WO2014000373A1 - 彩膜基板和显示装置 - Google Patents

彩膜基板和显示装置 Download PDF

Info

Publication number
WO2014000373A1
WO2014000373A1 PCT/CN2012/085480 CN2012085480W WO2014000373A1 WO 2014000373 A1 WO2014000373 A1 WO 2014000373A1 CN 2012085480 W CN2012085480 W CN 2012085480W WO 2014000373 A1 WO2014000373 A1 WO 2014000373A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
black matrix
insulating layer
refractive index
light
Prior art date
Application number
PCT/CN2012/085480
Other languages
English (en)
French (fr)
Inventor
李凡
冯远明
黄小妹
王静
鲁友强
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2014000373A1 publication Critical patent/WO2014000373A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance

Definitions

  • the present disclosure relates to the field of display technology, and more particularly to a color film substrate and display device having high brightness. Background technique
  • a TFT-LCD Thin Film Transistor-Liquid Crystal Display
  • the backlight includes components such as an LED light source, a light guide plate, a reflective layer, and an optical module.
  • the array substrate includes structural layers such as gate lines and data lines.
  • the color filter substrate includes a structural layer such as a black matrix and a color pixel layer.
  • light emitted from the LED light source is emitted to the array substrate first after being emitted through the light guide plate.
  • the gate lines and data lines on the array substrate block a portion of the light.
  • the black matrix will block a part of the light, so that the light transmitted through the display screen is further reduced, resulting in a serious loss of display brightness of the display screen.
  • Embodiments of the present disclosure provide a color filter substrate and a display device capable of improving light transmittance and enhancing display brightness.
  • An aspect of the present invention provides a color filter substrate, comprising: a substrate having a black matrix and a color pixel layer disposed on a surface thereof, wherein the black matrix and the color pixel layer are provided with an insulating layer;
  • the surface of the insulating layer is embedded with a light refraction unit, the refractive index of the light refraction unit is greater than the refractive index of the insulating layer; and the light refraction unit corresponds to the position of the black matrix.
  • a flat layer is provided on the insulating layer.
  • the light refracting unit includes two quarter cylindrical lenses, the curved surfaces of the two quarter cylindrical lenses are oppositely disposed, and the curved surfaces of the two quarter cylindrical lenses Projecting toward the substrate.
  • the radius of curvature R of the quarter cylindrical lens is: n x b
  • the present disclosure further provides a color filter substrate, comprising: a substrate, wherein a surface of the substrate is provided with a black matrix and a color pixel layer;
  • An insulating layer is disposed on the opposite surface of the substrate, and the insulating layer is embedded with a light refraction unit, the refractive index of the insulating layer is the same as the refractive index of the substrate, and the refractive index of the light refraction unit is greater than the insulation.
  • the refractive index of the layer, the light refracting unit corresponding to the position of the black matrix.
  • a flat layer is provided on the insulating layer.
  • a flat layer is disposed on the black matrix and the color pixel layer.
  • the light refracting unit includes two quarter cylindrical lenses, the curved surfaces of the two quarter cylindrical lenses are oppositely disposed, and the curved surfaces of the two quarter cylindrical lenses Projecting toward the substrate.
  • the radius of curvature R of the quarter cylindrical lens is: n x b
  • the present disclosure also provides a display device including the above color film substrate.
  • the color film substrate and the display device provided by the present disclosure have the following advantages:
  • the light refraction unit can refract light rays that are incident on the black matrix, thereby causing more light to be emitted from the color pixel layer, that is, the pixel opening area, thereby greatly improving the light.
  • the transmittance increases the display brightness of the display and enhances the user experience.
  • FIG. 1 is a schematic structural view of a color filter substrate according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic structural view of a color filter substrate according to Embodiment 2 of the present disclosure.
  • FIG. 3 is a schematic diagram showing the principle of light refraction in a color filter substrate according to an embodiment of the present disclosure. Detailed ways
  • the color filter substrate of the embodiment includes: a substrate 1 , a black matrix 2 and a color pixel layer 3 disposed on a surface of the substrate 1 , and insulation provided on the black matrix 2 and the color pixel layer 3 Layer 4;
  • the insulating layer 4 is made of an organic material.
  • the material of the substrate 1 may be a material such as glass, quartz or transparent resin.
  • the light refraction unit 5 is embedded in the surface of the insulating layer 4.
  • the insulating layer 4 is provided with a flat layer 6, and the flat layer 6 is transparent.
  • the refractive index of the light refraction unit 5 is set to be larger than the refractive index of the insulating layer 4, so that the light can be refracted when passing through the interface between the light refraction unit 5 and the insulating layer 4.
  • the light refraction unit 5 is disposed corresponding to the position of the black matrix 2, so that the light below the black matrix 2 can be mainly refracted by the refraction phenomenon to the pixel opening region, that is, the color pixel layer 3, to improve the light transmittance.
  • the light refraction unit 5 is made of an organic material, and includes two quarter cylindrical lenses, the arc surfaces of the two quarter cylindrical lenses are oppositely disposed, and the two quarter cylindrical lenses are oppositely disposed.
  • the curved surface is convex toward the substrate 1. The structure allows light to be refracted as it passes through the lens, so that light can be emitted from the color pixel layer, i.e., the pixel opening area, between adjacent black matrices, thereby increasing the light transmittance.
  • FIG. 3 only one quarter cylindrical lens structure of the light refraction unit 5 is shown in Fig. 3.
  • the basic principle of lens refraction can be obtained by formula (1) as follows: "2 ( 1 ) Where f is the focal length of the lens; R is the radius of curvature of the quarter-lens lens; is the refractive index of the light-refracting unit and is the refractive index of the insulating layer.
  • y is the distance between the lens focus O and the black matrix; b is half the width of the black matrix, and p is the width of the color pixel layer.
  • the radius of curvature R of the quarter-lens lens is specifically calculated by the formula (5):
  • the method for fabricating the above color film substrate can use the following steps:
  • a black matrix 2 and a color pixel layer 3 are formed on the substrate 1 by a patterning process, which specifically refers to a prior art process for fabricating a black matrix and a color film substrate by masking, exposure, etching, and cleaning.
  • the substrate on which the above steps are completed is coated with an insulating layer 4 made of an organic material having a refractive index of two quarter-cylindrical lenticular grooves etched on the insulating layer 4.
  • An organic material having a refractive index greater than that of the insulating layer is embedded in the IHJ groove to form a light refraction unit 5, wherein the arc surfaces of the two quarter cylindrical lenses are oppositely disposed, and the curved faces of the two quarter cylindrical lenses are oriented
  • the substrate 1 is convex.
  • a transparent flat layer 6 is formed by a patterning process.
  • the color filter substrate of this embodiment includes: a substrate 1, a black matrix 2 and a color pixel layer 3 provided on one surface of the substrate 1.
  • the material of the substrate 1 may be a material such as glass, quartz or transparent resin.
  • a flat layer 6 is disposed on the black matrix 2 and the color pixel layer 3.
  • the opposite surface of the substrate 1 is provided with an insulating layer 4 having the same refractive index as the substrate 1.
  • the insulating layer 4 is embedded with a light refraction unit 5 having the same refractive index as that of the substrate 1.
  • the refractive index of the refractive unit 5 is larger than the refractive index of the substrate 1, and the light refraction unit 5 corresponds to the position of the black matrix 2.
  • the insulating layer 4 is provided with a flat layer 6.
  • the specific light refraction unit 5 may include two quarter cylindrical lenses, the arc faces of the two quarter cylindrical lenses are oppositely disposed, and the curved faces of the two quarter cylindrical lenses are convex toward the substrate 1.
  • the calculation method of the radius of curvature R of the quarter-lens lens is the same as that of the first embodiment, and will not be described again. However, the value of y+f should be the sum of the insulating layer 4 and the substrate 1.
  • the insulating layer 4 facilitates the formation of the light refraction unit 5, and the substrate 1 functions both as a supporting substrate and at the same time to refract light.
  • the refractive index of the insulating layer 4 that is in contact with the light refraction unit 5 it is necessary to set the refractive index of the insulating layer 4 that is in contact with the light refraction unit 5 to be smaller than the refractive index of the light refraction unit 5, thereby causing the light to have a refraction effect, so that more light can pass.
  • the color pixel layer that is, the pixel opening area, is emitted, thereby improving display brightness.
  • the above structure can be fabricated by the following steps:
  • a black matrix 2 and a color pixel layer 3 are formed on one surface of the substrate 1 by a patterning process, which specifically refers to masking, exposure, etching, and cleaning, etc., for fabricating black matrix and color film substrates. Process method.
  • a transparent flat 6 layer is formed by a patterning process.
  • an insulating layer 4 having the same refractive index as that of the substrate 1 is provided, and two quarter-cylindrical lens-like grooves are etched on the insulating layer 4, and the refractive index is greater than The organic material of the substrate 1 and the insulating layer 4 is embedded in the groove.
  • a flat layer 6 is provided on the insulating layer.
  • the specific light refraction unit 5 is composed of two quarter-cylindrical lenses whose arc faces are oppositely disposed, and the arc faces of the two quarter-column lenses are convex toward the substrate 1.
  • the calculation method of the radius of curvature R of the quarter-lens lens of the light-refracting unit 5 of the second embodiment is the same as that of the first embodiment, and details are not described herein again. It should be noted that the technical solution that the refractive index of the light refraction unit is greater than the refractive index of the insulating layer to achieve the light transmittance is not only applicable to the color filter substrate, but also applies to the array substrate, and the corresponding position of the array substrate is used. The structure can also achieve the effect of improving the display brightness.
  • the present disclosure also provides a display device including the color film substrate structure described above.
  • the display device can be a liquid crystal panel, a display, a tablet, a tablet phone, a television, a notebook, a digital photo frame, a navigator or other electronic display device.
  • the light refraction unit can refract light rays that are incident on the black matrix, thereby causing more light to be emitted from the color pixel layer, that is, the pixel opening area, thereby greatly improving the light penetration. Over-rate, increase the display brightness of the display, enhance the user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种具有高亮度的彩膜基板和显示装置。该彩膜基板包括:基板(1),基板(1)的表面上设有黑矩阵(2)和彩色像素层(3),所述黑矩阵(2)和彩色像素层(3)上设有绝缘层(4);绝缘层(4)的表面嵌有光线折射单元(5);所述光线折射单元(5)的折射率大于绝缘层(4)的折射率,所述光线折射单元(5)与黑矩阵(2)的位置相对应。该彩膜基板和显示装置的光线折射单元(5)可使得射向黑矩阵(2)的光线发生折射,进而使更多的光线从像素开口区域射出,从而极大地提高了光线的透过率,增加显示器的显示亮度,增强用户体验感。

Description

彩膜基板和显示装置 技术领域
本公开涉及显示技术领域, 特别是涉及一种具有高亮度的彩膜基板和显 示装置。 背景技术
通常, TFT-LCD ( Thin Film Transistor -Liquid Crystal Display, 薄膜晶体 管液晶显示器)主要结构是由阵列基板、 彩膜基板、 偏振片、 背光源和液晶 等部分组成。 背光源包括 LED光源、 导光板、 反射层和光学模组等部件。 阵 列基板包括栅线和数据线等结构层。 彩膜基板包括黑矩阵和彩色像素层等结 构层。 在现有的 TFT-LCD中, 从 LED光源发出的光线, 通过导光板发射出 来后,首先射向阵列基板。阵列基板上的栅线和数据线会阻挡掉一部分光线。 当光线通过液晶层后穿过彩膜基板时, 黑矩阵又将遮挡住一部分光线, 使得 透过显示屏的光线进一步减少, 导致显示屏的显示亮度受到严重的损失。
为了解决光透过率低下的问题, 现有技术中通常釆用贴附 3M公司生产 的 DBEF增亮膜来提高光的透过率。 但由于该产品的价格比较昂贵, 加重了 液晶显示器最终产品的加工成本。 发明内容
本公开的实施例提供一种能够提高光透过率, 增强显示亮度的彩膜基板 和显示装置。
本公开一方面提供一种彩膜基板, 包括: 基板, 所述基板的表面上设有 黑矩阵和彩色像素层, 所述黑矩阵和彩色像素层上设有绝缘层;
所述绝缘层的表面嵌有光线折射单元, 所述光线折射单元的折射率大于 绝缘层的折射率; 光线折射单元与黑矩阵的位置相对应。
在一个示例中, 所述绝缘层上设有平坦层。
在一个示例中, 所述光线折射单元包括两个四分之一柱状透镜, 所述两 个四分之一柱状透镜的弧面相对设置, 且所述两个四分之一柱状透镜的弧面 朝向基板凸起。
在一个示例中, 所述四分之一柱状透镜的曲率半径 R为: nx b
其中: p为彩色像素层的宽度; b为黑矩阵宽度的一半; ηι 为光线折射 单元的折射率; 为绝缘层的折射率; f 为四分之一柱状透镜的焦距; y为 四分之一柱状透镜焦点与黑矩阵之间的距离。
再一方面, 本公开还提供一种彩膜基板, 包括: 基板, 所述基板的一个 表面上设有黑矩阵和彩色像素层;
所述基板的相反的另一表面上设有绝缘层, 所述绝缘层上嵌有光线折射 单元, 所述绝缘层的折射率与基板的折射率相同, 所述光线折射单元的折射 率大于绝缘层的折射率, 所述光线折射单元与黑矩阵的位置相对应。
在一个示例中, 所述绝缘层上设有平坦层。
在一个示例中, 所述黑矩阵和彩色像素层上设有平坦层。
在一个示例中, 所述光线折射单元包括两个四分之一柱状透镜, 所述两 个四分之一柱状透镜的弧面相对设置, 且所述两个四分之一柱状透镜的弧面 朝向基板凸起。
在一个示例中, 所述四分之一柱状透镜的曲率半径 R为: nx b
其中: p为彩色像素层的宽度; b为黑矩阵宽度的一半; ηι 为光线折射 单元的折射率; 为绝缘层的折射率; f 为四分之一柱状透镜的焦距; y为 四分之一柱状透镜焦点与黑矩阵之间的距离。
另一方面, 本公开还提供一种显示装置, 包括上述的彩膜基板。
本公开提供的彩膜基板和显示装置具有如下优点: 光线折射单元可使得 射向黑矩阵的光线发生折射, 进而使更多的光线从彩色像素层即像素开口区 域射出, 从而极大地提高了光线的透过率, 增加显示器的显示亮度, 增强用 户体验感。 附图说明
为了更清楚地说明本公开或现有技术中的技术方案, 下面将对本公开提 供的技术方案或现有技术描述中所需要使用的附图作简单地介绍, 显而易见 地, 下面描述中的附图仅仅是本公开的技术方案的部分具体实施方式图示说 明, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1为本公开实施例一的彩膜基板结构示意图;
图 2为本公开实施例二的彩膜基板结构示意图。
图 3为本公开实施例的彩膜基板中光线发生折射原理示意图。 具体实施方式
下面将结合本公开实施例中的附图, 对本公开实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本公开一部分实施例, 而 不是全部的实施例。 基于本公开中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本公开保护的范围。
实施例一
如图 1所示, 本实施例的彩膜基板包括: 基板 1 , 该基板 1的表面上设 有的黑矩阵 2和彩色像素层 3 ,该黑矩阵 2和彩色像素层 3上设有的绝缘层 4; 该绝缘层 4釆用有机材料制成。 基板 1的材质可以为玻璃、 石英、 透明树脂 等材料。 该绝缘层 4的表面嵌有光线折射单元 5。 可选的, 该绝缘层 4上设 有平坦层 6, 该平坦层 6为透明的。 设置光线折射单元 5的折射率大于绝缘 层 4的折射率, 便于光线通过该光线折射单元 5和绝缘层 4的界面时可以发 生折射现象。 光线折射单元 5与黑矩阵 2的位置相对应设置, 便于主要将黑 矩阵 2下方的光线可以通过折射现象折射到像素开口区域即彩色像素层 3 , 提高光的透过率。
具体的, 该光线折射单元 5由有机材料制成, 其包括两个四分之一柱状 透镜, 该两个四分之一柱状透镜的弧面相对设置, 且该两个四分之一柱状透 镜的弧面朝向基板 1凸起。 该结构使得光线经过透镜时可以发生折射, 从而 光线可以从相邻黑矩阵之间的彩色像素层即像素开口区域射出, 提高光的透 过率。
参考图 3 , 该图 3中只画出了光线折射单元 5的一个四分之一柱状透镜 结构。
由透镜折射基本原理可以得到公式( 1 )如下: "2 ( 1 ) 其中 f 为透镜的焦距; R为该四分之一柱状透镜的曲率半径; 为光线 折射单元的折射率且 为绝缘层的折射率。
由三角形相似, 可以得到公式(2)如下:
f b
-=- (2)
y p
其中 y为透镜焦点 O与黑矩阵之间的距离; b为黑矩阵宽度的一半, p 为彩色像素层的宽度。
将公式( 1 ) 带入公式( 2 ) 中, 可得公式( 3 )如下:
y = & = H RP (3 )
b n2 b { i )
公式( 1 )和公式( 3 )整合, 得到公式( 4 )如下:
Figure imgf000006_0001
因此, 具体该四分之一柱状透镜的曲率半径 R由公式(5)可以计算出:
R = ^(f + y) +\) (5)
nx b
其中, 在一个确定的像素结构中, p、 b、 ηι、 n2都是已知的, 而 f+y等 于绝缘层 4的厚度, 因此, 透镜的曲率半径 R根据公式(5) 即可计算出来。
从图 3中可知, 当设有满足上述尺寸的光线折射单元 5时, 从下至上射 出的光线经过光线折射单元 5时将发生折射现象, 使得从黑矩阵 2下方入射 的光线并不会被黑矩阵 2遮挡住。 通过光线折射单元 5的作用, 光线将在该 位置处发生折射现象, 进而从彩色像素层 3即像素开口区域射出, 使得更多 的光线射出, 进而提高光的透过率, 提高显示亮度。
需要说明的是, 图 1和图 3中的彩膜基板的放置方式不同。
上述彩膜基板的制作方法可釆用如下步骤:
首先, 在基板 1上釆用构图工艺形成黑矩阵 2和彩色像素层 3, 该构图 工艺具体指的是掩膜、 曝光、 刻蚀和清洗等制作黑矩阵和彩膜基板现有的工 艺方法。
然后, 在完成上述步骤的基板上涂覆一层有机材料制成的绝缘层 4, 该 绝缘层的折射率为 ,在该绝缘层 4上刻蚀出两个四分之一柱状透镜状的槽, 釆用折射率大于绝缘层的有机材料嵌入该 IHJ槽中形成光线折射单元 5, 该两 个四分之一柱状透镜的弧面相对设置, 且两个四分之一柱状透镜的弧面朝向 基板 1凸起。
最后, 在完成上述步骤的基板 1上釆用构图工艺形成透明平坦层 6。 实施例二
如图 2所示, 本实施例彩膜基板包括: 基板 1 , 基板 1的一个表面上设 有的黑矩阵 2和彩色像素层 3。 基板 1的材质可以为玻璃、 石英、 透明树脂 等材料。 可选的, 黑矩阵 2和彩色像素层 3上设有平坦层 6。
基板 1的相反的另一表面上设有与基板 1折射率相同的绝缘层 4, 该绝 缘层 4上嵌有光线折射单元 5 , 绝缘层 4的折射率与基板 1的折射率相同, 该光线折射单元 5的折射率大于基板 1的折射率, 光线折射单元 5与黑矩阵 2的位置相对应。 可选的, 该绝缘层 4上设有平坦层 6。
具体的光线折射单元 5可包括两个四分之一柱状透镜, 该两个四分之一 柱状透镜的弧面相对设置,且两个四分之一柱状透镜的弧面朝向基板 1凸起。
其中四分之一柱状透镜的曲率半径 R的计算方法与实施例一相同,在此 不再赘述。 但 y+f的值应为绝缘层 4和基板 1的总和。
本实施例中, 绝缘层 4便于光线折射单元 5的形成, 而基板 1则既充当 了支撑基板的作用, 同时也起到使得光线发生折射作用。 参考图 3 , 从入射 光的方向, 需要设定与光线折射单元 5相接的绝缘层 4的折射率小于光线折 射单元 5的折射率, 进而使得光线发生折射效应, 使得更多的光线可通过彩 色像素层即像素开口区域射出, 进而提高显示亮度。
上述结构的制作方法可釆用如下步骤:
首先, 在基板 1的一个表面上釆用构图工艺形成黑矩阵 2和彩色像素层 3 , 该构图工艺具体指的是掩膜、 曝光、 刻蚀和清洗等制作黑矩阵和彩膜基板 现有的工艺方法。
然后, 在完成上述步骤的基板 1上釆用构图工艺制成透明的平坦 6层。 再次,在基板的相反的另一表面上设有与基板 1折射率相同的绝缘层 4, 在绝缘层 4上刻蚀出两个四分之一柱状透镜状的凹槽, 釆用折射率大于基板 1和绝缘层 4的有机材料嵌入该凹槽中。 该绝缘层上设有平坦层 6。
具体的光线折射单元 5由两个四分之一柱状透镜组成, 该两个四分之一 柱状透镜的弧面相对设置,且两个四分之一柱状透镜的弧面朝向基板 1凸起。
其中实施例二的光线折射单元 5的四分之一柱状透镜的曲率半径 R的计 算方法与实施例一相同, 在此不再赘述。 需要说明的是, 光线折射单元的折射率大于绝缘层的折射率从而实现提 高光线透过率的技术方案不仅适用于彩膜基板, 同样适用于阵列基板, 在阵 列基板相应的位置处釆用该种结构,同样可以达到实现提高显示亮度的效果。
另外, 本公开还提供一种显示装置, 包括上述所描述的彩膜基板结构。 该显示装置可以为液晶面板、 显示器、 平板电脑、 平板手机、 电视机、 笔记 本电脑、 数码相框、 导航仪或其他电子显示装置。
根据本公开提供的彩膜基板和显示装置, 光线折射单元可使得射向黑矩 阵的光线发生折射, 进而使更多的光线从彩色像素层即像素开口区域射出, 从而极大地提高了光线的透过率,增加显示器的显示亮度,增强用户体验感。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应由权利要求限定。

Claims

权利要求书
1、 一种彩膜基板, 包括:
基板;
所述基板的表面上设有的黑矩阵和彩色像素层;
所述黑矩阵和彩色像素层上设有的绝缘层;
所述绝缘层的表面嵌有的光线折射单元, 所述光线折射单元的折射率大 于所述绝缘层的折射率; 所述光线折射单元与黑矩阵的位置相对应。
2、 如权利要求 1所述的彩膜基板, 还包括所述绝缘层上设有的平坦层。
3、 如权利要求 1或 2所述的彩膜基板, 其特征在于, 所述光线折射单 元包括两个四分之一柱状透镜,所述两个四分之一柱状透镜的弧面相对设置, 且所述两个四分之一柱状透镜的弧面朝向基板凸起。
4、 如权利要求 3 所述的彩膜基板, 其特征在于, 所述四分之一柱状透 镜的曲率半径 R为:
R = ^(f + y) + \)
nx b
其中: p为彩色像素层的宽度; b为黑矩阵宽度的一半; ηι 为所述光线 折射单元的折射率; 为所述绝缘层的折射率; f为所述四分之一柱状透镜 的焦距; y为所述四分之一柱状透镜焦点与黑矩阵之间的距离。
5、 一种彩膜基板, 包括:
基板;
所述基板的一个表面上设有的黑矩阵和彩色像素层;
所述基板的相反的另一表面设有的绝缘层, 所述绝缘层上嵌有光线折射 单元, 所述绝缘层的折射率与所述基板的折射率相同, 所述光线折射单元的 折射率大于所述绝缘层的折射率,所述光线折射单元与黑矩阵的位置相对应。
6、 如权利要求 5所述的彩膜基板, 其特征在于, 还包括所述绝缘层上 设有的平坦层。
7、 如权利要求 5或 6所述的彩膜基板, 其特征在于, 还包括所述黑矩 阵和彩色像素层上设有的平坦层。
8、 如权利要求 5至 7之一所述的彩膜基板, 其特征在于, 所述光线折 射单元包括两个四分之一柱状透镜, 所述两个四分之一柱状透镜的弧面相对 设置, 且所述两个四分之一柱状透镜的弧面朝向基板凸起。
9、 如权利要求 8所述的彩膜基板, 其特征在于, 所述四分之一柱状透 镜的曲率半径 R为: nx b
其中: p为所述彩色像素层的宽度; b为所述黑矩阵宽度的一半; ηι 为 所述光线折射单元的折射率; 为绝缘层的折射率; f为所述四分之一柱状 透镜的焦距; y为所述四分之一柱状透镜焦点与所述黑矩阵之间的距离。
10、 一种显示装置, 其特征在于, 包括权利要求 1-9中任一项所述的彩 膜基板。
PCT/CN2012/085480 2012-06-29 2012-11-28 彩膜基板和显示装置 WO2014000373A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210226929.7 2012-06-29
CN2012102269297A CN102736315A (zh) 2012-06-29 2012-06-29 一种彩膜基板和显示装置

Publications (1)

Publication Number Publication Date
WO2014000373A1 true WO2014000373A1 (zh) 2014-01-03

Family

ID=46992084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085480 WO2014000373A1 (zh) 2012-06-29 2012-11-28 彩膜基板和显示装置

Country Status (2)

Country Link
CN (1) CN102736315A (zh)
WO (1) WO2014000373A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736315A (zh) * 2012-06-29 2012-10-17 京东方科技集团股份有限公司 一种彩膜基板和显示装置
CN103413495A (zh) * 2013-07-17 2013-11-27 京东方科技集团股份有限公司 一种显示装置
CN104090420A (zh) * 2014-07-11 2014-10-08 京东方科技集团股份有限公司 阵列基板及其制作方法、半透半反式显示装置
CN105093652B (zh) * 2015-08-21 2018-12-25 京东方科技集团股份有限公司 一种基板及其制作方法、显示面板、显示装置
CN105093663B (zh) * 2015-09-21 2018-09-14 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN105700227B (zh) * 2016-04-25 2020-05-19 京东方科技集团股份有限公司 显示面板
CN106501992B (zh) * 2017-01-03 2019-04-19 京东方科技集团股份有限公司 一种彩膜基板和显示面板
CN107092126B (zh) * 2017-06-26 2020-01-03 京东方科技集团股份有限公司 一种显示面板、显示装置
CN110415610A (zh) * 2019-07-22 2019-11-05 安徽华米信息科技有限公司 显示面板及其制造方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258195A (ja) * 1996-03-19 1997-10-03 Sharp Corp マイクロレンズ基板、液晶表示素子および画像投影型液晶表示装置
CN1938641A (zh) * 2004-03-25 2007-03-28 夏普株式会社 显示板及其制造方法
CN101201512A (zh) * 2006-12-11 2008-06-18 精工爱普生株式会社 电光装置用基板、电光装置以及电子设备
CN102736315A (zh) * 2012-06-29 2012-10-17 京东方科技集团股份有限公司 一种彩膜基板和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258195A (ja) * 1996-03-19 1997-10-03 Sharp Corp マイクロレンズ基板、液晶表示素子および画像投影型液晶表示装置
CN1938641A (zh) * 2004-03-25 2007-03-28 夏普株式会社 显示板及其制造方法
CN101201512A (zh) * 2006-12-11 2008-06-18 精工爱普生株式会社 电光装置用基板、电光装置以及电子设备
CN102736315A (zh) * 2012-06-29 2012-10-17 京东方科技集团股份有限公司 一种彩膜基板和显示装置

Also Published As

Publication number Publication date
CN102736315A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
WO2014000373A1 (zh) 彩膜基板和显示装置
US20180224583A1 (en) Optical structure, method for manufacturing optical structure, display substrate and display device
KR100656999B1 (ko) 선 격자 편광필름 및 선 격자 편광필름의 격자제조용 몰드제작방법
KR100860982B1 (ko) 광경로 이동수단을 가지는 다중표시장치
WO2017210925A1 (zh) 金属线栅偏光片与液晶显示装置
CN102096235B (zh) 透明显示设备
JP2006139283A (ja) 液晶ディスプレイ及びその製造方法
WO2015135228A1 (zh) 背光模组及用该背光模组的液晶显示装置
WO2015027603A1 (zh) 阵列基板及其制作方法、3d显示装置
WO2016206261A1 (zh) 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
WO2016049961A1 (zh) 液晶显示装置
US7859612B2 (en) Light concentrating sheet, backlight unit including the light concentrating sheet and liquid crystal display module including the backlight unit
WO2016049960A1 (zh) 液晶显示装置
JP2007178990A (ja) 液晶表示素子及びカラーフィルタ基板並びにその製造方法
WO2015096256A1 (zh) 窄边框液晶显示器的扇出区结构
WO2016197519A1 (zh) 视角扩大膜及包括其的广视角薄膜晶体管液晶显示装置
WO2018196176A1 (zh) 裸眼立体显示光栅及制造方法、显示装置
TWI412817B (zh) 觸控顯示裝置
WO2018120507A1 (zh) 液晶显示面板及其制造方法
WO2016127442A1 (zh) 背光模组及包含其的液晶显示装置
WO2016049959A1 (zh) 液晶显示装置
JP2010250311A (ja) 液晶表示装置
TWI542926B (zh) 顯示面板單元及顯示裝置
TW201222084A (en) Liquid crystal display
CN106054469B (zh) 超薄型液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.05.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12879843

Country of ref document: EP

Kind code of ref document: A1