WO2014002943A1 - ユーザ端末、無線通信システム、無線通信方法及び無線基地局 - Google Patents
ユーザ端末、無線通信システム、無線通信方法及び無線基地局 Download PDFInfo
- Publication number
- WO2014002943A1 WO2014002943A1 PCT/JP2013/067237 JP2013067237W WO2014002943A1 WO 2014002943 A1 WO2014002943 A1 WO 2014002943A1 JP 2013067237 W JP2013067237 W JP 2013067237W WO 2014002943 A1 WO2014002943 A1 WO 2014002943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel state
- index
- csi
- user terminal
- state information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0073—Allocation arrangements that take into account other cell interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
Definitions
- the present invention relates to a user terminal, a radio communication system, a radio communication method, and a radio base station in a next generation mobile communication system.
- Non-patent Document 1 In the UMTS (Universal Mobile Telecommunications System) network, WSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access) are adopted for the purpose of improving frequency utilization efficiency and data rate.
- the system features based on CDMA (Wideband Code Division Multiple Access) are maximally extracted.
- LTE Long Term Evolution
- Non-patent Document 1 Non-patent Document 1
- the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
- a transmission rate of about 300 Mbps at the maximum on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
- LTE-A LTE advanced or LTE enhancement
- CRS Cell-specific Reference Signal
- CQI Channel Quality Indicator
- CSI-RS Channel State Information-Reference Signal
- inter-cell orthogonalization is one promising technique for further improving the system performance over the LTE system.
- orthogonalization within a cell is realized by orthogonal multi-access for both uplink and downlink. That is, in the downlink, orthogonalization is performed between user terminals UE (User Equipment) in the frequency domain.
- UE User Equipment
- W-CDMA Wideband Code Division Multiple Access
- CoMP coordinated multi-point transmission / reception
- the present invention has been made in view of such a point, and even when a plurality of channel state information is generated in the user terminal, the user terminal, the wireless communication system, and the like that can appropriately feed back the channel state information,
- An object is to provide a wireless communication method and a wireless base station.
- a user terminal is a user terminal configured to be capable of cooperative multipoint transmission / reception with a plurality of radio base stations, and a plurality of types of channel states using a channel state measurement reference signal transmitted from each radio base station
- a generating unit that generates information, a selecting unit that selects predetermined channel state information to be fed back from the plurality of types of channel state information, and the predetermined channel state information is fed back to the radio base station via an uplink control channel
- the selection unit selects the predetermined channel state information based on a priority set in at least a resource index of a channel state measurement reference signal corresponding to each channel state information. It is characterized by that.
- the channel state information can be appropriately fed back.
- SMR resource for desired signal estimation
- IMR resource for interference signal estimation
- Downlink CoMP transmission includes Coordinated Scheduling / Coordinated Beamforming (CS / CB) and Joint processing.
- Coordinated Scheduling / Coordinated Beamforming is a method of transmitting a shared data channel only from one transmission / reception point (or radio base station, cell) to one user terminal UE.
- FIG. 1A other transmission / reception is performed.
- Radio resources are allocated in the frequency / space region in consideration of interference from points and interference with other transmission / reception points.
- Joint processing is a method in which precoding is applied to simultaneously transmit a shared data channel from a plurality of transmission / reception points. As shown in FIG.
- shared data is transmitted from a plurality of transmission / reception points to one user terminal UE.
- DPS Dynamic Point Selection
- DPB Dynamic Point Blanking
- CoMP transmission is applied to improve the throughput of user terminals existing at the cell edge. For this reason, when a user terminal exists in a cell edge, it controls so that CoMP transmission may be applied.
- the difference in quality information for each cell from the user terminal for example, RSRP (Reference Signal Received Power)), RSRQ (Reference Signal Received Quality), or SINR (Signal Interference plus Noise Ratio), etc. If the difference is less than or equal to the threshold value, that is, if the quality difference between cells is small, it is determined that the user terminal exists at the cell edge, and CoMP transmission is applied.
- the user terminal When applying CoMP transmission, the user terminal generates channel state information (CSI: Channel State Information) based on CSI-RS transmitted from each transmission point, and feeds it back to the radio base station of the serving cell.
- CSI Channel State Information
- CSI-RS is a reference signal used for CSI measurement such as CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), etc. as a channel state.
- CQI Channel Quality Indicator
- PMI Precoding Matrix Indicator
- RI Rank Indicator
- CSI-RS is assigned to radio resources at a predetermined cycle (for example, 10 subframe cycles).
- the CSI-RS is specified by parameters such as position, sequence, and transmission power.
- the CSI-RS position includes a subframe offset, a period, and a subcarrier-symbol offset.
- Non-zero power CSI-RS distributes transmission power to resources to which CSI-RS is allocated, and zero power CSI-RS does not distribute transmission power to resources to which CSI-RS is allocated (CSI-RS is muted). .
- the CSI-RS is a control signal assigned to a downlink control channel (PDCCH: Physical Downlink Control Channel), user data assigned to a downlink shared channel (PDSCH), CRS in one subframe defined by LTE. And other reference signals such as DM-RS (Demodulation-Reference Signal).
- PDCCH Physical Downlink Control Channel
- PDSCH downlink shared channel
- DM-RS Demodulation-Reference Signal
- One subframe is composed of 12 subcarriers continuous in the frequency direction and 14 symbols (1 resource block pair) continuous in the time axis direction.
- two resource elements (RE: Resource Element) adjacent in the time axis direction are assigned as a set to the resources to which CSI-RS can be assigned.
- FIG. 2A shows a schematic diagram when downlink transmission is performed from the transmission points TP # 1 and TP # 2 serving as a CoMP set to the user terminal UE.
- FIG. 2B shows an example of an arrangement pattern of CSI-RS (non-zero power CSI-RS) for estimating a desired signal and CSI-RS (zero power CSI-RS) for estimating an interference signal.
- the CSI-RS for estimating the desired signal is allocated to a resource (SMR: Signal Measurement Resource) used for estimating the desired signal
- the CSI-RS for estimating the interference signal is allocated to a resource (IMR: Interference Measurement) used for measuring the interference signal. Resource).
- SMR Signal Measurement Resource
- IMR Interference Measurement
- the user terminal generates channel state information (for example, CQI) based on the desired signal estimation resource (SMR) and the interference signal estimation resource (IMR), and feeds it back to the radio base station. That is, the user terminal can generate multiple types of CSI according to the arrangement pattern of the desired signal estimation resource (SMR) and the interference signal estimation resource (IMR) at each transmission point.
- CQI channel state information
- the information on the desired signal estimation resource (SMR) and the interference signal estimation resource (IMR) is, for example, a broadcast signal (Master Information Block (MIB) transmitted using Physical Broadcast Channel) or a System multiplexed on a data channel.
- MIB Master Information Block
- SIB Information Block
- RRC Radio Resource Control
- MAC Medium Access Control
- FIG. 3 shows an example of an arrangement pattern of desired signal estimation resources (SMR) and / or interference signal estimation resources (IMR) arranged at each transmission point.
- FIG. 3 shows an example of SMR and IMR patterns (CSI-RS patterns) when the predetermined symbols (eighth to eleventh) in FIG. 2 are extracted by one resource block, and other signals ( CRS, DMRS, PDSCH, etc.) are omitted.
- SMR desired signal estimation resources
- IMR interference signal estimation resources
- FIG. 3A shows a case where desired signal estimation resources SMR1 and SMR2 are arranged in regions having different frequencies at each transmission point (TP # 1, TP # 2).
- the user terminal can measure the desired signal strength from TP # 1 based on SMR1, and can measure the desired signal strength from TP # 2 based on SMR2.
- FIG. 3A shows a case where no interference signal estimation resource (IMR) is arranged.
- IMR interference signal estimation resource
- FIG. 3B shows that at each transmission point (TP # 1, TP # 2), desired signal estimation resources SMR1 and SMR2 are arranged in regions having different frequencies, and a plurality of interference signal estimation resources (IMR1 to IMR3). Is shown. IMR1 sets the PDSCH of the predetermined resource transmitted from TP # 1 to zero power, IMR2 sets the PDSCH of the predetermined resource transmitted from TP # 2 to zero power, and IMR3 transmits from TP # 1 and TP # 2 The PDSCH of the predetermined resource to be used is set to zero power.
- the user terminal measures interference from outside of TP # 1 based on IMR1, measures interference from outside of TP # 2 based on IMR2, and from outside of TP # 1 and TP # 2 based on IMR3. Interference can be measured. Also, the user terminal generates CSI using SMR1, SMR2, and IMR1 to IMR3, and feeds back to the radio base station.
- the user terminal can calculate the channel quality (CSI1) for TP # 1 at the time of single transmission by SMR1 / IMR1, and can calculate the channel quality (CSI2) for TP # 2 by SMR2 / IMR2. Further, the channel quality (CSI3) for TP # 1 at the time of cooperative (CoMP) transmission can be calculated by SMR1 / IMR3, and the channel quality (CSI4) for TP # 2 can be calculated by SMR2 / IMR3.
- CSI1 / IMR3 the channel quality for TP # 1 at the time of cooperative (CoMP) transmission
- CSI4 for TP # 2 can be calculated by SMR2 / IMR3.
- FIG. 3C shows that at each transmission point (TP # 1, TP # 2), desired signal estimation resources SMR1 and SMR2 are arranged in regions having different frequencies, and one interference signal is estimated in the region having the same frequency.
- the case where the resource IMR1 is arranged is shown.
- the IMR 1 uses the PDSCH of a predetermined resource transmitted from TP # 1 and TP # 2 as zero power.
- the user terminal can measure interference from the outside of TP # 1 and TP # 2 based on the interference signal estimation resource IMR1.
- interference signal estimation resources are not individually arranged in TP # 1, and therefore, interference from the outside of TP # 1 can be directly measured using only IMR as shown in FIG. 3B. Can not.
- the user terminal can measure for other interference indirectly using SMR and IMR (emulation).
- SMR and IMR emulation
- the user terminal measures the desired signal strength from TP # 1 (S 1) on the basis of the SMR1, measure the desired signal strength (S 2) from TP # 2 based on SMR2. Further, based on IMR1, interference (I out ) from the outside of TP # 1 and TP # 2 is measured. Then, interference from the outside of TP # 1 at the time of single cell transmission is determined by calculating “I out + S 2 ”. Thus, obtaining predetermined interference using SMR and IMR is called emulation (UE emulation). When the user terminal performs emulation, the number of IMRs to be arranged can be reduced. In addition, UE emulation demonstrated using FIG. 3C is an example, and is not restricted to this.
- the user terminal generates a plurality of types of channel state information using SMR and IMR, and then feeds back the generated channel state information to the radio base station via the uplink.
- the signal transmitted from the user terminal via the uplink is mapped to an appropriate radio resource and transmitted to the radio base station.
- User data is assigned to the uplink shared channel (PUSCH).
- Control information is time-multiplexed with PUSCH when transmitted simultaneously with user data, and assigned to an uplink control channel (PUCCH) when only control information is transmitted.
- the control information transmitted on the uplink includes CSI, a retransmission response signal (ACK / NACK) for a downlink shared channel (PDSCH) signal, and the like.
- the present inventors have conceived that when the user terminal generates a plurality of feedback channel state information (CSI report), the CSI report having a high priority is selectively fed back. Specifically, it has been found that CSI collisions can be suppressed by setting priority to be fed back to a plurality of types of channel state information and selectively feeding back channel state information having a high priority.
- CSI report feedback channel state information
- the present inventors paid attention to a method for selecting feedback channel state information (CSI report) when applying carrier aggregation (CA) as a method for determining the priority of feedback channel state information.
- CSI report feedback channel state information
- CA carrier aggregation
- CA carrier aggregation
- CC Component Carrier
- uplink transmission in order to obtain single carrier characteristics, it has been studied to perform uplink data transmission using a single basic frequency block.
- the priority of RI is set higher than PMI and CQI, and the priority of wideband CQI is set higher than subband CSI. Then, channel state information having a low priority among a plurality of types of channel state information is not fed back (channel state information having a low priority is dropped).
- the priority of PUCCH report type 3, 5 or 6 is set higher than PUCCH report type 1, 1a, 2, 2a, 2b, 2c or 4.
- the priority of PUCCH report type 3, 5, 6 or 2a is set higher than PUCCH report type 1, 1a, 2, 2b, 2c or 4, and PUCCH report type 2,
- the priority of 2b, 2c, or 4 is set higher than PUCCH report types 1 and 1a.
- the CSI to be fed back is selected based on the priority set in the cell index (cell index) corresponding to each CSI. For example, when the priority of CSI related to a CC having a small cell index is set higher than the priority of CSI related to a CC having a large cell index, the CSI corresponding to a CC having a large cell number is selected from CSI having the same priority of the PUCCH report type CSI to be excluded (dropped). Thus, CSI collision can be prevented by selecting CSI to be fed back via PUCCH based on the priority set for the PUCCH report type and the priority set for the cell index.
- FIG. 5A shows channel state measurement reference signals (desired signal estimation CSI-RS and interference signal estimation CSI-RS) from two transmission points (TP # 1, TP # 2) that become CoMP sets in a certain subframe. Indicates the case where is transmitted. 5A is the same as the CSI-RS arrangement pattern shown in FIG. 3B.
- Desired signal estimation CSI-RS is allocated to SMR1 arranged in a predetermined resource of TP # 1 and SMR2 arranged in a predetermined resource of TP # 2.
- the interference signal estimation CSI-RS includes IMR1 arranged in a predetermined resource of TP # 1, IMR2 arranged in a predetermined resource of TP # 2, and TP # 1 and TP # 2. Assigned to a predetermined resource of IMR3.
- FIG. 5 shows a case where the user terminal generates a plurality of types of channel state information (for example, CSI1 to CSI4) based on a plurality of SMRs 1 and 2 and IMR1 to IMR3 (see FIG. 5B). .
- CSI1 to CSI4 a plurality of types of channel state information
- CSI1 (SMR1 / IMR1) is PUCCH report type 4 and wideband CQI, and corresponds to the channel quality of TP # 1 (cell index: 0) at the time of single cell transmission.
- CSI2 (SMR1 / IMR3) is PUCCH report type 4 and wideband CQI, and corresponds to the channel quality of TP # 1 during coordinated transmission.
- CSI3 (SMR2 / IMR2) is PUCCH report type 4 and wideband CQI, and corresponds to the channel quality of TP # 2 (cell index: 1) during single cell transmission.
- CSI4 (SMR2 / IMR3) is PUCCH report type 1, subband CQI, and corresponds to the channel quality of TP # 2 at the time of coordinated transmission. The contents and calculation method of each CSI are not limited to this.
- a CSI having a high priority of the PUCCH report type is selected from a plurality of types of CSI (here, CSI1 to CSI4) (priority CSI is low (drop).
- CSI1 to CSI4 priority CSI is low (drop).
- PUCCH report type 1 has lower priority than PUCCH report type 4
- CSI4 is excluded (see FIG. 5C).
- CSI1, CSI2, CSI3 a CSI having a high priority of the cell index of the transmission point corresponding to each CSI is selected (CSI having a low priority is excluded (dropped)).
- CSI3 is excluded (see FIG. 5D).
- CSI1 and CSI2 remain.
- CSI1 and CSI2 are CSI generated based on different IMRs arranged at one transmission point (TP # 1), the PUCCH report type and the cell index are the same (having the same priority).
- TP # 1 transmission point 1
- the PUCCH report type and the cell index are the same (having the same priority).
- CA carrier aggregation
- the present inventors have applied the index of the channel state measurement reference signal resource (desired signal estimation resource (SMR) and / or interference signal estimation resource (IMR), etc.) at the time of cooperative multipoint application. It has been found that CSI collision can be effectively suppressed by setting priority and selecting feedback CSI based on the priority.
- SMR sense signal estimation resource
- IMR interference signal estimation resource
- the priority set in the index of each information (SMR, IMR, UE emulation, NZP CSI-RS, etc.) used for generating each CSI from among a plurality of types of CSI generated by the user terminal A case where feedback CSI is selected based on the degree will be described. Further, in the following description, “when CoMP is applied / when CA is not applied” and “when CoMP is applied / when CA is applied” will be described.
- the CSI-RS resource index (SMR index and / or IMR index) corresponding to each CSI is used. Based on the set priority, feedback CSI is selected. Specifically, as shown in FIG. 6, when a plurality of SMRs and IMRs are arranged at a plurality of transmission points to be a CoMP set (see FIG. 3B above), the SMR index and the IMR index are set respectively. The feedback CSI is selected based on the priority to be removed (CSI that is not fed back is excluded (dropped)).
- feedback CSI is selected based on the priority set in the IMR index, and a plurality of SMRs and one IMR are arranged. If so, feedback CSI is selected based on the priority set in the SMR index.
- the priority set in the SMR index, IMR index, and non-zero power CSI-RS index used for emulation can be selected based on Alternatively, the feedback CSI can be selected based on the priority set in the SMR index and the UE emulation index.
- non-zero power CSI-RS used for emulation indicates, for example, the CSI-RS assigned to the SMR 2 in FIG. 3C.
- UE emulation corresponds to a combination of IMR and non-zero power CSI-RS used for emulation.
- SIB System Information Block
- RRC Radio Resource Control
- MAC Medium Access Control
- the radio base station can set the priority of the index of each information used for generating each CSI and can notify the user terminal. For example, as shown in FIG. 3B, when a plurality of IMRs are arranged (emulation is not applied), the radio base station sets the priority of IMR for interference estimation in single cell transmission to the priority of IMR for interference estimation in cooperative transmission. Set higher than degree. For example, in the case shown in FIG. 3B, the radio base station can set the priority of IMR1 and IMR2 for interference estimation in single cell transmission higher than the priority of IMR3 for interference estimation in cooperative transmission. This is because CSI in single cell transmission is more important. When setting so that the priority is higher when the IMR index is smaller, the IMR index for interference estimation in single cell transmission is relatively decreased.
- the radio base station when the user terminal applies emulation, sets the priority of UE emulation for interference estimation in single cell transmission higher than the priority of UE emulation in cooperative transmission. .
- the priority is higher when the UE emulation index is smaller, the UE emulation index in single cell transmission is relatively decreased.
- channel state measurement reference signals (desired signal estimation CSI-RS and interference signal estimation CSI-RS) are transmitted from two transmission points (TP # 1, TP # 2) serving as a CoMP set. (See FIG. 5A).
- FIG. 7 shows a case where the user terminal generates a plurality of types of channel state information (for example, CSI1 to CSI4) based on a plurality of SMRs 1 and 2 and IMR1 to IMR3.
- 7A has the same contents as CSI 1 to 4 shown in FIG. 5B.
- the user terminal selects a CSI having a high priority of the PUCCH report type from a plurality of types of CSI (here, CSI1 to CSI4) (excludes (drops) a CSI having a low priority).
- CSI1 to CSI4 excludedes (drops) a CSI having a low priority.
- PUCCH report type 1 has a lower priority than PUCCH report type 4
- CSI4 is excluded (see FIG. 7B).
- the user terminal prioritizes the CSI-RS resource index (IMR / SMR index) corresponding to each CSI (used to generate each CSI) from the remaining CSI (CSI1, CSI2, CSI3) A CSI having a high degree is selected (CSI having a low priority is excluded (dropped)).
- IMR / SMR index CSI-RS resource index
- the SMR index is prioritized over the IMR index, the SMR index priority is set higher in the order of SMR1> SMR2, and the IMR index priority is set higher in the order of IMR2> IMR1> IMR3.
- CSI3 having a low priority set in SMR is first excluded, and then CSI2 having a low priority set in IMR is excluded from CSI1 and CSI2 having the same SMR index.
- CSI1 is selected as the feedback CSI.
- the selected CSI 1 is fed back from the user terminal to the radio base station via the PUCCH (for example, PUCCH format 2).
- the IMR index is prioritized over the SMR index, the priority of the SMR index is set higher in the order of SMR1> SMR2, and the priority of the IMR index is set higher in the order of IMR2> IMR1> IMR3. Shown in 7D.
- CSI2 having the lowest priority set in IMR is first excluded, and then CSI1 having low priority set in IMR is excluded.
- CSI3 is selected as the feedback CSI.
- the selected CSI 3 is fed back from the user terminal to the radio base station via the PUCCH (for example, PUCCH format 2).
- FIG. 8 shows transmission points (TP # 1, TP # 2) to which the same frequency (frequency 1) is applied and transmission points (TP #) to which a frequency (frequency 2) different from frequency 1 is applied in a certain subframe.
- 3 shows a case where CSI-RS (desired signal estimation CSI-RS and interference signal estimation CSI-RS) is transmitted from 3). Specifically, a case is shown in which TP # 1 and TP # 2 are CoMP sets, and carrier aggregation is applied at TP # 1 and TP # 3.
- a CSI-RS resource index (SMR index and / or) corresponding to each CSI
- the feedback CSI is selected based on the priority set in the (IMR index) and the cell index. Specifically, as shown in FIG. 9, feedback CSI is selected based on the priorities set for the cell index, SMR index, and IMR index (CSI that is not fed back is excluded (dropped)).
- a feedback CSI is selected based on the priority set in the cell index and the IMR index, and a plurality of SMRs and one IMR are selected.
- the feedback CSI is selected based on the priority set for the cell index and the SMR index.
- the cell index, SMR index, IMR index, and non-zero power CSI-RS index used for emulation are set.
- the feedback CSI is selected based on the priority.
- the feedback CSI is selected based on the priority set in the cell index, the SMR index, and the UE emulation index.
- channel state measurement reference signals (desired signal estimation CSI-RS and interference signal estimation CSI-RS) are transmitted from three transmission points (TP # 1 to TP # 3) (FIG. 10). 8). That is, as described above, TP # 1 and TP # 2 become a CoMP set, and carrier aggregation is applied at TP # 1 and TP # 3.
- the user terminal performs CSI1, CSI2 for TP # 1 (cell index: 0), CSI3, CSI4 for TP # 2 (cell index: 2), and TP # 3 (cell index: 1).
- CSI1 to 4 in FIG. 10A have the same contents as CSI1 to 4 shown in FIGS. 5B and 7A.
- CSI5 (SMR1 / IMR1) is PUCCH report type 4 and wideband CQI, and corresponds to the channel quality of TP # 3 during single cell transmission.
- the user terminal selects CSI having a high priority of the PUCCH report type from a plurality of types of CSI (here, CSI1 to CSI5) (excludes (drops) CSI having a low priority).
- CSI1 to CSI5 a plurality of types of CSI
- CSI4 is excluded (see FIG. 10B).
- the user terminal selects a CSI-RS resource index (IMR / SMR index) corresponding to each CSI (used to generate each CSI) from the remaining CSI (CSI1, CSI2, CSI3, CSI5) And CSI having a high cell index priority is selected (CSI having a low priority is excluded (dropped)).
- IMR / SMR index CSI-RS resource index
- priority is given in the order of cell index> SMR index> IMR index
- the priority of SMR index is set higher in the order of SMR1> SMR2
- the priority of index of IMR is set higher in the order of IMR2> IMR1> IMR3.
- FIG. 10C shows the case.
- the cell index the smaller the cell index number, the higher the priority is set.
- CSI3 having a low priority set in the cell index is excluded first, and then CSI5 having a low cell index priority is excluded. Since CSI1 and CSI2 having the same cell index have the same SMR index, they are determined by the IMR index. Here, CSI2 with low priority set in IMR is excluded. As a result, CSI1 is selected as the feedback CSI. The selected CSI 1 is fed back from the user terminal to the radio base station via the PUCCH (for example, PUCCH format 2).
- PUCCH for example, PUCCH format 2
- the user terminal When the user terminal generates CSI by applying SMR and IMR arranged at each transmission point (emulation is not applied), the user terminal is based on the priority set for the combination of CSI-RS resource indexes corresponding to each CSI.
- the feedback CSI Specifically, as shown in FIG. 11, when a plurality of SMRs and IMRs are arranged at a plurality of transmission points to be a CoMP set (see FIG. 3B above), one or a plurality of SMR indexes and IMRs.
- the feedback CSI is selected based on the priority set for the index combination. In this case, a new index can be provided for the combination of the SMR index and the IMR index, and a priority can be set for the index.
- the priority can be set for the CSI index to control the selection of the feedback CSI.
- the feedback CSI can be selected based on the priority set for the combination.
- the feedback CSI may be selected based on the priority set for the combination of the SMR index and the UE emulation index.
- the combination of the SMR index and the UE emulation index can be represented by a CSI index, it is possible to set the priority for the CSI index and control the selection of the feedback CSI.
- the information regarding the combined index of various indexes such as the SMR index, the IMR index, the non-zero power CSI-RS index used for emulation, and the UE emulation index is a broadcast signal (Master Information Block transmitted using the Physical Broadcast Channel). (MIB) or System Information Block (SIB) multiplexed on a data channel, or from a radio base station by upper layer signaling, RRC signaling, Medium Access Control (MAC) signal or downlink control information It is notified to the user terminal.
- MIB Master Information Block transmitted using the Physical Broadcast Channel
- SIB System Information Block
- RRC Radio Resource Control
- MAC Medium Access Control
- the radio base station can set priorities for the combinations of indexes of information used for generating each CSI and can notify the user terminal. For example, the radio base station sets the priority of an index combining information used for generating CSI for single cell transmission as a priority set for the combination of indexes of information used for generating each CSI. . This is because CSI in single cell transmission is generally more important than CSI in cooperative transmission.
- channel state measurement reference signals (desired signal estimation CSI-RS and interference signal estimation CSI-RS) are transmitted from two transmission points (TP # 1, TP # 2) that constitute a CoMP set. (See FIG. 5A).
- FIG. 12 shows a case where the user terminal generates a plurality of types of channel state information (for example, CSI1 to CSI4) based on a plurality of SMRs 1 and 2 and IMR1 to IMR3. Note that the CSIs 1 to 4 in FIG. 12 have the same contents as the CSIs 1 to 4 shown in FIGS. 5B and 7A.
- CSI1 to CSI4 a plurality of types of channel state information
- the user terminal selects a CSI having a high priority of the PUCCH report type from a plurality of types of CSI (here, CSI1 to CSI4) (excludes (drops) a CSI having a low priority).
- CSI1 to CSI4 excludedes (drops) a CSI having a low priority.
- PUCCH report type 1 has a lower priority than PUCCH report type 4
- CSI4 is excluded (see FIG. 12B).
- the user terminal selects a combination of CSI-RS resource indexes (IMR / SMR indexes) corresponding to each CSI (used for generating each CSI) from the remaining CSI (CSI1, CSI2, CSI3).
- the CSI having a high priority set in (1) is selected (CSI having a low priority is excluded (dropped)).
- FIG. 12C shows a case where the priority of the combination of SMR index and IMR index (SMR / IMR) is set higher in the order of SMR1 / IMR1> SMR2 / IMR2> SMR1 / IMR3.
- indexes 0, 1, and 2 are provided for the combinations of SMR1 / IMR1, SMR2 / IMR2, and SMR1 / IMR3, respectively, and the priority is set higher in ascending order of numbers.
- CSI2 having the lowest priority set for the combination of SMR and IMR indexes is excluded first.
- CSI1 SMR1 / IMR1
- CSI3 SMR2 / IMR2
- CSI1 has a higher priority.
- both CSI 1 and CSI 3 are fed back.
- the user terminal can determine the order and arrangement
- the priority for the combination of SMR and IMR indexes can be set from various viewpoints.
- the priority can be set based on one of IMR and SMR.
- priorities may be set by attaching indexes to all combinations of SMRs and IMRs.
- the priority of the combination of the SMR and IMR indexes is set so that the priority becomes higher in the order of IMR1> IMR2> IMR3 with reference to IMR.
- the CSI (CSI2 and CSI4) having the same IMR index (IMR3) have the same combination of SMR and IMR indexes. Therefore, in FIG. 12, if CSI4 is configured with wideband CQI (see FIG. 13A), the priority of the PUCCH report type and the priority of SMR / IMR are the same for CSI2 and CSI4.
- the priority set for the combination is the same in a predetermined group.
- Candidates may be selected in advance based on criteria. For example, after selecting one CSI based on a predetermined priority (for example, PUCCH report type, cell index) for each group having the same combination of SMR and IMR indexes, the combination of SMR and IMR indexes Priority can be applied. This case will be described with reference to FIG.
- the user terminal first classifies a plurality of CSIs based on the priority of the combination of SMR and IMR indexes (SMR / IMR). For example, when priority is set for the SMR / IMR, the combination of SMR1 / IMR1 (combination 0), the combination of SMR2 / IMR2 (combination 1), and the combination of SMR1orSMR2 / IMR3 (combination 2), respectively, CSI1 can be classified as combination 0, CSI3 can be classified as combination 1, and CSI2 and CSI4 can be classified as combination 2.
- SMR / IMR is represented by a CSI index
- CSI1 can be classified as combination 0, CSI2 and CSI4 can be classified as combination 2, and CSI3 can be classified as combination 1.
- the user terminal selects CSI based on the priority set in the PUCCH report type and the priority set in the cell index for each classified combination.
- the combination 2 since there are a plurality of CSIs in the combination 2, one of CSI2 and CSI4 is selected based on the PUCCH report type and the priority set in the cell index.
- CSI2 and CSI4 have the same PUCCH report type priority, CSI2 is excluded because CSI2 has a higher cell index priority (see FIG. 13B). As a result, one CSI is selected from each combination.
- the user terminal selects feedback CSI for CSI1, CSI2, and CSI3 based on the priority of the combination of SMR and IMR indexes.
- CSI1 with the highest priority is selected and fed back from the user terminal to the radio base station via PUCCH (for example, PUCCH format2).
- a plurality of CSIs are classified based on the priority set for the combination of SMR and IMR indexes, and based on the priority set for the PUCCH report type and the cell index for the group of classified combinations.
- prioritization can be appropriately performed for a plurality of CSIs.
- the combination of the SMR index and the IMR index has been described, but the present invention can also be applied to other index combinations.
- ⁇ CoMP application / CA application> When cooperative transmission and carrier aggregation are applied, in CSI for different CCs, it is set to a combination of indexes of information (SMR, IMR, UE emulation, NZP CSI-RS, etc.) used for generating each CSI.
- the priority may be the same. Therefore, when both cooperative transmission and carrier aggregation are applied, the cell index is set in addition to the index of each information (SMR, IMR, UE emulation, NZP CSI-RS, etc.) used for generating each CSI. Also consider the priorities assigned.
- channel state measurement reference signals (desired signal estimation CSI-RS and interference signal estimation CSI-RS) are transmitted from three transmission points (TP # 1 to TP # 3) (FIG. 14). 8). That is, TP # 1 and TP # 2 become a CoMP set, and carrier aggregation is applied at TP # 1 and TP # 3.
- the user terminal performs CSI1, CSI2 for TP # 1 (cell index: 0), CSI3, CSI4 for TP # 2 (cell index: 2), and TP # 3 (cell index: 1).
- CSI5 with respect to is generated is shown.
- CSI 1 to 5 in FIG. 14A have the same contents as CSI 1 to 5 shown in FIG.
- the user terminal selects CSI having a high priority of the PUCCH report type from a plurality of types of CSI (here, CSI1 to CSI5) (excludes (drops) CSI having a low priority).
- CSI1 to CSI5 a plurality of types of CSI
- CSI4 is excluded (see FIG. 14B).
- the user terminal selects the CSI-RS resource index (IMR / SMR index) corresponding to each CSI (used for generating each CSI) and cell from the remaining CSI (CSI1, CSI2, CSI3) A CSI having a high priority set for an index combination is selected (CSI having a low priority is excluded (dropped)).
- IMR / SMR index CSI-RS resource index
- the priority of the combination of cell index, SMR index and IMR index is in the order of TP1 / SMR1 / IMR1> TP3 / SMR1 / IMR1> TP1 / SMR1 / IMR3> TP2 / SMR2 / IMR2.
- the case where it is set high is shown in FIG. 14C.
- CSI3, CSI2, and CSI5 with the lowest priority are excluded (dropped) in this order, and CSI1 is selected.
- the selected CSI 1 is fed back from the user terminal to the radio base station via the PUCCH (for example, PUCCH format 2).
- the priority set for the combination of indices such as SMR, IMR, etc. and cell index used to generate each CSI By selecting feedback CSI based on this, CSI collision can be effectively suppressed.
- the priority with respect to the combination of a cell index, an SMR index, and an IMR index can be set from various viewpoints.
- the priority can be set based on one of IMR and SMR.
- the priority can be set based on one of IMR and SMR.
- priorities may be set by attaching indexes to all combinations of SMRs and IMRs.
- the user terminal first classifies a plurality of CSIs based on the priority of the combination of SMR and IMR indexes (SMR / IMR). For example, when priority is set for the combination of SMR1 / IMR1 (combination 0), the combination of SMR2 / IMR2 (combination 2), and the combination of SMR1orSMR2 / IMR3 (combination 1), CSI1 (TP1 / SMR1 / IMR1) and CSI5 (TP3 / SMR1 / IMR1) are classified as combination 0, CSI3 (TP2 / SMR2 / IMR2) is classified as combination 2, and CSI2 (TP1 / SMR1 / IMR3) and CSI4 (TP2 / SMR2 / IMR3) are classified as combination 1. Is done.
- the user terminal selects CSI based on the priority set in the PUCCH report type and the priority set in the cell index for each classified combination.
- CSI1 / CSI5 and CSI2 / CSI4 are selected based on the PUCCH report type and the priority set in the cell index.
- CSI1 and CSI5 have the same priority of the PUCCH report type, CSI1 is higher because CSI1 has a higher cell index priority (see FIG. 15B).
- CSI2 and CSI4 exclude CSI4 because the priority of PUCCH report type is higher in CSI2 (see FIG. 15B). As a result, one CSI is selected from each combination.
- the user terminal selects feedback CSI for CSI1, CSI2, and CSI3 based on the priority of the combination of the cell index, the SMR index, and the IMR index.
- CSI1 with the highest priority is selected and fed back from the user terminal to the radio base station via PUCCH (for example, PUCCH format2).
- a plurality of CSIs are classified based on the priority of the combination of the cell index, the SMR index, and the IMR index, and based on the priority set in the PUCCH report type and the cell index for the group of the classified combinations.
- prioritization can be appropriately performed for a plurality of CSIs.
- the combination of the cell index, the SMR index, and the IMR index has been described here, the present invention can be applied to other index combinations.
- the above-described first aspect or second aspect is used as a placing order of the plurality of CSIs with respect to the PUSCH. Can be determined based on the priority of CSI.
- CSI fed back from the user terminal is time-multiplexed with PUSCH when transmitted simultaneously with user data. Rel. 10, it is considered to follow the cell index order when feeding back a plurality of CSIs from different transmission points via the PUSCH. However, how to feed back a plurality of CSIs from one transmission point via PUSCH has not been determined.
- the placement order for the plurality of CSI PUSCHs is determined based on the priority of the CSI defined in the first aspect. . Or based on the priority of CSI prescribed
- FIG. 16 is an explanatory diagram of a system configuration of the wireless communication system according to the present embodiment.
- the radio communication system shown in FIG. 16 is a system that includes, for example, the LTE system or SUPER 3G.
- carrier aggregation in which a plurality of fundamental frequency blocks with the system band of the LTE system as a unit is integrated is used.
- this wireless communication system may be called IMT-Advanced or 4G.
- the radio communication system 1 includes radio base stations 20A and 20B and a plurality of first and second user terminals 10A and 10B communicating with the radio base stations 20A and 20B. ing.
- the radio base stations 20 ⁇ / b> A and 20 ⁇ / b> B are connected to the higher station apparatus 30, and the higher station apparatus 30 is connected to the core network 40.
- the radio base stations 20A and 20B are connected to each other by wired connection or wireless connection.
- the first and second user terminals 10A and 10B can communicate with the radio base stations 20A and 20B in the cells C1 and C2.
- the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Note that, between cells, control of CoMP transmission is performed by a plurality of base stations as necessary.
- RNC radio network controller
- MME mobility management entity
- the first and second user terminals 10A and 10B include an LTE terminal and an LTE-A terminal. In the following, the description will proceed as the first and second user terminals unless otherwise specified. For convenience of explanation, it is assumed that the first and second user terminals 10A and 10B communicate wirelessly with the radio base stations 20A and 20B, but more generally both mobile terminal devices and fixed terminal devices are used.
- the user equipment (UE) may be included.
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier-Frequency Division Multiple Access
- the wireless access method is not limited to this.
- OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
- SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
- the downlink communication channel includes a PDSCH as a downlink data channel shared by the first and second user terminals 10A and 10B and a downlink L1 / L2 control channel (PDCCH, PCFICH, PHICH). Transmission data and higher control information are transmitted by the PDSCH. PDSCH and PUSCH scheduling information and the like are transmitted by the PDCCH.
- the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
- the HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
- the uplink communication channel includes a PUSCH as an uplink data channel shared by each user terminal and a PUCCH that is an uplink control channel. Transmission data and higher control information are transmitted by this PUSCH.
- channel state information such as RI, PMI, CQI, ACK / NACK, and the like are transmitted by PUCCH.
- radio base stations 20A and 20B have the same configuration and will be described as the radio base station 20.
- first and second user terminals 10A and 10B which will be described later, have the same configuration and will be described as the user terminal 10.
- the radio base station 20 includes a transmission / reception antenna 201, an amplifier unit 202, a transmission / reception unit (notification unit) 203, a baseband signal processing unit 204, a call processing unit 205, and a transmission path interface 206.
- Transmission data transmitted from the radio base station 20 to the user terminal via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 204 via the transmission path interface 206.
- the downlink data channel signal is transmitted from the RCP layer, such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
- RCP layer such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
- Control Retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed.
- transmission processing such as channel coding and inverse fast Fourier transform is performed on the signal of the physical downlink control channel that is the downlink control channel.
- the baseband signal processing unit 204 notifies the control information for each user terminal 10 to perform radio communication with the radio base station 20 to the user terminals 10 connected to the same cell through the broadcast channel.
- the information for communication in the cell includes, for example, system bandwidth in uplink or downlink, and root sequence identification information (Root Sequence) for generating a random access preamble signal in PRACH (Physical Random Access Channel). Index) etc. are included.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
- the amplifier unit 202 amplifies the radio frequency signal subjected to frequency conversion and outputs the amplified signal to the transmission / reception antenna 201.
- the transmission / reception unit 203 constitutes reception means for receiving an uplink signal including information such as a phase difference between a plurality of cells and PMI, and transmission means for transmitting a transmission signal in coordinated multipoint. Further, the transmission / reception unit 203 also functions as a notification unit when the radio base station notifies the inter-cell CSI candidate value to the user terminal.
- a radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202 and frequency-converted by the transmission / reception unit 203 to be a baseband signal. And is input to the baseband signal processing unit 204.
- the baseband signal processing unit 204 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, PDCP layer reception processing on transmission data included in the baseband signal received in the uplink I do.
- the decoded signal is transferred to the higher station apparatus 30 via the transmission path interface 206.
- the call processing unit 205 performs call processing such as communication channel setting and release, state management of the radio base station 20, and radio resource management.
- FIG. 18 is a block diagram showing a configuration of a baseband signal processing unit in the radio base station shown in FIG.
- the baseband signal processing unit 204 mainly includes a layer 1 processing unit 2041, a MAC processing unit 2042, an RLC processing unit 2043, a priority information generation unit 2044, and a CSI acquisition unit 2045.
- the layer 1 processing unit 2041 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 2041 performs channel decoding, discrete Fourier transform (DFT: Discrete Fourier Transform), frequency demapping, and inverse fast Fourier transform (IFFT: Inverse Fast Fourier Transform) on a signal received on the uplink. Processing such as data demodulation. Further, the layer 1 processing unit 2041 performs processing such as channel coding, data modulation, frequency mapping, and inverse fast Fourier transform (IFFT) on a signal transmitted in the downlink.
- DFT discrete Fourier transform
- IFFT Inverse Fast Fourier Transform
- the MAC processing unit 2042 performs processing such as retransmission control at the MAC layer for a signal received in the uplink, scheduling for the uplink / downlink, selection of a PUSCH / PDSCH transmission format, selection of a PUSCH / PDSCH resource block, and the like. .
- the RLC processing unit 2043 performs packet division, packet combination, retransmission control in the RLC layer, etc. on packets received on the uplink / packets transmitted on the downlink.
- the CSI acquisition unit 2045 acquires the CSI of each cell fed back from the user terminal via the PUCCH or the like.
- the CSI fed back from the user terminal via the PUCCH is set to an index of each information (SMR, IMR, UE emulation, NZP CSI-RS, etc.) used to generate each CSI so as to avoid collision. Selected based on priority.
- the priority information generation unit 2044 selects each information (SMR, IMR, UE emulation, NZP CSI-RS) used to generate CSI in order to select a feedback CSI from among a plurality of types of CSI generated by the user terminal. Etc.) is set as a priority. Information on the index for which the priority is set is transmitted by, for example, a broadcast signal (Master Information Block (MIB) transmitted using Physical Broadcast Channel), or System Information Block (SIB) multiplexed on the data channel. Alternatively, it is notified from the radio base station to the user terminal by upper layer signaling, RRC signaling, Medium Access Control (MAC) signal or downlink control information.
- MIB Master Information Block
- SIB System Information Block
- the user terminal 10 includes a transmission / reception antenna 101, an amplifier unit 102, a transmission / reception unit (reception unit) 103, a baseband signal processing unit 104, and an application unit 105.
- a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102, frequency-converted by the transmission / reception unit 103, and converted into a baseband signal.
- the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 104.
- downlink transmission data is transferred to the application unit 105.
- the application unit 105 performs processing related to layers higher than the physical layer and the MAC layer. Also, the broadcast information in the downlink data is also transferred to the application unit 105.
- uplink transmission data is input from the application unit 105 to the baseband signal processing unit 104.
- the baseband signal processing unit 104 performs mapping processing, retransmission control (HARQ) transmission processing, channel coding, DFT processing, and IFFT processing.
- the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 into a radio frequency band. Thereafter, the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 101.
- the transmission / reception unit 103 constitutes transmission means for transmitting phase difference information, connected cell information, selected PMI, etc. to the radio base stations eNB of a plurality of cells, and reception means for receiving downlink signals.
- FIG. 20 is a block diagram showing a configuration of a baseband signal processing unit in the user terminal shown in FIG.
- the baseband signal processing unit 104 includes a layer 1 processing unit 1041, a MAC processing unit 1042, an RLC processing unit 1043, a feedback CSI selection unit 1044, a priority information acquisition unit 1045, and a CSI generation unit 1046. It is configured.
- the layer 1 processing unit 1041 mainly performs processing related to the physical layer. For example, the layer 1 processing unit 1041 performs processing such as channel decoding, discrete Fourier transform (DFT), frequency demapping, inverse fast Fourier transform (IFFT), and data demodulation on a signal received on the downlink. Also, the layer 1 processing unit 1041 performs processing such as channel coding, data modulation, frequency mapping, and inverse fast Fourier transform (IFFT) on a signal transmitted on the uplink.
- DFT discrete Fourier transform
- IFFT inverse fast Fourier transform
- IFFT inverse fast Fourier transform
- the MAC processing unit 1042 performs retransmission control (HARQ) at the MAC layer on a signal received on the downlink, analysis of downlink scheduling information (specification of PDSCH transmission format, identification of PDSCH resource block), and the like. Further, the MAC processing unit 1042 performs processing such as MAC retransmission control for signals transmitted on the uplink, analysis of uplink scheduling information (specification of PUSCH transmission format, specification of PUSCH resource block), and the like.
- HARQ retransmission control
- the RLC processing unit 1043 performs packet division, packet combination, retransmission control at the RLC layer, etc. on packets received on the downlink / packets transmitted on the uplink.
- the CSI generating unit 1046 uses the channel state measurement reference signals (desired signal estimation CSI-RS, interference signal estimation CSI-RS) transmitted from each transmission point to obtain a plurality of types of channel state information (CSI). Generate. For example, as shown in FIG. 3, based on SMR and IMR arranged at each transmission point, CSI at the time of single cell transmission, CSI at the time of CoMP transmission, and the like are generated.
- CSI channel state measurement reference signals
- the priority information acquisition unit 1045 relates to an index of each information (SMR, IMR, UE emulation, NZP CSI-RS, etc.) used for generating CSI, a cell index, a CSI index, and a priority set for these combinations. Get information.
- the information about the index for which the priority is set is, for example, a broadcast signal (Master Information Block (MIB) transmitted using Physical Broadcast Channel), or It is notified from the radio base station to the user terminal by System Information Block (SIB) multiplexed on the data channel, upper layer signaling, RRC signaling, Medium Access Control (MAC) signal or downlink control information.
- MIB Master Information Block
- SIB System Information Block
- the feedback CSI selection unit 1044 selects a predetermined CSI to be fed back from the plurality of types of generated CSI based on the priority information from the priority information acquisition unit 1045.
- the feedback CSI selecting unit 1044 selects, from among a plurality of types of CSI generated by the CSI generating unit 1046, each piece of information (SMR, IMR, Select feedback CSI based on the priority set in the index of UE emulation, NZP CSI-RS, etc.
- each information (SMR, IMR, UE emulation, NZP CSI-RS) used for generating each CSI from among a plurality of types of CSI generated by the CSI generating unit 1046.
- the feedback CSI is selected based on the priority set for the index combination.
- the CSI selected by the feedback CSI selection unit 1044 is fed back to the radio base station via the PUCCH.
- the present invention has been described in detail using the above-described embodiment.
- the present invention is not limited to the above-described embodiment, and various modifications can be made.
- the setting position of CSI-RS, the setting position of muting (zero power), the number of processing units, the processing procedure, the number of CSI-RSs, the number of mutings in the above description The number of transmission points can be changed as appropriate.
- the transmission points may be antennas. Other modifications can be made without departing from the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
第1の態様では、ユーザ端末が生成する複数種類のCSIの中から、各CSIの生成に利用される各情報(SMR、IMR、UE emulation、NZP CSI-RS等)のインデックスに設定される優先度に基づいて、フィードバックCSIを選択する場合について説明する。また、以下の説明では、「CoMP適用/CA非適用時」と「CoMP適用/CA適用時」についてそれぞれ説明する。
ユーザ端末は、各送信ポイントにおいて配置されるSMRとIMRを適用してCSIを生成する場合(エミュレーション非適用)、各CSIに対応するCSI-RSのリソースインデックス(SMRインデックス及び/又はIMRインデックス)に設定される優先度に基づいて、フィードバックCSIを選択する。具体的には、図6に示すように、CoMPセットとなる複数の送信ポイントにおいて、複数のSMRとIMRが配置される場合(上記図3B参照)には、SMRインデックス及びIMRインデックスにそれぞれ設定される優先度に基づいて、フィードバックCSIを選択する(フィードバックしないCSIを除外(ドロップ)する)。
協調送信とキャリアアグリゲーションを適用する場合には、異なるCCに対するCSIにおいて、各CSIの生成に利用される各情報(SMR、IMR、UE emulation、NZP CSI-RS等)に設定される優先度が同じとなる場合がある。そのため、協調送信とキャリアアグリゲーションの双方を適用する場合には、各CSIの生成に利用される各情報(SMR、IMR、UE emulation、NZP CSI-RS等)に加えて、セルインデックスに設定された優先度についても考慮する。
第2の態様では、ユーザ端末が生成する複数種類のCSIの中から、各CSIの生成に利用される各情報(SMR、IMR、UE emulation、NZP CSI-RS等)のインデックスの組合せに対して設定される優先度に基づいて、フィードバックCSIを選択する場合について説明する。なお、以下の説明では、第1の態様と異なる部分について説明し、第1の態様を適用できる部分については上記説明を参照することができる。
ユーザ端末は、各送信ポイントにおいて配置されるSMRとIMRを適用してCSIを生成する場合(エミュレーション非適用)、各CSIに対応するCSI-RSのリソースインデックスの組合せに設定される優先度に基づいて、フィードバックCSIを選択する。具体的には、図11に示すように、CoMPセットとなる複数の送信ポイントにおいて、複数のSMRとIMRが配置される場合(上記図3B参照)には、一つ又は複数のSMRインデックスとIMRインデックスの組合せに対して設定される優先度に基づいて、フィードバックCSIを選択する。この場合、SMRインデックスとIMRインデックスの組合せに対して新たなインデックスを設け、当該インデックスに優先度を設定することができる。
協調送信とキャリアアグリゲーションを適用する場合には、異なるCCに対するCSIにおいて、各CSIの生成に利用される各情報(SMR、IMR、UE emulation、NZP CSI-RS等)のインデックスの組合せに設定される優先度が同じとなる場合がある。そのため、協調送信とキャリアアグリゲーションの双方を適用する場合には、各CSIの生成に利用される各情報(SMR、IMR、UE emulation、NZP CSI-RS等)のインデックスに加えて、セルインデックスに設定された優先度についても考慮する。
本実施の形態の他の態様として、ユーザ端末からPUSCHを介して複数のCSIをフィードバックする際に、PUSCHに対する複数のCSIの配置順序(placing order)として、上記第1の態様又は第2の態様におけるCSIの優先度に基づいて決定することができる。
以下に、本実施の形態に係る無線通信システムについて詳細に説明する。図16は、本実施の形態に係る無線通信システムのシステム構成の説明図である。なお、図16に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域を一単位とする複数の基本周波数ブロックを一体としたキャリアアグリゲーションが用いられている。また、この無線通信システムは、IMT-Advancedと呼ばれても良く、4Gと呼ばれても良い。
Claims (14)
- 複数の無線基地局と協調マルチポイント送受信可能に構成されたユーザ端末であって、
各無線基地局から送信されるチャネル状態測定用参照信号を用いて複数種類のチャネル状態情報を生成する生成部と、
前記複数種類のチャネル状態情報の中からフィードバックする所定のチャネル状態情報を選択する選択部と、
前記所定のチャネル状態情報を上り制御チャネルを介して無線基地局にフィードバックする送信部と、を有し、
前記選択部は、少なくとも各チャネル状態情報に対応するチャネル状態測定用参照信号のリソースインデックスに設定される優先度に基づいて、前記所定のチャネル状態情報を選択することを特徴とするユーザ端末。 - 前記選択部は、前記各チャネル状態情報に対応するチャネル状態測定用参照信号のリソースインデックスとして、少なくとも希望信号推定用のリソース(SMR)インデックス及び/又は干渉信号推定用のリソース(IMR)インデックスを用いることを特徴とする請求項1に記載のユーザ端末。
- 前記選択部は、前記生成部がエミュレーションを適用して前記チャネル状態情報を生成する場合に、前記各チャネル状態情報に対応するチャネル状態測定用参照信号のリソースインデックスとして、エミュレーションに利用したノンゼロパワーのチャネル状態測定用参照信号のインデックス、又は、エミュレーションインデックスとをさらに用いることを特徴とする請求項2に記載のユーザ端末。
- 前記選択部は、前記ユーザ端末がキャリアアグリゲーションを適用する場合に、前記希望信号推定用のリソース(SMR)インデックス及び/又は前記干渉信号推定用のリソース(IMR)インデックスに加えて、セルインデックスをさらに用いることを特徴とする請求項2又は請求項3に記載のユーザ端末。
- 前記選択部は、前記複数種類のチャネル状態情報の中から、各チャネル状態情報の上り制御チャネルにおける報告タイプに設定された優先度に基づいて優先度が低いチャネル状態情報を除外した後、前記各チャネル状態情報に対応するチャネル状態測定用参照信号のリソースインデックスに設定された優先度に基づいて前記所定のチャネル状態情報を選択することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
- 前記各チャネル状態情報に対応するチャネル状態測定用参照信号のリソースインデックスに関する情報は、報知信号、上位レイヤシグナリング、RRCシグナリング又は下りリンク制御情報により無線基地局から通知されることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
- 前記選択部は、前記各チャネル状態情報に対応するチャネル状態測定用参照信号のリソースインデックスに設定される優先度として、一つ又は複数の希望信号推定用のリソース(SMR)インデックスと一つ又は複数の干渉信号推定用のリソース(IMR)インデックスとの組み合わせに対して設定される優先度を用いることを特徴とする請求項1に記載のユーザ端末。
- 前記選択部は、前記生成部がエミュレーションを適用して前記チャネル状態情報を生成する場合に、前記各チャネル状態情報に対応するチャネル状態測定用参照信号のリソースインデックスに設定される優先度として、希望信号推定用のリソース(SMR)インデックス及び/又は干渉信号推定用のリソース(IMR)インデックスとエミュレーションに利用したノンゼロパワーのチャネル状態測定用参照信号のインデックスとの組み合わせに対して設定される優先度、又は、希望信号推定用のリソース(SMR)インデックスとエミュレーションインデックスとの組み合わせに対して設定される優先度を用いることを特徴とする請求項7に記載のユーザ端末。
- 前記選択部は、前記ユーザ端末がキャリアアグリゲーションを適用する場合に、各インデックスの組み合せに対して、さらにセルインデックスを組み合わせることを特徴とする請求項7又は請求項8に記載のユーザ端末。
- 前記各チャネル状態情報に対応するチャネル状態測定用参照信号のリソースインデックスの組み合せに関する情報は、報知信号、上位レイヤシグナリング、RRCシグナリング又は下りリンク制御情報により無線基地局から通知されることを特徴とする請求項7又は請求項8に記載のユーザ端末。
- 複数の無線基地局と協調マルチポイント送受信可能に構成されたユーザ端末であって、
各無線基地局から送信されるチャネル状態測定用参照信号を用いて複数種類のチャネル状態情報を生成する生成部と、
複数種類のチャネル状態情報を上り共有チャネルの無線リソースに配置して無線基地局にフィードバックする送信部と、を有し、
前記送信部は、少なくとも各チャネル状態情報に対応するチャネル状態測定用参照信号のリソースインデックスに設定される優先度に基づいて、前記上り共有チャネルに配置する順序を制御することを特徴とするユーザ端末。 - チャネル状態測定用の参照信号を送信する複数の無線基地局と、前記複数の無線基地局と協調マルチポイント送受信可能に構成されたユーザ端末と、を具備する無線通信システムであって、
前記無線基地局は、チャネル状態測定用参照信号のリソースインデックスに設定される優先度に関する情報を生成する優先度情報生成部と、前記優先度に関する情報を前記ユーザ端末に送信する送信部と、を有し、
前記ユーザ端末は、各無線基地局から送信されるチャネル状態測定用参照信号を用いて、複数種類のチャネル状態情報を生成する生成部と、前記複数種類のチャネル状態情報の中からフィードバックする所定のチャネル状態情報を選択する選択部と、前記所定のチャネル状態情報を上り制御チャネルを介して無線基地局にフィードバックする送信部と、を有し、前記選択部は、前記無線基地局から通知される優先度に関する情報に基づいて、前記所定のチャネル状態情報を選択することを特徴とする無線通信システム。 - チャネル状態測定用の参照信号を送信する複数の無線基地局と、前記複数の無線基地局と協調マルチポイント送受信可能に構成されたユーザ端末と、の無線通信方法であって、
前記無線基地局は、チャネル状態測定用参照信号のリソースインデックスに設定される優先度に関する情報を生成するステップと、前記優先度に関する情報を前記ユーザ端末に送信するステップと、を有し、
前記ユーザ端末は、各無線基地局から送信されるチャネル状態測定用参照信号を用いて複数種類のチャネル状態情報を生成するステップと、前記複数種類のチャネル状態情報の中からフィードバックする所定のチャネル状態情報を選択するステップと、前記所定のチャネル状態情報を上り制御チャネルを介して無線基地局にフィードバックするステップと、を有し、前記無線基地局から通知される優先度に関する情報に基づいて、前記所定のチャネル状態情報を選択することを特徴とする無線通信方法。 - 他の無線基地局と協調してユーザ端末との間で協調マルチポイント送受信する無線基地局であって、
チャネル状態測定用参照信号のリソースインデックスに設定される優先度に関する情報を生成する優先度情報生成部と、
前記優先度に関する情報を前記ユーザ端末に送信する送信部と、
前記ユーザ端末から上り制御チャネルを介してフィードバックされる所定のチャネル状態情報を受信する受信部と、を有し、
前記ユーザ端末が、前記優先度に関する情報に基づいて複数のチャネル状態情報の中から前記所定のチャネル状態情報を選択してフィードバックすることを特徴とする無線基地局。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13808944.6A EP2887725B1 (en) | 2012-06-26 | 2013-06-24 | User terminal, wireless communication system, wireless communication method, and wireless base station |
CN201380032982.6A CN104380787B (zh) | 2012-06-26 | 2013-06-24 | 用户终端、无线通信系统、无线通信方法及无线基站 |
US14/410,973 US9716540B2 (en) | 2012-06-26 | 2013-06-24 | User terminal, radio communication system, radio communication method and radio base station |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-143456 | 2012-06-26 | ||
JP2012143456A JP5743965B2 (ja) | 2012-06-26 | 2012-06-26 | ユーザ端末、無線通信システム、無線通信方法及び無線基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014002943A1 true WO2014002943A1 (ja) | 2014-01-03 |
Family
ID=49783089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/067237 WO2014002943A1 (ja) | 2012-06-26 | 2013-06-24 | ユーザ端末、無線通信システム、無線通信方法及び無線基地局 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9716540B2 (ja) |
EP (1) | EP2887725B1 (ja) |
JP (1) | JP5743965B2 (ja) |
CN (1) | CN104380787B (ja) |
HU (1) | HUE033568T2 (ja) |
WO (1) | WO2014002943A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106233783A (zh) * | 2014-04-30 | 2016-12-14 | 华为技术有限公司 | 信道测量方法、信道测量装置、用户设备及系统 |
JPWO2015107942A1 (ja) * | 2014-01-14 | 2017-03-23 | シャープ株式会社 | 基地局装置および端末装置 |
JP2017510218A (ja) * | 2014-01-07 | 2017-04-06 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | 複数のサブフレームセットのcsiフィードバック |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5918505B2 (ja) * | 2011-11-07 | 2016-05-18 | 株式会社Nttドコモ | 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 |
US9544801B2 (en) | 2012-08-03 | 2017-01-10 | Intel Corporation | Periodic channel state information reporting for coordinated multipoint (coMP) systems |
US9887818B2 (en) * | 2013-07-26 | 2018-02-06 | Lg Electronics Inc. | Method and apparatus for transreceiving channel state information in wireless communication system |
US10103855B2 (en) * | 2014-03-28 | 2018-10-16 | Qualcomm Incorporated | Flexible channel state information feedback management |
EP3169006B1 (en) * | 2014-07-07 | 2023-04-19 | LG Electronics Inc. | Reference signal transmission method in unlicensed band in wireless communication system |
EP3253156B1 (en) * | 2015-01-29 | 2020-08-05 | NTT DoCoMo, Inc. | User terminal, wireless base station, wireless communication system, and wireless communication method |
JP6369756B2 (ja) | 2015-02-26 | 2018-08-08 | パナソニックIpマネジメント株式会社 | 基地局及び送信制御方法 |
CN115189727B (zh) * | 2015-07-10 | 2024-06-07 | 交互数字专利控股公司 | 针对ofdma wlan的统一反馈 |
KR102340499B1 (ko) * | 2015-09-04 | 2021-12-17 | 삼성전자 주식회사 | 무선통신 시스템에서 상향링크 전송전력 제어 방법 및 장치 |
JP6204954B2 (ja) * | 2015-09-24 | 2017-09-27 | 株式会社Nttドコモ | 無線基地局、ユーザ端末及び無線通信方法 |
JP6938464B2 (ja) * | 2016-03-23 | 2021-09-22 | 株式会社Nttドコモ | 端末、無線基地局、無線通信システム及び無線通信方法 |
PL3920455T3 (pl) * | 2016-05-13 | 2023-06-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Wielorozdzielcze przesyłanie zwrotne CSI |
US20190261347A1 (en) * | 2016-11-11 | 2019-08-22 | Ntt Docomo, Inc. | User terminal and radio communication method |
US10567058B2 (en) * | 2017-02-08 | 2020-02-18 | Samsung Electronics Co., Ltd. | Method and apparatus for beam management |
WO2018203624A1 (ko) * | 2017-05-03 | 2018-11-08 | 엘지전자 주식회사 | 무선 통신 시스템에서 참조 신호를 수신하기 위한 방법 및 이를 위한 장치 |
US20190059013A1 (en) * | 2017-08-21 | 2019-02-21 | Samsung Electronics Co., Ltd. | Method and apparatus for multiplexing higher-resolution channel state information (csi) |
US10425208B2 (en) * | 2017-09-08 | 2019-09-24 | At&T Intellectual Property I, L.P. | Unified indexing framework for reference signals |
US20200403676A1 (en) * | 2018-01-11 | 2020-12-24 | Ntt Docomo, Inc. | Method of channel state information (csi) reporting in wireless communication system |
CN111937454B (zh) * | 2018-04-05 | 2024-03-01 | 株式会社Ntt都科摩 | 用户装置和无线基站 |
WO2019215888A1 (ja) * | 2018-05-10 | 2019-11-14 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
JP7132329B2 (ja) * | 2018-06-15 | 2022-09-06 | 株式会社Nttドコモ | 端末、無線通信方法、基地局及びシステム |
US11296827B2 (en) * | 2018-07-27 | 2022-04-05 | Qualcomm Incorporated | Feedback mode indication for coordinated transmission |
US20210184819A1 (en) * | 2018-08-27 | 2021-06-17 | Ntt Docomo, Inc. | User terminal and radio communication method |
JP7315573B2 (ja) * | 2018-09-21 | 2023-07-26 | 株式会社Nttドコモ | 端末、無線通信方法、基地局及びシステム |
WO2020143748A1 (zh) * | 2019-01-11 | 2020-07-16 | 华为技术有限公司 | 发送信道状态信息的方法和装置 |
CN111435864B (zh) * | 2019-01-11 | 2022-04-05 | 华为技术有限公司 | 发送信道状态信息的方法和装置 |
EP3952414A1 (en) * | 2019-03-29 | 2022-02-09 | Ntt Docomo, Inc. | User terminal and wireless communication method |
BR112021020890A2 (pt) * | 2019-04-19 | 2021-12-21 | Ntt Docomo Inc | Terminal, método de radiocomunicação para um terminal, estação base e sistema |
CN114514723B (zh) * | 2019-08-12 | 2024-03-01 | 株式会社Ntt都科摩 | 针对版本16类型ii信道状态信息(csi)的csi省略过程 |
US11337168B2 (en) * | 2019-11-27 | 2022-05-17 | Qualcomm Incorporated | Protecting shared low noise amplifiers by limiting transmission power |
CN115315975A (zh) * | 2020-03-27 | 2022-11-08 | 株式会社Ntt都科摩 | 终端、无线通信方法以及基站 |
CN117378234A (zh) * | 2021-05-13 | 2024-01-09 | 索尼集团公司 | 基站、通信设备和通信方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008060824A (ja) * | 2006-08-30 | 2008-03-13 | Matsushita Electric Ind Co Ltd | 基地局装置、通信端末装置及び受信品質の報告方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102461000B (zh) * | 2009-04-28 | 2015-04-08 | 诺基亚公司 | 信道状态信息反馈的方法及设备 |
CN101635950B (zh) * | 2009-08-14 | 2015-06-10 | 中兴通讯股份有限公司 | 一种确定小区参考信号位置的方法及装置 |
US8305987B2 (en) * | 2010-02-12 | 2012-11-06 | Research In Motion Limited | Reference signal for a coordinated multi-point network implementation |
JP5711277B2 (ja) * | 2010-03-17 | 2015-04-30 | エルジー エレクトロニクス インコーポレイティド | 複数アンテナをサポートする無線通信システムにおいてチャネル状態情報参照信号の設定情報を提供する方法及び装置 |
CN105207707B (zh) * | 2010-04-01 | 2019-01-15 | Lg电子株式会社 | 在无线接入系统中收发信道状态信息的方法和装置 |
CN105553532B (zh) * | 2010-07-19 | 2018-10-12 | Lg电子株式会社 | 在无线通信系统中发射控制信息的方法和设备 |
CN102291228B (zh) * | 2011-08-16 | 2014-08-06 | 电信科学技术研究院 | 信道状态信息的反馈、接收方法和设备 |
CN102291229B (zh) * | 2011-08-16 | 2014-06-04 | 电信科学技术研究院 | 一种信道状态信息的反馈方法、接收方法及其设备 |
-
2012
- 2012-06-26 JP JP2012143456A patent/JP5743965B2/ja active Active
-
2013
- 2013-06-24 CN CN201380032982.6A patent/CN104380787B/zh active Active
- 2013-06-24 WO PCT/JP2013/067237 patent/WO2014002943A1/ja active Application Filing
- 2013-06-24 US US14/410,973 patent/US9716540B2/en active Active
- 2013-06-24 EP EP13808944.6A patent/EP2887725B1/en active Active
- 2013-06-24 HU HUE13808944A patent/HUE033568T2/hu unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008060824A (ja) * | 2006-08-30 | 2008-03-13 | Matsushita Electric Ind Co Ltd | 基地局装置、通信端末装置及び受信品質の報告方法 |
Non-Patent Citations (4)
Title |
---|
"Feasibility Study for Evolved UTRA and UTRAN", 3GPP, TR25.912, September 2006 (2006-09-01) |
FUJITSU: "Email discussion[69-11]:FFS aspects of aperiodic CSI feedback for CoMP", 3GPP R1-122931, 3GPP, 21 May 2012 (2012-05-21), XP050660967 * |
PANASONIC: "eNB configuration for multiple CSI reporting", 3GPP R1-122192, 3GPP, 21 May 2012 (2012-05-21), XP050600456 * |
See also references of EP2887725A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017510218A (ja) * | 2014-01-07 | 2017-04-06 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | 複数のサブフレームセットのcsiフィードバック |
US10602504B2 (en) | 2014-01-07 | 2020-03-24 | Qualcomm Incorporated | Multiple subframe set CSI feedback |
JPWO2015107942A1 (ja) * | 2014-01-14 | 2017-03-23 | シャープ株式会社 | 基地局装置および端末装置 |
US10225725B2 (en) | 2014-01-14 | 2019-03-05 | Sharp Kabushiki Kaisha | Base station device and terminal device |
CN106233783A (zh) * | 2014-04-30 | 2016-12-14 | 华为技术有限公司 | 信道测量方法、信道测量装置、用户设备及系统 |
Also Published As
Publication number | Publication date |
---|---|
JP5743965B2 (ja) | 2015-07-01 |
EP2887725A4 (en) | 2016-07-13 |
JP2014007669A (ja) | 2014-01-16 |
EP2887725A1 (en) | 2015-06-24 |
HUE033568T2 (hu) | 2017-12-28 |
EP2887725B1 (en) | 2017-06-07 |
CN104380787B (zh) | 2016-09-28 |
US20150215022A1 (en) | 2015-07-30 |
US9716540B2 (en) | 2017-07-25 |
CN104380787A (zh) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5743965B2 (ja) | ユーザ端末、無線通信システム、無線通信方法及び無線基地局 | |
US10454554B2 (en) | Interference measurement method and apparatus for use in mobile communication system | |
EP2916585B1 (en) | Transmission and reception of reference signals in a wireless communication system comprising a plurality of base stations | |
US9634808B2 (en) | Radio communication system, radio communication method, user terminal and radio base station | |
JP5526165B2 (ja) | 無線通信システム、基地局装置、ユーザ端末、及びチャネル状態情報測定方法 | |
US9801190B2 (en) | Radio communication system, base station apparatus, user terminal and radio communication method | |
JP6096119B2 (ja) | 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 | |
WO2016199768A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
WO2013168561A1 (ja) | 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法 | |
WO2013051510A1 (ja) | 無線通信システム、フィードバック方法、ユーザ端末、及び無線基地局装置 | |
US9312984B2 (en) | Radio communication system, radio base station apparatus, user terminal and radio communication method | |
WO2013141301A1 (ja) | 無線通信システム、ユーザ端末、無線基地局装置及び無線通信方法 | |
WO2013069536A1 (ja) | 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法 | |
WO2013137218A1 (ja) | 無線基地局、ユーザ端末、無線通信方法及び無線通信システム | |
JP6084031B2 (ja) | 無線基地局装置、無線通信システム及び無線通信方法 | |
WO2013137219A1 (ja) | 無線通信システム、ユーザ端末、無線基地局装置及び無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13808944 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201407983 Country of ref document: ID |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14410973 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013808944 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013808944 Country of ref document: EP |