CN107517018B - 适用于三电平逆变器的pwm调制方法 - Google Patents

适用于三电平逆变器的pwm调制方法 Download PDF

Info

Publication number
CN107517018B
CN107517018B CN201710744567.3A CN201710744567A CN107517018B CN 107517018 B CN107517018 B CN 107517018B CN 201710744567 A CN201710744567 A CN 201710744567A CN 107517018 B CN107517018 B CN 107517018B
Authority
CN
China
Prior art keywords
voltage
common
phase voltage
mode
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710744567.3A
Other languages
English (en)
Other versions
CN107517018A (zh
Inventor
蔡鹏�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI LANRY ELECTRIC CO Ltd
Original Assignee
SHANGHAI LANRY ELECTRIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI LANRY ELECTRIC CO Ltd filed Critical SHANGHAI LANRY ELECTRIC CO Ltd
Priority to CN201710744567.3A priority Critical patent/CN107517018B/zh
Publication of CN107517018A publication Critical patent/CN107517018A/zh
Application granted granted Critical
Publication of CN107517018B publication Critical patent/CN107517018B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明公开了适用于三电平逆变器的PWM调制方法,其根据三相电压调制信号来获取三相电压信号的最大值,并将其减去三电平半母线电压幅值作为共模电压分量Un1;根据三相电压调制信号来获取三相电压信号的最小值,并将其加上三电平半母线电压幅值作为共模电压分量Un2;取三相电压调制信号的绝对值,经过比较获取三个电压调制信号绝对值最小的那部分所对应的实际电压信号作为共模电压分量Un0;最后将所得的三个共模电压分量取绝对值,经过比较获取三个共模电压分量绝对值最小的那部分所对应的实际共模电压分量作为最后注入三相电压调制信号中的共模电压Un,用三相电压调制信号分别减去共模电压Un得到最终的新三相电压调制信号。PWM实时计算较为简单,降低了器件开关损耗。

Description

适用于三电平逆变器的PWM调制方法
技术领域
本发明涉及电力技术领域,尤其是涉及适用于三电平逆变器的PWM调制方法。
背景技术
随着电力电子技术的迅速发展,三相三电平拓扑已在柔性交流输电、高压电机传动、和电网无功补偿等领域广泛应用,同时PWM控制技术在三电平逆变电路中的应用越来越广泛。PWM控制技术日益成熟,使得各逆变电路对PWM调制方法的要求也越来越高,优秀的PWM调制方法不仅要求PWM实时计算简单、输出波形中所含的谐波要少,还要提高逆变电路的直流电压利用率和降低开关损耗。目前被普遍应用的三相PWM调制方法有普通的SPWM正弦脉宽调制法、注入三次谐波的PWM调制法和准正弦平顶波PWM调制法。SPWM正弦脉宽调制法是采用等腰三角波或锯齿波作为载波,在其与平缓变化的调制信号相交时刻对电路中的开关器件进行通断控制,实现原理如图1所示。专利CN102723889A《逆变器及其PWM调制方法》中的注入三次谐波的PWM调制法是在相电压正弦波调制信号中叠加适当大小的三次谐波,使得调制信号成为马鞍形波,在合成线电压时,各相电压的三次谐波分量因为相位相同,相减后可以相互抵消,从而实现PWM调制,实现原理如图2所示。专利CN102684542A《采用准正弦平顶调制波生成三相PWM的方法》中的准正弦平顶波调制法主要思想是将调制波顶部变成平顶波形之后与原调制正弦波两侧剩余波形合成,重新构造新的平顶调制波,实现原理如图3所示。
SPWM正弦脉宽调制法输出的最大线电压基波幅值仅为直流电压的0.866倍,不仅导致直流电压利用率低,而且不能减少功率器件的开关次数,无法有效降低开关损耗;注入三次谐波的PWM调制法虽然能够提高直流电压利用率,但不能有效降低开关损耗;准正弦平顶波PWM调制法既可以提高直流电压利用率,又可以有效降低开关损耗,但只考虑了具有较低直流母线电压(调制比大于1)的情况下的调制,不适用于直流母线电压较高(调制比小于1)的情况下的调制。
发明内容
本发明的目的就是为了解决上述问题,提供适用于三电平逆变器的PWM调制方法。
为解决上述技术问题,本发明提供了适用于三电平逆变器的PWM调制方法,该方法包括:S1、根据三相电压调制信号来获取三相电压调制信号的最大值,并将其减去三电平半母线电压幅值作为共模电压分量Un1;S2、根据三相电压调制信号来获取三相电压调制信号的最小值,并将其加上三电平半母线电压幅值作为共模电压分量Un2;S3、取三相电压调制信号的绝对值,经过比较获取三个电压调制信号绝对值最小的那部分所对应的实际电压信号作为共模电压分量Un0;S4、最后将所得的三个共模电压分量取绝对值,经过比较获取三个共模电压分量绝对值最小的那部分所对应的实际共模电压分量作为最后注入三相电压调制信号中的共模电压Un,用三相电压调制信号分别减去共模电压Un得到最终的新三相电压调制信号。
与现有技术相比,本发明重新构建一种向原三相电压调制信号注入本发明所获得的共模电压分量实现三电平逆变器PWM调制的方法,在PWM调制比较大的时候注入共模电压分量会将原三相电压调制波的波峰拉低,使形成的平顶波不超过载波峰值,有效地提高三电平直流母线电压利用率;而且新三相电压调制信号不管是在较高直流母线电压还是较低直流母线电压、调制比较大还是较小的情况下,器件的开关都会有1/3周期不动作,能够极大地降低开关损耗。
附图说明
图1为背景技术中SPWM正弦脉宽调制法示意图;
图2为背景技术中注入三次谐波的PWM调制法示意图;
图3为背景技术中准正弦平顶波PWM调制法示意图;
图4为共模电压分量Un1波形图;
图5为共模电压分量Un2波形图;
图6为共模电压分量Un0波形图;
图7为共模电压分量Un波形图;
图8为没加入电压共模分量Un的三相电压调制信号波形图;
图9为直流母线电压较高(调制比m=0.4)时的调制波示意图;
图10为直流母线电压适中(调制比m=0.8)时的调制波示意图;
图11为直流母线电压较低(调制比m=1.15)时的调制波示意图;
图12为适用于三电平逆变器的PWM调制方法流程图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
适用于三电平逆变器的PWM调制方法,该方法包括如下步骤(工作流程图如图12所示):
步骤一:实时检测三相电压调制信号Ua、Ub、Uc,根据
Figure GDA0002240493650000032
Figure GDA0002240493650000033
的关系,获得共模电压分量Un1。
步骤二:根据
Figure GDA0002240493650000031
的关系,获得共模电压分量Un2。
步骤三:通过比较三相电压调制信号Ua、Ub、Uc的绝对值大小,获得共模电压分量Un0为三相电压调制信号绝对值的最小值。
当|Ua|>=|Ub|>=|Uc|,Un0=Uc;
当|Ub|>=|Ua|>=|Uc|,Un0=Uc;
当|Ua|>=|Uc|>=|Ub|,Un0=Ub;
当|Uc|>=|Ua|>=|Ub|,Un0=Ub;
当|Ub|>=|Uc|>=|Ua|,Un0=Ua;
当|Uc|>=|Ub|>=|Ua|,Un0=Ua;
步骤四:通过比较共模电压分量Un0、Un1、Un2的绝对值大小,获取最终注入调制信号的共模电压分量Un为三个共模电压分量绝对值的最小值。
当|Un0|>=|Un1|>=|Un2|,Un=Un2;
当|Un0|>=|Un1|>=|Un2|,Un=Un2;
当|Un0|>=|Un2|>=|Un1|,Un=Un1;
当|Un2|>=|Un0|>=|Un1|,Un=Un1;
当|Un2|>=|Un1|>=|Un0|,Un=Un0;
当|Un1|>=|Un2|>=|Un0|,Un=Un0;
步骤五:将共模电压分量Un注入到三相电压调制信号当中,根据Ua*=Ua-Un,Ub*=Ub-Un,Uc*=Uc-Un的关系得到新的三相电压调制信号Ua*、Ub*、Uc*。
本发明通过向三相电压调制信号注入一特定的共模电压分量,实现三电平逆变器的PWM调制。注入的共模电压分量在合成线电压时,各相电压的共模分量相互抵消,使形成的线电压为正弦波,同时生成的新三相电压调制信号不管是在较高直流母线电压还是较低直流母线电压、调制比较大还是较小的情况下,都能使三相电压调制波在一个周期内总有1/3周期处于平顶状态,经过与载波比较生成的控制信号可以实现开关1/3周期不动作,降低了开关损耗。
假设三电平逆变器的半母线电压为1,调制比为m,实时检测三相电压调制信号为Ua=m*cos(θ),
Figure GDA0002240493650000041
本发明方法中不同调制比m所对应的注入的共模电压分量会不同,合成后所得到的电压调制信号也会不一样,特别地,取调制比m=0.8的情况进行分析。这种适用于三电平逆变器的PWM调制方法,是先根据三相电压调制信号来获取三相电压调制信号的最大值,并将其减去半母线电压幅值作为共模电压分量Un1;然后根据三相电压调制信号来获取三相电压调制信号的最小值,并将其加上半母线电压幅值作为共模电压分量Un2;再将三相电压调制信号取绝对值,经过比较获取三个调制信号绝对值最小的那部分所对应的实际信号作为共模电压分量Un0,最后将所得的三个共模电压分量取绝对值,经过比较获取三个共模分量绝对值最小的那部分所对应的实际共模电压分量作为最后注入三相电压调制信号中的共模电压分量Un,用三相电压调制信号分别减去共模电压分量Un得到最终的新三相电压调制信号。具体工作流程如下:
第一步,实时检测三相电压调制信号Ua=0.8*cos(θ)、
Figure GDA0002240493650000051
Figure GDA0002240493650000052
根据Un1=max(Ua,Ub,Uc)-1,获取共模电压分量Un1,所得共模电压分量分量Un1波形如图4所示。
第二步,根据Un2=min(Ua,Ub,Uc)+1,获取共模电压分量Un2,所得共模电压分量Un2波形如图5所示。
第三步,通过比较三相电压调制信号Ua、Ub、Uc的绝对值大小,获取共模电压分量Un0为三相电压调制信号绝对值的最小值。所得共模电压分量Un0波形如图6所示。
第四步,通过比较共模电压分量Un0、Un1、Un2的绝对值大小,获取最后注入调制信号的共模电压Un为三个共模电压分量绝对值的最小值。所得共模电压分量Un波形如图7所示。
第五步,将共模电压分量Un注入到三相电压调制信号当中,根据Ua*=Ua-Un,Ub*=Ub-Un,Uc*=Uc-Un的关系得到新的三相电压调制信号Ua*、Ub*、Uc*。图8是没加入电压共模分量Un的三相电压调制信号波形,仍为正弦波。图9、图10、图11都是加入电压共模分量Un之后最终生成的新三相电压调制信号波形,都有
Figure GDA0002240493650000053
周期为平顶波,但因为直流母线电压大小不同(调制比大小不同)导致平顶波分布的位置也不同。图9是直流母线电压较高(调制比m=0.4)时的三相电压调制波波形,图10是本发明具体实施方案中直流母线电压适中(调制比m=0.8)情况时的三相电压调制波波形,图11是直流母线电压较低(调制比m=1.15)时的三相电压调制波波形,与图3中准正弦平顶波PWM调制法形成的调制波波形一致。
从上述内容可知,PWM实时计算较为简单,加入的共模电压分量在三相线电压中可以相互抵消,输出波形中所含的谐波较少;和现有的PWM调制方法相比较,不仅能够在调制比较大的情况下有效提高逆变器的直流电压利用率,而且形成的新三相电压调制信号不管是在较高直流母线电压还是较低直流母线电压、调制比较大还是较小的情况下,都能使器件有1/3周期维持开关不动作,极大地降低了器件开关损耗。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (1)

1.适用于三电平逆变器的PWM调制方法,其特征在于,该方法包括:
S1、根据三相电压调制信号来获取三相电压调制信号的最大值,并将其减去三电平半母线电压幅值作为共模电压分量Un1;
S2、根据三相电压调制信号来获取三相电压调制信号的最小值,并将其加上三电平半母线电压幅值作为共模电压分量Un2;
S3、取三相电压调制信号的绝对值,经过比较获取三个电压调制信号绝对值最小的那部分所对应的实际电压信号作为共模电压分量Un0;
S4、最后将所得的三个共模电压分量取绝对值,经过比较获取三个共模电压分量绝对值最小的那部分所对应的实际共模电压分量作为最后注入三相电压调制信号中的共模电压Un,用三相电压调制信号分别减去共模电压Un得到最终的新三相电压调制信号。
CN201710744567.3A 2017-08-25 2017-08-25 适用于三电平逆变器的pwm调制方法 Active CN107517018B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710744567.3A CN107517018B (zh) 2017-08-25 2017-08-25 适用于三电平逆变器的pwm调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710744567.3A CN107517018B (zh) 2017-08-25 2017-08-25 适用于三电平逆变器的pwm调制方法

Publications (2)

Publication Number Publication Date
CN107517018A CN107517018A (zh) 2017-12-26
CN107517018B true CN107517018B (zh) 2020-03-27

Family

ID=60724005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710744567.3A Active CN107517018B (zh) 2017-08-25 2017-08-25 适用于三电平逆变器的pwm调制方法

Country Status (1)

Country Link
CN (1) CN107517018B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768559B (zh) * 2019-11-12 2021-10-01 上海电气富士电机电气技术有限公司 一种用于正弦脉宽调制的平顶波的生成系统及方法
CN111064376B (zh) * 2020-01-03 2021-10-26 湖南大学 十开关三相三电平逆变器及其控制方法
CN113452275B (zh) * 2021-07-01 2022-09-23 浙江国研智能电气有限公司 一种三相逆变器断续调制方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283432A (zh) * 2013-07-03 2015-01-14 通用电气公司 联合共模电压注入系统和方法
CN104917406A (zh) * 2015-05-27 2015-09-16 浙江大学 一种适用于mmc的基于共模注入的最近电平逼近调制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283432A (zh) * 2013-07-03 2015-01-14 通用电气公司 联合共模电压注入系统和方法
CN104917406A (zh) * 2015-05-27 2015-09-16 浙江大学 一种适用于mmc的基于共模注入的最近电平逼近调制方法

Also Published As

Publication number Publication date
CN107517018A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
CN102723889B (zh) 逆变器及其pwm调制方法
Xia et al. Research on a new indirect space-vector overmodulation strategy in matrix converter
Maheshri et al. Simulation of single phase SPWM (Unipolar) inverter
CN107517018B (zh) 适用于三电平逆变器的pwm调制方法
CN103956890B (zh) 一种三相四桥臂光伏并网逆变器漏电流抑制方法
CN108448581B (zh) 一种并联电流源逆变器并网电流特定谐波控制的方法
US11146181B2 (en) Control method and apparatus for common-mode modulated wave of single-phase five-level inverter
Esa et al. THD analysis of SPWM & THPWM controlled three phase voltage source inverter
Rao et al. Implementation of cascaded based reversing voltage multilevel inverter using multi carrier modulation strategies
Jeong et al. Finite control set–model predictive control of H8 inverter considering dead-time effect for PMSM drive systems with reduced conducted common-mode EMI and current distortions
CN108322074B (zh) 一种基于十二边形空间电压矢量的级联二电平逆变器svpwm调制方法
CN103560654A (zh) 全桥逆变器驱动方法及全桥逆变器
Zahira et al. SPWM technique for reducing harmonics in three-phase non-linear load
Renuka Devi et al. Performance investigation of multi-phase vsi with simple pwm switching techniques
Li et al. Carrier based implementation of reduced common mode voltage PWM strategies
CN112701952B (zh) 三相两电平逆变器电流纹波最小有效值pwm方法及系统
Haase et al. Controller design and implementation of a three-phase Active Front End using SiC based MOSFETs
CN111711223B (zh) 提高光伏逆变器效率和谐波性能的混合空间矢量调制方法
Zhang et al. Novel Space-Vector Pulse-Width-Modulation Mechanism for Three-Level Neutral-Point-Clamped Z-Source Inverter
CN113783441A (zh) 三相维也纳整流器载波断续脉宽调制
CN108448580B (zh) 并联电流源型光伏逆变器并网电流指定谐波控制的方法
CN207530547U (zh) 一种双级光伏发电并网装置
Jin et al. A carrier comparison PWM method for reducing input current THD of three-phase PWM rectifier
Alzuabidi Study and implementation sinusoidal PWM inverter fed 3-phase induction motor
Ogudo et al. Comparative analysis on modulation techniques for a single phase full-bridge inverter on hysteresis current control PWM, sinusoidal PWM and modified sinusoidal PWM

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant