WO2014000912A1 - Objekterkennung für ein energieübertragungssystem - Google Patents
Objekterkennung für ein energieübertragungssystem Download PDFInfo
- Publication number
- WO2014000912A1 WO2014000912A1 PCT/EP2013/058834 EP2013058834W WO2014000912A1 WO 2014000912 A1 WO2014000912 A1 WO 2014000912A1 EP 2013058834 W EP2013058834 W EP 2013058834W WO 2014000912 A1 WO2014000912 A1 WO 2014000912A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- electrical
- energy transmission
- transmitting
- electrical load
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 43
- 238000001514 detection method Methods 0.000 title abstract description 4
- 238000000034 method Methods 0.000 claims description 17
- 230000008859 change Effects 0.000 claims description 13
- 238000004804 winding Methods 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 9
- 238000004590 computer program Methods 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 230000004907 flux Effects 0.000 description 17
- 230000001965 increasing effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
-
- H02J7/025—
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/10—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
- G01V3/101—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils by measuring the impedance of the search coil; by measuring features of a resonant circuit comprising the search coil
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/60—Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
Definitions
- the invention relates to a wireless energy transmission.
- the invention relates to a system and a method for detecting an object on an energy transmission path of a wireless energy transmission.
- An electrical appliance includes a load and a rechargeable battery to allow wireless use.
- power can be wirelessly transferred from a power supply to the small appliance using an electromagnetic field for energy transfer.
- the power supply and the small appliance each comprise a coil which can be positioned at a small distance from each other and thus together form essentially a transformer.
- the object can also be heated by Ummagnetleiters- or hysteresis losses.
- the heating can be considerable, so that a reliability of the transmitter or the receiver can not be guaranteed.
- the object can withdraw energy from the electromagnetic field see, so that the energy transfer to the receiver is disturbed.
- the invention is therefore based on the object of specifying a system, a method and a computer program product by means of which the most sensitive, reliable and selective determination of the object can be carried out in order to enable a reaction to the presence of the object.
- An inventive energy transmission system comprises a transmitting device with a transmitting coil and a receiving device with a receiving coil, wherein the coils for energy transmission are inductively coupled to each other, so that between them an energy transmission path exists.
- the energy transmission system further comprises an electrical load for connection to terminals of the receiving coil, detection means for detecting an electrical parameter indicative of the inductance of the transmitting coil while the electrical load is connected to the receiving coil, and determining means for determining an object in the region of the energy transmission path the base of the detected parameter.
- a voltage induced in the receiving coil acts in a similar way to one
- the receiving coil generates or amplifies its own magnetic field. If a magnetizable object is located in the area of the energy transmission path, in particular close to the receiver coil, this can thus be exposed to an amplified magnetic field.
- the electrical load includes a short circuit.
- a short circuit can help maximize this current without adding extra load.
- the receiver coil includes a plurality of windings, and the electrical load is configured to be connected to terminals of only one winding of the receiver coil.
- the magnetic field generated by the receiving coil can be controlled in an improved manner.
- the winding which can be connected to the electrical load can be designed to permit increased current flow without damage, for example by using a correspondingly thicker wire for this winding.
- a separating device may be provided for insulating the terminals of at least one of the other windings of electrical loads. This allows the determination under better controllable and better reproducible conditions.
- a payload can be separated from the receiving coil, whose power supply is the purpose of energy transfer.
- the energy transfer system comprises a resonant transformer comprising a resonant capacitor and the transmit coil, the detector being configured to detect the electrical parameter at the resonant transformer.
- a change in the inductance of the transmitting coil can lead to an altered vibration behavior of the resonance transformer, wherein the vibration behavior can be easily determined by measurement.
- the electrical parameter may include one of a current, a frequency, a phase, or a damping. Some of these parameters may be advantageously determinable on the resonant transformer described above. At- Instead of damping, a quality factor of the resonance transformer can also be determined
- D ⁇ , where D is the attenuation and Q is the quality factor (the quality).
- An inventive method for detecting an object in the region of an inductive energy transmission path which consists between a transmitting coil and a receiving coil inductively coupled to the transmitting coil comprises steps of connecting an electrical load to terminals of the receiving coil, detecting an indicative of the inductance of the transmitting coil electrical parameter and determining the object based on the detected parameter.
- the method may be implementable on a conventional inductive power transmission system. If an object has been determined, the energy transfer can be throttled or aborted in order to avoid overheating the object and to reduce the risk of an accident.
- the magnetic field to which the object is exposed is controlled by the transmitting device and at the same time, likewise by the transmitting device, the effect of any object present in the area of the energy transmission path can be detected.
- the object is determined based on a change in the electrical parameter during a change in a voltage at the terminals of the transmit coil.
- the voltage at the transmitting coil can be changed continuously or suddenly, a periodic change is also possible. So objects of different sizes or
- Susceptibilities be detectable. In particular, it can be avoided to expose the object to such a strong magnetic field for the purpose of determining its effect that dangerous overheating may already occur during the determination.
- the object is based on a change in the electrical Parameters determined during a change in the electrical load of the receiver coil.
- a computer program product comprises program code means for carrying out the method described, when the computer program product runs on a processing device or is stored on a computer-readable data carrier.
- Fig. 2 is a detail of the system of Fig. 1;
- Fig. 3 is an equivalent circuit diagram for a magnetic flux in the area shown in Fig. 2, and
- FIG. 4 is a flowchart of a method for determining an object in the system of FIG. 1.
- Fig. 1 shows a system 100 for wireless energy transmission.
- the system 100 comprises a transmitting device 105 and a receiving device 110, between which an energy transmission path 15 is defined.
- an object 120 may be located in the area of the energy transmission path 15, an object 120 may be located.
- the object 120 is conductive or magnetizable, so that a changing magnetic field can cause eddy currents, hysteresis losses, or re-magnetization losses in the object 120, which heat the object 120. It is the task of the illustrated system 100 to determine the existence of the object 120.
- the transmitting device 105 which may be comprised, for example, by a power supply, comprises a transmitting coil 125 for converting an electrical current in a magnetic field in the area of the energy transmission path 1 15.
- the transmitting coil 125 is connected to a voltage source 130, which provides an alternating current.
- the voltage source 130 may be connected to a conventional power supply network.
- a resonant capacitor 135 is connected to the transmit coil 125 in series with the voltage source 130 such that the resonant capacitor 135 forms a resonant transformer 140 with the transmit coil 125.
- the resonant capacitor 135 may also be connected in parallel with the transmitter coil 125.
- a resonant frequency of the resonant transformer 140 is dependent on the inductance of the transmitting coil 125 and the capacitance of the resonant capacitor 135.
- a receiving coil 145 of the receiving device 1 At the other end of the energy transmission path 1 15 is a receiving coil 145 of the receiving device 1 10.
- the receiving coil 145 is directly connected to a payload, which includes an exemplary charge controller 150 for an accumulator 155 in the representation of FIG.
- a switching device 160 is provided in order to connect an electrical load 165 to terminals of the receiving coil 145e.
- the electrical load 165 may in particular a
- the payload in this case the charge controller 150 and / or the accumulator 155, remain connected to the terminals of the receiver coil 145.
- the payload is separated from the receiver coil 145 at least one side while the electrical load 165 is applied to the receiver coil 145.
- the receiving coil 145 includes a plurality of windings, whose ends are led out as terminals on the receiving coil 145.
- the switching device 160 is configured to connect the electrical load 165 with only one of the windings of the receiving coil 145.
- a separator 170 is provided to disconnect one or more of the remaining windings of electrical loads, particularly the payload, while another winding of the receiver coil 145 is connected to the electrical load 165.
- a transmission device 175 is provided to the
- the transmission device 175 can be wired or wireless, wherein in one embodiment an information transmission by means of variation of the magnetic field in the area of the energy transmission path 15 is provided.
- the transmission device 175 is connected by the transmission device 105 to a control device 180 which controls the system 100 in order to determine the object 120.
- the control device 180 is also set up to control a conventional energy transmission process from the transmitting device 105 to the receiving device 110.
- the control device 180 may be connected to the voltage source 130.
- the controller 180 is associated with the transmit coil 125 or the resonant transformer 140 such that the controller 180 may sample an electrical parameter indicative of the inductance of the resonant transformer 140. This parameter may include an electrical current, an electrical voltage, a frequency, an attenuation or a quality factor at the transmitting coil 125 and the resonance transformer 140, respectively.
- the control device 180 is configured to control the receiving device 1 10 in such a way that the electrical load 165 is connected to the receiving coil 145.
- the voltage source 130 can be driven to change the voltage at the transmitter coil 125.
- the object 120 may be determined based on a change in the electrical parameter or based on an absolute value of the electrical parameter indicative of the inductance of the transmit coil 125.
- FIG. 2 shows a section of the energy transmission path 1 15 from FIG. 1.
- the illustration corresponds to a part of an exemplary physical structure of the transmitting coil 125 and of the receiving coil 145 as parts of the transmitting device 105 and of the receiving device 1 10.
- the energy transmission path 1 15 is indicated.
- the coils 125 and 145 also magnetic field lines are indicated.
- Fig. 3 shows a magnetic equivalent circuit diagram for the area shown in Fig. 2. Resistive symbols for magnetic resistances and voltage source symbols for magnetic fluxes are available. The illustration is in the correct position with regard to the representation of FIG. 2.
- a first magnetic flux 305 represents the magnetic induction (B field) formed by the actively energized transmitting coil 125.
- Magnetic resistors 310, 315, 320, and 325 represent the horizontal and vertical resistances around the transmit coil 125, respectively.
- Housing 205 of the transmitting device 105 represents a vertically extending magnetic resistance 330 magnetic leakage.
- Magnetic resistors 335 and 340 represent resistances in the horizontal direction between the housings 205.
- a magnetic resistance 345 represents the magnetic flux through the object 120.
- the equivalent circuit diagram shown applies only when the receiving coil 1 10 in
- the Idle is located, so if no electrical load is connected to the receiving coil 1 10. As a result of the electrical load, the voltage induced in the receiving coil 145 is immediately converted back into a magnetic field, so that the second magnetic flux 370 can be understood as a controllable source whose magnetic flux is proportional to the magnetic flux of the first magnetic flux 305.
- the second magnetic flux 370 is also low.
- the inductance of the transmitting coil 125 decreases, which can be determined, for example, based on an increasing resonance frequency of the resonance transformer 140.
- the magnetic flux of the first magnetic flux 305 can be increased or on the other hand the magnetic resistance of the second flooding 370 are lowered.
- the number of turns of the transmitting coil 125 or the current flowing through the transmitting coil 125 can be increased.
- the receiving coil 145 can also be electrically charged or short-circuited, as a result of which the magnetic flux through the object 120 or through the magnetic resistance 345 of the object 120 as a whole increases.
- the method 400 shows a flow chart of a method 400 for determining the object 120 in the system of FIG. 1.
- the method 400 is set up in particular for controlling the system 100 by the control device 180.
- it is a computer program product for controlling a programmable microcomputer included in the controller 180.
- the method begins in a step 405, in which a usual charging operation takes place in which electrical energy is transported by means of an alternating magnetic field on the energy transmission path 15 from the transmitting coil 125 to the receiving coil 145.
- the receiving coil 145 is separated from the payload 150, 155 in a step 410. This step can also be skipped.
- the receiving coil 145 is connected to an electrical load 165 so that the current flowing through the receiving coil 145 is increased.
- an excitation for the transmit coil 125 is determined by driving the voltage source 130 to provide a predetermined voltage. Subsequently, in a step 425, the transmitting coil 125 is excited, preferably with an alternating voltage.
- the AC voltage may be predetermined by a resonant frequency of the resonant transformer 140.
- step 430 an electrical parameter is detected at the transmitting coil 125 or the resonance transformer 140.
- step 435 it is determined whether the object 120 is present in the area of the transmission path 15. If this is the case, then in a step 440 a corresponding measure can be taken, for example a reduction in the transmitted power or an end of the energy transmission.
- step 445 the receiving coil 145 is again disconnected from the electrical load 165 and optionally connected to the original load, for example the payload 150, 155. Thereafter, the method may return to step 405 and go through again.
- step 435 If it has been determined in step 435 that there is no object 120, then it is checked in a following step 450 whether all intended excitations of the transmitting coil 125 have already been applied. If so, the object 120 can not be determined and the method 400 returns via step 445 to step 405.
- step 455 the stimulus is changed before the method 400 proceeds to step 425. If only one excitation is used, steps 450 and 455 may be omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
Ein Energieübertragungssystem umfasst eine Sendeeinrichtung mit einer Sendespule und eine Empfangseinrichtung mit einer Empfangsspule, wobei die Spulen zur Energieübertragung induktiv miteinander koppelbar sind, so dass zwischen ihnen eine Energieübertragungsstrecke besteht. Das Energieübertragungssystem umfasst weiter eine elektrische Last zur Verbindung mit Anschlüssen der Empfangsspule, eine Erfassungseinrichtung zur Erfassung eines auf die Induktivität der Sendespule hinweisenden elektrischen Parameters, während die elektrische Last mit der Empfangsspule verbunden ist, und eine Bestimmungseinrichtung zur Bestimmung eines Objekts im Bereich der Energieübertragungsstrecke auf der Basis des erfassten Parameters.
Description
Beschreibung
Titel
Objekterkennung für ein Energieübertragungssystem Die Erfindung betrifft eine drahtlose Energieübertragung. Insbesondere betrifft die Erfindung ein System und ein Verfahren zur Erfassung eines Objekts auf einer Energieübertragungsstrecke einer drahtlosen Energieübertragung.
Stand der Technik
Ein elektrisches Kleingerät umfasst einen Verbraucher und einen Akkumulator, um einen kabellosen Einsatz zu erlauben. Um den Akkumulator aufzuladen, kann Energie auf drahtlose Weise von einem Netzteil zum Kleingerät übertragen werden, indem ein elektromagnetisches Feld zur Energieübertragung genutzt wird. Dazu umfassen das Netzteil und das Kleingerät jeweils eine Spule, die in geringem Abstand zueinander positionierbar sind und so zusammen im Wesentlichen einen Transformator bilden.
Gerät ein elektrisch leitfähiges Objekt in den Bereich des elektromagnetischen Feldes, so können sich Wirbelströme bilden, die das Objekt erwärmen. Ist das
Objekt magnetisierbar, so kann das Objekt auch durch Ummagnetisierungs- bzw. Hystereseverluste erwärmt werden. Die Erwärmung kann beträchtlich sein, sodass eine Betriebssicherheit des Senders oder des Empfängers nicht gewährleistet sein können. Außerdem kann das Objekt Energie aus dem elektromagneti- sehen Feld entziehen, sodass die Energieübertragung zum Empfänger gestört ist.
Es ist möglich, die Anwesenheit des Objekts zu erfassen, indem der Einfluss des Objekts auf die Induktivität der Senderspule bestimmt wird. Ist das Objekt jedoch relativ klein oder relativ weit von der Sendespule entfernt, so kann eine zuverlässige Erfassung des Objekts schwierig sein.
Der Erfindung liegt daher die Aufgabe zugrunde, ein System, ein Verfahren und ein Computerprogrammprodukt anzugeben, mittels denen eine möglichst sensible, zuverlässige und trennscharfe Bestimmung des Objekts durchgeführt werden können, um eine Reaktion auf die Anwesenheit des Objekts zu ermöglichen. Die
Erfindung löst die angegebenen Probleme mittels eines Energieübertragungssystems, eines Verfahrens und eines Computerprogrammprodukts mit den Merkmalen der unabhängigen Ansprüche. Unteransprüche geben bevorzugte Ausführungsformen wieder.
Offenbarung der Erfindung
Ein erfindungsgemäßes Energieübertragungssystem umfasst eine Sendeeinrichtung mit einer Sendespule und eine Empfangseinrichtung mit einer Empfangs- spule, wobei die Spulen zur Energieübertragung induktiv miteinander koppelbar sind, sodass zwischen ihnen eine Energieübertragungsstrecke besteht. Das Energieübertragungssystem umfasst weiter eine elektrische Last zur Verbindung mit Anschlüssen der Empfangsspule, eine Erfassungseinrichtung zur Erfassung eines auf die Induktivität der Sendespule hinweisenden elektrischen Parameters, während die elektrische Last mit der Empfangsspule verbunden ist, und eine Bestimmungseinrichtung zur Bestimmung eines Objekts im Bereich der Energieübertragungsstrecke auf der Basis des erfassten Parameters.
Durch das Vorsehen einer elektrischen Last an den Anschlüssen der Empfangs- spule wirkt eine in der Empfangsspule induzierte Spannung ähnlich wie eine
Stromquelle, sodass die Empfangsspule ein eigenes magnetisches Feld generiert bzw. verstärkt. Befindet sich ein magnetisierbares Objekt im Bereich der Energieübertragungsstrecke, insbesondere nahe an der Empfangsspule, so kann dieses somit einem verstärkten magnetischen Feld ausgesetzt sein. Die Energie, die das Objekt aus dem Magnetfeld aufgrund von Wirbelströmen,
Hystereseverlusten oder Ummagnetisierungsverlusten entnimmt, kann dadurch vergrößert sein. Dementsprechend kann ein Effekt des Objekts auf die Induktivität der Sendespule ebenfalls vergrößert sein. Diese Änderung kann verbessert nachweisbar sein, sodass das Objekt mit verbesserter Genauigkeit erfasst wer- den kann. Außerdem kann auch ein kleineres oder dem magnetischen Feld weniger suszeptibles Objekt mittels des beschriebenen Systems erfassbar sein.
In einer bevorzugten Ausführungsform umfasst die elektrische Last einen Kurzschluss. In jedem Fall ist es bevorzugt, die elektrische Last der Empfangsspule gegenüber einem üblichen Ladebetrieb zu vergrößern, sodass ein erhöhter Strom durch die Empfangsspule fließt, während die elektrische Last mit der Empfangsspule verbunden ist. Ein Kurzschluss kann dazu beitragen, diesen Strom zu maximieren, ohne eine zusätzliche Last vorzusehen.
In einer Ausführungsform umfasst die Empfangsspule mehrere Wicklungen und die elektrische Last ist dazu eingerichtet, mit Anschlüssen nur einer Wicklung der Empfangsspule verbunden zu werden. Dadurch kann das durch die Empfangsspule generierte magnetische Feld verbessert steuerbar sein. Insbesondere kann die mit der elektrischen Last verbindbare Wicklung dazu ausgelegt sein, einen erhöhten Stromdurchfluss ohne Schäden zu erlauben, beispielsweise indem für diese Wicklung ein entsprechend dickerer Draht verwendet wird.
In einer Weiterentwicklung kann eine Trenneinrichtung zur Isolation der Anschlüsse wenigstens einer der anderen Wicklungen von elektrischen Lasten vorgesehen sein. Dadurch kann die Bestimmung unter besser kontrollierbaren und besser reproduzierbaren Bedingungen erfolgen. Mittels der Trenneinrichtung kann insbesondere eine Nutzlast von der Empfangsspule getrennt werden, deren Energieversorgung Zweck der Energieübertragung ist.
In einer Ausführungsform umfasst das Energieübertragungssystem einen Resonanztransformator, der einen Resonanzkondensator und die Sendespule umfasst, wobei die Erfassungseinrichtung dazu eingerichtet ist, den elektrischen Parameter am Resonanztransformator zu erfassen.
Eine Änderung der Induktivität der Sendespule kann zu einem veränderten Schwingverhalten des Resonanztransformators führen, wobei das Schwingverhalten messtechnisch leicht bestimmbar sein kann.
Der elektrische Parameter kann eines von einem Strom, einer Frequenz, einer Phase oder einer Dämpfung umfassen. Einige dieser Parameter können vorteilhaft an dem oben beschriebenen Resonanztransformator bestimmbar sein. An-
stelle der Dämpfung kann auch ein Gütefaktor des Resonanztransformators bestimmt werden
Dabei gilt: D = ^ , wobei D die Dämpfung und Q der Gütefaktor (die Güte) ist.
Ein erfindungsgemäßes Verfahren zur Erfassung eines Objekts im Bereich einer induktiven Energieübertragungsstrecke, die zwischen einer Sendespule und einer mit der Sendespule induktiv koppelbaren Empfangsspule besteht, umfasst Schritte des Verbindens einer elektrischen Last mit Anschlüssen der Empfangsspule, des Erfassens eines auf die Induktivität der Sendespule hinweisenden elektrischen Parameters und des Bestimmens des Objekts auf der Basis des er- fassten Parameters.
Das Verfahren kann an einem üblichen induktiven Energieübertragungssystem implementierbar sein. Wurde ein Objekt bestimmt, so kann die Energieübertragung gedrosselt oder abgebrochen werden, um eine Überhitzung des Objekts zu vermeiden und eine damit verbundene Unfallgefahr zu senken.
Vorteilhafterweise kann das magnetische Feld, dem das Objekt ausgesetzt ist, seitens der Sendeeinrichtung gesteuert und gleichzeitig, ebenfalls seitens der Sendeeinrichtung, der Effekt eines eventuell vorhandenen Objekts im Bereich der Energieübertragungsstrecke erfasst werden.
In einer bevorzugten Ausführungsform wird das Objekt auf der Basis einer Änderung des elektrischen Parameters während einer Änderung einer Spannung an den Anschlüssen der Sendespule bestimmt. Die Spannung an der Sendespule kann kontinuierlich oder sprunghaft geändert werden, eine periodische Änderung ist ebenfalls möglich. So können Objekte unterschiedlicher Größen bzw.
Suszeptibilitäten erfassbar sein. Insbesondere kann es vermieden werden, das Objekt zwecks Bestimmung seines Effekts einem so starken Magnetfeld auszusetzen, dass bereits während der Bestimmung eine gefährliche Überhitzung eintreten kann.
In einer anderen Ausführungsform, die mit der letztgenannten Ausführungsform kombinierbar ist, wird das Objekt auf der Basis einer Änderung des elektrischen
Parameters während einer Änderung der elektrischen Last der Empfangsspule bestimmt. Die oben genannten Vorteile können auch bei dieser Ausführungsform erbracht werden.
Ein erfindungsgemäßes Computerprogrammprodukt umfasst Programmcodemittel zur Durchführung des beschriebenen Verfahrens, wenn das Computerprogrammprodukt auf einer Verarbeitungseinrichtung abläuft oder auf einem computerlesbaren Datenträger gespeichert ist.
Kurzbeschreibung der Figuren
Die Erfindung wird nun mit Bezug auf die beigefügten Figuren genauer beschrieben, in denen:
Fig. 1 ein System zur drahtlosen Energieübertragung;
Fig. 2 ein Detail des Systems aus Fig. 1 ;
Fig. 3 ein Ersatzschaltbild für einen magnetischen Fluss in dem in Fig. 2 dargestellten Bereich, und
Fig. 4 ein Ablaufdiagramm eines Verfahrens zur Bestimmung eines Objekts im System von Fig. 1 darstellt.
Genaue Beschreibung von Ausführungsbeispielen
Fig. 1 zeigt ein System 100 zur drahtlosen Energieübertragung. Das System 100 umfasst eine Sendeeinrichtung 105 und eine Empfangseinrichtung 1 10, zwischen denen eine Energieübertragungsstrecke 1 15 definiert ist. Im Bereich der Energieübertragungsstrecke 1 15 kann sich ein Objekt 120 befinden. Das Objekt 120 ist leitfähig oder magnetisierbar, sodass ein sich änderndes magnetisches Feld Wirbelströme, Hystereseverluste oder Ummagnetisierungsverluste in dem Objekt 120 hervorrufen können, die das Objekt 120 erwärmen. Es ist Aufgabe des dargestellten Systems 100, die Existenz des Objekts 120 zu bestimmen.
Die Sendeeinrichtung 105, die beispielsweise von einem Netzteil umfasst sein kann, umfasst eine Sendespule 125 zur Umwandlung eines elektrischen Stroms
in einem Magnetfeld im Bereich der Energieübertragungsstrecke 1 15. Die Sendespule 125 ist mit einer Spannungsquelle 130 verbunden, die einen Wechselstrom bereitstellt. Die Spannungsquelle 130 kann mit einem üblichen Energieversorgungsnetz verbunden sein. Vorzugsweise ist ein Resonanzkondensator 135 mit der Sendespule 125 in Serie mit der Spannungsquelle 130 verbunden, sodass der Resonanzkondensator 135 mit der Sendespule 125 einen Resonanztransformator 140 bildet. Der Resonanzkondensator 135 kann jedoch auch parallel mit der Sendespule 125 verbunden sein. Eine Resonanzfrequenz des Resonanztransformators 140 ist von der Induktivität der Sendespule 125 sowie der Kapazität des Resonanzkondensators 135 abhängig.
Am anderen Ende der Energieübertragungsstrecke 1 15 liegt eine Empfangsspule 145 der Empfangseinrichtung 1 10. In bekannten Empfangseinrichtungen ist die Empfangsspule 145 unmittelbar mit einer Nutzlast verbunden, die in der Darstel- lung von Fig. 1 einen exemplarischen Laderegler 150 für einen Akkumulator 155 umfasst. Im Unterschied dazu ist vorliegend noch eine Schalteinrichtung 160 vorgesehen, um eine elektrische Last 165 mit Anschlüssen der Empfangsspu- Ie145 zu verbinden. Die elektrische Last 165 kann insbesondere eine
niederohmige Last oder einen Kurzschluss umfassen. Dabei können in einer Ausführungsform die Nutzlast, hier also der Laderegler 150 und/oder der Akkumulator 155, mit den Anschlüssen der Empfangsspule 145 verbunden bleiben. In einer anderen Ausführungsform wird die Nutzlast von der Empfangsspule 145 wenigstens einseitig getrennt, während die elektrische Last 165 an die Empfangsspule 145 angelegt wird.
In der dargestellten Ausführungsform umfasst die Empfangsspule 145 mehrere Wicklungen, deren Enden als Anschlüsse an der Empfangsspule 145 herausgeführt sind. Die Schalteinrichtung 160 ist dazu eingerichtet, die elektrische Last 165 mit nur einer der Wicklungen der Empfangsspule 145 zu verbinden.
Bevorzugterweise ist eine Trenneinrichtung 170 vorgesehen, um eine oder mehrere der verbleibenden Wicklungen von elektrischen Lasten, insbesondere der Nutzlast, zu trennen, während eine andere Wicklung der Empfangsspule 145 mit der elektrischen Last 165 verbunden ist. Bevorzugterweise ist eine Übertragungseinrichtung 175 vorgesehen, um die
Schalteinrichtung 160 und gegebenenfalls auch die Trenneinrichtung 170 seitens
der Sendeeinrichtung 105 steuern zu können. Die Übertragungseinrichtung 175 kann drahtgebunden oder drahtlos erfolgen, wobei in einer Ausführungsform eine Informationsübermittlung mittels Variation des magnetischen Feldes im Bereich der Energieübertragungsstrecke 1 15 vorgesehen ist.
Die Übertragungseinrichtung 175 ist seitens der Sendeeinrichtung 105 mit einer Steuereinrichtung 180 verbunden, die das System 100 steuert, um das Objekt 120 zu bestimmen. Bevorzugterweise ist die Steuereinrichtung 180 auch zur Steuerung eines üblichen Energieübertragungsvorgangs von der Sendeeinrich- tung 105 zur Empfangseinrichtung 1 10 eingerichtet. Dazu kann die Steuereinrichtung 180 mit der Spannungsquelle 130 verbunden sein. Ferner ist die Steuereinrichtung 180 derart mit der Sendespule 125 oder dem Resonanztransformator 140 verknüpft, dass die Steuereinrichtung 180 einen elektrischen Parameter abtasten kann, der auf die Induktivität des Resonanztransformators 140 hinweist. Dieser Parameter kann einen elektrischen Strom, eine elektrische Spannung, eine Frequenz, eine Dämpfung oder einen Gütefaktor an der Sendespule 125 bzw. dem Resonanztransformator 140 umfassen.
Die Steuereinrichtung 180 ist dazu eingerichtet, die Empfangseinrichtung 1 10 derart anzusteuern, dass die elektrische Last 165 mit der Empfangsspule 145 verbunden wird. In einer bevorzugten Ausführungsform kann gleichzeitig oder darauf folgend die Spannungsquelle 130 dazu angesteuert werden, die Spannung an der Sendespule 125 zu verändern. Das Objekt 120 kann auf der Basis einer Änderung des elektrischen Parameters oder auf der Basis eines absoluten Wertes des elektrischen Parameters, der auf die Induktivität der Sendespule 125 hinweist, bestimmt werden.
Fig. 2 zeigt einen Ausschnitt aus der Energieübertragungsstrecke 1 15 aus Fig. 1 . Die Darstellung entspricht einem Teil eines exemplarischen physikalischen Auf- baus der Sendespule 125 und der Empfangsspule 145 als Teile der Sendeeinrichtung 105 bzw. der Empfangseinrichtung 1 10. Zwischen den Spulen 125 und 145 ist die Energieübertragungsstrecke 1 15 angedeutet. Zwischen den Spulen 125 und 145 sind außerdem magnetische Feldlinien angedeutet. Zwischen Begrenzungen 205, die exemplarisch Abschnitte von Gehäusen der Sendeeinrich- tung 105 bzw. der Empfangseinrichtung 1 10 repräsentieren, ist das Objekt 120 angeordnet.
Fig. 3 zeigt ein magnetisches Ersatzschaltbild für den in Fig. 2 dargestellten Bereich. Dabei stehen Widerstandssymbole für magnetische Widerstände und Spannungsquellen-Symbole für magnetische Durchflutungen. Die Darstellung ist lagerichtig bezüglich der Darstellung von Fig. 2.
Eine erste magnetische Durchflutung 305 repräsentiert die durch die aktiv bestromte Sendespule 125 gebildete magnetische Induktion (B-Feld). Magnetische Widerstände 310, 315, 320 und 325 repräsentieren die Widerstände im ho- rizontalen bzw. vertikalen Bereich um die Sendespule 125 herum. Jenseits des
Gehäuses 205 der Sendeeinrichtung 105 repräsentiert ein vertikal verlaufender magnetischer Widerstand 330 magnetische Streuverluste. Magnetische Widerstände 335 und 340 repräsentieren Widerstände in horizontaler Richtung zwischen den Gehäusen 205. Ein magnetischer Widerstand 345 repräsentiert den magnetischen Fluss durch das Objekt 120. Jenseits des zweiten Gehäuses 205, rechts in Fig. 3, sind weitere magnetische Widerstände 350 bis 365, sowie eine zweite magnetische Durchflutung 370 eingetragen, die den Elementen 305 bis 325 entsprechen. Das dargestellte Ersatzschaltbild gilt nur, wenn sich die Empfangsspule 1 10 im
Leerlauf befindet, also wenn kein elektrischer Verbraucher an die Empfangsspule 1 10 angeschlossen ist. Durch die elektrische Last wird die in der Empfangsspule 145 induzierte Spannung sofort wieder in ein Magnetfeld umgesetzt, sodass die zweite magnetische Durchflutung 370 als steuerbare Quelle begriffen werden kann, deren magnetischer Fluss proportional zum magnetischen Fluss der ersten magnetischen Durchflutung 305 ist.
Ist die elektrische Last 165 gering, wie es während eines normalen Ladebetriebs des Systems 100 der Fall ist, so ist die zweite magnetische Durchflutung 370 ebenfalls gering. Je größer die elektrische Last 165 ist, desto größer ist die magnetische Durchflutung 370. Mit steigender Durchflutung 370 sinkt die Induktivität der Sendespule 125, was beispielsweise anhand einer steigenden Resonanzfrequenz des Resonanztransformators 140 bestimmt werden kann.
Um die Induktion der Sendespule 125 zu erhöhen, können einerseits der magnetische Fluss der ersten magnetischen Durchflutung 305 erhöht oder andererseits
der magnetische Widerstand der zweiten Durchflutung 370 gesenkt werden. Um den magnetischen Fluss zu erhöhen, können die Windungszahl der Sendespule 125 oder der durch die Sendespule 125 fließende Strom erhöht werden. Um den magnetischen Fluss zu erhöhen, kann auch die Empfangsspule 145 elektrisch belastet bzw. kurzgeschlossen werden, wodurch der magnetische Fluss durch das Objekt 120 bzw. durch den magnetischen Widerstand 345 des Objekts 120 insgesamt ansteigt.
Fig. 4 zeigt ein Ablaufdiagramm eines Verfahrens 400 zur Bestimmung des Objekts 120 im System von Fig. 1 . Das Verfahren 400 ist insbesondere zur Steuerung des Systems 100 durch die Steuereinrichtung 180 eingerichtet. In einer Ausführungsform handelt es sich um ein Computerprogrammprodukt zur Steuerung eines programmierbaren Mikrocomputers, der von der Steuereinrichtung 180 umfasst ist.
Das Verfahren beginnt in einem Schritt 405, in dem ein üblicher Ladebetrieb erfolgt, bei dem elektrische Energie mittels eines magnetischen Wechselfelds auf der Energieübertragungsstrecke 1 15 von der Sendespule 125 zur Empfangsspule 145 transportiert wird.
Um das Objekt 120 zu bestimmen, wird in einem Schritt 410 die Empfangsspule 145 von der Nutzlast 150, 155 getrennt. Dieser Schritt kann auch übersprungen werden.
Anschließend wird die Empfangsspule 145 mit einer elektrischen Last 165 verbunden, sodass der durch die Empfangsspule 145 fließende Strom erhöht wird.
Ferner wird in einem Schritt 420 eine Anregung für die Sendespule 125 bestimmt, indem die Spannungsquelle 130 dazu angesteuert wird, eine vorbestimmte Spannung bereitzustellen. Anschließend wird in einem Schritt 425 die Sendespule 125 angeregt, und zwar vorzugsweise mit einer Wechselspannung. Die Wechselspannung kann durch eine Resonanzfrequenz des Resonanztransformators 140 vorbestimmt sein.
Anschließend wird in einem Schritt 430 ein elektrischer Parameter an der Sendespule 125 bzw. dem Resonanztransformator 140 erfasst. Auf der Basis des er-
fassten Parameters wird in einem Schritt 435 bestimmt, ob das Objekt 120 im Bereich der Übertragungsstrecke 1 15 vorhanden ist. Ist dies der Fall, so kann in einem Schritt 440 eine korrespondierende Maßnahme ergriffen werden, beispielsweise eine Verringerung der übertragenen Leistung oder ein Beenden der Energieübertragung. Anschließend wird in einem Schritt 445 die Empfangsspule 145 wieder von der elektrischen Last 165 getrennt und gegebenenfalls mit der ursprünglichen Last, beispielsweise der Nutzlast 150, 155, verbunden. Danach kann das Verfahren zum Schritt 405 zurückkehren und erneut durchlaufen.
Wurde im Schritt 435 bestimmt, dass kein Objekt 120 vorliegt, so wird in einem folgenden Schritt 450 überprüft, ob alle vorgesehenen Anregungen der Sendespule 125 bereits angewendet wurden. Ist dies der Fall, so kann das Objekt 120 nicht bestimmt werden und das Verfahren 400 kehrt über den Schritt 445 zurück zum Schritt 405.
Andernfalls wird in einem Schritt 455 die Anregung geändert, bevor das Verfahren 400 mit dem Schritt 425 fortfährt. Wird nur eine Anregung verwendet, so können die Schritte 450 und 455 wegfallen.
Claims
1 . Energieübertragungssystem (100), umfassend
- eine Sendeeinrichtung (105) mit einer Sendespule (125);
- eine Empfangseinrichtung (1 10) mit einer Empfangsspule (145),
- wobei die Spulen (125, 145) zur Energieübertragung induktiv miteinander koppelbar sind, so dass zwischen ihnen eine Energieübertragungsstrecke (1 15) besteht,
- eine elektrische Last (165) zur Verbindung mit Anschlüssen der Empfangsspule (145);
- eine Erfassungseinrichtung (180) zur Erfassung eines auf die Induktivität der Sendespule (125) hinweisenden elektrischen Parameters, während die elektrische Last mit der Empfangsspule (145) verbunden ist, und
- eine Bestimmungseinrichtung (180) zur Bestimmung eines Objekts (120) im Bereich der Energieübertragungsstrecke (1 15) auf der Basis des er- fassten Parameters.
2. Energieübertragungssystem (100) nach Anspruch 1 , wobei die elektrische Last (165) einen Kurzschluss umfasst.
3. Energieübertragungssystem (100) nach Anspruch 1 oder 2, wobei die Empfangsspule (145) mehrere Wicklungen umfasst und die elektrische Last (165) zur Verbindung mit Anschlüssen nur einer Wicklung eingerichtet ist.
4. Energieübertragungssystem (100) nach Anspruch 3, ferner umfassend eine Trenneinrichtung (170) zur Isolation der Anschlüsse der anderen Wicklungen von elektrischen Lasten (150, 155).
5. Energieübertragungssystem (100) nach einem der vorangehenden Ansprüche, ferner umfassend einen Resonanztransformator (140), der einen Resonanzkondensator (135) und die Sendespule (125) umfasst, wobei die Erfassungseinrichtung (180) dazu eingerichtet ist, den elektrischen Parameter am
Resonanztransformator (140) zu erfassen.
Energieübertragungssystem (100) nach einem der vorangehenden Ansprüche, wobei der elektrische Parameter eines von einem Strom, einer Frequenz, einer Phase oder einer Dämpfung umfasst.
Verfahren (400) (400) zur Erfassung eines Objekts im Bereich einer induktiven Energieübertragungsstrecke (1 15), die zwischen einer Sendespule (125) und einer mit der Sendespule (125) induktiv koppelbaren Empfangsspule (145) besteht, folgende Schritte umfassend:
- Verbinden (415) einer elektrischen Last (165) mit Anschlüssen der Empfangsspule (145);
- Erfassen (430) eines auf die Induktivität der Sendespule (125) hinweisenden elektrischen Parameters, und
- Bestimmen (435) des Objekts (120) auf der Basis des erfassten Parameters.
Verfahren (400) nach Anspruch 7, wobei das Objekt (120) auf der Basis einer Änderung des elektrischen Parameters während einer Änderung einer Spannung an Anschlüssen der Sendespule (125) bestimmt wird.
Verfahren (400) nach einem der Ansprüche 7 oder 8, wobei das Objekt (120) auf der Basis einer Änderung des elektrischen Parameters während einer Änderung der elektrischen Last (165) der Empfangsspule (145) bestimmt wird.
0. Computerprogrammprodukt mit Programmcodemitteln zur Durchführung des Verfahrens (400) nach einem der vorangehenden Ansprüche 6 bis 9, wenn das Computerprogrammprodukt auf einer Verarbeitungseinrichtung (180) abläuft oder auf einem computerlesbaren Datenträger gespeichert ist.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/410,490 US9864090B2 (en) | 2012-06-26 | 2013-04-29 | Object detection for a power transfer system |
CN201380034358.XA CN104412485B (zh) | 2012-06-26 | 2013-04-29 | 用于能量传输系统的对象识别 |
EP13720345.1A EP2865069B1 (de) | 2012-06-26 | 2013-04-29 | Objekterkennung für ein energieübertragungssystem |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012210897.1 | 2012-06-26 | ||
DE102012210897.1A DE102012210897A1 (de) | 2012-06-26 | 2012-06-26 | Objekterkennung für ein Energieübertragungssystem |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014000912A1 true WO2014000912A1 (de) | 2014-01-03 |
Family
ID=48289131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/058834 WO2014000912A1 (de) | 2012-06-26 | 2013-04-29 | Objekterkennung für ein energieübertragungssystem |
Country Status (5)
Country | Link |
---|---|
US (1) | US9864090B2 (de) |
EP (1) | EP2865069B1 (de) |
CN (1) | CN104412485B (de) |
DE (1) | DE102012210897A1 (de) |
WO (1) | WO2014000912A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3043470B1 (fr) * | 2015-11-06 | 2017-11-17 | Continental Automotive France | Dispositif de detection d'un objet metallique parasite dans la zone d'emission d'un dispositif de recharge d'un equipement d'utilisateur pour vehicule automobile et procede de detection associe |
US10128698B2 (en) * | 2016-06-20 | 2018-11-13 | Hyundai America Technical Center, Inc | Device and method for detecting an object within a wireless charging region |
DE102020202553A1 (de) | 2020-02-28 | 2021-09-02 | Vitesco Technologies GmbH | Verfahren zum Ermitteln des Kopplungsgrads zwischen einer Primärspule und einer Sekundärspule |
DE102020206912A1 (de) * | 2020-06-03 | 2021-12-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Induktive Sensoreinheit, System |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090001932A1 (en) * | 2007-06-29 | 2009-01-01 | Seiko Epson Corporation | Power transmission control device, power transmission device, non-contact power transmission system, and electronic instrument |
WO2009081115A1 (en) * | 2007-12-21 | 2009-07-02 | Amway (Europe) Limited | Inductive power transfer |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7605496B2 (en) * | 2004-05-11 | 2009-10-20 | Access Business Group International Llc | Controlling inductive power transfer systems |
GB2414120B (en) | 2004-05-11 | 2008-04-02 | Splashpower Ltd | Controlling inductive power transfer systems |
JP2006060909A (ja) | 2004-08-19 | 2006-03-02 | Seiko Epson Corp | 非接触電力伝送装置 |
JP2009181115A (ja) | 2008-02-01 | 2009-08-13 | Kyocera Mita Corp | 画像形成装置 |
KR101699986B1 (ko) * | 2008-10-03 | 2017-02-13 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | 전력 시스템 |
KR100992480B1 (ko) * | 2009-09-10 | 2010-11-05 | 주식회사 한림포스텍 | 피드백신호에 의한 이물질 감지기능을 갖는 무접점 충전 시스템 |
US8575944B2 (en) * | 2009-11-03 | 2013-11-05 | Robert Bosch Gmbh | Foreign object detection in inductive coupled devices |
JP2011229265A (ja) | 2010-04-19 | 2011-11-10 | Panasonic Electric Works Co Ltd | 非接触電力伝送装置 |
JP5625723B2 (ja) * | 2010-10-15 | 2014-11-19 | ソニー株式会社 | 電子機器、給電方法および給電システム |
-
2012
- 2012-06-26 DE DE102012210897.1A patent/DE102012210897A1/de not_active Withdrawn
-
2013
- 2013-04-29 WO PCT/EP2013/058834 patent/WO2014000912A1/de active Application Filing
- 2013-04-29 US US14/410,490 patent/US9864090B2/en active Active
- 2013-04-29 CN CN201380034358.XA patent/CN104412485B/zh active Active
- 2013-04-29 EP EP13720345.1A patent/EP2865069B1/de active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090001932A1 (en) * | 2007-06-29 | 2009-01-01 | Seiko Epson Corporation | Power transmission control device, power transmission device, non-contact power transmission system, and electronic instrument |
WO2009081115A1 (en) * | 2007-12-21 | 2009-07-02 | Amway (Europe) Limited | Inductive power transfer |
Also Published As
Publication number | Publication date |
---|---|
CN104412485B (zh) | 2019-04-02 |
US9864090B2 (en) | 2018-01-09 |
US20150346380A1 (en) | 2015-12-03 |
DE102012210897A1 (de) | 2014-01-02 |
EP2865069B1 (de) | 2017-09-20 |
CN104412485A (zh) | 2015-03-11 |
EP2865069A1 (de) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102015102836B4 (de) | Kostengrünstiger drahtloser (resistiver) auf Impedanzkopplung / Modulation unter Verwendung von MRC basierender Sensor | |
DE102012205693A1 (de) | Drahtlose Energieübertragung | |
DE102013219131B4 (de) | Vorrichtung und Verfahren zur Erkennung eines Fremdkörpers in einem zur leitungslosen Energieübertragung vorgesehenen Magnetfeld | |
DE102017106029A1 (de) | Drahtlos-Stromübertragungssystem | |
EP2865069B1 (de) | Objekterkennung für ein energieübertragungssystem | |
WO2017092950A1 (de) | Verfahren zum betrieb einer überwachungsvorrichtung zur überwachung einer induktiven energieübertragungsvorrichtung | |
WO2016050423A1 (de) | Verfahren zur fremdobjekterkennung für eine induktionsladevorrichtung und induktionsladevorrichtung | |
WO2016124443A1 (de) | Vorrichtung und verfahren zum ermitteln einer kenngrösse eines transformators | |
DE102014224749B3 (de) | Temperaturerfassung im Stecker mittels überlagerter Prüffrequenz | |
DE112019001196T5 (de) | Kontaktlose energieübertragungsvorrichtung | |
DE102020120987A1 (de) | Vorrichtung zur berührungslosen leistungsversorgung | |
DE102013219538A1 (de) | Ladestation für ein elektrisch antreibbares Fahrzeug | |
WO2019219196A1 (de) | Verfahren und vorrichtung zur erkennung eines windungsschlusses bei parallel angeordneten wicklungen | |
DE102017214603B4 (de) | Verfahren und Vorrichtung zur Detektion von elektrisch leitfähigen Fremdkörpern bei der induktiven Energieübertragung | |
EP2648306B1 (de) | Drahtlose Energieübertragung | |
DE202016100925U1 (de) | Vorrichtung zur Erkennung eines elektrisch leitfähigen Fremdkörpers | |
DE102013219244A1 (de) | Steuer- und/oder Überwachungsvorrichtung und Verfahren zum Untersuchen zumindest einer Teilumgebung mindestens einer zur induktiven Energieübertragung ausgelegten elektrischen Vorrichtung auf ein Fremdobjekt | |
EP3221180B1 (de) | System zum induktiven übertragen von elektrischer leistung | |
WO2018233926A1 (de) | Komponente einer induktiven energieübertragungsvorrichtung mit objekterkennung sowie verfahren zum betreiben einer induktiven energieübertragungsvorrichtung | |
DE102018203609A1 (de) | Verfahren und Vorrichtung zur Erfassung einer Temperatur an einem Heizelement | |
DE102017214962A1 (de) | Verfahren zur drahtlosen Energieübertragung von einer Energiesendevorrichtung zu einem Verbraucher sowie drahtlose Energiesendevorrichtung zur Durchführung des Verfahrens | |
EP3327431A1 (de) | Induktives leitfähigkeitsmessgerät und verfahren zum betreiben eines induktiven leitfähigkeitsmessgeräts | |
DE102014221101A1 (de) | Betriebsschaltung zur Versorgung eines Leuchtmittels, LED-Konverter und Verfahren zum Betreiben einer Betriebsschaltung | |
DE102015008983A1 (de) | System zur kontaktlosen und/oder induktiven Energieübertragung an eine Last und Verfahren zur Dimensionierung eines Vierpols bei einem System | |
WO2014048706A2 (de) | Energieübertragungsanordnung und verfahren zum betreiben der energieübertragungsanordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13720345 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013720345 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013720345 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14410490 Country of ref document: US |