment is 1 / N times the current value Icp. As shown in FIG. 3, in the PLL circuit 10, the loop filter 26 is supplied with a current obtained by adding the currents output from the N control current generation circuits, that is, a frequency control current with a current value of Icp.
 ここで、実施の形態1にかかるPLL回路10では、電流切替回路251~25mにおいて第1のバイアス電流を1/N倍とすることで、周波数制御電流のキャリア成分に対するノイズ成分の大きさを小さくする。そこで、チャージポンプ回路231、電流源241、電流切替回路251の詳細について説明する。図4にチャージポンプ回路231、電流源241、電流切替回路251の詳細な回路図を示す。 Here, in the PLL circuit 10 according to the first embodiment, the magnitude of the noise component with respect to the carrier component of the frequency control current is reduced by increasing the first bias current by 1 / N times in the current switching circuits 251 to 25m. To do. Therefore, details of the charge pump circuit 231, the current source 241, and the current switching circuit 251 will be described. FIG. 4 shows a detailed circuit diagram of the charge pump circuit 231, the current source 241, and the current switching circuit 251.
 図4に示す例では、電流源241は、1つの回路シンボルとして示した。電流源241は、電源端子VDDと電流切替回路251との間に接続され、第1のバイアス電流Ibiasを出力する。 In the example shown in FIG. 4, the current source 241 is shown as one circuit symbol. The current source 241 is connected between the power supply terminal VDD and the current switching circuit 251 and outputs a first bias current Ibias.
 電流切替回路251は、NMOSトランジスタMN1~MN3、PMOSトランジスタMP1、MP2を有する。NMOSトランジスタMN1、MN2、MN3のソースは、接地端子VSSに接続される。NMOSトランジスタMN1のゲートは、NMOSトランジスタMN1のドレインと接続される。そして、NMOSトランジスタMN1のドレインには、第1のバイアス電流Ibiasが入力される。NMOSトランジスタMN2、MN3のゲートは、NMOSトランジスタMN1のゲートと共通に接続される。NMOSトランジスタMN2のドレインは、PMOSトランジスタMP1のドレインと接続される。NMOSトランジスタMN3のドレインは、電流切替回路251の第1の出力端子となり、電流I2を出力する。つまり、NMOSトランジスタMN1、MN2、MN3は、カレントミラー回路を構成する。 The current switching circuit 251 includes NMOS transistors MN1 to MN3 and PMOS transistors MP1 and MP2. The sources of the NMOS transistors MN1, MN2, and MN3 are connected to the ground terminal VSS. The gate of the NMOS transistor MN1 is connected to the drain of the NMOS transistor MN1. The first bias current Ibias is input to the drain of the NMOS transistor MN1. The gates of the NMOS transistors MN2 and MN3 are connected in common with the gate of the NMOS transistor MN1. The drain of the NMOS transistor MN2 is connected to the drain of the PMOS transistor MP1. The drain of the NMOS transistor MN3 serves as a first output terminal of the current switching circuit 251 and outputs a current I2. That is, the NMOS transistors MN1, MN2, and MN3 constitute a current mirror circuit.
 ここで、NMOSトランジスタMN1、MN2は同じトランジスタサイズM0を有する。そのため、NMOSトランジスタMN2が出力する電流I1の電流量は、第1のバイアス電流と同じ電流量Ibiasとなる。また、NMOSトランジスタMN1のトランジスタサイズM0と、NMOSトランジスタMN3のトランジスタサイズM1と、の比は、1:1/Nとなるように設定される。1/Nは、バイアス電流切替信号S2により指定されるバイアス電流設定値の値である。つまり、NMOSトランジスタMN3は、トランジスタサイズがバイアス電流切替信号S2により変更できる構成を有する。これにより、NMOSトランジスタMN3が出力する電流I2の電流量は、第1のバイアス電流の1/N倍となる。 Here, the NMOS transistors MN1 and MN2 have the same transistor size M0. Therefore, the current amount I1 output from the NMOS transistor MN2 is the same current amount Ibias as the first bias current. The ratio between the transistor size M0 of the NMOS transistor MN1 and the transistor size M1 of the NMOS transistor MN3 is set to 1: 1 / N. 1 / N is the value of the bias current setting value specified by the bias current switching signal S2. That is, the NMOS transistor MN3 has a configuration in which the transistor size can be changed by the bias current switching signal S2. As a result, the amount of current I2 output from the NMOS transistor MN3 is 1 / N times the first bias current.
 なお、トランジスタサイズとは、トランジスタのゲート幅とゲート長との比より決まる値である。以下の説明でもトランジスタサイズは同様の定義に基づくもとして説明する。NMOSトランジスタMN3は、トランジスタサイズを変更できる構成を有する。このような構成は、例えば、トランジスタを並列接続し、ドレインに接続したスイッチのオン・オフを切り替えることにより有効に動作するトランジスタの数を切り替えることで実現可能である。また、本実施の形態では、制御電流生成回路の並列数を1、2、4、8と切り替えることを想定する。そのため、例えば、NMOSトランジスタMN1のトランジスタサイズM0を1、2、4、8の公倍数のうち最も小さな8とした場合、NMOSトランジスタMN3のトランジスタサイズM1は、8、4、2、1となるように設定すればバイアス電流設定値として1、1/2、1/4、1/8を実現することができる。 The transistor size is a value determined by the ratio between the gate width and the gate length of the transistor. In the following description, the transistor size will be described based on the same definition. The NMOS transistor MN3 has a configuration capable of changing the transistor size. Such a configuration can be realized, for example, by switching the number of transistors that operate effectively by switching transistors connected in parallel and switching on and off the switch connected to the drain. In this embodiment, it is assumed that the parallel number of control current generation circuits is switched to 1, 2, 4, and 8. Therefore, for example, when the transistor size M0 of the NMOS transistor MN1 is set to 8 which is the smallest of the common multiples of 1, 2, 4, and 8, the transistor size M1 of the NMOS transistor MN3 is set to 8, 4, 2, 1. If set, the bias current set values of 1, 1/2, 1/4, and 1/8 can be realized.
 PMOSトランジスタMP1、MP2のソースは、電源端子VDDに接続される。PMOSトランジスタMP1のゲートは、PMOSトランジスタMP1のドレインと接続される。そして、PMOSトランジスタMP1のドレインには、電流I1が入力される。PMOSトランジスタMP2のゲートは、PMOSトランジスタMP1のゲートと共通に接続される。PMOSトランジスタMP2のドレインは、電流切替回路251の第2の出力端子となり、電流I3を出力する。つまり、PMOSトランジスタMP1、MP2は、カレントミラー回路を構成する。そして、このカレントミラー回路により、第1のバイアス電流Ibiasと同じ電流量を有するI1を生成する。 The sources of the PMOS transistors MP1 and MP2 are connected to the power supply terminal VDD. The gate of the PMOS transistor MP1 is connected to the drain of the PMOS transistor MP1. The current I1 is input to the drain of the PMOS transistor MP1. The gate of the PMOS transistor MP2 is connected in common with the gate of the PMOS transistor MP1. The drain of the PMOS transistor MP2 serves as a second output terminal of the current switching circuit 251 and outputs a current I3. That is, the PMOS transistors MP1 and MP2 constitute a current mirror circuit. The current mirror circuit generates I1 having the same amount of current as the first bias current Ibias.
 ここで、PMOSトランジスタMP1のトランジスタサイズM2と、PMOSトランジスタMP2のトランジスタサイズM3と、の比は、1:1/Nとなるように設定される。1/Nは、バイアス電流切替信号S2により指定されるバイアス電流設定値の値である。つまり、PMOSトランジスタMP2は、トランジスタサイズがバイアス電流切替信号S2により変更できる構成を有する。これにより、PMOSトランジスタMP2が出力する電流I3の電流量は、第1のバイアス電流の1/N倍となる。 Here, the ratio between the transistor size M2 of the PMOS transistor MP1 and the transistor size M3 of the PMOS transistor MP2 is set to 1: 1 / N. 1 / N is the value of the bias current setting value specified by the bias current switching signal S2. That is, the PMOS transistor MP2 has a configuration in which the transistor size can be changed by the bias current switching signal S2. As a result, the amount of current I3 output from the PMOS transistor MP2 is 1 / N times the first bias current.
 つまり、電流切替回路251は、第1のトランジスタと第2のトランジスタとにより構成されるカレントミラー回路を有する。第1のトランジスタ(例えば、NMOSトランジスタMN1、PMOSトランジスタMP1)は、第1のバイアス電流Ibiasを有する第1の端子と、第1の端子と接続される制御端子と、第1のトランジスタの第1の端子とは異なる第1の電源端子に接続される第2の端子とを有する。第2のトランジスタ(例えば、NMOSトランジスタMN3、PMOSトランジスタMP2)は、第2のバイアス電流を有する第1の端子と、前記第1のトランジスタの前記制御端子と接続される制御端子と、第2のトランジスタの第1の端子とは異なる第1の電源端子に接続される第2の端子とを有する。そして、当該カレントミラー回路は、第2のトランジスタのトランジスタサイズをバイアス電流切替信号に応じて切り替えることで、第1のバイアス電流に対する第2のバイアス電流の大きさを切り替える。なお、第1の電源端子は、カレントミラー回路がNMOSトランジスタにより構成される場合は接地端子VSSに相当し、カレントミラー回路がPMOSトランジスタにより構成される場合は電源端子VDDに相当する。 That is, the current switching circuit 251 has a current mirror circuit composed of a first transistor and a second transistor. The first transistor (for example, NMOS transistor MN1, PMOS transistor MP1) has a first terminal having a first bias current Ibias, a control terminal connected to the first terminal, and a first terminal of the first transistor. And a second terminal connected to a first power supply terminal different from the first terminal. The second transistor (eg, NMOS transistor MN3, PMOS transistor MP2) includes a first terminal having a second bias current, a control terminal connected to the control terminal of the first transistor, and a second terminal A second terminal connected to a first power supply terminal different from the first terminal of the transistor; The current mirror circuit switches the size of the second bias current with respect to the first bias current by switching the transistor size of the second transistor according to the bias current switching signal. Note that the first power supply terminal corresponds to the ground terminal VSS when the current mirror circuit is configured by an NMOS transistor, and corresponds to the power supply terminal VDD when the current mirror circuit is configured by a PMOS transistor.
 チャージポンプ回路231は、NMOSトランジスタMN4~MN6、PMOSトランジスタMP3、MP4、インバータを有する。NMOSトランジスタMN4、MN5のソースは、接地端子VSSに接続される。NMOSトランジスタMN4のゲートは、NMOSトランジスタMN4のドレインと接続される。そして、NMOSトランジスタMN4のドレインには、電流切替回路251が出力する電流I3が入力される。NMOSトランジスタMN5のゲートは、NMOSトランジスタMN4のゲートと共通に接続される。NMOSトランジスタMN5のドレインは、PMOSトランジスタMP4のドレインと接続されると共にチャージポンプ回路231の出力端子を構成する。また、NMOSトランジスタMN5は、電流I5を出力する。NMOSトランジスタMN6は、MMOSトランジスタMN4、MN5のゲートを接続するノードと、接地端子VSSと、の間に接続される。そして、NMOSトランジスタMN6のゲートには、インバータを介して位相差判定信号DNが入力される。 The charge pump circuit 231 includes NMOS transistors MN4 to MN6, PMOS transistors MP3 and MP4, and an inverter. The sources of the NMOS transistors MN4 and MN5 are connected to the ground terminal VSS. The gate of the NMOS transistor MN4 is connected to the drain of the NMOS transistor MN4. The current I3 output from the current switching circuit 251 is input to the drain of the NMOS transistor MN4. The gate of the NMOS transistor MN5 is connected in common with the gate of the NMOS transistor MN4. The drain of the NMOS transistor MN5 is connected to the drain of the PMOS transistor MP4 and constitutes the output terminal of the charge pump circuit 231. The NMOS transistor MN5 outputs a current I5. The NMOS transistor MN6 is connected between the node connecting the gates of the MMOS transistors MN4 and MN5 and the ground terminal VSS. The phase difference determination signal DN is input to the gate of the NMOS transistor MN6 via the inverter.
 ここで、電流I5と電流I3との電流量の関係は、NMOSトランジスタMN4のトランジスタサイズと、NMOSトランジスタMN5のトランジスタサイズと、の比によりきまる。例えば、NMOSトランジスタMN4のトランジスタサイズと、NMOSトランジスタMN5のトランジスタサイズと、の比が1:1であれば、電流I5の電流量と電流I3とは同じ電流量となる。また、NMOSトランジスタMN4のトランジスタサイズと、NMOSトランジスタMN5のトランジスタサイズと、の比が1:3であれば、電流I5は、電流I3の3倍の電流量を有する。NMOSトランジスタMN4のトランジスタサイズと、NMOSトランジスタMN5のトランジスタサイズと、の比は、第1のバイアス電流とループフィルタ26に与える周波数制御電流との電流量の比に合わせて設定する。 Here, the relationship between the current amount of the current I5 and the current I3 is determined by the ratio between the transistor size of the NMOS transistor MN4 and the transistor size of the NMOS transistor MN5. For example, if the ratio between the transistor size of the NMOS transistor MN4 and the transistor size of the NMOS transistor MN5 is 1: 1, the current amount of the current I5 and the current I3 are the same. If the ratio between the transistor size of the NMOS transistor MN4 and the transistor size of the NMOS transistor MN5 is 1: 3, the current I5 has a current amount three times that of the current I3. The ratio of the transistor size of the NMOS transistor MN4 and the transistor size of the NMOS transistor MN5 is set in accordance with the ratio of the amount of current between the first bias current and the frequency control current applied to the loop filter 26.
 PMOSトランジスタMP3、MP4のソースは、電源端子VDDに接続される。PMOSトランジスタMP3のゲートは、PMOSトランジスタMP3のドレインと接続される。そして、PMOSトランジスタMP3のドレインには、電流切替回路251が出力する電流I2が入力される。PMOSトランジスタMP4のゲートは、PMOSトランジスタMP3のゲートと共通に接続される。PMOSトランジスタMP4のドレインは、NMOSトランジスタMN5のドレインと接続されると共にチャージポンプ回路231の出力端子を構成する。また、PMOSトランジスタMP4は、電流I4を出力する。PMOSトランジスタMP5は、PMOSトランジスタMP3、MP4のゲートを接続するノードと、電源端子VDDと、の間に接続される。そして、PMOSトランジスタMP5のゲートには、位相差判定信号UPが入力される。 The sources of the PMOS transistors MP3 and MP4 are connected to the power supply terminal VDD. The gate of the PMOS transistor MP3 is connected to the drain of the PMOS transistor MP3. The current I2 output from the current switching circuit 251 is input to the drain of the PMOS transistor MP3. The gate of the PMOS transistor MP4 is connected in common with the gate of the PMOS transistor MP3. The drain of the PMOS transistor MP4 is connected to the drain of the NMOS transistor MN5 and constitutes the output terminal of the charge pump circuit 231. The PMOS transistor MP4 outputs a current I4. The PMOS transistor MP5 is connected between a node connecting the gates of the PMOS transistors MP3 and MP4 and the power supply terminal VDD. The phase difference determination signal UP is input to the gate of the PMOS transistor MP5.
 ここで、電流I4と電流I2との電流量の関係は、PMOSトランジスタMP3のトランジスタサイズと、PMOSトランジスタMP4のトランジスタサイズと、の比によりきまる。例えば、PMOSトランジスタMP3のトランジスタサイズと、PMOSトランジスタMP4のトランジスタサイズと、の比が1:1であれば、電流I4の電流量と電流I2とは同じ電流量となる。また、PMOSトランジスタMP3のトランジスタサイズと、PMOSトランジスタMP4のトランジスタサイズと、の比が1:3であれば、電流I4は、電流I2の3倍の電流量を有する。PMOSトランジスタMP3のトランジスタサイズと、PMOSトランジスタMP4のトランジスタサイズと、の比は、第1のバイアス電流とループフィルタ26に与える周波数制御電流との電流量の比に合わせて設定する。 Here, the relationship between the current amount of the current I4 and the current I2 is determined by the ratio between the transistor size of the PMOS transistor MP3 and the transistor size of the PMOS transistor MP4. For example, if the ratio between the transistor size of the PMOS transistor MP3 and the transistor size of the PMOS transistor MP4 is 1: 1, the current amount of the current I4 and the current I2 are the same. If the ratio between the transistor size of the PMOS transistor MP3 and the transistor size of the PMOS transistor MP4 is 1: 3, the current I4 has a current amount three times that of the current I2. The ratio between the transistor size of the PMOS transistor MP3 and the transistor size of the PMOS transistor MP4 is set in accordance with the ratio of the amount of current between the first bias current and the frequency control current applied to the loop filter 26.
 ここで、PMOSトランジスタMP4およびNMOSトランジスタMN5は、位相差判定信号UP/位相差判定信号DNで制御されるPMOSトランジスタMP5/NMOSトランジスタMN6によりオン・オフ動作する。このオン・オフ動作と、PMOSトランジスタMP4およびNMOSトランジスタMN5に流れる電流I4および電流I5の電流量の制御を両立する設計(タイミング設計)は困難であり、特性劣化を招き易い。したがって、電流調整は、PMOSトランジスタMP2とNMOSトランジスタMN3により行うことが好ましい。 Here, the PMOS transistor MP4 and the NMOS transistor MN5 are turned on / off by the PMOS transistor MP5 / NMOS transistor MN6 controlled by the phase difference determination signal UP / phase difference determination signal DN. It is difficult to design (timing design) that achieves both on / off operation and control of the currents I4 and I5 flowing through the PMOS transistor MP4 and the NMOS transistor MN5, and the characteristics are likely to deteriorate. Therefore, the current adjustment is preferably performed by the PMOS transistor MP2 and the NMOS transistor MN3.
 続いて、ローカル信号分配回路11について説明する。ローカル信号分配回路11は、出力信号S3から第1、第2のローカル信号を生成し、第1のローカル信号を第1の送受信回路に分配し、第2のローカル信号を第2の送受信回路に分配する。実施の形態1にかかるローカル信号分配回路11は、ローカル信号f_local1、f_local2、f_local3の3つのローカル信号を生成する。このような場合、複数のローカル信号のうちの2つのローカル信号の一方が第1のローカル信号に該当し、他方が第2のローカル信号に該当する。また、第1の送受信回路は、第1の周波数を有する第1のローカル信号に基づきデータの送受信を行うものであり、例えば、複数の異なる周波数帯に対応した送受信回路(例えば、受信フロントエンド部と受信フロントエンド部を含む回路)の1つである。第2の送受信回路は、第1の周波数とは異なる第2の周波数を有する第2のローカル信号に基づきデータの送受信を行うものであり、例えば、複数の異なる周波数帯に対応した送受信回路の他の1つである。 Subsequently, the local signal distribution circuit 11 will be described. The local signal distribution circuit 11 generates first and second local signals from the output signal S3, distributes the first local signal to the first transmission / reception circuit, and distributes the second local signal to the second transmission / reception circuit. Distribute. The local signal distribution circuit 11 according to the first exemplary embodiment generates three local signals of local signals f_local1, f_local2, and f_local3. In such a case, one of the two local signals among the plurality of local signals corresponds to the first local signal, and the other corresponds to the second local signal. The first transmission / reception circuit performs data transmission / reception based on a first local signal having a first frequency. For example, the first transmission / reception circuit corresponds to a plurality of different frequency bands (for example, a reception front end unit). And a circuit including a reception front end unit). The second transmission / reception circuit performs data transmission / reception based on a second local signal having a second frequency different from the first frequency. For example, other transmission / reception circuits corresponding to a plurality of different frequency bands are used. It is one of.
 ここで、ローカル信号分配回路11の詳細なブロック図を図5に示す。図5に示すように、ローカル信号分配回路11は、1/16分周器31、バッファ回路32、34、36、1/4分周器33、1/2分周器35を有する。 Here, a detailed block diagram of the local signal distribution circuit 11 is shown in FIG. As shown in FIG. 5, the local signal distribution circuit 11 includes a 1/16 frequency divider 31, buffer circuits 32, 34, and 36, a 1/4 frequency divider 33, and a 1/2 frequency divider 35.
 ローカル信号分配回路11は、1/16分周器31によりPLL回路10の出力信号S3の周波数を1/16とすることで、760MHzの周波数を有するローカル信号f_local1を出力する。バッファ回路32は、ローカル信号f_local1を複数の回路に分配する駆動回路である。ローカル信号分配回路11は、1/4分周器33によりPLL回路10の出力信号S3の周波数を1/4とすることで、2.4GHzの周波数を有するローカル信号f_local2を出力する。バッファ回路34は、ローカル信号f_local2を複数の回路に分配する駆動回路である。ローカル信号分配回路11は、1/2分周器35によりPLL回路10の出力信号S3の周波数を1/2とすることで、4.9G~5.9GHzの周波数を有するローカル信号f_local3を出力する。バッファ回路36は、ローカル信号f_local3を複数の回路に分配する駆動回路である。 The local signal distribution circuit 11 outputs a local signal f_local1 having a frequency of 760 MHz by setting the frequency of the output signal S3 of the PLL circuit 10 to 1/16 by the 1/16 frequency divider 31. The buffer circuit 32 is a drive circuit that distributes the local signal f_local1 to a plurality of circuits. The local signal distribution circuit 11 outputs a local signal f_local2 having a frequency of 2.4 GHz by setting the frequency of the output signal S3 of the PLL circuit 10 to 1/4 by the 1/4 frequency divider 33. The buffer circuit 34 is a drive circuit that distributes the local signal f_local2 to a plurality of circuits. The local signal distribution circuit 11 outputs a local signal f_local3 having a frequency of 4.9 G to 5.9 GHz by halving the frequency of the output signal S3 of the PLL circuit 10 by the ½ divider 35. . The buffer circuit 36 is a drive circuit that distributes the local signal f_local3 to a plurality of circuits.
 続いて、実施の形態1にかかる半導体装置1の動作について説明する。実施の形態1にかかる半導体装置1では、PLL回路10がローカル信号を生成する際に、通信方式に合わせて制御電流生成回路211~21mの並列数及び1つの制御電流生成回路が入出力する周波数制御電流の大きさを切り替える。これにより、実施の形態1にかかる半導体装置1では、消費電力とフェースエラーとを最適に制御し、消費電力の無駄を削減する。 Subsequently, the operation of the semiconductor device 1 according to the first embodiment will be described. In the semiconductor device 1 according to the first embodiment, when the PLL circuit 10 generates a local signal, the parallel number of the control current generating circuits 211 to 21m and the frequency that one control current generating circuit inputs and outputs according to the communication method. Switches the magnitude of the control current. Thereby, in the semiconductor device 1 according to the first embodiment, power consumption and face error are optimally controlled, and waste of power consumption is reduced.
 そこで、まず、1つの制御電流生成回路が入出力する周波数制御電流の大きさを切り替えを行わずに制御電流生成回路の並列数のみを切り替えた場合の問題点について説明する。図6に、実施の形態1にかかる電流切替回路を有していない制御電流生成回路の動作を説明する図を示す。なお、図6に示した制御電流生成回路は、図3に示した制御電流生成回路から制御電流切替回路251~25m除いた回路であり、各回路ブロックは図3に示した制御電流生成回路と同じである。しかし、実施の形態1にかかる制御電流生成回路との差異を明確にするために、図6では、各ブロックに付した符号の末尾にaを付した。 Therefore, first, a problem that occurs when only the parallel number of control current generation circuits is switched without switching the magnitude of the frequency control current input / output by one control current generation circuit will be described. FIG. 6 is a diagram illustrating the operation of the control current generation circuit that does not include the current switching circuit according to the first embodiment. The control current generation circuit shown in FIG. 6 is a circuit obtained by removing the control current switching circuits 251 to 25m from the control current generation circuit shown in FIG. 3, and each circuit block is the same as the control current generation circuit shown in FIG. The same. However, in order to clarify the difference from the control current generating circuit according to the first embodiment, in FIG. 6, “a” is added to the end of the reference numerals attached to each block.
 図6に示した制御電流生成回路211a~21maは、それぞれが周波数制御電流を出力する。このとき、各周波数制御電流には、キャリア成分とノイズ成分が含まれる。キャリア成分はそれぞれIcpの大きさを有し、ノイズ成分はそれぞれIn_outの大きさを有する。なお、ノイズ成分は、制御電流生成回路211a~21maの間で、無相関の位相関係を有し、かつ、その大きさはノイズの平均値によって表される。 The control current generation circuits 211a to 21ma shown in FIG. 6 each output a frequency control current. At this time, each frequency control current includes a carrier component and a noise component. Each carrier component has a size of Icp, and each noise component has a size of In_out. The noise component has an uncorrelated phase relationship between the control current generation circuits 211a to 21ma, and the magnitude thereof is represented by an average value of noise.
 そして、制御電流生成回路211a~21maから出力された周波数制御電流は、足し合わされてループフィルタ26に与えられる。このとき、足し合わされた周波数制御電流キャリア成分Icaは、(1)式によって表され、ノイズ成分Inは(2)式により表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
The frequency control currents output from the control current generation circuits 211a to 21ma are added and given to the loop filter 26. At this time, the added frequency control current carrier component Ica is expressed by the equation (1), and the noise component In is expressed by the equation (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 つまり、1つの制御電流生成回路が出力する周波数制御電流の大きさの切替を、制御電流生成回路211a~21maの並列数の切り替えに応じて行わなかった場合、最終的に生成される周波数制御電流のキャリア成分Icaの大きさは並列数に比例して大きくなる。また、この場合、最終的に生成される周波数制御電流のノイズ成分Inの大きさは並列数の平方根倍で大きくなる。 That is, if the switching of the magnitude of the frequency control current output by one control current generation circuit is not performed in accordance with the switching of the parallel number of the control current generation circuits 211a to 21ma, the frequency control current that is finally generated Of the carrier component Ica increases in proportion to the parallel number. In this case, the magnitude of the noise component In of the finally generated frequency control current is increased by the square root of the parallel number.
 そして、制御電流生成回路の並列数の切り替えに応じて最終的に生成される周波数制御電流の大きさが増減してしまう場合、PLL回路のオープンループゲインが増減し、フェーズエラー、セトリングタイム、リファレンススプリアス、位相余裕に影響を与える。そこで、PLL回路のオープンループゲインについて説明する。 When the magnitude of the frequency control current that is finally generated increases or decreases in response to switching of the parallel number of the control current generation circuit, the open loop gain of the PLL circuit increases or decreases, and the phase error, settling time, reference Affects spurious and phase margin. Therefore, the open loop gain of the PLL circuit will be described.
 図7に、PLL回路のオープンループゲインについて説明するためのPLL回路のブロック図を示す。このPLL回路のブロック図は、図2で説明したPLL回路にも当てはまるものである。図7に示すPLL回路において、位相比較器とチャージポンプ回路とを合わせた伝達関数はIcp/2πで表され、ループフィルタの伝達関数はF(S)で表され、電圧制御発振器VCOの伝達関数は2πKv/Sで表され、分周器の伝達関数は1/divで表される。そして、PLL回路のオープンループゲインAoは(3)式で表される。
Figure JPOXMLDOC01-appb-M000003
FIG. 7 is a block diagram of the PLL circuit for explaining the open loop gain of the PLL circuit. This block diagram of the PLL circuit is also applicable to the PLL circuit described in FIG. In the PLL circuit shown in FIG. 7, the transfer function combining the phase comparator and the charge pump circuit is expressed by Icp / 2π, the transfer function of the loop filter is expressed by F (S), and the transfer function of the voltage controlled oscillator VCO. Is represented by 2πKv / S, and the transfer function of the frequency divider is represented by 1 / div. The open loop gain Ao of the PLL circuit is expressed by equation (3).
Figure JPOXMLDOC01-appb-M000003
 なお、(3)式におけるIcpは、チャージポンプ回路が入出力する周波数制御電流であり、Kvは電圧制御発振器VCOにおいて予め決められた係数であり、divは分周器の分周比であり、τ1は(4)式で表される値であり、τ2は(5)式で表される値である。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
上記(4)式及び(5)式では、C1、C2はそれぞれループフィルタを構成するコンデンサC1、C2の容量値であり、R2はループフィルタの抵抗R2の抵抗値である。
In Equation (3), Icp is a frequency control current input / output by the charge pump circuit, Kv is a predetermined coefficient in the voltage controlled oscillator VCO, and div is a frequency division ratio of the frequency divider, τ1 is a value expressed by the equation (4), and τ2 is a value expressed by the equation (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
In the above equations (4) and (5), C1 and C2 are the capacitance values of the capacitors C1 and C2 constituting the loop filter, respectively, and R2 is the resistance value of the resistor R2 of the loop filter.
 そして、(3)式~(5)式からわかるように、チャージポンプ回路が入出力する周波数制御電流の大きさが変動した場合、周波数制御電流以外の変数に変動は生じないため、オープンループゲインAoは、周波数制御電流の大きさに比例して大きくなる。そこで、オープンループゲインAoが変動した場合の影響を説明するために、図8にPLL回路の周波数特性を説明するための図を示す。図8に示した周波数特性のグラフは、オープンループゲインAoが0dBとなる周波数帯域の近傍のものである。 As can be seen from equations (3) to (5), when the magnitude of the frequency control current input / output from / to the charge pump circuit varies, variables other than the frequency control current do not vary. Ao increases in proportion to the magnitude of the frequency control current. In order to explain the influence when the open loop gain Ao fluctuates, FIG. 8 shows a diagram for explaining the frequency characteristics of the PLL circuit. The graph of the frequency characteristic shown in FIG. 8 is in the vicinity of the frequency band where the open loop gain Ao is 0 dB.
 図8に示すように、周波数制御電流Icpが大きくなるとオープンループゲインAoは大きくなる。そして、オープンループゲインAoが大きくなったことに応じて、ゲインが0dBとなる周波数も大きくなる。これにより、スプリアスの抑制量が悪化し、フェーズエラーが大きくなる。 As shown in FIG. 8, the open loop gain Ao increases as the frequency control current Icp increases. As the open loop gain Ao increases, the frequency at which the gain becomes 0 dB also increases. As a result, the amount of spurious suppression is deteriorated and the phase error is increased.
 また、周波数制御電流Icpのみの変化によってオープンループゲインAoが大きくなった場合、(4)式で示されるτより求まるポール(図8の1/(2πτ))、及び、τより求まるゼロ点(図8の1/2πτ)は変動しない。そのため、PLL回路のゲインに対する位相は変動せず、位相余裕が小さくなる。位相余裕が小さくなると、PLL回路が最悪ロックしなくなる問題が生じる。つまり、セトリングタイムに悪影響を及ぼす問題がある。 Further, when the open loop gain Ao is increased only by the change of the frequency control current Icp, the pole is obtained from τ 1 shown in the equation (4) (1 / (2πτ 1 ) in FIG. 8) and τ 2. The zero point (1 / 2πτ 2 in FIG. 8) does not vary. Therefore, the phase with respect to the gain of the PLL circuit does not fluctuate, and the phase margin becomes small. When the phase margin becomes small, there arises a problem that the PLL circuit is not worst locked. That is, there is a problem that adversely affects the settling time.
 このように、周波数制御電流Icpに変動が生じるとPLL回路の諸特性に様々な悪影響が及ぶ。しかし、実施の形態1にかかる半導体装置1では、制御電流生成回路211~21mの並列数の切り替えに応じて1つの制御電流生成回路が出力する周波数制御電流の大きさの切り替えを行い、並列数にかかわらず最終的な周波数制御電流を一定に維持する。そのため、実施の形態1にかかる半導体装置1のPLL回路10では、上記のような問題は発生しない。 As described above, when the frequency control current Icp fluctuates, various adverse effects are exerted on various characteristics of the PLL circuit. However, in the semiconductor device 1 according to the first embodiment, the magnitude of the frequency control current output by one control current generation circuit is switched according to the switching of the parallel number of the control current generation circuits 211 to 21m, and the number of parallel Regardless, the final frequency control current is kept constant. Therefore, the above problem does not occur in the PLL circuit 10 of the semiconductor device 1 according to the first embodiment.
 そこで、実施の形態1にかかる半導体装置1の制御電流生成回路211~21mの動作を説明する。図9に実施の形態1にかかる制御電流生成回路の動作を説明する図を示す。図9に示すブロック図は、図3に示したものと同じである。 Therefore, the operation of the control current generation circuits 211 to 21m of the semiconductor device 1 according to the first embodiment will be described. FIG. 9 is a diagram for explaining the operation of the control current generating circuit according to the first embodiment. The block diagram shown in FIG. 9 is the same as that shown in FIG.
 図9に示すように、実施の形態1にかかる半導体装置1では、制御電流生成回路の並列数をN(つまり、m=N)とした場合、1つの制御電流生成回路から出力される周波数制御電流のキャリア成分の大きさは、最終的な周波数制御電流Icaの1/N倍となる。これは、電流切替回路251~25mにおいて、第1のバイアス電流Ibiasが1/N倍に制御されているからである。また、1つの制御電流生成回路から出力される周波数制御電流のノイズ成分の大きさは、周波数制御電流の大きさが1/N倍されていないときの1/N倍となる。これは、電流切替回路251~25mにおいて、第1のバイアス電流Ibiasが1/N倍とされたことに伴いノイズ成分も1/Nとなるためである。そして、実施の形態1にかかる半導体装置1において、足し合わされた周波数制御電流キャリア成分Icaは、(6)式によって表され、ノイズ成分Inは(7)式により表される。なお、図9に示すように、実施の形態1にかかる半導体装置1では、各制御電流生成回路が出力する周波数制御電流は、異なる電流源から生成された第1のバイアス電流に基づき生成されるものであり、周波数制御電流のノイズ成分は、制御電流生成回路間で無相関の位相関係を有する。また、図9で示したノイズ成分は、単位時間当たりのノイズの大きさの平均値を表すものとする。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 なお、(7)式では、ノイズ成分に関し、概ね等しいという意味の等号を使用したが、これは、電流切替回路252によりチャージポンプ回路231へのバイアス電流が1/Nとされたときに、チャージポンプ回路231を構成するトランジスタのフリッカ雑音が厳密には1/Nからずれる場合もあることを考慮したためである。
As shown in FIG. 9, in the semiconductor device 1 according to the first embodiment, when the parallel number of control current generation circuits is N (that is, m = N), the frequency control output from one control current generation circuit The magnitude of the carrier component of the current is 1 / N times the final frequency control current Ica. This is because the first bias current Ibias is controlled to 1 / N times in the current switching circuits 251 to 25m. The magnitude of the noise component of the frequency control current output from one control current generation circuit is 1 / N times that when the magnitude of the frequency control current is not 1 / N times. This is because in the current switching circuits 251 to 25m, the noise component also becomes 1 / N when the first bias current Ibias is set to 1 / N times. In the semiconductor device 1 according to the first embodiment, the added frequency control current carrier component Ica is expressed by the equation (6), and the noise component In is expressed by the equation (7). As shown in FIG. 9, in the semiconductor device 1 according to the first embodiment, the frequency control current output by each control current generation circuit is generated based on the first bias current generated from different current sources. The noise component of the frequency control current has an uncorrelated phase relationship between the control current generation circuits. In addition, the noise component shown in FIG. 9 represents an average value of noise magnitude per unit time.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
In Equation (7), an equal sign that means that the noise component is substantially equal is used. This is because when the bias current to the charge pump circuit 231 is set to 1 / N by the current switching circuit 252, This is because the flicker noise of the transistors constituting the charge pump circuit 231 may be strictly deviated from 1 / N.
 つまり、1つの制御電流生成回路が出力する周波数制御電流の大きさの切替を、制御電流生成回路211~21mの並列数の切り替えに応じて行った場合、最終的に生成される周波数制御電流の大きさは並列数によらず一定の大きさとなる。また、この場合、最終的に生成される周波数制御電流のノイズ成分の大きさは並列数の平方根倍分の1の大きさとなる。つまり、実施の形態1にかかる半導体装置1では、ループフィルタ26に与える周波数制御電流のノイズ成分が並列数が増加するごとに小さくなるという特徴がある。 That is, when switching of the magnitude of the frequency control current output from one control current generation circuit is performed in accordance with the switching of the parallel number of the control current generation circuits 211 to 21m, the frequency control current to be finally generated is changed. The size is constant regardless of the parallel number. Further, in this case, the magnitude of the noise component of the frequency control current that is finally generated is one times the square root of the parallel number. That is, the semiconductor device 1 according to the first embodiment is characterized in that the noise component of the frequency control current applied to the loop filter 26 decreases as the parallel number increases.
 続いて、実施の形態1にかかる半導体装置1のPLL回路10のフェーズエラーと消費電力について説明する。まず。実施の形態1にかかる半導体装置1は、複数の通信方式に対応可能であるため、要求されるフェーズエラーを通信方式毎に説明する。そこで、図10に通信規格のフェーズエラーの仕様を説明するための図を示す。なお、図10では、フェーズエラーに関する規格値として送信EVM(Error Vector Magnitude)を示した。この送信EVMは、信号のスペクトラムにおける信号成分の面積とノイズ成分の面積との比を示す値である。 Subsequently, a phase error and power consumption of the PLL circuit 10 of the semiconductor device 1 according to the first embodiment will be described. First. Since the semiconductor device 1 according to the first embodiment is compatible with a plurality of communication methods, a required phase error will be described for each communication method. FIG. 10 is a diagram for explaining the specifications of the phase error of the communication standard. In FIG. 10, transmission EVM (Error Vector Magnitude) is shown as a standard value related to the phase error. This transmission EVM is a value indicating the ratio between the area of the signal component and the area of the noise component in the spectrum of the signal.
 図10に示すように、IEEE802.11aは、周波数帯が4.9~4.8GHz時において-25dBの送信EVMが定められる。IEEE802.11a/nは、周波数帯が4.9~4.8GHz時において-28dBの送信EVMが定められる。IEEE802.11b/gは、周波数帯が2.4GHz時において-25dBの送信EVMが定められる。IEEE802.11b/g/nは、周波数帯が2.4GHz時において-28dBの送信EVMが定められる。IEEE802.11pは、周波数帯が760MHz時と5.9GHz時において-25dBの送信EVMが定められる。 As shown in FIG. 10, in IEEE802.11a, a transmission EVM of −25 dB is determined when the frequency band is 4.9 to 4.8 GHz. In IEEE 802.11a / n, a transmission EVM of −28 dB is determined when the frequency band is 4.9 to 4.8 GHz. In IEEE 802.11b / g, a transmission EVM of −25 dB is determined when the frequency band is 2.4 GHz. In IEEE802.11b / g / n, a transmission EVM of −28 dB is determined when the frequency band is 2.4 GHz. In IEEE802.11p, a transmission EVM of −25 dB is determined when the frequency band is 760 MHz and 5.9 GHz.
 そして、これら規格を満たすために5.9GHz時のローカル信号f_local3に要求されるEVMに換算したものを図9の送信EVM規格値の隣に記載する。図9に示すように、上記規格を満たすためには、IEEE802.11aでは、-29dBのEVMがローカル信号f_local3に求められる。IEEE802.11a/nでは、-32dBのEVMがローカル信号f_local3に求められる。IEEE802.11b/gでは、-23dBのEVMがローカル信号f_local3に求められる。IEEE802.11b/g/nでは、-26dBのEVMがローカル信号f_local3に求められる。IEEE802.11pの760MHzでは、-11dBのEVMがローカル信号f_local3に求められる。IEEE802.11pの5.9GHzでは、-32dBのEVMがローカル信号f_local3に求められる。なお、この値には、ローカル信号分配回路11で生じるフェーズエラー、送信フロントエンド部で生じるフェーズエラー等を加味して本来の値よりも-4dBの余裕が含まれる。 Then, in order to satisfy these standards, a value converted to EVM required for the local signal f_local3 at 5.9 GHz is described next to the transmission EVM standard value in FIG. As shown in FIG. 9, in order to satisfy the above-mentioned standard, in IEEE 802.11a, an EVM of −29 dB is obtained for the local signal f_local3. In IEEE802.11a / n, an EVM of −32 dB is obtained for the local signal f_local3. In IEEE 802.11b / g, an EVM of −23 dB is obtained for the local signal f_local3. In IEEE 802.11b / g / n, an EVM of −26 dB is obtained for the local signal f_local3. At 760 MHz of IEEE802.11p, an EVM of -11 dB is obtained for the local signal f_local3. In 5.9 GHz of IEEE802.11p, -32 dB EVM is obtained for the local signal f_local3. This value includes a margin of −4 dB from the original value in consideration of a phase error generated in the local signal distribution circuit 11, a phase error generated in the transmission front end unit, and the like.
 そして、ローカル信号f_local3に要求されるEVMをフェーズエラーに換算した値を出力信号D3のEVMの隣に記載した。図10に示すように、上記規格を満たすためには、IEEE802.11aでは、1.61deg.rmsのフェーズエラーがローカル信号f_local3に求められる。IEEE802.11a/nでは、1.14deg.rmsのフェーズエラーがローカル信号f_local3に求められる。IEEE802.11b/gでは、3.22deg.rmsのフェーズエラーがローカル信号f_local3に求められる。IEEE802.11b/g/nでは、2.28deg.rmsのフェーズエラーがローカル信号f_local3に求められる。IEEE802.11pの760MHzでは、12.83deg.rmsのフェーズエラーがローカル信号f_local3に求められる。IEEE802.11pの5.9GHzでは、1.61deg.rmsのフェーズエラーがローカル信号f_local3に求められる。 The value obtained by converting the EVM required for the local signal f_local3 into a phase error is described next to the EVM of the output signal D3. As shown in FIG. 10, in order to satisfy the above-mentioned standard, in IEEE802.11a, 1.61 deg. An rms phase error is determined in the local signal f_local3. In IEEE 802.11a / n, 1.14 deg. An rms phase error is determined in the local signal f_local3. In IEEE 802.11b / g, 3.22 deg. An rms phase error is determined in the local signal f_local3. In IEEE802.11b / g / n, 2.28 deg. An rms phase error is determined in the local signal f_local3. In IEEE 802.11p at 760 MHz, 12.83 deg. An rms phase error is determined in the local signal f_local3. In IEEE 802.11p 5.9 GHz, 1.61 deg. An rms phase error is determined in the local signal f_local3.
 続いて、実施の形態1にかかる半導体装置1において制御電流生成回路の並列数を変更した場合のシミュレーション結果について説明する。当該シミュレーションでは、5.9GHzのローカル信号f_local3を生成している場合の制御電流生成回路の消費電流とPLL回路10のフェーズエラーとの関係を求めた。図11に実施の形態1にかかる制御電流生成回路の消費電流とフェーズエラーとの関係を説明するための図を示した。 Subsequently, a simulation result when the parallel number of the control current generation circuits is changed in the semiconductor device 1 according to the first embodiment will be described. In this simulation, the relationship between the consumption current of the control current generation circuit and the phase error of the PLL circuit 10 when the local signal f_local3 of 5.9 GHz is generated was obtained. FIG. 11 is a diagram for explaining the relationship between the current consumption of the control current generating circuit according to the first embodiment and the phase error.
 図11に示すように、シミュレーションに用いた回路では、並列数が1であっても、図10で示した2番目に厳しい規格(1.61deg.rmsが要求されるIEEE802.11a、11p)を満たすことができる。そして、制御電流生成回路の並列数を2、4、8と増加させる毎に、消費電流は大きくなるが、フェーズエラーが小さくなる。これは、制御電流生成回路の並列数を増加させると電流を消費する制御電流生成回路の数が増加するためである。そして、制御電流生成回路の並列数を8とした時点で、フェーズエラーの大きさが最も厳しい規格(1.14deg.rms)であるIEEE802.11a/nの規格を満たすことができる。 As shown in FIG. 11, in the circuit used for the simulation, even if the parallel number is 1, the second strictest standard (IEEE 802.11a, 11p requiring 1.61 deg. Rms) shown in FIG. Can be satisfied. Each time the number of parallel control current generation circuits is increased to 2, 4, and 8, the current consumption increases, but the phase error decreases. This is because when the number of control current generation circuits is increased, the number of control current generation circuits that consume current increases. When the parallel number of control current generation circuits is set to 8, the standard of IEEE 802.11a / n, which is the most severe standard (1.14 deg. Rms), can be satisfied.
 また、実施の形態1にかかるPLL回路10の周波数特性について説明する。図12に実施の形態1にかかる制御電流生成回路の並列数の違いによるPLL回路の周波数特性の違いを説明するための図を示す。図12に示すように、実施の形態1にかかるPLL回路10では、制御電流生成回路の並列数を変更しても、カットオフ周波数に変化はない。一方、実施の形態1にかかるPLL回路では、制御電流生成回路の並列数を増加させることで低い周波数帯域におけるフェーズエラーが減少し、ゲインが減少する。 Further, the frequency characteristics of the PLL circuit 10 according to the first embodiment will be described. FIG. 12 is a diagram for explaining the difference in the frequency characteristics of the PLL circuit due to the difference in the number of parallel control current generation circuits according to the first embodiment. As shown in FIG. 12, in the PLL circuit 10 according to the first exemplary embodiment, the cutoff frequency does not change even if the parallel number of the control current generating circuits is changed. On the other hand, in the PLL circuit according to the first embodiment, the phase error in the low frequency band is reduced and the gain is reduced by increasing the parallel number of the control current generating circuits.
 上記説明より、実施の形態1にかかるPLL回路10は、制御電流生成回路211~21mの並列数を、要求されるフェーズエラーが大きな場合は少なくし、要求されるフェーズエラーが小さな場合は多くする。また、実施の形態にかかるPLL回路10は、制御電流生成回路211~21mの並列数が少ない場合は、1つの制御電流生成回路が入出力する周波数制御電流の大きさを大きくし、制御電流生成回路211~21mの並列数が多い場合は、1つの制御電流生成回路が入出力する周波数制御電流の大きさを小さくする。このとき、実施の形態1にかかるPLL回路10では、制御電流生成回路211~21mの並列数をN、最終的にループフィルタ26に与える周波数制御電流の大きさをIcpとした場合、1つの制御電流生成回路211が入出力する周波数制御電流の大きさはIcp/Nとなる。 From the above description, the PLL circuit 10 according to the first embodiment reduces the number of parallel control current generation circuits 211 to 21m when the required phase error is large and increases when the required phase error is small. . Further, the PLL circuit 10 according to the embodiment increases the magnitude of the frequency control current input / output by one control current generation circuit when the number of parallel control current generation circuits 211 to 21m is small, and generates the control current When the number of parallel circuits 211 to 21m is large, the magnitude of the frequency control current input / output by one control current generation circuit is reduced. At this time, in the PLL circuit 10 according to the first exemplary embodiment, when the parallel number of the control current generation circuits 211 to 21m is N and the magnitude of the frequency control current finally applied to the loop filter 26 is Icp, one control is performed. The magnitude of the frequency control current input / output by the current generation circuit 211 is Icp / N.
 これにより、実施の形態1にかかるPLL回路10では、制御電流生成回路211~21mの並列数の切り替えによる周波数制御電流Icpの変動を抑制し、PLL回路の諸特性の変動を抑制する。 Thereby, in the PLL circuit 10 according to the first exemplary embodiment, the fluctuation of the frequency control current Icp due to the switching of the parallel number of the control current generating circuits 211 to 21m is suppressed, and the fluctuation of various characteristics of the PLL circuit is suppressed.
 また、PLL回路10では、制御電流生成回路211~21mが個別に電流源241~24mを有し、電流源241~24mが生成する第1のバイアス電流を個別に1/N倍(Nは並列数)とした第2のバイアス電流を生成する。そして、個別に生成された第2のバイアス電流に基づき周波数制御電流を生成し、これを足し合わせてループフィルタ26に与える周波数制御電流Icpを生成する。 In the PLL circuit 10, the control current generating circuits 211 to 21m individually have current sources 241 to 24m, and the first bias current generated by the current sources 241 to 24m is individually 1 / N times (N is parallel). A second bias current is generated. Then, a frequency control current is generated based on the individually generated second bias current, and these are added together to generate a frequency control current Icp to be given to the loop filter 26.
 これにより、周波数制御電流Icpのノイズ成分Inの大きさを(1/√N)*(In_out)(In_outは、1つの制御電流生成回路が出力する周波数制御電流に含まれるノイズ成分)とする。つまり、実施の形態1にかかるPLL回路では、制御電流生成回路の並列数の増加に応じて周波数制御電流Icpのノイズ成分を小さくすることができる。そして、制御電流生成回路の並列数の増加に応じて周波数制御電流Icpのノイズ成分を小さくすることで、実施の形態1にかかる半導体装置1では、PLL回路10が生成する出力信号S3のフェーズエラーを通信方式の規格値を満たす大きさに制御することができる。また、実施の形態1にかかるPLL回路10では、利用する通信方式が要求するフェーズエラーが大きな場合には、制御電流生成回路211~21mの並列数を小さくして消費電流の無駄を削減しながら、フェーズエラーを要求される大きさ以下とすることができる。 Thus, the magnitude of the noise component In of the frequency control current Icp is set to (1 / √N) * (In_out) (In_out is a noise component included in the frequency control current output by one control current generation circuit). That is, in the PLL circuit according to the first embodiment, the noise component of the frequency control current Icp can be reduced as the number of parallel control current generation circuits increases. In the semiconductor device 1 according to the first embodiment, the phase error of the output signal S3 generated by the PLL circuit 10 is reduced by reducing the noise component of the frequency control current Icp according to the increase in the number of parallel control current generation circuits. Can be controlled to a size satisfying the standard value of the communication system. Further, in the PLL circuit 10 according to the first embodiment, when the phase error required by the communication method to be used is large, while reducing the parallel number of the control current generating circuits 211 to 21m, it is possible to reduce waste of current consumption. The phase error can be made smaller than the required size.
 また、実施の形態1にかかるPLL回路10では、制御電流生成回路211~21mがそれぞれ個別に位相比較器を有する。これにより、位相比較器に起因して発生するフリッカノイズ等が制御電流生成回路間で無相関になる。従って、実施の形態1にかかるPLL回路10では、位相比較器に関するノイズを、最終的に生成される周波数制御電流において並列数の平方根倍とすることができる。 In the PLL circuit 10 according to the first embodiment, each of the control current generation circuits 211 to 21m has a phase comparator. As a result, flicker noise or the like generated due to the phase comparator becomes uncorrelated between the control current generation circuits. Therefore, in the PLL circuit 10 according to the first embodiment, the noise related to the phase comparator can be set to the square root of the parallel number in the finally generated frequency control current.
 また、実施の形態1にかかる半導体装置1では、チャージポンプ回路231~23mの前段に設けられる電流切替回路251~25mにより、第1のバイアス電流Ibiasを並列数の逆数倍(1/N倍)とした第2のバイアス電流を生成する。チャージポンプ回路231~23mにおいて1つの制御電流生成回路から出力される周波数制御電流を1/N倍に制御した場合、1つの制御電流生成回路が出力する周波数制御電流に含まれるノイズ成分が1/N倍されない。しかし、実施の形態1にかかるPLL回路10のように、チャージポンプ回路の前段においてバイアス電流を1/N倍とすることで、1つの制御電流生成回路が出力する周波数制御電流に含まれるノイズ成分が1/N倍とし、ノイズ成分を小さくすることができる。また、制御電流生成回路211~21mのそれぞれにおいて個別にバイアス電流を生成することで、各制御電流生成回路が入出力する周波数制御電流に含まれるノイズ成分の位相関係を無相関とする。これにより、電流を足し合わせたときのノイズ成分を√N倍として、ノイズ成分を小さくすることができる。 In the semiconductor device 1 according to the first embodiment, the first bias current Ibias is reciprocal times (1 / N times) the parallel number by the current switching circuits 251 to 25m provided before the charge pump circuits 231 to 23m. ) To generate a second bias current. When the frequency control current output from one control current generation circuit is controlled to 1 / N times in the charge pump circuits 231 to 23m, the noise component included in the frequency control current output from one control current generation circuit is 1 / N. Not N times. However, as in the PLL circuit 10 according to the first embodiment, the noise component included in the frequency control current output by one control current generation circuit is obtained by multiplying the bias current by 1 / N times before the charge pump circuit. Can be reduced to 1 / N times to reduce the noise component. Further, by individually generating a bias current in each of the control current generation circuits 211 to 21m, the phase relationship of noise components included in the frequency control current input / output by each control current generation circuit is made uncorrelated. As a result, the noise component when the currents are added can be reduced to √N times to reduce the noise component.
 また、実施の形態1にかかるPLL回路10では、出力信号S3から帰還信号Ffbを生成するプリスケーラ28を有する。これにより、PLL回路10では、基準信号Frefよりも高い周波数を有する出力信号S3を生成することができる。また、PLL回路10では、シグマデルタ変調器29によりプリスケーラ28の分周比を制御する分周比制御信号S4を生成する。このように、シグマデルタ変調器29を用いて分周比制御信号S4を生成することで、プリスケーラ28のハードウェア構成から決められる分周比よりも分解能の高い分周比を設定することができる。 In addition, the PLL circuit 10 according to the first embodiment includes the prescaler 28 that generates the feedback signal Ffb from the output signal S3. As a result, the PLL circuit 10 can generate the output signal S3 having a frequency higher than that of the reference signal Fref. In the PLL circuit 10, the sigma delta modulator 29 generates a frequency division ratio control signal S 4 for controlling the frequency division ratio of the prescaler 28. Thus, by generating the division ratio control signal S4 using the sigma delta modulator 29, it is possible to set a division ratio with higher resolution than the division ratio determined from the hardware configuration of the prescaler 28. .
 なお、実施の形態1にかかるPLL回路10では、制御電流生成回路211~21mの並列数をN、最終的にループフィルタ26に与える周波数制御電流の大きさをIcpとした場合、1つの制御電流生成回路211が入出力する周波数制御電流の大きさはIcp/Nとしたが、必ずしも周波数制御電流の大きさをIcp/Nにしなくてもよい。制御電流生成回路211~21mの並列数が少ない場合は、1つの制御電流生成回路が入出力する周波数制御電流の大きさを大きくし、制御電流生成回路211~21mの並列数が多い場合は、1つの制御電流生成回路が入出力する周波数制御電流の大きさを小さくしてもよい。 In the PLL circuit 10 according to the first embodiment, when the parallel number of the control current generating circuits 211 to 21m is N and the magnitude of the frequency control current finally applied to the loop filter 26 is Icp, one control current Although the magnitude of the frequency control current input / output by the generation circuit 211 is Icp / N, the magnitude of the frequency control current is not necessarily set to Icp / N. When the parallel number of the control current generation circuits 211 to 21m is small, the magnitude of the frequency control current input / output by one control current generation circuit is increased, and when the parallel number of the control current generation circuits 211 to 21m is large, The magnitude of the frequency control current input / output by one control current generation circuit may be reduced.
 実施の形態2
 実施の形態2では、PLL回路10の別の形態となるPLL回路10aについて説明する。そこで、実施の形態2にかかるPLL回路のブロック図を図13に示す。なお、実施の形態2の説明では、実施の形態1で説明した構成要素については、実施の形態1と同じ符号を付して説明を省略する。
Embodiment 2
In the second embodiment, a PLL circuit 10a which is another form of the PLL circuit 10 will be described. FIG. 13 shows a block diagram of the PLL circuit according to the second embodiment. In the description of the second embodiment, the components described in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.
 図13に示すように、実施の形態2にかかるPLL回路10aは、PLL回路10の電圧制御発振器27とプリスケーラ28との間に1/2分周器41を有する。そして、1/2分周器41の出力を出力信号S3とする。 As illustrated in FIG. 13, the PLL circuit 10 a according to the second embodiment includes a ½ frequency divider 41 between the voltage controlled oscillator 27 and the prescaler 28 of the PLL circuit 10. The output of the 1/2 frequency divider 41 is set as an output signal S3.
 1/2分周器41は、内部発振信号Foutの周波数を1/2にして出力信号S3を生成する。つまり、実施の形態2では、出力信号S3が内部発振信号Foutの半分の周波数である4.8GHz~6.08GHzを有する。 The 1/2 frequency divider 41 halves the frequency of the internal oscillation signal Fout to generate the output signal S3. That is, in the second embodiment, the output signal S3 has 4.8 GHz to 6.08 GHz which is half the frequency of the internal oscillation signal Fout.
 また、実施の形態2にかかるPLL回路10aに対応したローカル信号分配回路11aについて説明する。実施の形態2にかかるローカル信号分配回路11aのブロック図を図14に示す。図14に示すように、ローカル信号分配回路11aは、実施の形態1にかかるローカル信号分配回路11の1/2分周器35を取り除き、1/16分周器31と1/4分周器33をそれぞれ1/8分周器51、1/2分周器53に置き換えたものである。 A local signal distribution circuit 11a corresponding to the PLL circuit 10a according to the second embodiment will be described. FIG. 14 is a block diagram of the local signal distribution circuit 11a according to the second embodiment. As shown in FIG. 14, the local signal distribution circuit 11a removes the 1/2 divider 35 of the local signal distribution circuit 11 according to the first embodiment, and the 1/16 divider 31 and the 1/4 divider. 33 is replaced with a 1/8 frequency divider 51 and a 1/2 frequency divider 53, respectively.
 上記説明より、実施の形態2にかかるPLL回路10aでは、電圧制御発振器27が出力する内部発振信号Foutの周波数を1/2にしてプリスケーラ28及びローカル信号分配回路11aに与える。これにより、実施の形態2にかかるプリスケーラ28及びローカル信号分配回路11aは、実施の形態1にかかるPLL回路10よりも低速の回路素子を利用して構成することができる。このようにすることで、回路構成をより簡易にすることができる。 From the above description, in the PLL circuit 10a according to the second embodiment, the frequency of the internal oscillation signal Fout output from the voltage controlled oscillator 27 is halved and supplied to the prescaler 28 and the local signal distribution circuit 11a. Thus, the prescaler 28 and the local signal distribution circuit 11a according to the second embodiment can be configured using circuit elements that are slower than the PLL circuit 10 according to the first embodiment. By doing so, the circuit configuration can be further simplified.
 実施の形態3
 実施の形態3では、PLL回路10の別の形態となるPLL回路10bについて説明する。そこで、実施の形態3にかかるPLL回路のブロック図を図15に示す。なお、実施の形態3の説明では、実施の形態1で説明した構成要素については、実施の形態1と同じ符号を付して説明を省略する。
Embodiment 3
In the third embodiment, a PLL circuit 10b which is another form of the PLL circuit 10 will be described. FIG. 15 shows a block diagram of the PLL circuit according to the third embodiment. In the description of the third embodiment, the components described in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted.
 図15に示すように、実施の形態3にかかるPLL回路10bは、制御電流生成回路211~21mに代えて制御電流生成回路611~61mと位相比較器62を有する。位相比較器62は、位相比較器221~22mと実施的に同じ機能を有するものである。この位相比較器62は、制御電流生成回路611~61mに対して共通に用いられるものである。つまり、位相比較器62は、制御電流生成回路611~61mに対して1つの位相差判定信号UP、DNを与える。 As shown in FIG. 15, the PLL circuit 10b according to the third embodiment includes control current generation circuits 611 to 61m and a phase comparator 62 instead of the control current generation circuits 211 to 21m. The phase comparator 62 has substantially the same function as the phase comparators 221 to 22m. This phase comparator 62 is commonly used for the control current generation circuits 611 to 61m. That is, the phase comparator 62 provides one phase difference determination signal UP, DN to the control current generation circuits 611 to 61m.
 制御電流生成回路611~61mは、制御電流生成回路211~21mから位相比較器221~22mを除いたものである。なお、実施の形態3では、制御電流生成回路611~61mは、チャージポンプ回路631~63m、電流源641~64m、電流切替回路651~65mを有する。 The control current generation circuits 611 to 61m are obtained by removing the phase comparators 221 to 22m from the control current generation circuits 211 to 21m. In the third embodiment, the control current generation circuits 611 to 61m include charge pump circuits 631 to 63m, current sources 641 to 64m, and current switching circuits 651 to 65m.
 ここで、チャージポンプ回路631~63mは、チャージポンプ回路231~23mと同じ回路であり、電流源641~64mは、電流源241~24mと同じ回路であり、電流切替回路651~65mは、電流切替回路251~25mと同じ回路である。 Here, the charge pump circuits 631 to 63m are the same circuits as the charge pump circuits 231 to 23m, the current sources 641 to 64m are the same circuits as the current sources 241 to 24m, and the current switching circuits 651 to 65m This is the same circuit as the switching circuits 251 to 25m.
 続いて、制御電流生成回路611~61mの詳細について説明する。図16に制御電流生成回路611~61mの詳細なブロック図を示す。図16に示すように、実施の形態3にかかる制御電流生成回路611~61mは、位相比較器62から位相差判定信号UP、DNを受けて、チャージポンプ回路631~63mを動作させる。なお、制御電流生成回路611~61mのその他構成は、制御電流生成回路211~21mと同じであるためここでは説明を省略する。 Subsequently, details of the control current generation circuits 611 to 61m will be described. FIG. 16 shows a detailed block diagram of the control current generation circuits 611 to 61m. As shown in FIG. 16, the control current generating circuits 611 to 61m according to the third embodiment receive the phase difference determination signals UP and DN from the phase comparator 62 and operate the charge pump circuits 631 to 63m. The other configurations of the control current generation circuits 611 to 61m are the same as those of the control current generation circuits 211 to 21m, and thus description thereof is omitted here.
 上記説明より、実施の形態3にかかるPLL回路10bでは、1つの位相比較器により生成した位相差判定信号UP、DNにより複数の制御電流生成回路を動作させる。これにより、実施の形態3にかかるPLL回路10bは、位相比較器に関する回路面積を削減することができる。また、実施の形態3にかかるPLL回路10bは、位相比較器を1つにすることにより、消費電力を実施の形態1にかかるPLL回路10よりも削減することができる。 From the above description, in the PLL circuit 10b according to the third embodiment, a plurality of control current generation circuits are operated by the phase difference determination signals UP and DN generated by one phase comparator. Thereby, the PLL circuit 10b according to the third embodiment can reduce the circuit area related to the phase comparator. Further, the PLL circuit 10b according to the third embodiment can reduce the power consumption compared to the PLL circuit 10 according to the first embodiment by using one phase comparator.
 実施の形態4
 実施の形態4では、実施の形態1にかかる半導体装置1における並列数切替信号S1により指定する並列数及びバイアス電流切替信号S2により指定するバイアス電流設定値の決定方法について説明する。
Embodiment 4
In the fourth embodiment, a method for determining the parallel number specified by the parallel number switching signal S1 and the bias current setting value specified by the bias current switching signal S2 in the semiconductor device 1 according to the first embodiment will be described.
 図17に実施の形態4にかかる半導体装置1の動作を示すフローチャートを示す。図17に示すように、半導体装置1は、まず、通信を開始する前に利用する通信規格を設定する(ステップS10)。次いで、半導体装置1は、通信規格に応じた並列数を予め準備した初期設定値から選択する(ステップS11)。そして、半導体装置1は、選択した並列数を指定する並列数切替信号S1と、選択した並列数の逆数を示すバイアス電流設定値を示すバイアス電流切替信号S2とを出力する。その後、半導体装置1は、選択した並列数に合わせて制御電流生成回路211~21mを動作させて通信を開始する。 FIG. 17 is a flowchart showing the operation of the semiconductor device 1 according to the fourth embodiment. As shown in FIG. 17, the semiconductor device 1 first sets a communication standard to be used before starting communication (step S10). Next, the semiconductor device 1 selects a parallel number corresponding to the communication standard from the initial setting values prepared in advance (step S11). Then, the semiconductor device 1 outputs a parallel number switching signal S1 that designates the selected parallel number and a bias current switching signal S2 that indicates a bias current setting value indicating the inverse of the selected parallel number. Thereafter, the semiconductor device 1 starts communication by operating the control current generating circuits 211 to 21m in accordance with the selected parallel number.
 続いて、半導体装置1は、PGAコードを用いて受信電波レベルが予め設定した基準値範囲内かいなかを判断する(ステップS12)。より具体的には、ベースバンド処理部109において、受信電波レベルの判定を行う。そして、ベースバンド処理部109において受信電波レベルが予め設定した最小受信感度レベルと強入力レベルとにより決められる範囲を超えていると判断された場合には(ステップS12のNOの枝)、半導体装置1は並列数の調整処理を終了させる。このような場合、通信を行うことができない状態であるためである。一方、ベースバンド処理部109において受信電波レベルが予め設定した最小受信感度レベルと強入力レベルとにより決められる範囲内にあると判断された場合には(ステップS12のYESの枝)、半導体装置1は並列数の調整処理を行う。 Subsequently, the semiconductor device 1 determines whether the received radio wave level is within a preset reference value range by using the PGA code (step S12). More specifically, the baseband processing unit 109 determines the received radio wave level. When the baseband processing unit 109 determines that the received radio wave level exceeds the range determined by the preset minimum reception sensitivity level and strong input level (NO branch of step S12), the semiconductor device 1 ends the parallel number adjustment process. This is because communication is not possible in such a case. On the other hand, when the baseband processing unit 109 determines that the received radio wave level is within a range determined by the preset minimum reception sensitivity level and strong input level (YES branch of step S12), the semiconductor device 1 Performs the adjustment process of the parallel number.
 並列数の調整処理では、まず、ベースバンド処理部109において通信速度が基準値以上かいなかを判定する(ステップS13)。より具体的には、ベースバンド処理部109は、復号処理がOFDM(Orthogonal Frequency Division Multiplexing)により行われているかいなかにより判断する。そして、ステップS13において、復号処理がBPSK(Binary Phase Shift Keying)で行われている等により、通信速度が基準値未満であると判断された場合(ステップS13のNOの枝)、並列数を一段階増加させ、バイアス電流設定値を一段階減少させる(ステップS14)。そして、半導体装置1は、ステップS13において通信速度が十分な速度になるまで、ステップS14とステップS13の処理を繰り返す。そして、ステップS13において、復号処理がOFDMによる処理に切り替わったことに応じて半導体装置1は並列数の調整処理を終了させる(ステップS13のYESの枝)。 In the parallel number adjustment process, first, the baseband processing unit 109 determines whether the communication speed is equal to or higher than a reference value (step S13). More specifically, the baseband processing unit 109 determines whether the decoding process is performed by OFDM (OrthogonalgonFrequency Division Multiplexing). In step S13, when it is determined that the communication speed is less than the reference value because the decoding process is performed by BPSK (Binary Phase Shift Shift Keying) or the like (NO branch in step S13), the parallel number is reduced by one. The bias current set value is decreased by one step (step S14). And the semiconductor device 1 repeats the process of step S14 and step S13 until the communication speed becomes sufficient speed in step S13. In step S13, the semiconductor device 1 ends the parallel number adjustment process in response to the switching of the decoding process to the process based on OFDM (YES in step S13).
 つまり、制御部(例えば、ベースバンド処理部109)は、利用する通信規格に応じて並列数及びバイアス電流設定値の初期値を設定し、当該初期値に基づき行われた通信の通信速度が基準値未満であった場合には、現在の並列数を増加した新たな並列数を指定する並列数切替信号S1と、現時点のバイアス電流設定値を小さくした新たなバイアス電流設定値を指定するバイアス電流切替信号S2を生成する。 That is, the control unit (for example, the baseband processing unit 109) sets the initial number of the parallel number and the bias current setting value according to the communication standard to be used, and the communication speed of communication performed based on the initial value is a reference. If it is less than the value, the parallel number switching signal S1 that specifies a new parallel number that is increased from the current parallel number, and a bias current that specifies a new bias current setting value that is a smaller current bias current setting value A switching signal S2 is generated.
 上記説明より、実施の形態4にかかる並列数の調整処理を行うことで、半導体装置1は、フェーズエラーを改善させて雑音に起因する通信速度の低下を防ぐことができる。また、実施の形態4にかかる半導体装置1は、通信速度が十分である場合は、並列数を無駄に増加させることなく消費電力の無駄な増加を防止することができる。 From the above description, by performing the parallel number adjustment processing according to the fourth embodiment, the semiconductor device 1 can improve the phase error and prevent the communication speed from being lowered due to noise. Further, when the communication speed is sufficient, the semiconductor device 1 according to the fourth embodiment can prevent an unnecessary increase in power consumption without increasing the parallel number.
 なお、図17のステップS11、S12の処理は、実施の形態1にかかる半導体装置1においても行われる処理である。 Note that the processes in steps S11 and S12 in FIG. 17 are also performed in the semiconductor device 1 according to the first embodiment.
 実施の形態5
 実施の形態5では、実施の形態4にかかる半導体装置1における並列数切替信号S1により指定する並列数及びバイアス電流切替信号S2により指定するバイアス電流設定値の決定方法の変形例について説明する。
Embodiment 5
In the fifth embodiment, a modification of the method for determining the parallel number specified by the parallel number switching signal S1 and the bias current setting value specified by the bias current switching signal S2 in the semiconductor device 1 according to the fourth embodiment will be described.
 図18に実施の形態5にかかる半導体装置1の動作を示すフローチャートを示す。図18に示すように、実施の形態5にかかる並列数の調整手順は、図17のステップS13の後に行われる。なお、実施の形態5では、ステップS13の通信速度の判定を、64QAM(64 Quadrature Amplitude Modulation)による復号処理が行われているか否かに行う。そして、ステップS13で十分な通信速度があると判定された場合、並列数を一段階減少させると共にバイアス電流設定値を一段階増加させる(ステップS21)。 FIG. 18 is a flowchart showing the operation of the semiconductor device 1 according to the fifth embodiment. As shown in FIG. 18, the parallel number adjustment procedure according to the fifth embodiment is performed after step S13 of FIG. In the fifth embodiment, the communication speed is determined in step S13 based on whether or not decoding processing using 64QAM (64 Quadrature Amplitude Modulation) is performed. If it is determined in step S13 that the communication speed is sufficient, the parallel number is decreased by one step and the bias current set value is increased by one step (step S21).
 続いて、実施の形態5では、ベースバンド処理部109は、通信速度が基準値を満たすか否かを判定する(ステップS22)。より具体的には、ベースバンド処理部109は、ステップS13の判定処理の時よりも小さな並列数においても復調処理が64QAMにより行われるか否かを判定する。そして、ステップS22において、通信速度が十分であると判断された場合(ステップS22のYESの枝)、ベースバンド処理部109は、並列数を一段階減少させ、バイアス電流設定値を一段階増加させる(ステップS23)。その後、半導体装置1は、ステップS22において通信速度が十分な速度を確保できないと判断されるまで、ステップS23とステップS22の処理を繰り返す。そして、ステップS22において、通信速度が不十分と判断されたことに応じて半導体装置1は、ステップS24の処理を行う。ステップS24では、並列数を一段階増加させ、バイアス電流設定値を一段階減少させる。これにより、半導体装置1では、通信速度を満たすことができる最小限の並列数で動作を行うことが可能になる。 Subsequently, in the fifth embodiment, the baseband processing unit 109 determines whether or not the communication speed satisfies the reference value (step S22). More specifically, the baseband processing unit 109 determines whether or not demodulation processing is performed by 64QAM even in a smaller parallel number than in the determination processing in step S13. If it is determined in step S22 that the communication speed is sufficient (YES in step S22), the baseband processing unit 109 decreases the parallel number by one step and increases the bias current setting value by one step. (Step S23). Thereafter, the semiconductor device 1 repeats the processes in steps S23 and S22 until it is determined in step S22 that the communication speed cannot be secured sufficiently. Then, in step S22, the semiconductor device 1 performs the process of step S24 when it is determined that the communication speed is insufficient. In step S24, the parallel number is increased by one step, and the bias current set value is decreased by one step. As a result, the semiconductor device 1 can operate with a minimum number of parallel processes that can satisfy the communication speed.
 つまり、制御部(例えば、ベースバンド処理部109)は、現在の並列数及びバイアス電流設定値に基づき行われた通信の通信速度が基準値以上であった場合には、並列数の減少処理とバイアス電流設定値の増加処理とを通信速度が基準値未満になるまで繰り返す。そして、ベースバンド処理部109は、通信速度が基準値未満となった時点の並列数を1つ大きくした新たな並列数と、バイアス電流設定値を1つ小さくした新たなバイアス電流設定値と、を最終的な値として決定する。 That is, the control unit (for example, the baseband processing unit 109) performs the parallel number reduction process when the communication speed of communication performed based on the current parallel number and the bias current setting value is equal to or higher than the reference value. The process of increasing the bias current set value is repeated until the communication speed becomes less than the reference value. Then, the baseband processing unit 109 has a new parallel number that is increased by one when the communication speed is less than the reference value, a new bias current setting value that is decreased by one, and a bias current setting value that is decreased by one. Is determined as the final value.
 上記説明より、実施の形態5にかかる並列数の調整処理を行うことで、半導体装置1は、通信速度を確保できる最低限の並列数を設定することができる。これにより、半導体装置1は、通信速度を確保できる最低限の回路による消費電力のみで動作することができる。 From the above description, by performing the parallel number adjustment processing according to the fifth embodiment, the semiconductor device 1 can set the minimum parallel number that can ensure the communication speed. As a result, the semiconductor device 1 can operate with only power consumption by a minimum circuit capable of ensuring a communication speed.
 実施の形態6
 実施の形態6では、制御電流生成回路211~21mのレイアウトについて説明する。そこで、図19に制御電流生成回路のレイアウトの概略図を示す。図19に示す例では、m=4としたものである。
Embodiment 6
In the sixth embodiment, the layout of the control current generation circuits 211 to 21m will be described. FIG. 19 shows a schematic diagram of the layout of the control current generation circuit. In the example shown in FIG. 19, m = 4.
 制御電流生成回路211~21mは、位相比較器211~21mに対して複数の位相比較器間で遅延時間が等しくなるように基準信号Fref及び帰還信号Ffbを与える必要がある。そこで、図19に示すように、複数の位相比較器に入力される基準信号Frefと帰還信号Ffbは、それぞれの信号の信号源から複数の位相比較器までの距離が等しくなる等長クロック配線を介して入力される。例えば、基準信号Fref及び帰還信号Ffbのクロック配線が分岐される点から、基準信号Fref及び帰還信号Ffbが入力される位相比較器を構成するトランジスタのゲート電極までのクロック配線長が、それぞれの経路で等しくなるようにする。このとき、基準信号Frefを伝達する等長クロック配線と帰還信号Ffbを伝達する等長クロック配線とが並走する距離を短くすることで信号間のクロストークを防止する。このようは配線とした場合、等長クロック配線が配置される領域に多くの面積が要求される。そこで、この領域には電流源を配置することが好ましい。 The control current generation circuits 211 to 21m need to supply the reference signal Fref and the feedback signal Ffb to the phase comparators 211 to 21m so that the delay times are equal among the plurality of phase comparators. Therefore, as shown in FIG. 19, the reference signal Fref and the feedback signal Ffb input to the plurality of phase comparators have equal-length clock wirings in which the distances from the signal sources of the respective signals to the plurality of phase comparators are equal. Is input via. For example, the length of the clock wiring from the point where the clock wiring of the reference signal Fref and the feedback signal Ffb branches to the gate electrode of the transistor that constitutes the phase comparator to which the reference signal Fref and the feedback signal Ffb are input is each path. To be equal. At this time, crosstalk between signals is prevented by shortening the distance in which the equal length clock wiring for transmitting the reference signal Fref and the equal length clock wiring for transmitting the feedback signal Ffb run in parallel. When such wiring is used, a large area is required for a region where the equal-length clock wiring is arranged. Therefore, it is preferable to arrange a current source in this region.
 このように、等長クロック配線が配置される領域に電流源を配置することで、レイアウト面積を小さくすることができる。 Thus, the layout area can be reduced by arranging the current source in the region where the equal-length clock wiring is arranged.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 1 半導体装置
 2 外部信号源
 10、10a、10b PLL回路
 11 ローカル信号分配回路
 211~21m 制御電流生成回路
 221~22m 位相比較器
 231~23m チャージポンプ回路
 241~24m 電流源
 251~25m 電流切替回路
 26 ループフィルタ
 27 電圧制御発振器
 28 プリスケーラ
 29 シグマデルタ変調器
 31 1/16分周器
 32、34、36 バッファ回路
 33 1/4分周器
 35、41、53 1/2分周器
 51 1/8分周器
 611~61m 制御電流生成回路
 62 位相比較器
 631~63m チャージポンプ回路
 641~64m 電流源
 251~25m 電流切替回路
 101a~103a、101b~103b 受信フロントエンド部
 104a、104b 受信処理部
 105 送信フィルタ
 106、107、108 送信フロントエンド部
 109 ベースバンド処理部
 S1 並列数切替信号
 S2 バイアス電流切替信号
 S3 出力信号
 S4 分周比制御信号
 Fout 内部発振信号
 Fref 基準信号
 Ffb 帰還信号
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 External signal source 10, 10a, 10b PLL circuit 11 Local signal distribution circuit 211-21m Control current generation circuit 221-22m Phase comparator 231-23m Charge pump circuit 241-24m Current source 251-25m Current switching circuit 26 Loop filter 27 Voltage controlled oscillator 28 Prescaler 29 Sigma delta modulator 31 1/16 divider 32, 34, 36 Buffer circuit 33 1/4 divider 35, 41, 53 1/2 divider 51 1/8 Peripherals 611 to 61m Control current generation circuit 62 Phase comparators 631 to 63m Charge pump circuit 641 to 64m Current source 251 to 25m Current switching circuit 101a to 103a, 101b to 103b Reception front end unit 104a, 104b Reception processing unit 105 Transmission filter 106, 107, 108 Transmission front end unit 109 Baseband processing unit S1 Parallel number switching signal S2 Bias current switching signal S3 Output signal S4 Frequency division ratio control signal Fout Internal oscillation signal Fref Reference signal Ffb Feedback signal

Claims (15)

  1.  基準信号と、出力信号から生成される帰還信号と、の位相差を示す位相差判定信号を出力する位相比較器と、
     それぞれが、予め決められた電流値を有する第1のバイアス電流を生成する電流源を備え、前記位相差判定信号に基づき前記第1のバイアス電流から生成した周波数制御電流の入出力を行う複数の制御電流生成回路と、
     前記周波数制御電流に基づき周波数制御電圧を生成するループフィルタと、
     前記周波数制御電圧に応じて前記出力信号の周波数を制御する電圧制御発振器と、
     並列して動作させる前記制御電流生成回路の数を示す並列数を指定する並列数切替信号と、前記並列数の増加に応じて、バイアス電流の値の減少を指定するバイアス電流切替信号と、を生成する制御部と、を有し、
     前記複数の制御電流生成回路は、前記並列数切替信号に応じて並列動作する前記制御電流生成回路の数が制御され、前記バイアス電流切替信号に応じて1つの前記制御電流生成回路が入出力する前記周波数制御電流を前記並列数の逆数倍とする半導体装置。
    A phase comparator that outputs a phase difference determination signal indicating a phase difference between the reference signal and the feedback signal generated from the output signal;
    Each includes a current source that generates a first bias current having a predetermined current value, and inputs and outputs a frequency control current generated from the first bias current based on the phase difference determination signal. A control current generation circuit;
    A loop filter that generates a frequency control voltage based on the frequency control current;
    A voltage controlled oscillator that controls the frequency of the output signal according to the frequency control voltage;
    A parallel number switching signal for designating a parallel number indicating the number of the control current generating circuits to be operated in parallel; and a bias current switching signal for designating a decrease in a bias current value in accordance with an increase in the parallel number. A control unit for generating,
    In the plurality of control current generation circuits, the number of the control current generation circuits operating in parallel according to the parallel number switching signal is controlled, and one control current generation circuit inputs / outputs according to the bias current switching signal A semiconductor device in which the frequency control current is set to a reciprocal number times the parallel number.
  2.  前記バイアス電流切替信号は、前記並列数の逆数をバイアス電流設定値として指定する請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the bias current switching signal specifies an inverse of the parallel number as a bias current setting value.
  3.  前記複数の制御電流生成回路は、それぞれ、
     前記電流源と、
     前記バイアス電流切替信号に基づき前記第1のバイアス電流を前記並列数の逆数倍した第2のバイアス電流を生成する電流切替回路と、
     前記位相差判定信号に応じて前記第2のバイアス電流に対応した電流を前記周波数制御電流として入出力するチャージポンプ回路と、を有する請求項2に記載の半導体装置。
    The plurality of control current generation circuits are respectively
    The current source;
    A current switching circuit for generating a second bias current obtained by multiplying the first bias current by a reciprocal of the parallel number based on the bias current switching signal;
    The semiconductor device according to claim 2, further comprising: a charge pump circuit that inputs and outputs a current corresponding to the second bias current as the frequency control current in accordance with the phase difference determination signal.
  4.  前記電流切替回路は、
     前記第1のバイアス電流が入力される第1の端子と、前記第1の端子と接続される制御端子と、第1の電源端子に接続される第2の端子とを有する第1のトランジスタと、
     前記第2のバイアス電流を出力する第1の端子と、前記第1のトランジスタの前記制御端子と接続される制御端子と、前記第1の電源端子に接続される第2の端子とを有する第2のトランジスタと、
     を備えるカレントミラー回路を有し、
     前記カレントミラー回路は、前記第2のトランジスタのトランジスタサイズを前記バイアス電流切替信号に応じて切り替えることで、前記第1のバイアス電流に対する前記第2のバイアス電流の大きさを切り替える請求項3に記載の半導体装置。
    The current switching circuit is
    A first transistor having a first terminal to which the first bias current is input, a control terminal connected to the first terminal, and a second terminal connected to a first power supply terminal; ,
    A first terminal that outputs the second bias current; a control terminal connected to the control terminal of the first transistor; and a second terminal connected to the first power supply terminal. Two transistors,
    A current mirror circuit comprising:
    The current mirror circuit switches the size of the second bias current with respect to the first bias current by switching a transistor size of the second transistor according to the bias current switching signal. Semiconductor device.
  5.  前記複数の制御電流生成回路は、それぞれが有する前記チャージポンプ回路が入出力する電流を足し合わせた電流を前記周波数制御電流として出力する請求項3に記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the plurality of control current generation circuits output a current obtained by adding the currents input / output by the charge pump circuit included therein as the frequency control current.
  6.  前記位相比較器は、前記複数の制御電流生成回路に対応して複数個が設けられる請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein a plurality of the phase comparators are provided corresponding to the plurality of control current generation circuits.
  7.  複数の前記位相比較器に入力される前記基準信号と前記帰還信号は、それぞれの信号の信号源から複数の前記位相比較器までの距離が等しくなる等長クロック配線を介して入力される請求項6に記載の半導体装置。 The reference signal and the feedback signal input to a plurality of the phase comparators are input via equal-length clock wirings in which distances from the signal sources of the respective signals to the plurality of phase comparators are equal. 6. The semiconductor device according to 6.
  8.  前記等長クロック配線が配置される領域には前記電流源が配置される請求項7に記載の半導体装置。 The semiconductor device according to claim 7, wherein the current source is arranged in a region where the equal-length clock wiring is arranged.
  9.  前記並列数は、前記出力信号に要求されるフェーズエラーが小さくなるに従って増加する請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the parallel number increases as a phase error required for the output signal decreases.
  10.  前記電圧制御発振器と前記位相比較器との間に設けられ、前記出力信号を分周して前記帰還信号を生成するプリスケーラをさらに有する請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, further comprising a prescaler that is provided between the voltage controlled oscillator and the phase comparator and generates the feedback signal by dividing the output signal.
  11.  前記プリスケーラの分周比を指定する分周比制御信号を生成するシグマデルタ変調器を有する請求項10に記載の半導体装置。 The semiconductor device according to claim 10, further comprising a sigma delta modulator that generates a division ratio control signal that specifies a division ratio of the prescaler.
  12.  前記プリスケーラと前記電圧制御発振器との間に設けられ、前記出力信号を分周した分周信号を生成する分周器を有する請求項10に記載の半導体装置。 11. The semiconductor device according to claim 10, further comprising a frequency divider that is provided between the prescaler and the voltage controlled oscillator and generates a frequency-divided signal obtained by frequency-dividing the output signal.
  13.  第1の周波数を有する第1のローカル信号に基づきデータの送受信を行う第1の送受信回路と、
     前記第1の周波数とは異なる第2の周波数を有する第2のローカル信号に基づき前記データの送受信を行う第2の送受信回路と、
     前記出力信号から前記第1、第2のローカル信号を生成し、前記第1のローカル信号を前記第1の送受信回路に分配し、前記第2のローカル信号を前記第2の送受信回路に分配するローカル信号分配回路を有する請求項2に記載の半導体装置。
    A first transmission / reception circuit for transmitting / receiving data based on a first local signal having a first frequency;
    A second transmission / reception circuit for transmitting / receiving the data based on a second local signal having a second frequency different from the first frequency;
    The first and second local signals are generated from the output signal, the first local signal is distributed to the first transmission / reception circuit, and the second local signal is distributed to the second transmission / reception circuit. The semiconductor device according to claim 2, further comprising a local signal distribution circuit.
  14.  前記制御部は、利用する通信規格に応じて前記並列数及び前記バイアス電流設定値の初期値を設定し、当該初期値に基づき行われた通信の通信速度が基準値未満であった場合には、現在の前記並列数を増加した新たな前記並列数を指定する前記並列数切替信号と、現時点の前記バイアス電流設定値を小さくした新たな前記バイアス電流設定値を指定する前記バイアス電流切替信号を生成する請求項2に記載の半導体装置。 The control unit sets an initial value of the parallel number and the bias current setting value according to a communication standard to be used, and when a communication speed of communication performed based on the initial value is less than a reference value The parallel number switching signal that specifies the new parallel number that has increased the current parallel number, and the bias current switching signal that specifies the new bias current setting value that has decreased the current bias current setting value. The semiconductor device according to claim 2 to be generated.
  15.  前記制御部は、
     現在の並列数及び前記バイアス電流設定値に基づき行われた通信の通信速度が基準値以上であった場合には、前記並列数の減少処理と前記バイアス電流設定値の増加処理と前記通信速度が前記基準値未満になるまで繰り返し、
     前記通信速度が前記基準値未満となった時点の前記並列数を1つ大きくした新たな並列数と、前記バイアス電流設定値を1つ小さくした新たなバイアス電流設定値と、を最終的な値として決定する請求項14に記載の半導体装置。
    The controller is
    When the communication speed of communication performed based on the current parallel number and the bias current setting value is equal to or higher than a reference value, the reduction process of the parallel number, the increase process of the bias current setting value, and the communication speed are Repeat until below the reference value,
    A new parallel number obtained by increasing the parallel number by one when the communication speed becomes less than the reference value and a new bias current set value obtained by reducing the bias current set value by one are final values. The semiconductor device according to claim 14, which is determined as:
PCT/JP2012/004339 2012-07-04 2012-07-04 Semiconductor device WO2014006654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004339 WO2014006654A1 (en) 2012-07-04 2012-07-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/004339 WO2014006654A1 (en) 2012-07-04 2012-07-04 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2014006654A1 true WO2014006654A1 (en) 2014-01-09

Family

ID=49881454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004339 WO2014006654A1 (en) 2012-07-04 2012-07-04 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2014006654A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127625A (en) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd Pll device
JP2004530334A (en) * 2001-03-20 2004-09-30 ジーシーティー セミコンダクター インコーポレイテッド Fractional-N frequency synthesizer (FRACTIONAL-NFREQNCYSYNTHESIZER) using fractional compensation method (FRACTIONALCOMPENSATIONMETHOD)
JP2008118522A (en) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd Fm receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127625A (en) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd Pll device
JP2004530334A (en) * 2001-03-20 2004-09-30 ジーシーティー セミコンダクター インコーポレイテッド Fractional-N frequency synthesizer (FRACTIONAL-NFREQNCYSYNTHESIZER) using fractional compensation method (FRACTIONALCOMPENSATIONMETHOD)
JP2008118522A (en) * 2006-11-07 2008-05-22 Matsushita Electric Ind Co Ltd Fm receiver

Similar Documents

Publication Publication Date Title
CN110945830B (en) Multimode data driven clock recovery circuit
US10200188B2 (en) Quadrature and duty cycle error correction in matrix phase lock loop
JP4445475B2 (en) Oscillator, PLL oscillator, wireless device
US9154143B2 (en) Semiconductor device
US7825703B2 (en) Divide-by-three quadrature frequency divider
KR101217345B1 (en) Method and apparatus for reconfigurable frequency generation
US8723568B1 (en) Local oscillator signal generation using delay locked loops
CN104836580A (en) Arbitrary Phase Trajectory Frequency Synthesizer
US10848164B1 (en) Apparatus and methods for digital fractional phase locked loop with a current mode low pass filter
US11245387B2 (en) System and method for improved RF pulse width modulation
US8130048B2 (en) Local oscillator
JP2001285059A (en) Self-correcting circuit and method for correcting phase offset between ring oscillator output waveforms
US10177774B2 (en) Digital time converter systems and methods
WO2014006654A1 (en) Semiconductor device
Biswas et al. Spur reduction architecture for multiphase fractional PLLs
US11561570B2 (en) Apparatus and methods for low power frequency clock generation and distribution
US9288003B2 (en) Reception circuit and semiconductor integrated circuit device
KR101603093B1 (en) Spread spectrum clock generator
CN115603744A (en) Direct decimal frequency division circuit and method
JP2011244139A (en) Frequency control circuit and output frequency control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12880584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP