WO2014000667A1 - 终端天线 - Google Patents

终端天线 Download PDF

Info

Publication number
WO2014000667A1
WO2014000667A1 PCT/CN2013/078198 CN2013078198W WO2014000667A1 WO 2014000667 A1 WO2014000667 A1 WO 2014000667A1 CN 2013078198 W CN2013078198 W CN 2013078198W WO 2014000667 A1 WO2014000667 A1 WO 2014000667A1
Authority
WO
WIPO (PCT)
Prior art keywords
main radiator
terminal antenna
open
floor
extension line
Prior art date
Application number
PCT/CN2013/078198
Other languages
English (en)
French (fr)
Inventor
姜林涛
李正浩
兰尧
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Publication of WO2014000667A1 publication Critical patent/WO2014000667A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the present invention relates to radio frequency technologies, and in particular, to a terminal antenna. Background technique
  • Microstrip antennas have the advantages of small size, easy processing, and easy integration of active devices.
  • One of the most obvious shortcomings of microstrip antennas is the narrowband characteristics.
  • the narrowband characteristic refers to the narrow bandwidth of the operating band of the microstrip antenna.
  • the narrowband characteristics of microstrip antennas have become increasingly important for the communication performance of terminal equipment.
  • Monopole planar antennas have received wide attention due to their omnidirectional radiation characteristics and ease of obtaining ultra-bandwidth performance.
  • the use of a monopole planar antenna can reduce the number of antennas in the system, simplify the structure, reduce the volume and weight, and reduce the cost.
  • the invention provides a terminal antenna for effectively solving the problem that the low-frequency of the small-sized printed antenna is difficult to adjust and the low-frequency efficiency is not high.
  • the solution can realize LTE full-frequency coverage without a matching circuit, and has good low-frequency characteristics.
  • the present invention provides a terminal antenna, comprising: a floor and a main radiator in the same plane; the floor has an open gap, the main radiator is located in the notch, the main radiator and the The open gaps are connected to each other by feed points extending from the main radiator;
  • the floor further has a ground extension line extending from the open gap of the floor and located in the open gap, disposed around the outer side of the main radiator, and the open type
  • the notch and the outer side of the main radiator maintain a preset distance; the ground extension line and the feed The points do not intersect, and the ground extension line is used to couple with the main radiator to generate a low frequency portion of the terminal antenna.
  • the technical effect of the invention is that: the main radiator and the ground extension line are arranged in the open gap of the floor, the extension line surrounds the main radiator, and the main radiator, the ground extension line and the floor gap are coupled by two, Producing the low frequency part of the antenna, and because of the presence of the ground extension line, it is equivalent to adding a distributed capacitor to the terminal antenna, which is similar to adding a distributed matching circuit to the terminal antenna, and the low frequency characteristic is good, so The problem that the low frequency of the printed antenna is difficult to adjust and the low frequency efficiency is not high is effectively solved.
  • This scheme can realize long-term evolution (Long Term Evolution, LTE for short-range) full-frequency coverage without matching circuits, and has good low-frequency characteristics.
  • the floor and main radiator in the same plane are flat printed structures, which is effective. The cost of the terminal antenna is saved.
  • FIG. 1 is a schematic structural diagram of a terminal antenna according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the result of simulating the terminal antenna shown in FIG. 1;
  • FIG. 3 is an example of the efficiency of the antenna when the terminal antenna shown in FIG. 1 is actually measured;
  • FIG. 4 is a schematic diagram of the connection structure between the terminal antenna and the USB head;
  • Figure 5 is an enlarged view of the open gap 11 in Figure 1;
  • FIG. 6 to FIG. 8 are schematic structural diagrams of three types of terminal antennas according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal antenna according to Embodiment 3 of the present invention.
  • Figure 10 is a simulation result of the terminal antenna shown in Figure 9;
  • FIG. 12 are schematic structural diagrams of two types of terminal antennas according to Embodiment 3 of the present invention.
  • FIG. 13 is a schematic structural diagram of a terminal antenna according to Embodiment 4 of the present invention.
  • Fig. 14 is a simulation result of the terminal antenna shown in Fig. 13. detailed description
  • FIG. 1 is a schematic structural diagram of a terminal antenna according to Embodiment 1 of the present invention.
  • the terminal antenna includes: a floor 1 and a main radiator 2 located in the same plane.
  • the floor 1 has a development gap 11 in which the main radiator 2 is located, and between the main radiator 2 and the open gap 11 through the feed points 21 extending from the main radiator 2 connected.
  • Floor 1 also There is a ground extension cord 12 which is a metal wire extending from the open recess 11 of the floor panel 1 and located within the open recess 11 and disposed around the outer strip of the main radiator 2. A predetermined distance is maintained between the open notch 11 and the outer side of the main radiator 2, and the ground extension line 12 does not intersect the feed point 21.
  • the main function of the ground extension 12 is to couple with the main radiator 2 to produce a low frequency portion of the terminal antenna.
  • the open gap 11 is composed of an open end and N sides, N is a positive integer greater than or equal to 3, and the first side to the Nth side are sequentially connected, and the main radiator 2 may be
  • the polygon corresponding to the shape of the open notch 11 may be other shapes that do not correspond to the shape of the open notch 11.
  • the specific shape of the open notch 11 and the main radiator 2 may be different depending on the specific antenna design. In FIG. 1 , the description is made by taking the open notch 11 and the main radiator 2 as rectangular. However, it is not intended to limit the limitation of the present invention to the shape of the open notch 11 and the main radiator 2.
  • the main radiator 2 provided by the embodiment of the present invention is a monolithic metal patch structure, and is mainly used for generating a high frequency portion of the terminal antenna.
  • the floor 1 has an open notch 11 and a ground extension 12, and the extension cord 12 is coupled to the main radiator 2 to generate a low frequency portion of the antenna.
  • the length of the extension cord 12 affects the low frequency of the antenna. The longer the length of the extension cord 12 is, the lower the low frequency frequency point is.
  • FIG. 2 is a schematic diagram showing the result of simulating the terminal antenna shown in FIG. 1
  • FIG. 3 is an example of the efficiency of the antenna when the terminal antenna shown in FIG. 1 is actually measured.
  • the terminal in the actual measurement uses the in-line wireless data card, and the USB head of the wireless data card is directly soldered on the floor 1, as shown in the four frequency bands.
  • the efficiency of the antenna the low frequency is above 40%, and the high frequency is More than 50%, to meet the design needs of the entire frequency band.
  • FIG. 5 is an enlarged view of the open notch 11 of FIG. 1.
  • the open notch 11 shown in FIG. 5 is composed of three sides (11A, 11B). And 11C) and an open end 11D.
  • the three sides are the first side 11 A, the second side 11B and the third side 11C.
  • the ground extension cord 12 may extend from the first side 11A of the floor panel 1, and the feed point 21 is connected to the third side edge 11C of the floor panel 1.
  • the position where the ground extension cord 12 extends from the floor 1 is referred to as a first position in this embodiment, and the first position is preferably adjacent to the open end 11D. Alternatively, the first position is located at the extreme end of the first side 11A adjacent to the open end 11D.
  • FIG. 6 to FIG. 8 are schematic diagrams showing the structure of three types of terminal antennas according to Embodiment 2 of the present invention.
  • the extending direction of the ground extension line may be extended along the first side 11A as shown in FIG.
  • the present embodiment is not limited.
  • it may further extend from the first side 11A to the second side 11B as shown in FIG. 7 on the basis of FIG. 6, and the extension length along the second side 11B may be variable, and this embodiment does not do limit.
  • FIG. 9 is a schematic structural diagram of a terminal antenna according to Embodiment 3 of the present invention
  • FIG. 10 is a simulation result of the terminal antenna shown in FIG. 9.
  • the main function of the groove 22 is to extend the current path in the main radiator 2. Therefore, the edge of the groove 22 can have various shapes, as shown in FIG. 11 to FIG. 12, the two forms of the third embodiment of the present invention are provided.
  • Schematic diagram of the structure of the terminal antenna By comparing Fig. 2 with Fig.
  • FIG. 13 is a schematic diagram showing the structure of a terminal antenna according to Embodiment 4 of the present invention and the simulation result of the terminal antenna shown in FIG. Comparing the simulation results shown in Figs. 10 and 14, it can be known that the high frequency portion of the antenna is improved.
  • the terminal antenna provided by the embodiment of the present invention provides the main radiator, the ground extension cord and the floor gap by placing the main radiator in the open gap of the floor and adding a ground extension line around the main radiator.
  • the coupling between the two couples produces the low frequency portion of the antenna.
  • due to the presence of the ground extension line it is equivalent to adding a distributed capacitor to the terminal antenna, which is similar to adding a distributed matching circuit to the terminal antenna.
  • the low-frequency characteristics are better, so the problem that the low-frequency of the small-sized printed antenna is difficult to adjust and the low-frequency efficiency is not high is effectively solved.
  • This scheme can realize LTE full-frequency coverage without a matching circuit, and has good low-frequency characteristics.
  • the floor and the main radiator in the same plane are flat printed structures, which effectively saves the cost of the terminal antenna.

Landscapes

  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种终端天线,包括:位于同一平面内的地板(1)和主辐射体(2);地板(1)具有开放式缺口(11),主辐射体(2)位于缺口(11)内,主辐射体(2)与开放式缺口(11)之间通过从主辐射体(2)延伸出来的馈电点(21)彼此相连;地板(1)还具有地延长线(12),地延长线(12)从地板(1)的开放式缺口(11)延伸出来并位于开放式缺口(11)内,围绕主辐射体(2)的外条边设置,与开放式缺口(11)及主辐射体(2)的外条边保持预设距离;地延长线(12)与馈电点(21)不相交,地延长线(12)用于与主辐射体(2)耦合,以产生终端天线的低频部分。

Description

终端天线 技术领域 本发明涉及射频技术, 尤其涉及一种终端天线。 背景技术
微带天线具有尺寸小、 易于加工、 易于有源器件集成等优点, 微带天线 一个最明显的不足便是窄带特性。 窄带特性指的是微带天线的工作频段带宽 较窄。 随着微带天线被广泛应用于终端设备, 微带天线的这种窄带特性对于 终端设备通信性能的影响也日益凸显。 单极子平面天线由于其具有全向辐射 特性以及较容易获得超带宽性能而受到了广泛的关注。 利用单极子平面天线 可以减少系统中的天线数目, 简化结构, 减小体积重量, 降低成本等。
但是, 传统的单极子平面天线在实现高频和低频双谐振时, 需要增加匹 配电路。 而匹配电路是一种集成式元件组成, 受元件本身的窄带特性的限制, 即便可以产生低频, 也仍然存在低频难调以及低频效率不高的问题, 而且增 加匹配电路需要占用空间、 使结构复杂化、 引入电路损耗, 因此增加匹配电 路并不是提升天线效率的最优方法。 发明内容
本发明提供一种用于有效解决小尺寸印制天线低频难调以及低频效率不 高等问题的终端天线, 该方案无需匹配电路就可以实现 LTE全频覆盖, 而且 具有很好的低频特性。
本发明提供了一种终端天线, 包括: 位于同一平面内的地板和主辐射体; 所述地板具有一开放式缺口, 所述主辐射体位于所述缺口内, 所述主辐 射体与所述开放式缺口之间通过从所述主辐射体延伸出来的馈电点彼此相 连;
所述地板还具有地延长线, 所述地延长线从所述地板的开放式缺口延伸 出来并位于所述开放式缺口内, 围绕所述主辐射体的外条边设置, 与所述开 放式缺口及所述主辐射体的外条边保持预设距离; 所述地延长线与所述馈电 点不相交, 所述地延长线用于与所述主辐射体耦合, 以产生终端天线的低频 部分。
本发明的技术效果是: 主辐射体与地延长线设置于地板的开放式缺口中, 地延长线环绕主辐射体, 主辐射体、 地延长线与地板缺口这三者之间两两耦 合, 产生天线的低频部分, 而且, 由于地延长线的存在, 相当于为终端天线 增加了一个分布式电容, 也就类似于为终端天线增加了一个分布式的匹配电 路, 其低频特性较好, 因此有效解决了印制天线低频难调以及低频效率不高 的问题。 该方案无需匹配电路就可以实现长期演进 ( Long Term Evolution, 简 称为: LTE )全频覆盖, 而且具有艮好的低频特性, 而且, 处于同一平面的地 板与主辐射体为平面印制结构, 有效节约了终端天线的成本。 附图说明
图 1为本发明实施例一提供的终端天线的结构示意图;
图 2为对图 1所示的终端天线进行仿真的结果示意图;
图 3为对图 1所示的终端天线进行实际测量时天线的效率情况; 图 4为终端天线与 USB头的连接结构示意图;
图 5为图 1中开放式缺口 11处的放大图;
图 6至图 8为本发明实施例二提供的三种形式的终端天线的结构示意图; 图 9为本发明实施例三提供的终端天线的结构示意图;
图 10为图 9所示终端天线的仿真结果;
图 11至图 12为本发明实施例三提供的两种形式的终端天线的结构示意 图;
图 13为本发明实施例四提供的终端天线的结构示意图;
图 14为图 13所示终端天线的仿真结果。 具体实施方式
图 1为本发明实施例一提供的终端天线的结构示意图, 如图 1所示, 该 终端天线包括: 位于同一平面内的地板 1和主辐射体 2。 该地板 1具有一开发 式缺口 11 , 主辐射体 2位于该开放式的缺口 11内, 主辐射体 2与该开放式缺 口 11之间是通过从主辐射体 2延伸出来的馈电点 21彼此相连的。 地板 1还 具有地延长线 12 , 该地延长线 12是从地板 1的开放式缺口 11延伸出来的金 属线, 并且位于开放式缺口 11之内, 围绕着主辐射体 2的外条边设置。 与开 放式缺口 11以及主辐射体 2的外条边均保持预设的距离, 地延长线 12与馈 电点 21不相交。 该地延长线 12的主要作用在于与主辐射体 2耦合, 以产生 终端天线的低频部分。
这里需要说明的是, 该开放式缺口 11是由一个开放端和 N条边组成的, N为大于等于 3的正整数, 第一条边至第 N条边依次相连, 主辐射体 2可以 是与开放式缺口 11 的形状相对应的多边形, 也可以是与开放式缺口 11 的形 状不相对应的其他形状。 需要说明的是, 开放式缺口 11与主辐射体 2的具体 形状可以因为具体天线设计的不同而不同, 在图 1中是以开放式缺口 11以及 主辐射体 2 均为矩形为例进行的说明, 但并不用以限制本发明对于开放式缺 口 11以及主辐射体 2的形状的限制。
本发明实施例提供的主辐射体 2 为一整块金属贴片结构, 主要用于产生 终端天线的高频部分。 地板 1具有开放式缺口 11以及地延长线 12 , 通过地延 长线 12与主辐射体 2耦合来产生天线的低频部分, 其中需要说明的是, 地延 长线 12的长度会影响天线的低频, 一般是地延长线 12的长度越长, 低频频 点越低。
图 2为对图 1所示的终端天线进行仿真的结果示意图, 图 3为对图 1所 示的终端天线进行实际测量时天线的效率情况。 其中实际测量中的终端釆用 的是直插式无线数据卡, 无线数据卡的 USB头直接焊接在地板 1上, 如图 4 个频段, 对于天线的效率, 低频在 40%以上, 高频在 50%以上, 满足整个频 段的设计需求。
仍然以图 1所示的终端天线为例, 图 5为图 1中开放式缺口 11处的放大 图, 当 N=3时, 图 5中所示的开放式缺口 11由三条边( 11A、 11B和 11C ) 以及一个开放端 11D形成。 其中三条边依次分别为第一条边 11 A、 第二条边 11B和第三条边 11C。
如图 5所示, 地延长线 12可以是从地板 1的第一条边 11 A延伸出来的, 馈电点 21与地板 1的第三条边 11C相连。 地延长线 12从地板 1延伸出来的 位置在本实施例中称为第一位置, 该第一位置优选是临近开放端 11D的, 优 选的, 第一位置位于第一条边 11A临近开放端 11D的最末端。
如图 6至图 8所示本发明实施例二提供的三种形式的终端天线的结构示 意图, 地延长线的延伸方向可以是如图 6所示的沿第一条边 11A延伸, 延伸 长度可变, 本实施例不做限制。
一种情况下, 还可以在图 6基础上进一步如图 7所示的从第一条边 11A 向第二条边 11B延伸, 沿第二条边 11B的延伸长度可变, 本实施例不做限制。
再一种情况下, 还可以在图 6、 图 7或者图 8基础上进一步如图 8所示的 省略第一条边 11A向开放端 11D延伸的部分, 这部分地延长线可以对天线的 高频性能有影响, 这部分地延长线越长, 天线的高频带宽越窄。 所以如果省 略这一部分地延长线, 可以提升天线的高频带宽。
如果该终端天线的高频频段要求更低时, 可以通过在主辐射体 2上设置 至少一个开放式凹槽 22的形式来降低高频。 如图 9所示的本发明实施例三提 供的终端天线的结构示意图, 图 10为图 9所示终端天线的仿真结果。 凹槽 22 的主要作用在于延长主辐射体 2内的电流路径, 因此, 凹槽 22的边沿可以是 多种形状, 如图 11至图 12所示的本发明实施例三提供的两种形式的终端天 线的结构示意图。 通过对比图 2和图 10可以知道, 在主辐射体 2上增设远离 馈电点 21 的开放式凹槽 22后, 天线的高频频段向低频方向拓展, 高频的高 频段部分变差。 这时, 可以通过在在馈电部分(馈电点 21的位置附近)开槽 来提升高频部分的性能。 如图 13所示的本发明实施例四提供的终端天线的结 构示意图, 以及图 14所示的图 13所示终端天线的仿真结果。 对比图 10和图 14所示的仿真结果可以知道, 该天线的高频部分得到了改善。
本发明实施例提供的终端天线, 通过将主辐射体设置在地板的开放式缺 口中, 并增设围绕在主辐射体周围的地延长线, 使得主辐射体、 地延长线与 地板缺口这三者之间两两耦合, 产生天线的低频部分, 而且, 由于地延长线 的存在, 相当于为终端天线增加了一个分布式电容, 也就类似于为终端天线 增加了一个分布式的匹配电路, 其低频特性较好, 因此有效解决了小尺寸印 制天线低频难调以及低频效率不高的问题, 该方案无需匹配电路就可以实现 LTE全频覆盖, 而且具有很好的低频特性。 而且, 处于同一平面的地板与主 辐射体为平面印制结构, 有效节约了终端天线的成本。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要求 书
1、一种终端天线, 其特征在于, 包括: 位于同一平面内的地板和主辐射体; 所述地板具有一开放式缺口, 所述主辐射体位于所述缺口内, 所述主辐射 体与所述开放式缺口之间通过从所述主辐射体延伸出来的馈电点彼此相连; 所述地板还具有地延长线, 所述地延长线从所述地板的开放式缺口延伸出 来并位于所述开放式缺口内, 围绕所述主辐射体的外条边设置, 与所述开放式 缺口及所述主辐射体的外条边保持预设距离; 所述地延长线与所述馈电点不相 交, 所述地延长线用于与所述主辐射体耦合, 以产生终端天线的低频部分。
2、 根据权利要求 1所述的终端天线, 其特征在于, 所述开放式缺口由一个 开放端和 N条边组成, 第一条边至第 N条边依次相连, N为大于等于 3的正整 数。
3、 根据权利要求 2所述的终端天线, 其特征在于, 所述地延长线从所述地 板的第一条边延伸出来;
所述馈电点与所述地板的第 N条边相连。
4、 根据权利要求 3所述的终端天线, 其特征在于, 所述地延长线从所述地 板的第一条边的第一位置延伸出来, 所述第一位置临近所述开放端。
5、 根据权利要求 4所述的终端天线, 其特征在于, 所述第一位置位于所述 第一条边的末端。
6、 根据权利要求 1至 5中任一项所述的终端天线, 其特征在于, 所述主辐 射体上还设置有至少一个开放式凹槽。
7、 根据权利要求 6所述的终端天线, 其特征在于, 所述至少一个开放式凹 槽中的一个或多个位于远离所述馈电点的位置。
PCT/CN2013/078198 2012-06-27 2013-06-27 终端天线 WO2014000667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210215464.5 2012-06-27
CN201210215464.5A CN103515702B (zh) 2012-06-27 2012-06-27 终端天线

Publications (1)

Publication Number Publication Date
WO2014000667A1 true WO2014000667A1 (zh) 2014-01-03

Family

ID=49782261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078198 WO2014000667A1 (zh) 2012-06-27 2013-06-27 终端天线

Country Status (2)

Country Link
CN (1) CN103515702B (zh)
WO (1) WO2014000667A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3206255A1 (en) * 2016-02-05 2017-08-16 Pegatron Corporation Antenna module
EP3200281B1 (en) * 2014-09-22 2021-05-19 Seiko Solutions Inc. Compact slot-type antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077360A1 (en) * 2002-03-14 2003-09-18 Sony Ericsson Mobile Communications Ab Multiband planar built-in radio antenna with inverted-l main and parasitic radiators
CN1536709A (zh) * 2003-04-09 2004-10-13 正文科技股份有限公司 双频倒f型天线
CN102055065A (zh) * 2009-11-11 2011-05-11 宏碁股份有限公司 移动通信装置及其天线

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259407B1 (en) * 1999-02-19 2001-07-10 Allen Tran Uniplanar dual strip antenna
US7688267B2 (en) * 2006-11-06 2010-03-30 Apple Inc. Broadband antenna with coupled feed for handheld electronic devices
EP2095464A4 (en) * 2006-11-16 2012-10-24 Galtronics Ltd COMPACT ANTENNA
CN101986461B (zh) * 2010-01-05 2014-02-05 连展科技电子(昆山)有限公司 整合式多频天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077360A1 (en) * 2002-03-14 2003-09-18 Sony Ericsson Mobile Communications Ab Multiband planar built-in radio antenna with inverted-l main and parasitic radiators
CN1536709A (zh) * 2003-04-09 2004-10-13 正文科技股份有限公司 双频倒f型天线
CN102055065A (zh) * 2009-11-11 2011-05-11 宏碁股份有限公司 移动通信装置及其天线

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3200281B1 (en) * 2014-09-22 2021-05-19 Seiko Solutions Inc. Compact slot-type antenna
EP3206255A1 (en) * 2016-02-05 2017-08-16 Pegatron Corporation Antenna module
US10559870B2 (en) 2016-02-05 2020-02-11 Pegatron Corporation Antenna module

Also Published As

Publication number Publication date
CN103515702B (zh) 2016-08-17
CN103515702A (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
JP6297337B2 (ja) アンテナアセンブリ及び該アンテナアセンブリを備える通信装置
US9774071B2 (en) Antenna structure
JP5738437B2 (ja) 移動通信基地局用二重偏波アンテナ及びそれを使用する多重帯域アンテナシステム
TWI624999B (zh) 天線結構及具有該天線結構的無線通訊裝置
US9337547B2 (en) Internal antenna having wideband characteristic
TWI509888B (zh) 指向性天線及智慧型天線系統
CN104752824B (zh) 天线结构及应用该天线结构的无线通信装置
CN102790262B (zh) 天线与具有该天线的电子装置
JP5967506B2 (ja) プリント回路板アンテナ及びプリント回路板
TWI622230B (zh) 天線結構及具有該天線結構的無線通訊裝置
CN110890627B (zh) 双馈入回路天线结构及电子装置
US20120050134A1 (en) Three-dimensional slot antenna
WO2018018474A1 (zh) 无线收发装置和基站
TWI619309B (zh) 天線結構及應用該天線結構的無線通訊裝置
US9478860B2 (en) Multiband antenna
JP5933631B2 (ja) アンテナアセンブリ
TWI581502B (zh) 天線結構及具有該天線結構的無線通訊裝置
TWI413298B (zh) Ultra wideband antenna
WO2014000667A1 (zh) 终端天线
US20140340277A1 (en) Communication device and antenna element therein
TW201417399A (zh) 寬頻天線及具有該寬頻天線的可攜帶型電子裝置
US9385417B2 (en) Broadband antenna and wireless communication device employing same
TW201517380A (zh) 無線通訊裝置
TWI658646B (zh) 天線裝置
Chen et al. Compact design of MIMO antennas for LTE 700 application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810051

Country of ref document: EP

Kind code of ref document: A1