WO2014005428A1 - 逆变器及其pwm调制方法 - Google Patents

逆变器及其pwm调制方法 Download PDF

Info

Publication number
WO2014005428A1
WO2014005428A1 PCT/CN2013/070985 CN2013070985W WO2014005428A1 WO 2014005428 A1 WO2014005428 A1 WO 2014005428A1 CN 2013070985 W CN2013070985 W CN 2013070985W WO 2014005428 A1 WO2014005428 A1 WO 2014005428A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
modulation
harmonic
inverter
ratio
Prior art date
Application number
PCT/CN2013/070985
Other languages
English (en)
French (fr)
Inventor
郭海滨
刘云峰
王丹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13750253.0A priority Critical patent/EP2709261A4/en
Publication of WO2014005428A1 publication Critical patent/WO2014005428A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the present invention relates to the field of inverters, and in particular to an inverter and a PWM modulation method thereof. Background technique
  • Inverters play a vital role in the development and utilization of renewable energy.
  • Inverter A power electronic converter that converts DC power into AC power through the turn-on and turn-off of a semiconductor power switching device.
  • the prior art inverter improves the utilization of the bus voltage of the inverter by injecting a common mode voltage into a PWM (Pulse Width Modulation) modulated signal, wherein the common mode voltage is the relative midpoint of the inverter output.
  • PWM Pulse Width Modulation
  • the voltage of the grounded cabinet that is fixed at the potential. Since the common mode voltage is relatively high and contains high frequency components, and there is a coupling capacitance between the output of the inverter and the grounded chassis, injecting the common mode voltage into the PWM modulation signal causes the coupling capacitor to generate leakage current. When the magnitude of the leakage current exceeds the threshold, the high-frequency component of the common-mode voltage is added to cause the electromagnetic field generated by the current to radiate, thereby causing electromagnetic interference. Summary of
  • the technical problem to be solved by the present invention is to provide an inverter and a PWM modulation method thereof, so that the inverter has the highest bus utilization ratio and the minimum output common mode voltage.
  • the first aspect provides a PWM modulation method, including: providing a modulated signal; acquiring a third harmonic amplitude according to a modulation ratio M of the modulated signal; and injecting a third harmonic into the modulated signal to generate a PWM driving signal;
  • the drive signal is input to the control end of the inverter switch tube to control the closing or opening of the inverter switch tube.
  • the first aspect provides an inverter, comprising: a processing unit, configured to generate a modulation signal and a third harmonic, wherein the processing unit acquires the amplitude of the third harmonic according to the modulation ratio M of the modulation signal, and processes The unit injects the third harmonic into the modulation signal, generates a PWM drive signal, and inputs the PWM drive signal into the control end of the inverter switch tube to control the closing of the inverter switch tube. Close or disconnect.
  • the beneficial effects of the present invention are: In the present invention, by injecting a third harmonic in a modulated signal, production
  • the PWM driving signal wherein, according to the magnitude of the modulation ratio M, controls the amplitude of the injected third harmonic, and inputs the PWM driving signal into the control end of the inverter switch tube, so that the inverter has the highest bus utilization ratio and The minimum output common-mode voltage avoids large ground leakage currents and electromagnetic interference.
  • FIG. 1 is a flow chart of a first embodiment of a PWM modulation method of the present invention
  • Figure 2 is a graph showing the relationship between the modulation ratio of the second embodiment of the PWM modulation method of the present invention and the amount of injection of the third harmonic;
  • Figure 3 is a circuit diagram of an inverter of a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of injecting a third harmonic to generate a PWM driving signal
  • Figure 5 is a circuit diagram of an inverter of a third embodiment of the present invention.
  • Figure 6 is a circuit diagram of an inverter of a fourth embodiment of the present invention.
  • Figure 7 is a circuit diagram of an inverter according to a fifth embodiment of the present invention.
  • Figure 8 is a circuit diagram of an inverter of a sixth embodiment of the present invention.
  • Fig. 9 is a circuit diagram of an inverter of a seventh embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. . All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the invention.
  • Figure 1 is a flow chart of a first embodiment of a PWM modulation method of the present invention.
  • the PWM modulation method disclosed in this embodiment is applied to an inverter, wherein a DC bus of the inverter inputs a DC voltage, and a processing unit of the inverter controls the closing or opening of the inverter switch tube according to the PWM modulation method, The inverter outputs an AC voltage.
  • the PWM modulation method disclosed in this embodiment includes the following steps:
  • Step 101 Provide a modulation signal
  • Step 102 Acquire a third harmonic amplitude according to a modulation ratio M of the modulation signal;
  • Step 103 Inject a third harmonic into the modulation signal to generate a PWM driving signal;
  • Step 104 Input the PWM driving signal into the control end of the inverter switch tube to control the closing or opening of the inverter switch tube.
  • the processing unit provides a modulated signal and obtains the amplitude of the third harmonic based on the modulation ratio M of the modulated signal.
  • the third harmonic is a sine wave
  • the third harmonic has a frequency three times the frequency of the modulated signal.
  • the processing unit injects the third harmonic into the modulation signal, generates a PWM driving signal, and inputs the PWM driving signal into the control end of the inverter switch tube to control the closing or opening of the inverter switching tube, so that the inverter has Higher bus utilization and smaller output common mode voltage.
  • the processing unit preferably superimposes the third harmonic with the modulated signal to achieve a third harmonic injection modulated signal.
  • the processing unit is preferably a digital signal processor.
  • the PWM modulation method of the present embodiment generates a PWM driving signal by injecting a third harmonic into the modulated signal, wherein, according to the magnitude of the modulation ratio M, the magnitude of the injected third harmonic is controlled, and
  • the PWM drive signal is input to the control terminal of the inverter switch tube so that the inverter has a higher bus utilization ratio and a smaller output common mode voltage.
  • the present invention further provides a second embodiment of a PWM modulation method. Based on the foregoing first embodiment, the modulation ratio M of the modulated signal is:
  • is the voltage value of the DC bus of the inverter.
  • the amplitude of the third harmonic is 1/6 of the amplitude of the modulated signal; when the modulation is the third harmonic of the minimum amplitude than the 1st harmonic. Where, at the time, the third harmonic of the minimum amplitude and the modulation ratio M are satisfied.
  • b max((l - Msin(wt)) / sin(3wt)) (1) where b is the ratio of the amplitude of the third harmonic of the minimum amplitude to the amplitude of the modulated signal.
  • the method for the processing unit to solve the equation (1) includes: a real-time solution method, a curve fitting method, and a table look-up method.
  • the method for solving equation (1) is explained in detail below to obtain the amplitude of the third harmonic of the minimum amplitude.
  • the processing unit uses the real-time solution method to obtain the amplitude of the third harmonic of the minimum amplitude, substitutes the actual modulation ratio M into the equation (1), and solves the equation (1) in real time to calculate the minimum amplitude.
  • the amplitude of the third harmonic is solved in real time.
  • the processing unit directly substitutes the value of the modulation ratio M into equation (1) to obtain the amplitude of the third harmonic of the corresponding minimum amplitude. Plot the amplitude relationship between the modulation ratio M and the third harmonic of the minimum amplitude, as shown in Figure 2.
  • the abscissa X represents the modulation ratio M
  • the ordinate y represents the amplitude of the third harmonic of the minimum amplitude.
  • the processing unit may further obtain the amplitude of the third harmonic of the minimum amplitude by using a curve fitting method, that is, curve fitting the relationship between the modulation ratio M and the amplitude of the third harmonic of the minimum amplitude.
  • a curve fitting method that is, curve fitting the relationship between the modulation ratio M and the amplitude of the third harmonic of the minimum amplitude.
  • the relationship between the modulation ratio M of M and the amplitude of the third harmonic of the minimum amplitude is approximated by the function to calculate the amplitude of the third harmonic of the minimum amplitude.
  • the processing unit may further obtain the amplitude of the third harmonic of the minimum amplitude by using the look-up table method, that is, the relationship between the amplitude of the third harmonic of the modulation ratio M and the minimum amplitude may be pre-programmed.
  • the amplitude of the third harmonic of the minimum amplitude is determined by the look-up table method, that is, the amplitude of the third harmonic of the minimum amplitude is found in the relation table according to the actual modulation ratio M.
  • the amplitude of the third harmonic of the minimum amplitude corresponding to the real modulation ratio M can be obtained by a linear interpolation method and a proximity approximation.
  • the processing unit can also determine the modulation ratio M between two adjacent discrete data points in the relation table by the proximity approximation method to obtain the amplitude of the third harmonic of the minimum amplitude corresponding to the real modulation ratio M, the most commonly used proximity approximation.
  • the method is, for example, a rounding method.
  • the PWM modulation method is sinusoidal modulation.
  • other modulation methods such as space vector modulation, may be selected by those skilled in the art.
  • the third harmonic is injected into the modulated signal to generate a PWM driving signal, wherein the third harmonic of the injected minimum amplitude is controlled according to the modulation ratio M.
  • the amplitude and input of the PWM drive signal into the control terminal of the inverter switch tube, so that the inverter has the highest bus utilization and the minimum output common mode voltage, to avoid large ground leakage current and electromagnetic interference.
  • FIG. 3 is a circuit diagram of the inverter of the first embodiment of the present invention.
  • the inverter 10 is a three-level I-type inverter.
  • the inverter 10 of this embodiment includes: DC sources VI, V2, diodes D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14 D15, D16, D17, D18, switching transistors Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, output terminals A, B, C, and processing unit 11.
  • D1 is connected in parallel with Q1
  • D2 is connected in parallel with Q2
  • D3 is connected in parallel with Q3
  • D4 is connected in parallel with Q4
  • D5 is connected in parallel with Q5
  • D6 is connected in parallel with Q6
  • D7 is connected in parallel with Q7
  • D8 is connected in parallel with Q8,
  • D9 is connected in parallel with Q9
  • D10 and Q10 are connected.
  • Parallel, D11 and Q11 are connected in parallel
  • D12 is connected in parallel with Q12
  • Ql, Q4, Q7 and Q10 are connected in series
  • Q2, Q5, Q8 and Q11 are connected in series
  • Q3, Q6, Q9 and Q12 are connected in series
  • D13 and D14 are connected in parallel with Q4 and Q7.
  • D17 and D18 are connected in parallel with Q6 and Q9.
  • the anode of the DC source VI is grounded to the anode of the DC source V2, and the anode of the DC source VI is connected to the collector of Q1, the collector of Q2, and the collector of Q3, respectively, and the cathode of the DC source V2 is respectively connected to the emitter of Q10 and Q11.
  • the anode of D13, the cathode of D14, the anode of D15, the cathode of D16, the anode of D17, and the cathode of D18 are all grounded.
  • the inverter 10 controls the closing or opening operation of the inverter switching transistor by inputting the PWM driving signal S1 generated by the processing unit 11 at the base of the switching transistor. That is, the processing unit 11 injects the third harmonic S2 into the modulated signal S3 to generate the PWM drive signal S1 as shown in FIG. Further, the processing unit 11 controls the amplitude of the third harmonic S2 in accordance with the magnitude of the modulation ratio M so that the inverter 10 has a higher bus utilization ratio and a smaller output common mode voltage.
  • the third harmonic S2 is a sine wave
  • the third harmonic S2 has a frequency three times that of the modulation signal S3.
  • processing unit 11 is preferably a digital signal processor.
  • the present invention further provides a second embodiment of the inverter. Based on the inverter 10 of the first embodiment of the present invention, in the embodiment, the modulation ratio M of the modulation signal S3 is:
  • the processing unit 11 divides the modulation ratio M into three regions:
  • the third harmonic S2 is the third harmonic of the minimum amplitude.
  • the inverter 10 satisfies the equation (3):
  • Equation (2) can be transformed into:
  • the method for the processing unit 11 to solve the equation (1) includes: a real-time solution method, a curve fitting method, and a table look-up method. The method for solving equation (1) is explained in detail below to obtain the amplitude of the third harmonic of the minimum amplitude.
  • the processing unit 11 obtains the amplitude of the third harmonic of the minimum amplitude by using the real-time solution method, substitutes the actual modulation ratio M into the equation (1), and solves the equation (1) in real time to calculate the minimum amplitude.
  • the amplitude of the third harmonic is the processing unit 11 solves the large amount of data that Equation (1) needs to process in real time.
  • the processing unit 11 can also obtain the amplitude of the third harmonic of the minimum amplitude by using a curve fitting method, that is, curve fitting the relationship between the modulation ratio M and the amplitude of the third harmonic of the minimum amplitude.
  • a curve fitting method that is, curve fitting the relationship between the modulation ratio M and the amplitude of the third harmonic of the minimum amplitude.
  • the processing unit 11 can also obtain the amplitude of the third harmonic of the minimum amplitude by using the look-up table method, that is, the relationship between the amplitude of the third harmonic of the modulation ratio M and the minimum amplitude can be pre-programmed.
  • the amplitude of the third harmonic of the minimum amplitude is determined by the look-up table method, that is, the amplitude of the third harmonic of the minimum amplitude is found in the relation table according to the actual modulation ratio M.
  • the third harmonic of the minimum amplitude corresponding to the real modulation ratio M can be obtained by the linear interpolation method and the proximity approximation method. value.
  • the processing unit 11 can also determine that the modulation ratio M is between two adjacent discrete data points in the relation table by the proximity approximation method to obtain the amplitude of the third harmonic of the minimum amplitude corresponding to the real modulation ratio M, the most commonly used neighboring
  • the approximation is, for example, a rounding method.
  • the inverter 10 is modulated by a sine wave modulation method.
  • other modulation modes such as a space vector modulation mode, may be selected by those skilled in the art.
  • the inverter 10 of the embodiment of the present invention has other embodiments in addition to the topology shown in FIG. E.g:
  • inverter shown in FIG. 5 to FIG. 9 has the same PWM modulation method as the inverter 10 shown in FIG. 2, please refer to the foregoing, and details are not described herein again.
  • a PWM driving signal is generated by injecting a third harmonic in a modulated signal, wherein the amplitude of the injected third harmonic is controlled according to the magnitude of the modulation ratio M, and the PWM driving signal is input inversely.
  • the control terminal of the converter switch tube so that the inverter has the highest bus utilization and the minimum output common mode voltage to avoid large ground leakage current and electromagnetic interference.

Abstract

一种逆变器及其PWM调制方法,该PWM调制方法包括:提供一调制信号;根据调制信号的调制比M的大小获取三次谐波的幅值;将三次谐波注入调制信号,生成PWM驱动信号;将PWM驱动信号输入逆变器开关管的控制端,以控制逆变器开关管的闭合或断开。所述逆变器及其PWM调制方法能够使得逆变器具有最高的母线利用率和最小的输出共模电压,避免产生较大的对地漏电流和电磁干扰。

Description

逆变器及其 PWM调制方法
技术领域
本发明涉及逆变器领域, 特别是涉及一种逆变器及其 PWM调制方法。 背景技术
逆变器在可再生能源的开发和利用领域具有至关重要的作用。 逆变器 通过半导体功率开关器件的开通和关断作用, 把直流电能转换为交流电能 的一种电力电子转换器。 现有技术的逆变器通过在 PWM ( Pulse Width Modulation, 脉宽调制 )调制信号注入共模电压来提高逆变器的母线电压的 利用率, 其中, 共模电压为逆变器输出中点相对于电位固定的接地机壳的 电压。 由于共模电压的电压比较高, 并且包含高频率成分, 而逆变器输出 的负载与接地机壳之间存在耦合电容,因此在 PWM调制信号注入共模电压 会导致耦合电容产生漏电流, 当漏电流的幅值超过阈值时, 加上共模电压 的高频成分, 以使电流产生的电磁场辐射出去, 进而造成电磁干尤。 发明内容
有鉴于此,本发明主要解决的技术问题是提供一种逆变器及其 PWM调 制方法, 以使得逆变器具有最高的母线利用率和最小的输出共模电压。
第一方面提供一种 PWM调制方法, 其包括: 提供一调制信号; 根据调 制信号的调制比 M的大小获取三次谐波的幅值;将三次谐波注入调制信号, 生成 PWM驱动信号; 将 PWM驱动信号输入逆变器开关管的控制端, 以控 制逆变器开关管的闭合或断开。
第一方面提供一种逆变器, 其包括一处理单元, 处理单元用于产生调 制信号和三次谐波, 其中, 处理单元根据调制信号的调制比 M的大小获取 三次谐波的幅值,处理单元将三次谐波注入调制信号,生成 PWM驱动信号, 并将 PWM驱动信号输入逆变器开关管的控制端,以控制逆变器开关管的闭 合或断开。
本发明的有益效果是: 本发明中通过在调制信号注入三次谐波, 生产
PWM驱动信号, 其中, ^据调制比 M的大小控制注入的三次谐波的幅值, 并将 PWM驱动信号输入逆变器开关管的控制端,以使得逆变器具有最高的 母线利用率和最小的输出共模电压, 避免产生较大的对地漏电流和电磁干 扰。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述 中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性 劳动的前提下, 还可以根据这些附图获得其他的附图。 其中:
图 1是本发明的 PWM调制方法的第一实施例的流程图;
图 2是本发明的 PWM调制方法的第二实施例的调制比与三次谐波的注 入量的关系曲线示意图;
图 3是本发明第一实施例的逆变器的电路图;
图 4是注入三次谐波以产生 PWM驱动信号的示意图;
图 5是本发明第三实施例的逆变器的电路图;
图 6是本发明第四实施例的逆变器的电路图;
图 7是本发明第五实施例的逆变器的电路图;
图 8是本发明第六实施例的逆变器的电路图;
图 9是本发明第七实施例的逆变器的电路图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有 做出创造性的劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。 参阅图 1 , 图 1是本发明的 PWM调制方法的第一实施例的流程图。 本 实施例所揭示的 PWM调制方法应用于逆变器,其中,逆变器的直流母线输 入直流电压,逆变器的处理单元根据 PWM调制方法控制逆变器开关管的闭 合或断开,以使逆变器输出交流电压。如图 1所示,本实施例所揭示的 PWM 调制方法包括以下步骤:
步骤 101: 提供一调制信号;
步骤 102: 根据调制信号的调制比 M的大小获取三次谐波的幅值; 步骤 103: 将三次谐波注入调制信号, 生成 PWM驱动信号;
步骤 104: 将 PWM驱动信号输入逆变器开关管的控制端, 以控制逆变 器开关管的闭合或断开。
在本实施例中, 处理单元提供一调制信号, 并根据该调制信号的调制 比 M的大小获取三次谐波的幅值。 其中, 三次谐波为正弦波, 三次谐波的 频率为调制信号的频率的三倍。 然后, 处理单元将三次谐波注入调制信号, 生产 PWM驱动信号, 并将 PWM驱动信号输入逆变器开关管的控制端, 以 控制逆变器开关管的闭合或断开, 使得逆变器具有较高的母线利用率和较 小的输出共模电压。
在本实施例中, 处理单元优选将三次谐波与调制信号叠加, 以实现三 次谐波注入调制信号。 在其他实施例中, 本领域的技术人员还可以通过其 他方式将三次谐波注入调制信号。 此外, 处理单元优选为数字信号处理器。
区别于现有技术的情况,本实施例的 PWM调制方法通过在调制信号注 入三次谐波, 生产 PWM驱动信号, 其中, ^据调制比 M的大小控制注入 的三次谐波的幅值,并将 PWM驱动信号输入逆变器开关管的控制端, 以使 得逆变器具有较高的母线利用率和较小的输出共模电压。
本发明进一步提供一种 PWM调制方法的第二实施例,其在前述第一实 施例 础上, 调制信号的调制比 M为:
Figure imgf000005_0001
其中, 为调制信号的幅值, ^为逆变器直流母线的电压值。
在步骤 102中, 处理单元根据调制信号的调制比 M的大小获取三次谐 波的幅值包括: 当调制比 M<= 1时, 三次谐波幅值为 0;
当调制比 Μ=^时, 三次谐波的幅值为调制信号的幅值的 1/6; 当调制比 1 次谐波为最小幅值的三次谐波。 其中, 当 时, 最小幅值的三次谐波与调制比 M满足以
Figure imgf000006_0001
下方程式:
b=max((l-Msin(wt))/sin(3wt)) ( 1 ) 其中, b为最小幅值的三次谐波的幅值与调制信号的幅值之比。
在本实施例中, 处理单元求解方程式(1 ) 的方法包括: 实时求解法、 曲线拟合法以及查表法。 以下详细说明求解方程式( 1 ) 的方法, 以获取最 小幅值的三次谐波的幅值。
在本实施例中, 处理单元采用实时求解法获取最小幅值的三次谐波的 幅值, 将实际的调制比 M代入方程式(1 ), 实时求解方程式(1 ), 以计算 出最小幅值的三次谐波的幅值。 但是, 实时求解方程式(1 ) 的需要处理的 大量的数据。
处理单元将调制比 M的数值直接代入方程式( 1 )中, 以获取相应的最 小幅值的三次谐波的幅值。 绘制调制比 M与最小幅值的三次谐波的幅值关 系曲线, 如图 2所示。 其中, 横坐标 X表示调制比 M, 纵坐标 y表示最小 幅值的三次谐波的幅值。
在本实施例中, 处理单元还可以采用曲线拟合法获取最小幅值的三次 谐波的幅值, 即对调制比 M和最小幅值的三次谐波的幅值的关系曲线进行 曲线拟合, 以得到调制比 M与最小幅值的三次谐波的幅值的关系近似函数 b=f(M),如多次多项式 b : ^^^ ^—^ "-1 — ^ ,再根据实际的调制比 M代 入调制比 M与最小幅值的三次谐波的幅值的关系近似函数算出最小幅值的 三次谐波的幅值。
在本实施例中, 处理单元还可以采用查表法获取最小幅值的三次谐波 的幅值,即可以预先编制调制比 M与最小幅值的三次谐波的幅值的关系表。 通过查表法确定最小幅值的三次谐波的幅值, 即根据实际的调制比 M在关 系表中查得最小幅值的三次谐波的幅值。 其中, 当调制比 M介于关系表中 相邻两个离散数据点之间时, 可通过线性内插的方法和临近近似法获取实 调制比 M相对应的最小幅值的三次谐波的幅值。
例如, 相邻两个离散数据点分别为 Al ( xl , yl )和 Bl ( x2, y2 ), 实 际数据点 (X , y )三者满足以下关系式(2 ):
y = yl + (y2 - yl) * (x - xl)/(x2 - xl) ( 2 ) 求解关系式(2 )得到最小幅值的三次谐波的幅值 y。
处理单元通过临近近似法也可以确定调制比 M介于关系表中相邻两个 离散数据点, 以获取实调制比 M相对应的最小幅值的三次谐波的幅值, 最 常用的临近近似法例如为四舍五入法。
值得注意的是, 在本实施例中, PWM调制方法为正弦波调制, 在其他 实施例中, 本领域普通技术人员可以选取其他调制方式, 例如空间向量调 制。
区别于现有技术的情况,本发明实施例的 PWM调制方法中,过在调制 信号注入三次谐波, 生产 PWM驱动信号, 其中, 根据调制比 M的大小控 制注入的最小幅值的三次谐波的幅值,并将 PWM驱动信号输入逆变器开关 管的控制端, 以使得逆变器具有最高的母线利用率和最小的输出共模电压, 避免产生较大的对地漏电流和电磁干扰。
下文将结合本发明逆变器的结构进一步详细说明本发明实施例的 PWM调制方法的实施过程。
请配合参阅图 3, 图 3是本发明第一实施例的逆变器的电路图。在本实 施例中, 逆变器 10为三电平 I型逆变器。 如图 1所示, 本实施例的逆变器 10包括: 直流源 VI、 V2, 二极管 Dl、 D2、 D3、 D4、 D5、 D6、 D7、 D8、 D9、 D10、 Dll、 D12、 D13、 D14、 D15、 D16、 D17、 D18, 开关管 Ql、 Q2、 Q3、 Q4、 Q5、 Q6、 Q7、 Q8、 Q9、 Q10、 Qll、 Q12, 输出端 A、 B、 C, 以及处理单元 11。
其中, Dl与 Ql并联, D2与 Q2并联, D3与 Q3并联, D4与 Q4并联, D5与 Q5并联, D6与 Q6并联, D7与 Q7并联, D8与 Q8并联, D9与 Q9 并联, D10与 Q10并联, D11与 Q11并联, D12与 Q12并联, Ql、 Q4、 Q7以及 Q10串联连接, Q2、 Q5、 Q8以及 Q11串联连接, Q3、 Q6、 Q9以 及 Q12串联连接, D13和 D14与 Q4和 Q7并联, D15和 D16与 Q5和 Q8 并联, D17和 D18与 Q6和 Q9并联。
直流源 VI的负极与直流源 V2的正极接地, 直流源 VI的正极分别与 Q1的集电极、 Q2的集电极、 Q3的集电极连接, 直流源 V2的负极分别与 Q10的发射极、 Q11的发射极、 Q12的发射极连接。 D13的阳极、 D14的阴 极、 D15的阳极、 D16的阴极、 D17的阳极以及 D18的阴极均接地。
逆变器 10通过在开关管的基极输入由处理单元 11生成的 PWM驱动信 号 S1 , 以控制逆变器开关管的闭合或断开动作。 即, 处理单元 11将三次谐 波 S2注入调制信号 S3, 以生成 PWM驱动信号 S1 , 如图 4所示。 此外, 处理单元 11根据调制比 M的大小控制三次谐波 S2的幅值,以使逆变器 10 具有较高的母线利用率和较小的输出共模电压。 其中, 三次谐波 S2为正弦 波, 三次谐波 S2的频率为调制信号 S3的频率的三倍。
值得注意的是, 处理单元 11优选为数字信号处理器。
本发明进一步提供一种逆变器的第二实施例, 在本发明第一实施例的 逆变器 10的基础上, 本实施例中, 调制信号 S3的调制比 M为:
M=
0-5Vdc 其中, Vw为调制信号 S3的幅值, ^为逆变器 10直流母线的电压值。 在本实施例中, 处理单元 11将调制比 M划分为三个区域:
当调制比 M<=1时, 三次谐波 S2幅值为 0; 当调制比 Μ=^时, 三次谐波 S2的幅值为调制信号 S3的幅值的 1/6; 当调制比 1 时, 三次谐波 S2为最小幅值的三次谐波。
Figure imgf000008_0001
在本实施例中, 逆变器 10满足方程式(3 ):
Vref * sin(wt) + bVref * sin(3wi) < Vdc l 2 ( 3 ) 方程式(2 )可转变成:
, 1 _ Μ * sin(M) ί Λ、 b < , ( 4 )
Μ * sin(3M)
根据式( 4 )可得, b满足方程式( 1 ):
b=max(( 1 -Msin(wt))/sin(3wt))
其中, b为最小幅值的三次谐波的幅值与调制信号 S3的幅值之比。 在本实施例中, 处理单元 11 求解方程式(1 ) 的方法包括: 实时求解 法、 曲线拟合法以及查表法。 以下详细说明求解方程式( 1 ) 的方法, 以获 取最小幅值的三次谐波的幅值。
在本实施例中, 处理单元 11采用实时求解法获取最小幅值的三次谐波 的幅值, 将实际的调制比 M代入方程式(1 ), 实时求解方程式(1 ), 以计 算出最小幅值的三次谐波的幅值。 但是, 处理单元 11实时求解方程式(1 ) 需要处理的大量的数据。
在本实施例中, 处理单元 11还可以采用曲线拟合法获取最小幅值的三 次谐波的幅值, 即对调制比 M和最小幅值的三次谐波的幅值的关系曲线进 行曲线拟合, 以得到调制比 M与最小幅值的三次谐波的幅值的关系近似函 数 b=f(M),如多次多项式 b = a„M " …+ ^,再根据实际的调制比 M 代入调制比 M与最小幅值的三次谐波的幅值的关系近似函数算出三次谐波 S3的注入量。 其中, 调制比 M和最小幅值的三次谐波的幅值的关系曲线如 图 2所示。
在本实施例中, 处理单元 11还可以采用查表法获取最小幅值的三次谐 波的幅值, 即可以预先编制调制比 M与最小幅值的三次谐波的幅值的关系 表。 通过查表法确定最小幅值的三次谐波的幅值, 即根据实际的调制比 M 在关系表中查得最小幅值的三次谐波的幅值。 其中, 当调制比 M介于关系 表中相邻两个离散数据点之间时, 可通过线性内插的方法和临近近似法获 取实调制比 M相对应的最小幅值的三次谐波的幅值。
例如, 相邻两个离散数据点分别为 Al ( xl , yl )和 Bl ( x2, y2 ), 实 际数据点 (X , y )三者满足以下关系式(2 ):
y = yl + (y2 - yl) * (x - xl)/(x2 - xl) ( 2 ) 求解关系式(2 )得到最小幅值的三次谐波的幅值 y。
处理单元 11通过临近近似法也可以确定调制比 M介于关系表中相邻两 个离散数据点, 以获取实调制比 M相对应的最小幅值的三次谐波的幅值, 最常用的临近近似法例如为四舍五入法。
值得注意的是, 在本实施例中, 逆变器 10通过正弦波调制方式调制, 在其他实施例中, 本领域普通技术人员可以选取其他调制方式, 例如空间 向量调制方式。 此外, 本发明实施例的逆变器 10除了图 3所示的拓朴方式, 还有其他 的实施方式。 例如:
图 5所示的单相 I型三电平逆变器或是单相 T型三电平逆变器 (图未示); 图 6所示的三相 I型三电平逆变器;
图 7所示的三相 T型三电平逆变器;
图 8所示的三相两电平逆变器; 以及,
图 9所示的三相多电平逆变器。
应理解, 图 5-图 9所示的逆变器与图 2所示的逆变器 10具有相同的 PWM调制方法, 请参阅前文所述, 在此不再赘述。
区别于现有技术的情况, 本发明中通过在调制信号注入三次谐波, 生 产 PWM驱动信号, 其中, 根据调制比 M的大小控制注入的三次谐波的幅 值,并将 PWM驱动信号输入逆变器开关管的控制端, 以使得逆变器具有最 高的母线利用率和最小的输出共模电压, 避免产生较大的对地漏电流和电 磁干扰。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是 利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或 间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求
1. 一种 PWM调制方法, 其特征在于, 所述调制方法包括:
提供一调制信号;
根据所述调制信号的调制比 M的大小获取三次谐波的幅值;
将所述三次谐波注入所述调制信号, 生成 PWM驱动信号;
将所述 PWM驱动信号输入逆变器开关管的控制端,以控制所述逆变器 开关管的闭合或断开。
根据权利要求 1所述的调制方法, 其特征在于, 所述调制信号的调 制比 M为:
M= 其中, 为所述调制信号的幅值, ^为所述逆变器直流母线的电压值。
3. 根据权利要求 2所述的调制方法, 其特征在于, 根据所述调制信号 的调制比的大小获取三次谐波的幅值的步骤包括:
当所述调制比 M<= 1时, 所述三次谐波幅值为 0;
当所述调制比 时, 所述三次谐波幅值为所述调制信号的幅值的
Figure imgf000011_0001
1/6;
当所述调制比 1<M<^时, 所述三次谐波为最小幅值的三次谐波。
4. 根据权利要求 3 所述的调制方法, 其特征在于, 当所述调制比
1 时, 所述最小幅值的三次谐波与所述调制比 M满足以下方程式:
Figure imgf000011_0002
b=max((l-Msin(wt))/sin(3wt));
其中, b 为所述最小幅值的三次谐波的幅值与所述调制信号的幅值之 比。
5. 根据权利要求 4所述的调制方法, 其特征在于, 通过实时求解所述 方程式, 以计算出所述最小幅值的三次谐波的幅值。
6. 根据权利要求 4所述的调制方法, 其特征在于, 通过对预设的所述 调制比 M与所述最小幅值的三次谐波的幅值的曲线进行曲线拟合, 得到所 述调制比 M与所述最小幅值的三次谐波的幅值的近似函数, 再将实际的调 制比 M代入所述调制比 M与所述最小幅值的三次谐波的幅值的近似函数, 以计算出所述最小幅值的三次谐波的幅值。
7. 根据权利要求 4所述的调制方法, 其特征在于, 根据所述方程式编 制所述调制比 M与所述最小幅值的三次谐波的幅值的关系表, 根据实际的 调制比 M通过查表法获取所述最小幅值的三次谐波的幅值。
8. 根据权利要求 7所述的调制方法, 其特征在于, 采用线性内插的方 法确认所述调制比 M介于所述关系表中相邻两个离散数据点的所述最小幅 值的三次谐波的幅值。
9. 根据权利要求 7所述的调制方法, 其特征在于, 采用临近近似法确 定所述调制比 M介于所述关系表中相邻两个离散数据点的所述最小幅值的 三次谐波的幅值。
10.根据权利要求 1所述的调制方法, 其特征在于, 所述 PWM调制方 法为正弦波调制。
11.根据权利要求 1所述的调制方法, 其特征在于, 所述 PWM调制方 法为空间向量调制。
12.—种逆变器, 其特征在于, 所述逆变器包括一处理单元, 所述处理 单元用于产生调制信号和三次谐波, 其中, 所述处理单元根据所述调制信 号的调制比 M的大小获取所述三次谐波的幅值, 所述处理单元将所述三次 谐波注入所述调制信号, 生成 PWM驱动信号, 并将所述 PWM驱动信号输 入所述逆变器开关管的控制端, 以控制所述逆变器开关管的闭合或断开。
13.根据权利要求 12所述的逆变器, 其特征在于, 所述调制信号的调制 比 M :
Figure imgf000012_0001
其中, vw为所述调制信号的幅值, 为所述逆变器直流母线的电压值。
14.根据权利要求 13所述的逆变器, 其特征在于, 所述处理单元根据所 述调制信号的调制比的大小获取三次谐波的幅值, 其中:
当所述调制比 M<= 1时, 所述三次谐波幅值为 0; 当所述调制比 M= 时, 所述三次谐波幅值为所述调制信号的幅值的
1/6;
当所述调制比 1<M<^时, 所述三次谐波为最小幅值的三次谐波。
15.根据权利要求 14 所述的逆变器, 其特征在于, 当所述调制比 时, 所述最小幅值的三次谐波与所述调制比 M满足以下方程式:
Figure imgf000013_0001
b=max((l-Msin(wt))/sin(3wt));
其中, b 为所述最小幅值的三次谐波的幅值与所述调制信号的幅值之 比。
16.根据权利要求 15所述的逆变器, 其特征在于, 所述处理单元通过实 时求解所述方程式, 以计算出所述最小幅值的三次谐波的幅值。
17.根据权利要求 15所述的逆变器, 其特征在于, 所述处理单元通过对 预设的所述调制比 M与所述最小幅值的三次谐波的幅值的曲线进行曲线拟 合, 得到所述调制比 M与所述最小幅值的三次谐波的幅值的近似函数, 再 将实际的调制比 M代入所述调制比 M与所述最小幅值的三次谐波的幅值的 近似函数, 以计算出所述最小幅值的三次谐波的幅值。
18.根据权利要求 15所述的逆变器, 其特征在于, 所述处理单元根据所 述方程式编制所述调制比 M与所述最小幅值的三次谐波的幅值的关系表, 根据实际的调制比 M通过查表法获取所述最小幅值的三次谐波的幅值。
19.根据权利要求 18所述的逆变器, 其特征在于, 所述处理单元采用线 性内插的方法确认所述调制比 M介于所述关系表中相邻两个离散数据点的 所述最小幅值的三次谐波的幅值。
20.根据权利要求 18所述的逆变器, 其特征在于, 所述处理单元采用临 近近似法确定所述调制比 M介于所述关系表中相邻两个离散数据点的所述 最 d、幅值的三次谐波的幅值。
21.根据权利要求 12所述的逆变器, 其特征在于, 所述逆变器通过正弦 波调制方式调制。
22.根据权利要求 12所述的逆变器, 其特征在于, 所述逆变器通过空间 向量调制方式调制。
23.根据权利要求 12所述的逆变器, 其特征在于, 所述逆变器为单相逆 变器, 其拓朴结构为 I型三电平逆变器或 T型三电平逆变器。
24.根据权利要求 12所述的逆变器, 其特征在于, 所述逆变器为三相逆 变器, 其拓朴结构为 I型三电平逆变器或 T型三电平逆变器。
25.根据权利要求 12所述的逆变器, 其特征在于, 所述逆变器为三相两 电平逆变器或三相多电平逆变器。
PCT/CN2013/070985 2012-07-03 2013-01-25 逆变器及其pwm调制方法 WO2014005428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13750253.0A EP2709261A4 (en) 2012-07-03 2013-01-25 INVERTER AND PWM MODULATION METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210227636.0 2012-07-03
CN201210227636.0A CN102723889B (zh) 2012-07-03 2012-07-03 逆变器及其pwm调制方法

Publications (1)

Publication Number Publication Date
WO2014005428A1 true WO2014005428A1 (zh) 2014-01-09

Family

ID=46949577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070985 WO2014005428A1 (zh) 2012-07-03 2013-01-25 逆变器及其pwm调制方法

Country Status (3)

Country Link
EP (1) EP2709261A4 (zh)
CN (1) CN102723889B (zh)
WO (1) WO2014005428A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2558722C1 (ru) * 2014-04-16 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Способ управления трехфазным автономным инвертором
CN113452275A (zh) * 2021-07-01 2021-09-28 浙江国研智能电气有限公司 一种三相逆变器断续调制方法及系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723889B (zh) * 2012-07-03 2014-11-05 华为技术有限公司 逆变器及其pwm调制方法
CN103023364B (zh) * 2012-11-26 2015-01-21 华为技术有限公司 一种光伏逆变器漏电流调节抑制方法及装置
CN103227560B (zh) * 2013-03-28 2015-08-19 华为技术有限公司 启动逆变器的方法和装置
CN103545841B (zh) * 2013-10-23 2016-10-05 华为技术有限公司 一种逆变器的控制方法、装置和逆变器系统
CN104052325B (zh) * 2014-06-05 2016-07-06 上海交通大学 大范围电压失真最小化的级联型多电平逆变器的设计方法
CN104201919B (zh) * 2014-09-05 2019-08-16 爱士惟新能源技术(上海)有限公司 一种光伏逆变器的漏电流控制方法
CN104333252A (zh) * 2014-10-27 2015-02-04 合康变频科技(武汉)有限公司 一种基于六次谐波注入的逆变器中点电压控制方法及系统
US9755545B2 (en) * 2014-11-21 2017-09-05 General Electric Company System and method for unified common mode voltage injection
CN105610368A (zh) * 2016-01-14 2016-05-25 广东美芝制冷设备有限公司 压缩机的弱磁控制方法和装置及压缩机控制系统
CN106981976B (zh) 2017-03-24 2019-08-20 江苏固德威电源科技股份有限公司 T型三电平三相逆变器抑制中线共模电流的方法
US11063532B2 (en) * 2017-05-18 2021-07-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device superimposing a tertiary harmonic wave
CN107196523B (zh) * 2017-05-26 2019-04-19 中南大学 一种t型结构的三电平有源三次谐波注入矩阵变换器
CN107404244B (zh) * 2017-07-11 2019-09-06 江苏固德威电源科技股份有限公司 改善三相光伏逆变器输出电流谐波特性的pwm调制方法
CN107994796B (zh) * 2017-12-26 2020-04-28 华为技术有限公司 单相变流器的控制方法以及装置
CN108173420A (zh) * 2018-01-30 2018-06-15 无锡市优利康电气有限公司 一种最小电流谐波pwm实现方法
US11456680B2 (en) 2020-05-08 2022-09-27 Hamilton Sundstrand Corporation Over-modulation pulse width modulation with maximum output and minimum harmonics
CN111654181A (zh) * 2020-06-22 2020-09-11 中国联合网络通信集团有限公司 一种变流器控制方法及装置
CN115664237B (zh) * 2022-12-13 2023-03-10 麦田能源有限公司 单相逆变器系统及单相逆变器控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501243B1 (en) * 2000-02-28 2002-12-31 Hitachi, Ltd. Synchronous motor-control apparatus and vehicle using the control apparatus
CN101154893A (zh) * 2006-09-27 2008-04-02 通用电气公司 用于三电平pwm功率转换设备中直流传输线的平衡的系统和方法
CN101237194A (zh) * 2007-02-01 2008-08-06 株式会社日立制作所 三相电力变换器及三相交流电动机的控制装置及控制方法
CN102301586A (zh) * 2009-01-29 2011-12-28 丰田自动车株式会社 交流电动机的控制装置
US8093746B2 (en) * 2009-12-16 2012-01-10 General Electric Company Control of four-leg transformerless uninterruptible power supply
CN102723889A (zh) * 2012-07-03 2012-10-10 华为技术有限公司 逆变器及其pwm调制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2884880B2 (ja) * 1992-02-12 1999-04-19 株式会社日立製作所 電力変換器の制御装置
CN1170357C (zh) * 2001-01-05 2004-10-06 艾默生网络能源有限公司 用于多级叠加式高压变频器的三次谐波注入控制方法
US8233295B2 (en) * 2010-03-09 2012-07-31 GM Global Technology Operations LLC Methods, systems and apparatus for approximation of peak summed fundamental and third harmonic voltages in a multi-phase machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501243B1 (en) * 2000-02-28 2002-12-31 Hitachi, Ltd. Synchronous motor-control apparatus and vehicle using the control apparatus
CN101154893A (zh) * 2006-09-27 2008-04-02 通用电气公司 用于三电平pwm功率转换设备中直流传输线的平衡的系统和方法
CN101237194A (zh) * 2007-02-01 2008-08-06 株式会社日立制作所 三相电力变换器及三相交流电动机的控制装置及控制方法
CN102301586A (zh) * 2009-01-29 2011-12-28 丰田自动车株式会社 交流电动机的控制装置
US8093746B2 (en) * 2009-12-16 2012-01-10 General Electric Company Control of four-leg transformerless uninterruptible power supply
CN102723889A (zh) * 2012-07-03 2012-10-10 华为技术有限公司 逆变器及其pwm调制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2558722C1 (ru) * 2014-04-16 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Способ управления трехфазным автономным инвертором
CN113452275A (zh) * 2021-07-01 2021-09-28 浙江国研智能电气有限公司 一种三相逆变器断续调制方法及系统

Also Published As

Publication number Publication date
EP2709261A4 (en) 2015-06-17
CN102723889B (zh) 2014-11-05
EP2709261A1 (en) 2014-03-19
CN102723889A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2014005428A1 (zh) 逆变器及其pwm调制方法
Guo et al. Leakage current elimination of four-leg inverter for transformerless three-phase PV systems
US9236828B1 (en) Methods and power conversion system control apparatus to control IGBT junction temperature at low speed
Patel et al. Pulse-based dead-time compensation method for self-balancing space vector pulse width-modulated scheme used in a three-level inverter-fed induction motor drive
Yuan et al. Objective optimisation for multilevel neutral-point-clamped converters with zero-sequence signal control
Bashir et al. An improved voltage balancing algorithm for grid connected MMC for medium voltage energy conversion
CN111953224B (zh) 一种实现单相三线电源单相功率高效控制的逆变电路
US11146181B2 (en) Control method and apparatus for common-mode modulated wave of single-phase five-level inverter
KR101732930B1 (ko) Llcl 필터를 이용한 단상 그리드 인버터 제어 장치
Zhou et al. Control of the hybrid modular multilevel converter in motor drive applications
Ren et al. Carrier‐based generalised discontinuous pulse‐width modulation strategy with flexible neutral‐point voltage control and optimal losses for a three‐level converter
Jeong et al. Finite Control Set–Model Predictive Control of H8 Inverter Considering Dead-Time Effect for PMSM Drive Systems With Reduced Conducted Common-Mode EMI and Current Distortions
Lee et al. Advanced DPWM method for switching loss reduction in isolated DC type dual inverter with open-end winding IPMSM
Rivera et al. Predictive control of a current source converter operating with low switching frequency
Makovenko et al. Passive power decoupling approach for three-level single-phase impedance Source Inverter based on resonant and PID controllers
CN114915195A (zh) 一种基于单相电流源型五电平逆变器的并网谐波抑制方法
CN107517018B (zh) 适用于三电平逆变器的pwm调制方法
CN205407614U (zh) 一种基于有功功率解耦的高能量密度单相pwm整流器
WO2014141398A1 (ja) Pwm制御方法とそれを用いた電力変換装置
CN112910283B (zh) 模块化并联整流器的共模电压和环流同时抑制方法及系统
CN112701952B (zh) 三相两电平逆变器电流纹波最小有效值pwm方法及系统
Zhao et al. A compensation method of dead-time and forward voltage drop for inverter operating at low frequency
CN112865580A (zh) 无重叠时间单电感电流逆变器及其控制方法和系统
Li et al. A torque control method based on I-MR controller for IPMSM drive with small DC-link capacitor
CN113098304A (zh) 三相维也纳整流器的控制电路及其混合载波调制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013750253

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13750253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE