WO2014000186A1 - 准入控制方法及设备 - Google Patents

准入控制方法及设备 Download PDF

Info

Publication number
WO2014000186A1
WO2014000186A1 PCT/CN2012/077647 CN2012077647W WO2014000186A1 WO 2014000186 A1 WO2014000186 A1 WO 2014000186A1 CN 2012077647 W CN2012077647 W CN 2012077647W WO 2014000186 A1 WO2014000186 A1 WO 2014000186A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
real
time
congestion
control module
Prior art date
Application number
PCT/CN2012/077647
Other languages
English (en)
French (fr)
Inventor
邹成钢
王光辉
朱家骏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12880241.0A priority Critical patent/EP2854446B1/en
Priority to CN201280000823.3A priority patent/CN103299679B/zh
Priority to CA2877264A priority patent/CA2877264A1/en
Priority to PCT/CN2012/077647 priority patent/WO2014000186A1/zh
Publication of WO2014000186A1 publication Critical patent/WO2014000186A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/26Flow control; Congestion control using explicit feedback to the source, e.g. choke packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/83Admission control; Resource allocation based on usage prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/824Applicable to portable or mobile terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to communication technologies, and in particular, to an admission control method and device. Background technique
  • resource management is divided into: resource management of air interface resources and transmission resource management of transmission resources.
  • the current transmission resource management is mainly divided into: transmission resource management based on control plane and transmission resource management based on user plane.
  • Control plane-based transmission resource management also known as transmission load control, is used to manage the transmission bandwidth and control the load of the transmission link. Under the premise of ensuring service quality, access as many user terminals as possible to improve system capacity.
  • the admission load control reserves bandwidth for each service, and the transmission load is the sum of the reserved bandwidths of all the accessed services, and the traffic is controlled based on the congestion state of the transmission load.
  • the bandwidth-based transmission load processing includes: The user terminal configures the bandwidth of the transmission path, and each level (Internet Protocol Path (IP PATH), logical port, physical port) is configured with a corresponding bandwidth.
  • IP PATH Internet Protocol Path
  • the transmission load control When the new user terminal service accesses, the transmission load control performs admission control based on the reserved bandwidth mode: if "the total user transmission load that has been currently accessed” + “new access user reserved bandwidth” ⁇ " configuration bandwidth congestion Threshold", allows service access; otherwise, load reshuffling (LDR) action according to congestion level (for example: PS slowdown, full rate coding mode switching to half rate coding mode, preferred half rate coding, adaptive Adaptive Multi Rate Control (AMRC).
  • LDR load reshuffling
  • the transmission load admission control method performs admission control based on the method of multiplying the reserved bandwidth by the activation factor.
  • the admission algorithm based on the reserved bandwidth multiplied by the activation factor cannot be well adapted.
  • the activation factor fluctuates in different environments, and the fixed value of the configuration cannot adapt to the dynamic change of the application environment, and the deviation is unavoidable.
  • the activation factor is automatically adjusted, the implementation is very complicated and changes at any time. , causing automatic adjustment of the activation factor is not feasible; therefore, the current access control based on reserved bandwidth will result in owing Access issues and access issues.
  • the multi-level admission control based on the reserved bandwidth indirectly increases the duration of the access of the user terminal, and increases the overhead of the central processing unit (CPU) resource of the system.
  • the embodiment of the present invention provides an admission control method and device, which are used to solve the problem of under-admission and over-admission caused by inaccessibility in the prior art. At the same time, the duration of access by the user terminal is saved.
  • the admission control method provided by the embodiment of the present invention includes:
  • the service control module After the service control module receives the service request including the service type initiated by the receiving terminal, the service control module establishes an assignment request according to the service delivered by the service type;
  • the service control module determines that the current service corresponding to the service type is not in a congestion anti-pressure state, or the current service is in a congestion anti-pressure state but does not exceed a preset duration, and then the assignment request is established according to the service.
  • the transmission resource allocation module applies for transmission resources, and interacts with the core network element and the base station to establish a transmission channel for the service request of the terminal. For example, the obtained transmission resource information is exchanged with the core network element and the base station based on the 3GPP standard, and the A, Gb, and Abis interfaces are completed with respect to the Global System for Mobile Communications (GSM).
  • GSM Global System for Mobile Communications
  • the admission control method provided by the embodiment of the present invention includes:
  • the user plane transmission resource management module detects in real time whether the number of cached messages of the real-time queue and the non-real-time queue reaches a preset threshold
  • the congestion backpressure message control terminal includes a non-real time service type Admission to business requests.
  • the service control module provided by the embodiment of the present invention includes:
  • a receiving unit configured to: after receiving a service request, including a service type, initiated by the receiving terminal, the network element establishes an assignment request according to the service delivered by the service type;
  • a determining unit configured to determine that the current service corresponding to the service type is not in a congestion anti-pressure state, or the current service is in a congestion anti-pressure state but does not exceed a preset duration
  • a transmission channel establishing unit configured to apply for a transmission resource to the transmission resource allocation module according to the service establishment assignment request, and interact with the core network element and the base station to establish a transmission channel for the service request of the terminal.
  • the user plane transmission resource management module includes: a detecting unit, configured to detect, in real time, whether the number of cached packets of the real-time queue and the non-real-time queue reaches a preset threshold;
  • control unit configured to: when the number of caches of the real-time queue reaches a preset first threshold, send a congestion backpressure message of a real-time service type to the service control module, so that the service control module is configured according to the real-time service type
  • the congestion backpressure message controls access of the service request including the real-time service type of the terminal;
  • the service control module And sending, by the service control module, a congestion backpressure message of a non-real-time service type, when the number of the cached packets in the non-real-time queue reaches a preset second threshold, so that the service control module is configured according to the non-real time
  • the service type congestion backpressure message controls the admission of the service request including the non-real time service type of the terminal.
  • the device includes: the service control module according to any one of the preceding claims, and the user plane transmission resource management module according to any one of the foregoing, wherein the service control module and the user plane transmission resource management module interact .
  • the foregoing device may be a base station controller, a core network element, or the like.
  • the admission control method and the device of the embodiment of the present invention determine whether the current service corresponding to the service type is determined by the service control module after receiving the service establishment request from the core network element according to the service type. If the current service corresponding to the service type is not in the reverse pressure state, or the current service is in the congestion anti-pressure state and does not exceed the preset duration, the transmission resource allocation module applies for transmission resources.
  • the above method is solved.
  • the problem of under-access and over-admission caused by the admission is not allowed, and the transmission capital can be fully utilized.
  • the source further removes the multi-level control plane admission management, shortens the length of access of the user terminal, and solves a series of problems in which the control plane is not allowed to enter.
  • FIG. 1A and FIG. 1B are schematic diagrams showing the hierarchical relationship between an IP PATH, a logical port, and a physical port according to the present invention
  • FIG. 2A is a schematic structural diagram of a base station controller according to an embodiment of the present invention.
  • FIG. 2B is a schematic flowchart of an admission control method according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of an admission control method according to another embodiment of the present invention
  • FIG. 5A and FIG. 5B are signal diagrams of an admission control method according to another embodiment of the present invention
  • FIG. 6A and FIG. 6B are flowcharts of an admission control method according to another embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a service control module according to another embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a service control module according to another embodiment of the present invention
  • Schematic diagram of the surface transmission resource management module
  • FIG. 10 is a schematic structural diagram of a base station controller according to another embodiment of the present invention. detailed description
  • IP Internet Protocol
  • the wireless network IP including the IP of the wireless network element device and the IP network of the wireless network transmission bearer.
  • IP-based device and bearer network device are IP-based, due to the characteristics of IP packet grouping and multiplexing, the fixed allocation of the transmission link is compared to Time Division Multiplexing (TDM). Others cannot use it.)
  • TDM Time Division Multiplexing
  • resource management is divided into two categories: resource management based on air interface radio resources, and transmission resource management based on transmission resources.
  • resource management based on air interface radio resources
  • transmission resource management based on transmission resources.
  • transmission resource management is mainly divided into two aspects: transmission resource management based on control plane and transmission resource management based on user plane.
  • Management of transmission resources based on control planes refers to the management of transmission resources according to a reasonable bandwidth allocation strategy in the transmission admission. How to efficiently and accurately access more users, and effectively prevent congestion and packet loss on the actual traffic of the user plane and ensure users Quality is the problem that the control plane transmission resource management algorithm needs to solve.
  • User-side-based transmission resource management refers to controlling the actual traffic on the user plane to solve the congestion and packet loss of the actual traffic and the efficient use of the transmission bandwidth.
  • Control plane-based transmission resource management also known as transmission load control, is used to manage transmission bandwidth, control the load of the transmission link, and access as many users as possible to improve system capacity while ensuring service quality.
  • the admission load control reserves bandwidth for each service, and the transmission load is the sum of reserved bandwidths of all accessed services, and the traffic is controlled based on the congestion state of the transmission load.
  • the current transmission load control uses a reservation bandwidth control algorithm based on reserved bandwidth, and there is multi-level admission control. As shown in FIG. 1A and FIG. 1B, the access control is performed based on the IP PATH (IP path) configuration bandwidth, the access control of the bandwidth is configured based on the logical port (LP), and the access control based on the physical port configuration bandwidth is performed. Wait. All admission control points on the entire admission path are successfully admitted, and the service is considered to be allowed to access at the transport layer. If any admission entry fails, the service refuses to access.
  • IP PATH IP path
  • LP logical port
  • the IP PATH can be carried on a logical port, and the logical port is carried on a physical port. Multiple physical ports can be configured on one physical port. Each logical port can correspond to one base station, and the logical port bandwidth is equal to the bottleneck bandwidth of the base station.
  • the IP PATH corresponds to a certain type of service type or all service types of a base station, and its bandwidth also corresponds to the bandwidth planned by a certain type of service type or all service types of the base station.
  • each level of the multi-level admission control has a corresponding transmission load: an IP PATH level, a logical port level, and a physical port level.
  • Each level requires admission control based on reserved bandwidth.
  • TrmLoad the total used transmission load, indicating the current transmission resource usage, the initial value is 0, the unit bps
  • TrmLoad changes, it needs to be performed with the corresponding bandwidth threshold configured for each level.
  • LDR Load Reshuffling
  • the admission control scheme based on the reserved bandwidth completes the evaluation of the transmission bandwidth occupation by statistically predicting the service bandwidth usage.
  • the service bandwidth application can accurately reflect the actual usage of the service bandwidth, but actually the CS service and the PS service bandwidth. It is difficult to predict that if the maximum bit rate (MBR) is used for admission, there will be a huge waste of bandwidth. If the access is based on the guaranteed bit rate (Guaranteed Bit Rate), the traffic burst will cause congestion. Lose the package. In addition, there is uncertainty between the static configuration of the activation factor and the actual application scenario, and the burstiness of the PS service will also bring the reserved bandwidth and the actual bandwidth. Consistent. The activation factor mitigates the problem, making the access bandwidth relatively closer to the real bandwidth, but cannot be solved at all.
  • the core problem is that access is not allowed.
  • the external item is "under-permitted” or "over-access”.
  • the transmission resource admission control considers that the transmission is exhausted and rejects the new user access, resulting in low call success rate and low transmission bandwidth utilization.
  • User plane-based transmission resource management also known as user plane backpressure
  • user plane backpressure means that the user plane actually sends traffic based on a logical port or a physical port. If the actual traffic of the packet exceeds the specification or a large number of bursts in a short time, the cache is caused. If the data packet exceeds the congestion threshold of the queue corresponding to the logical port or the physical port, the port corresponding to the queue directly sends a message to the service source. Traffic is controlled by the service source to reduce the service transmission rate. Status, to avoid long-term continuous congestion and packet loss, resulting in very poor user experience.
  • User plane backpressure is based on queue scheduling.
  • each port has a set of queues to match. Incompetent is a physical port or a logical port, and there is a corresponding set of queues.
  • the purpose of queue scheduling is to meet the transmission QoS requirements and differentiated service requirements of different services.
  • the commonly provided queue scheduling technologies include: Priority Queue (f3 ⁇ 4 PQ), Weighted Round Robin (WRR).
  • each queue has a congestion threshold, a congestion threshold, and a packet loss threshold, which are sequentially increased.
  • the congestion threshold is higher than the congestion threshold of the queue, the backpressure message is triggered to enter the congestion backpressure state.
  • the congestion threshold is lower than the congestion threshold, the packet enters the congestion state. If the packet loss threshold is exceeded, the packet loss starts and the congestion backpressure message is triggered.
  • the PS data service bursts and fluctuates greatly the CS voice service burst is very small. Therefore, only the back pressure for the PS data service is considered.
  • the PS service processing module is notified, and the PS service is performed. Speed reduction processing.
  • the current user plane backpressure can only solve the scenario where the PS data service is dominant.
  • a bandwidth-constrained scenario for example, if the bottleneck bandwidth of the port is only one or a few E1 (cable) scenarios, and the CS-based voice is dominant, the control plane based on the reserved bandwidth is not allowed to pass. Admission, at this time, even if the port is congested (the PQ queue has a large amount of congestion or packet loss and generates a backpressure message), since the backpressure message is notified to the PS service processing module, the PS service performs the deceleration processing, but for the CS user plane. Congestion cancellation does not help, resulting in long-term user congestion and heavy packet loss. In the end, CS users have very poor call quality, which seriously affects user experience and experience.
  • the admission control method of the embodiment of the present invention is used to cancel the control plane admission based on the reserved bandwidth, solve the problem of inaccurate control plane admission, and the user plane back pressure failure in some scenarios; at the same time, avoid the user manually adjusting the activation factor , simplify the operation and maintenance of the network.
  • FIG. 2A is a flow chart showing an admission control method according to an embodiment of the present invention
  • FIG. 2B is a flow chart showing an admission control method according to an embodiment of the present invention.
  • the service control module receives, after receiving the service request of the service type initiated by the terminal, the service establishment module establishes an assignment request according to the service delivered by the service type.
  • the core network element may receive a service request including a service type sent by the terminal transparently transmitted by the base station, and may also receive a service request including the service type of the terminal forwarded by the other core network element.
  • This embodiment does not limit how the core network element receives the service request of the terminal.
  • the service request sent by each terminal includes a service type.
  • the service type may be a circuit service (CS) type or a packet service (PS) type.
  • CS circuit service
  • PS packet service
  • the service type is divided into a real-time service type and a non-real-time service type, and the above CS language
  • the voice service type belongs to the real-time service type
  • the PS data service type belongs to the non-real-time service type.
  • the queue corresponding to the CS voice service type is a real-time queue
  • the service type is another real-time service type, such as a video service, a real-time interaction service, and the like, and a queue corresponding to the real-time service type. It is also a real-time queue.
  • the queue corresponding to the PS data service type is a non-real time queue; further, when the service type is other non-real time service type, the queue corresponding to the non-real time service type is also a non-real time queue. .
  • the service control module determines that the current service corresponding to the service type is not in the congestion anti-pressure state, or the current service is in the congestion anti-pressure state but does not exceed the preset duration, and then applies for transmission to the transmission resource allocation module according to the service establishment assignment request.
  • the service control module applies for transmission resources to the transmission resource allocation module according to the service establishment assignment request, and interacts the acquired transmission resource information with the core network element and the base station based on the 3GPP standard message, compared to the global mobile communication system (Global System) For Mobile Communications, GSM for short, complete the service transmission channel establishment of the A, Gb, and Abis interfaces; compared to the Universal Mobile Communication System (Universal Mobile).
  • Global System Global System
  • GSM Global System
  • Universal Mobile Communication System Universal Mobile Communication System
  • the Telecommunications System (UMTS) is used to complete the service transmission channel establishment of the lu-CS, lu-PS, and lub interfaces.
  • the core network element may be: a media gateway (MGW), or a GPRS service support node (SGSN), etc.
  • the base station may be a base transceiver transceiver (Base Transceiver Station, abbreviated as BTS), or NodeB (3G base station), etc.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the above admission control method further includes the following step 203.
  • the service control module determines, when the current service corresponding to the service type is in a congestion anti-pressure state, and exceeds the preset duration, sends a failure response to the core network element, so that the core network element sends a service request to the terminal. Failure response.
  • the admission control method of the embodiment determines the service with the service after the service control module establishes the assignment request according to the service delivered by the core network element according to the service type. Whether the current service corresponding to the type is in the congestion anti-pressure state. If it is determined that the current service corresponding to the service type is not in the reverse pressure state, or the current service is in the congestion anti-pressure state and does not exceed the preset duration, the transmission resource allocation module applies for transmission. Resources, the above method solves the problem of under-admission and over-admission caused by the admission failure in the prior art, and can fully utilize the transmission resources, further removes the multi-level control plane admission management, and shortens the terminal. The length of access has solved a series of problems in which the control plane is not allowed to enter.
  • FIG. 4 is a schematic flowchart of an admission control method according to an embodiment of the present invention.
  • the admission control method in this embodiment is as follows.
  • the service control module receives, after receiving the service request of the service type initiated by the terminal, the network control element to establish an assignment request according to the service delivered by the service type.
  • the service control module determines that the current service corresponding to the service type is in a congestion anti-pressure state but does not exceed the preset duration, and then applies for transmission resources to the transmission resource allocation module according to the service establishment assignment request, and interacts with the core network element and the base station. Establish a transmission channel for the service request of the terminal.
  • the service control module notifies the base station and the terminal to allow the service request of the terminal to be admitted at a certain rate, while applying the transmission resource to the transmission resource allocation module.
  • the service control module can notify the base station and the terminal to reduce the coding rate of the voice service request of the terminal. For example, full-rate speech coding is converted to half-rate speech coded access, or low-rate AMRC coding is selected.
  • the service control module can enable the new service request corresponding to the PS data service type to access at a basic rate, for example, uplink 64K bits/second, downlink 64K. Bit/second; At the same time, adjust the PS user coding rate that has been accessed.
  • the PS coding rate of UMTS is from 64K bits/second in the uplink, 384K bits/second in the downlink, and 64K bits/second in the uplink, 64K bits/second in the downlink.
  • the admission control method of the present embodiment can solve the problem of under-admission and over-admission caused by the admission failure in the prior art, and further removes the multi-level control plane admission management. , shortening the length of terminal access, and solving a series of problems of inaccurate control plane access.
  • the service control module in the foregoing step 202 determines that the current service corresponding to the service type is not in a congestion anti-pressure state, and may specifically be: 202.
  • the service control module determines that the congestion control message sent by the user plane transmission resource management module according to the detected congestion status of the service type corresponding queue is not received within a certain period of time, and further determines that the current service corresponding to the service type is not In a congested reverse state;
  • the service control module determines that after receiving the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the service type corresponding queue, the user plane transmission resource management module receives the queue corresponding to the detected service type according to the detected The congestion cancellation message sent by the congestion state determines that the current service corresponding to the service type is not in the congestion back pressure state.
  • the user plane transmission resource management module detects the number of cached packets of the queue corresponding to the service type in real time. If the number of cached packets exceeds the congestion threshold (such as the first threshold corresponding to the real-time queue, the non-real-time queue) The corresponding second threshold value is sent to the service control module to send a congestion backpressure message; at this time, the upper layer service module (such as the service control module) triggers the LDR action according to the congestion backpressure message, and the load reshuffling LDR control result In the queue corresponding to the service type in the user plane transmission resource management module, the number of the buffered packets is reduced, and the number of the buffered packets is reduced.
  • the congestion threshold such as the first threshold corresponding to the real-time queue, the non-real-time queue
  • the user plane transmission resource management module detects that the number of buffered packets of the queue corresponding to the service type is lower than the congestion threshold, the backpressure is considered to be released, and a congestion release message is sent to the service control module.
  • the LDR actions corresponding to different service types are different.
  • the congestion threshold and the congestion threshold may be the same or different, and the congestion threshold in the actual application may be different from the congestion threshold.
  • the service control module in the foregoing step 202 determines that the current service corresponding to the service type is in a congestion anti-pressure state but does not exceed a preset duration, which may be specifically:
  • the service control module determines that the congestion control message sent by the user plane transmission resource management module according to the detected congestion status of the service type corresponding queue is received, and the time when the service control module receives the service request and receives the congestion The time period between the time points of the back pressure message is less than the preset time length, and then the current service corresponding to the service type is determined to be in a congestion back pressure state but does not exceed the preset time length.
  • the service control module in step 203 in FIG. 3 determines that the current service corresponding to the service type is in a congestion-inverse state and exceeds a preset duration. For:
  • the service control module determines, after receiving the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the queue corresponding to the service type, and receives the service request at the time point and received by the service control module.
  • the time period between the time points of the congestion back pressure message is greater than or equal to the preset duration
  • the un-congestion message sent by the user plane transmission resource management module according to the detected congestion status of the service type corresponding queue is not received within the preset duration, and the current service corresponding to the service type is determined to be in a congestion-inverse state and exceeds the pre-prevention. Set the duration.
  • the current service corresponding to the service type is determined to be congested. It is in a state of pressure and lasts for a predetermined period of time.
  • the service control module after the service control module receives the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the real-time queue, the service control module triggers the LDR action of the real-time queue to mitigate the real-time queue. Congested state.
  • the LDR action of the service control module triggering the real-time queue may be: adjusting the rate of the voice user code that has been accessed, performing full half-rate switching, or selecting a low-speed coding mode for the AMR voice user coding rate that has been accessed.
  • the new access user preferentially selects half-rate or low-speed AMRC coding mode access.
  • the service control module after the service control module receives the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the non-real time queue, the service control module triggers the LDR action of the non-real time queue to mitigate the non-real time.
  • the congestion status of the queue the service control module triggers the LDR action of the non-real time queue to mitigate the non-real time.
  • the LDR action of the service control module triggering the non-real-time queue may be: adjusting the coding rate of the PS user for the already accessed PS user; reducing the coding rate of the PS user for the UMTS network; and reducing the coding of the PDCH channel for the GSM network Rate, prohibiting the PS user's speedup request, etc.
  • the LDR action of the above real-time queue is different from the action of the LDR of the non-real-time queue.
  • the above-mentioned admission control method can solve the problem of under-admission and over-admission caused by the inaccurate admission in the prior art, and can fully utilize the transmission resources, and further remove the multi-level control plane admission management. If the transmission management module is no longer applied to the control plane for transmission, the user access time is shortened, and a series of problems of inaccurate control plane access are solved.
  • FIG. 5A, FIG. 5B, FIG. 6A and FIG. 6B, FIG. 5A and FIG. 5B are schematic diagrams showing the signaling method of the admission control method according to an embodiment of the present invention, and FIG. 6A and FIG.
  • the scene control method of the control method, the admission control method in this embodiment is as follows.
  • the following steps 501 to 514 illustrate various admission procedures of the service request of the CS voice service type.
  • the core network element receives the service request transparently transmitted by the base station, where the service request is initiated by the terminal, where the service request includes a CS voice service type.
  • the core network element establishes an assignment request to the CS service control module according to the CS voice service type.
  • the CS service control module determines that the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the real-time queue corresponding to the CS voice service type is not received.
  • the CS service control module applies for transmission resources to the transmission resource allocation module, and obtains transmission resource information.
  • the CS service control module exchanges the obtained transmission resource information with the message of the core network element and the base station network element based on the 3GPP standard, and finally establishes a transmission channel for the service request of the terminal.
  • the CS service control module determines that the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the real-time queue corresponding to the CS voice service type does not exceed the preset duration.
  • the user plane transmission resource management module detects whether the number of cached packets of the real-time queue reaches a preset first threshold.
  • the user plane transmission resource management module detects that the number of cached packets of the real-time queue reaches a preset first threshold, the user plane transmission resource management module sends a congestion back pressure of the CS voice service type to the CS service control module. Message.
  • the CS service control module can trigger the LDR action according to the received congestion backpressure message, and the LDR control result is reflected in the real-time queue in the user plane transmission resource management module, so as to eliminate the real-time queue congestion state.
  • the CS service control module applies for transmission resources to the transmission resource allocation module, and obtains transmission resource information. 508.
  • the CS service control module exchanges the obtained transmission resource information with the message of the core network element and the base station network element based on the 3GPP standard, and finally establishes a transmission channel for the service request of the terminal.
  • the CS service control module notifies the base station and the terminal to allow a certain rate to access the service request of the terminal, while obtaining the transmission resource information.
  • allowing a certain rate of admission may also include: preferentially selecting a half rate coding mode for access or a AMRC selection minimum rate access for a newly accessed service request.
  • the service request includes a priority identifier and/or an emergency service identifier.
  • the service control module checks the priority identifier and/or the emergency service identifier in the service request, and prioritizes the priority according to the priority identifier and/or the emergency service identifier in the service request.
  • the CS service control module determines that the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the real-time queue corresponding to the CS voice service type exceeds a preset duration.
  • the CS service control module can trigger the LDR action according to the received congestion backpressure message, but the congestion status of the real-time queue in the user plane transmission resource management module is not eliminated, at this time, the user plane transmission resource management module continues to the CS service control module.
  • the CS service control module determines that the current service corresponding to the CS voice service type is in a congestion anti-pressure state and the duration exceeds a preset duration, for example, if the duration is 5 seconds or 3 seconds.
  • the current CS service control module considers that the current real-time queue has been continuously congested for a long time, and the CS service control module does not significantly reduce the speed of the service request corresponding to the CS voice service type that has been accessed. New service requests can exacerbate congestion, at which point access is denied for service requests corresponding to the new CS voice service type.
  • the CS service control module determines that the user plane transmission resource management module receives the congestion cancellation sent according to the detected congestion status of the real-time queue corresponding to the CS voice service type. If the CS service control module can trigger the LDR action according to the received congestion backpressure message, the congestion status of the real-time queue in the user plane transmission resource management module is eliminated, that is,
  • the S2' the user plane transmission resource management module detects that the number of cached packets of the real-time queue is smaller than a preset first congestion threshold; and further sends a real-time queue release congestion message to the CS service control module.
  • the CS service control module applies for transmission resources to the transmission resource allocation module, and obtains transmission resource information.
  • the CS service control module exchanges the obtained transmission resource information with the message of the core network element and the base station network element based on the 3GPP standard, and finally establishes a transmission channel for the service request of the terminal.
  • steps 520 through 533 illustrate various admission procedures for service requests of the PS data service type.
  • the core network element receives the service request transparently transmitted by the base station, where the service request is initiated by the terminal, where the service request includes a PS data service type.
  • the core network element sends a service to the PS service control module according to the PS data service type to establish an assignment request.
  • the PS service control module determines that the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion state of the non-real time queue corresponding to the PS data service type is not received.
  • the PS service control module applies for transmission resources to the transmission resource allocation module, and obtains transmission resource information.
  • the PS service control module exchanges the obtained transmission resource information with the message of the core network element and the base station network element based on the 3GPP standard, and finally establishes a transmission channel for the service request of the terminal.
  • the PS service control module determines that the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the non-real time queue corresponding to the CS voice service type does not exceed the preset duration.
  • the user plane transmission resource management module detects whether the number of buffered messages of the non-real time queue reaches a preset second threshold.
  • the user plane transmission resource management module detects that the number of cached packets of the non-real-time queue reaches a preset second threshold, the user plane transmission resource management module sends a congestion of the PS data service type to the PS service control module. Press the message.
  • the PS service control module can trigger the LDR action according to the received congestion backpressure message, and the LDR control result is reflected in the non-real-time queue in the user plane transmission resource management module, to eliminate the non-real-time queue congestion state.
  • the PS service control module applies for transmission resources to the transmission resource allocation module, and obtains transmission resource information.
  • the PS service control module exchanges the obtained transmission resource information with the message of the core network element and the base station network element based on the 3GPP standard, and finally establishes a transmission channel for the service request of the terminal.
  • the PS service control module notifies the base station and the terminal to allow the normal rate to access the service request of the terminal, while obtaining the transmission resource information.
  • the PS service control module determines that the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the non-real time queue corresponding to the PS data service type exceeds the preset duration.
  • the PS service control module can trigger the LDR action according to the received congestion backpressure message, but the congestion status of the non-real time queue in the user plane transmission resource management module is not eliminated, at this time, the user plane transmission resource management module continues to control the PS service.
  • the module sends a congestion backpressure message of the non-real-time queue, for example, the duration is 5 seconds, 3 seconds, etc., and the PS service control module determines that the current service corresponding to the PS data service type is in a congestion backpressure state and the duration exceeds a preset duration.
  • the current PS service control module considers that the current non-real-time queue has been continuously congested for a long time, and the PS service control module does not reduce the processing mode of the PS service for the service request corresponding to the already accessed PS data service type. Obviously, if the access to the new service request continues to increase the congestion, the service request corresponding to the new PS data service type is denied access.
  • the PS service control module determines to receive the congestion cancellation sent by the user plane transmission resource management module according to the detected congestion status of the non-real-time queue corresponding to the PS data service type. If the PS service control module can trigger the LDR action according to the received congestion backpressure message, the congestion status of the non-real-time queue in the user plane transmission resource management module is eliminated, that is,
  • the M2' and the user plane transmission resource management module detect that the number of buffered messages of the non-real-time queue is less than a preset second congestion threshold; and further sends a non-real-time queue de-crowding message to the PS service control module.
  • the PS service control module applies for transmission resources to the transmission resource allocation module, and obtains transmission resource information.
  • the PS service control module exchanges the obtained transmission resource information with the message of the core network element and the base station network element based on the 3GPP standard, and finally establishes a transmission channel for the service request of the terminal.
  • the first threshold value, the second threshold value, the first uncongested threshold value, and the second uncongested threshold value are all set according to actual requirements, which is not limited in this implementation.
  • the above-mentioned admission control method can solve the problem of under-admission and over-admission caused by the admission inaccuracy in the prior art, and can fully utilize the transmission resources, and further removes the multi-level control plane admission management, such as The transmission resource management module is not applied to the control plane for transmission, which shortens the user access time and solves a series of problems in which the control plane is not allowed to enter.
  • the queue congestion back pressure corresponding to the different service types only affects the admission control of the service corresponding to the queue:
  • the upper layer service such as the CS service control module
  • the upper layer services such as the PS service control module
  • the congestion control on the non-real-time services, and then fully utilize the transmission resources to improve the transmission efficiency.
  • the fairness of the access between different services is ensured, and the users in some scenarios are solved.
  • the problem of surface congestion back pressure failure avoiding manual adjustment of the activation factor, reducing the cost of network operation and maintenance; further shortening the user access delay.
  • FIG. 7 is a schematic flowchart of an admission control method according to an embodiment of the present invention.
  • the admission control method in this embodiment is as follows.
  • the user plane transmission resource management module detects, in real time, whether the number of cached packets of the real-time queue and the non-real-time queue reaches a preset threshold.
  • a type of congestion backpressure message controls the admission of a service request including a non-real time service type of the terminal.
  • admission control method further includes:
  • the traffic control module sends a real-time service type de-crowding message to enable the service control module to release the real-time service type.
  • the user message allows admission of the service request of the terminal including the real-time service type;
  • the de-crawl message allows admission of the service request of the terminal including non-real-time service types.
  • the admission control method in this embodiment cancels the control plane admission based on the reserved bandwidth, and completely relies on the user plane congestion back pressure information for admission control.
  • the service default transmission resource is admitted. Success; and then make full use of transmission resources to improve transmission efficiency.
  • the controller interface board provides an external interface, such as a Fast Ethernet (FE) interface, a Gigabit Ethernet (GE) interface, and a point-to-point protocol.
  • the -to-Point Protocol (PPP) link and the Multi-Link Point-to-Point Protocol (MLPPP) link are used to send and receive foreign packets.
  • the system resources of the controller interface board also have bottlenecks in the actual application. When the system resources are exhausted, the normal operation of the service is also affected. Packets are discarded. To avoid this effect, the congestion backpressure message needs to be triggered. Notify the service control module for congestion management. Therefore, the system resources of the interface board are also set with the congestion threshold (such as the third threshold). Similarly, the board uses the real-time resource usage rate.
  • the threshold value triggers sending a back pressure message to the service control module. At this time, since the board is the bottleneck of the entire system resources, for all newly accessed industries. The transaction is refused to be admitted.
  • the back pressure message is directly sent to the service control module, and the service control module can simultaneously perform the queue according to the backpressure message.
  • the LDR action such as the LDR action on the real-time queue corresponding to the CS voice type, also performs the LDR action on the non-real-time queue corresponding to the PS data type to eliminate the congestion of internal resources in the board.
  • a third congestion threshold is set in the board, and the board detects the internal resource usage rate in real time. If the resource usage rate is less than the preset third congestion threshold, the trigger is sent to the service control module. The message of the congestion is removed, so that the service control module does not perform the LDR action on each queue in the board, and the service request of each terminal is admitted.
  • each port in the above-mentioned board has a set of queues.
  • a logical port, an Ethernet port, a PPP link, an MLPPP link, and the like each have a corresponding set of queues, and each set of queues has real-time. Queues also have non-real time queues. If the number of the packets buffered in the non-real-time queue reaches the preset second threshold, the congestion control message is sent to the service control module. At this time, the service control module controls the new service request corresponding to the PS data service type to be connected at the basic rate. Into, at the same time, adjust the PS user coding rate that has been accessed to alleviate congestion in non-real-time queues.
  • the congestion control message corresponding to the real-time queue is sent to the service control module, and the service control module controls the CS voice service type correspondingly.
  • the new service request preferentially selects the half rate coding mode for access or
  • the present invention further provides a service control module.
  • the service control module includes: a receiving unit 81, a determining unit 82, and a transmission channel establishing unit 83;
  • the receiving unit 81 is configured to receive, after receiving the service request of the service type initiated by the terminal network element, the network element to establish an assignment request according to the service delivered by the service type;
  • the determining unit 82 is configured to determine that the current service corresponding to the service type is not in a congestion anti-pressure state, or the current service is in a congestion anti-pressure state but does not exceed a preset duration;
  • the transmission channel establishing unit 83 is configured to apply for a transmission resource to the transmission resource allocation module according to the service establishment assignment request, and establish a transmission channel for the service request of the terminal by interacting with the core network element and the base station. Further, the determining unit 82 is further configured to: determine that the current service corresponding to the service type is in a congestion anti-pressure state, and exceeds a preset duration,
  • the transmission channel establishing unit 83 is further configured to send a failure response to the core network element, so that the core network element sends a failure response of the service request to the terminal.
  • the transmission channel establishing unit is further configured to notify the base station and the terminal to allow the terminal to be admitted at a certain rate. Business request.
  • the determining unit 82 is specifically configured to: determine that the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion state of the service type corresponding queue is not received, and determine the corresponding to the service type. The current service is not in the congestion anti-pressure state; or it is determined that the user-side transmission resource management module receives the de-congestion message sent according to the detected congestion status of the service type corresponding queue, and determines that the current service corresponding to the service type is not in the Congestion is anti-pressure state.
  • the determining unit 82 is further configured to: determine that the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the service type corresponding queue is received, and the service is received by the service control module.
  • the time period between the time point of the request and the time point when the congestion back pressure message is received is less than the preset time length, and it is determined that the current service corresponding to the service type is in a congestion back pressure state but does not exceed the preset time length.
  • the determining unit 82 is specifically configured to: after receiving the congestion backpressure message sent by the user plane transmission resource management module according to the detected congestion status of the service type corresponding queue, and receiving, by the service control module, the service request The time period between the time point and the time when the congestion back pressure is received, is greater than or equal to the preset duration, and
  • the service type is a real-time service type, and the queue corresponding to the real-time service type is a real-time queue;
  • the service type is a non-real time service type
  • the queue corresponding to the non-real time service type is a non-real time queue
  • the service control module of this embodiment is received by the receiving unit.
  • the determining unit determines whether the current service corresponding to the service type is in a congestion-inverted state, and if it is determined that the current service corresponding to the service type is not in a reverse-pressure state, or If the current service is in a congestion-reverse state and does not exceed the preset duration, the transmission channel establishment unit applies for transmission resources to the transmission resource allocation module.
  • the foregoing method solves the problem of poor admission and over-admission caused by the admission failure in the prior art.
  • the problem of entering, and making full use of the transmission resources further removes the multi-level control plane access management, shortens the length of terminal access, and solves a series of problems of inaccurate control plane access.
  • the present invention further provides a user plane transmission resource management module.
  • the user plane transmission resource management module of this embodiment includes: a detecting unit 91, a control unit 92;
  • the detecting unit 91 is configured to detect, in real time, whether the number of buffered messages of the real-time queue and the non-real-time queue reaches a preset threshold.
  • the control unit 92 is configured to send a congestion backpressure message of a real-time service type to the service control module when the number of caches of the real-time queue reaches a preset first threshold, so that the service control module is configured according to the real-time service type.
  • the congestion backpressure message controls access of the service request including the real-time service type of the terminal;
  • the service control module And sending, by the service control module, a congestion backpressure message of a non-real-time service type, when the number of the cached packets in the non-real-time queue reaches a preset second threshold, so that the service control module is configured according to the non-real time
  • the service type congestion backpressure message controls the admission of the service request including the non-real time service type of the terminal.
  • control unit 92 is further configured to: when the number of the cached packets in the real-time queue is less than the preset first congestion threshold, send a real-time service type de-crowding message to the service control module, so that the service is performed. And the control module allows the access of the service request including the real-time service type of the terminal according to the release user message of the real-time service type;
  • the traffic control module sends a non-real-time service type de-crawl message to the service control module according to the non-real time.
  • the de-congestion message of the service type allows the admission of the service request of the terminal including the non-real-time service type.
  • the user plane transmission resource management module in this embodiment uses the detection unit and the control unit to perform the admission control by relying on the user plane congestion back pressure information, and when the user plane does not trigger the congestion back pressure, the industry The default transmission resources are successfully admitted; and the transmission resources are fully utilized to improve the transmission efficiency.
  • the embodiment of the present invention further provides an apparatus, including: the service control module according to any one of the embodiments of the present invention, and the user plane transmission resource management module according to any one of the embodiments of the present invention, where The service control module interacts with the user plane transmission resource management module.
  • the foregoing device may be a base station controller, a core network element, or the like.
  • FIG. 10 is a schematic flowchart of a base station controller according to an embodiment of the present invention.
  • the base station controller includes: a service control module according to any embodiment of the present invention, and any implementation of the present invention a user plane transmission resource management module, and a transmission resource allocation module;
  • the service control module interacts with the user plane transmission resource management module, and the service control module interacts with the transmission resource allocation module to establish a transmission channel for the service request of the terminal.
  • a base station controller may be applied to other network elements such as a terminal or a wireless, such as a base station or a core network.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种准入控制方法及设备,其中,所述方法包括:业务控制模块接收核心网网元在接收终端发起的包括业务类型的业务请求之后,根据所述业务类型下发的业务建立指配请求(201);所述业务控制模块确定与所述业务类型对应的当前业务未处于拥塞反压态,或者,所述当前业务处于拥塞反压态但未超出预设时长,则根据所述业务建立指配请求向传输资源分配模块申请传输资源,以及与所述核心网网元、基站交互为所述终端的业务请求建立传输通道(202)。上述准入控制方法可以解决现有技术中传输资源准入不准导致的欠准入问题和过准入问题,同时节省用户终端接入的时长。

Description

准入控制方法及设备 技术领域 本发明实施例涉及通信技术, 尤其涉及一种准入控制方法及设备。 背景技术
对于无线通信系统, 资源管理分为: 空口资源的资源管理和传输资源 的传输资源管理。 当前的传输资源管理主要分为: 基于控制面的传输资源 管理和基于用户面的传输资源管理。
基于控制面的传输资源管理, 也称为传输负载控制, 用于管理传输带 宽, 控制传输链路的负载, 在保证业务质量的前提下, 接入尽可能多的用 户终端, 提升系统容量。 准入负载控制为每个业务预留带宽, 传输负载是 所有已接入业务的预留带宽之和, 基于传输负载的拥塞状态对业务进行准 入控制。
基于预留带宽的传输负载处理包括: 用户终端配置传输路径的带宽, 每一级(互联网协议路径 ( Internet Protocol Path , 简称 IP PATH ) 、 逻 辑端口、 物理端口) 都配置相应的带宽。
当新用户终端业务接入时, 传输负载控制基于预留带宽方式进行准入 控制: 如果 "当前已经接入的总用户传输负载" + "新接入用户预留带 宽" < "配置带宽的拥塞门限" , 则允许业务准入; 否则根据拥塞程度进 行负载重整( Load Reshuffling , 简称 LDR )动作(例如: PS降速、 全速 率编码方式切换为半速率编码方式、 优选半速率编码、 自适应多速率控制 ( Adaptive Multi Rate Control , 简称 AMRC ) ) 。
当前, 传输负载准入控制釆取基于预留带宽乘以激活因子的方法进行 准入控制, 但由于现网应用场景复杂, 导致基于预留带宽乘以激活因子的 准入算法无法很好的适应各种组网场景, 例如, 激活因子在不同环境下存 在波动,釆用配置的固定值无法适应应用环境的动态变化,偏差不可避免; 此外如果自动调整激活因子, 由于实现上非常复杂且随时变化, 导致自动 调整激活因子实现上不可行; 因此当前基于预留带宽的准入控制会导致欠 准入问题和过准入问题。 进一步地, 基于预留带宽的多级准入控制间接增 加用户终端接入的时长, 并增加系统的中央处理器 ( Central Processing Unit, 简称 CPU ) 资源的开销。 发明内容
有鉴于此, 针对现有技术中的缺陷, 本发明实施例提供一种准入控制方 法及设备, 用于解决现有技术中准入不准导致的欠准入问题和过准入的问 题, 同时节省用户终端接入的时长。
一方面, 本发明实施例提供的准入控制方法, 包括:
业务控制模块接收核心网网元在接收终端发起的包括业务类型的业 务请求之后, 根据所述业务类型下发的业务建立指配请求;
所述业务控制模块确定与所述业务类型对应的当前业务未处于拥塞 反压态, 或者, 所述当前业务处于拥塞反压态但未超出预设时长, 则根据 所述业务建立指配请求向传输资源分配模块申请传输资源, 以及与所述核 心网网元、 基站交互为所述终端的业务请求建立传输通道。 例如, 将获取 的传输资源信息通过与核心网网元和基站基于 3GPP标准的消息交互,相 对于全球移动通信系统 (Global System for Mobile Communications,简称 GSM)来说, 完成 A、 Gb、 Abis接口的业务传输通道建立; 相对于通用移 动通信系统 (Universal Mobile Telecommunications System ,简称 UMTS) 来说完成 lu-CS、 lu-PS、 lub接口的业务传输通道建立。
另一方面, 本发明实施例提供的准入控制方法, 包括:
用户面传输资源管理模块实时检测实时队列和非实时队列各自的緩 存报文的数量是否达到预设的门限值;
若实时队列的緩存报文的数量达到预设的第一门限值, 则向业务控制 模块发送实时业务类型的拥塞反压消息, 以使所述业务控制模块根据所述 实时业务类型的拥塞反压消息控制终端的包括实时业务类型的业务请求 的准入;
若非实时队列的緩存报文的数量达到预设的第二门限值, 则向业务控 制模块发送非实时业务类型的拥塞反压消息, 以使所述业务控制模块根据 所述非实时业务类型的拥塞反压消息控制终端的包括非实时业务类型的 业务请求的准入。
第三方面, 本发明实施例提供的业务控制模块, 包括:
接收单元, 用于接收核心网网元在接收终端发起的包括业务类型的业 务请求之后, 根据所述业务类型下发的业务建立指配请求;
确定单元, 用于确定与所述业务类型对应的当前业务未处于拥塞反压 态, 或者, 所述当前业务处于拥塞反压态但未超出预设时长;
传输通道建立单元, 用于根据所述业务建立指配请求向传输资源分配 模块申请传输资源, 以及与所述核心网网元、 基站交互为所述终端的业务 请求建立传输通道。
第四方面, 本发明实施例提供的用户面传输资源管理模块, 包括: 检测单元, 用于实时检测实时队列和非实时队列各自的緩存报文的数 量是否达到预设的门限值;
控制单元, 用于在实时队列的緩存的数量达到预设的第一门限值时, 向业务控制模块发送实时业务类型的拥塞反压消息, 以使所述业务控制模 块根据所述实时业务类型的拥塞反压消息控制终端的包括实时业务类型 的业务请求的准入;
用于在非实时队列的緩存报文的数量达到预设的第二门限值时, 向业 务控制模块发送非实时业务类型的拥塞反压消息, 以使所述业务控制模块 根据所述非实时业务类型的拥塞反压消息控制终端的包括非实时业务类 型的业务请求的准入。
第五方面, 本发明实施例提供的设备, 包括: 如上任一所述的业务控 制模块和如上任一所述的用户面传输资源管理模块, 其中, 业务控制模块 和用户面传输资源管理模块交互。举例来说,上述设备可以是基站控制器、 核心网网元等。
由上述技术方案可知, 本发明实施例的准入控制方法及设备, 通过业 务控制模块在接收核心网网元根据业务类型下发的业务建立指配请求之 后, 确定与业务类型对应的当前业务是否处于拥塞反压态, 若确定与业务 类型对应的当前业务未处于反压态, 或者当前业务处于拥塞反压态且未超 出预设时长, 则向传输资源分配模块申请传输资源, 上述方法解决了现有 技术中准入不准导致的欠准入问题和过准入的问题, 并能充分利用传输资 源, 进一步地,去除了多级控制面准入管理, 缩短了用户终端接入的时长, 解决了控制面准入不准的一系列问题。 附图说明
为了更清楚地说明本发明的技术方案, 下面将对实施例中所需要使用的 附图作一简单地介绍, 显而易见地: 下面附图只是本发明的一些实施例的附 图, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可 以根据这些附图获得同样能实现本发明技术方案的其它附图。
图 1A和图 1 B为本发明的 IP PATH、 逻辑端口、 物理端口的层次关系 示意图;
图 2 A为本发明一实施例提供的基站控制器的结构示意图;
图 2B为本发明一实施例提供的准入控制方法的流程示意图; 图 3为本发明另一实施例提供的准入控制方法的流程示意图; 图 4为本发明另一实施例提供的准入控制方法的流程示意图; 图 5A和图 5B为本发明另一实施例提供的准入控制方法的信令图; 图 6A和图 6B为本发明另一实施例提供的准入控制方法的场景图; 图 7为本发明另一实施例提供的准入控制方法的流程示意图; 图 8为本发明另一实施例提供的业务控制模块的结构示意图; 图 9为本发明另一实施例提供的用户面传输资源管理模块的结构示意 图;
图 10为本发明另一实施例提供的基站控制器的结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合本发明实 施例中的附图, 对本发明的技术方案进行清楚、 完整地描述。 显然, 下述 的各个实施例都只是本发明一部分的实施例。 基于本发明下述的各个实施 例, 本领域普通技术人员即使没有作出创造性劳动, 也可以通过等效变换 部分甚至全部的技术特征, 而获得能够解决本发明技术问题, 实现本发明 技术效果的其它实施例, 而这些变换而来的各个实施例显然并不脱离本发 明所公开的范围。
当前, 互联网协议 ( Internet Protocol , 简称 IP )技术以其简单、 灵 活和低成本的特性, 使得无线移动网络 IP化正逐渐成为一种电信网络趋 势并越来越广泛应用, 同时无线网络的 IP化可有效降低端到端单位比特 ( bit )成本。 无线网络 IP化, 包括无线网络网元设备的 IP化以及无线网 络传输承载网 IP化。网元设备和承载网设备 IP化之后,由于 IP报文分组、 复用的特点, 相比时分复用 ( Time Division Multiplexing , 简称 TDM ) 方 式下传输链路的固定分配(时分独享, 自己不用别人也无法使用) , IP方 式下传输链路是共享带宽, 传输效率更高, 但是为了避免网络传输过载, 需要对业务进行准入控制。
当前在无线通信系统中 (GSM/UMTS/CDMA/TDCDMA/LTE ) 中, 由 于空口无线资源以及承载业务的传输链路资源均可能存在瓶颈, 为了保证 用户的服务质量( Quality of Service, 简称 QoS )体验, 因此对于所有接 入的业务会进行资源管理。
对于无线通信系统, 资源管理分为两类: 基于空口无线资源的资源管 理、 基于传输资源的传输资源管理。 一个新业务的建立只有两种资源管理 都准入成功, 该业务才能最终成功接入, 用户通话或者数据业务才能最终 建立。
当前,传输资源管理主要分为两个方面:基于控制面的传输资源管理、 基于用户面的传输资源管理。
基于控制面的传输资源管理, 指在传输准入环节根据合理的带宽分配 策略来进行传输资源管理. 如何高效精确的准入更多用户, 同时有效预防 用户面实际流量出现拥塞丟包并且保证用户质量是控制面传输资源管理 算法需要解决的问题。 基于用户面的传输资源管理, 指对用户面实际流量 进行控制,解决实际流量的拥塞丟包和高效利用传输带宽问题。
基于控制面的传输资源管理, 也称为传输负载控制, 用于管理传输带 宽, 控制传输链路的负载, 在保证业务质量的前提下, 接入尽可能多的用 户, 提升系统容量。 准入负载控制为每个业务预留带宽, 传输负载是所有 已接入业务的预留带宽之和, 基于传输负载的拥塞状态对业务进行准入控 制。 当前传输负载控制釆用基于预留带宽的准入控制算法, 存在多级准入 控制。 如图 1A和图 1 B所示, 基于 IP PATH ( IP路径) 配置带宽进行准 入控制, 基于逻辑端口 (Logic Port, 简称 LP ) 配置带宽的准入控制, 基 于物理端口配置带宽的准入控制等。 在整个准入路径上所有准入控制点都 准入成功, 才认为该业务在传输层允许接入, 如果任意一个准入点准入失 败, 则该业务拒绝接入。
通常, IP PATH可承载在某个逻辑端口上, 而逻辑端口承载在某个物 理端口上。 一个物理端口上可以配置多个逻辑端口, 每个逻辑端口可对应 一个基站, 且逻辑端口带宽等于基站的瓶颈带宽。 IP PATH对应一个基站 的某一类业务类型或者所有业务类型, 其带宽也对应该基站某一类业务类 型或者所有业务类型所规划的带宽。
现有技术中, 多级准入控制中每一级都存在相应的传输负载: IP PATH级、 逻辑端口级、 物理端口级。 每一级都要进行基于预留带宽的准 入控制。 当业务接入或者释放时, 每一级都进行传输负载的变更。 当每一 级对应的传输负载 TrmLoad (已占用的传输总负载, 表示当前传输资源的 使用情况, 初始值为 0, 单位 bps )有变化时, 都需要与相应的每一级配 置的带宽门限进行比较。
如果任意一级 TrmLoad >= 该级的配置带宽 *拥塞门限, 则认为当前 该传输链路拥塞, 通知业务控制管理模块进行拥塞管理, 触发负载重整 ( Load Reshuffling, 简称 LDR ) 动作: 分组业务( Packet Service, 简 称 PS ) 降速、 电路业务(Circuit Service, 简称 CS )优选半速率编码、 语音用户进行全半速率编码切换、 AMRC等选择低编码速率, , 从而緩解 传输链路拥塞程度。
基于预留带宽的准入控制方案通过统计预测业务带宽占用量来完成 传输带宽占有情况的评估, 要求业务带宽申请能准确反映该业务带宽实际 的使用情况, 但是实际上对于 CS业务和 PS业务带宽很难预测, 如果按 最大比特速率 ( Maximum Bit Rate, 简称 MBR ) 进行准入将有艮大的带 宽浪费, 如果按保证比特速率(Guaranteed Bit Rate )进行准入, 业务突 发时会导致传输拥塞丟包。 另外激活因子的静态配置与实际应用场景之间 存在不确定性以及 PS 业务的突发性等也会带来预留带宽与实际带宽不 一致。 激活因子緩解问题, 使得准入带宽相对更加接近真实带宽, 但是无法根本 解决。 即便临时调整激活因子后, 使得当前准入时预测的传输资源与业务 实际所需要的资源相对较为匹配, 但是随着业务模型的变化: 业务报文复 用、 本地交换、 压缩技术的应用, 导致预测带宽无法跟随这种动态变化, 重新产生准入不准的问题, 导致传输效率无法充分利用。
基于预测带宽的准入控制算法的缺点, 核心问题就是准入不准。 对外 表项为 "欠准入" 或者 "过准入" 问题。
欠准入问题: 明明传输资源还有充足的带宽, 但是传输资源准入控制 却认为传输耗尽并拒绝新用户接入, 导致用户呼叫接入成功率低, 传输带 宽利用率低。
过准入问题: 明明传输资源带宽已经耗尽, 但是传输资源准入控制却 认为传输尚充裕并不断接入新的用户, 导致传输拥塞不断加剧, 用户数据 报文大量丟包, 用户体验非常差, 即传输效率超规格使用。
而基于用户面的传输资源管理, 也称为用户面反压, 即在用户面基于 逻辑端口或者物理端口实际发送流量, 如果报文的实际流量超规格发送或 者短时间大量突发, 导致緩存的数据报文超过逻辑端口或者物理端口所对 应的队列的拥塞门限, 则该队列所对应的端口直接发消息通知业务源头, 由业务源头进行流量控制, 降低业务的发送速率, 从而快速緩解用户面拥 塞状态, 避免长时间持续拥塞丟包, 导致用户体验非常差。
用户面反压是基于队列调度。 在 IP化之后, 每个端口都有一组队列 与之匹配。 无能是物理端口还是逻辑端口, 都有与之相对应的一组队列。 对每一组队列都有队列调度, 队列调度的目的是为了满足不同业务的传输 QoS需求和差异化服务需求,通常提供的队列调度技术包括: 优先队列 ( Priority Queue, f¾ PQ ) 、 力口权轮询队歹 'J ( Weighted Round Robin , 简称 WRR ) 。
每一组队列中, 对优先级最高的几个队列釆用 PQ调度, 对除 PQ队 列之外的其余队列釆用 WRR调度。 即釆用 PQ + WRR调度方式。 其中实 时业务和信令映射到 PQ队列, 非实时业务映射到 WRR队列。 每个队列都有解拥塞门限、 拥塞门限、 丟包门限, 依次升高。 一旦队 列緩存的报文数高于队列的拥塞门限则触发反压消息进入拥塞反压状态, 低于解拥塞门限时进入解拥塞状态, 超过丟包门限则开始丟包并触发拥塞 反压消息。
由于 PS数据业务突发和波动大, CS语音业务突发非常小, 因此通 常只考虑了对于 PS数据业务的反压, 即用户面端口拥塞时,只通知到 PS 业务处理模块, 对 PS业务进行降速处理。
当前的用户面反压只能解决以 PS数据业务为主的场景。 对于带宽受 限场景, 例如, 端口的瓶颈带宽只有一根或者几根 E1 (线缆) 场景, 且 以 CS语音为主的场景下, 由于基于预留带宽的控制面准入不准, 导致过 准入,此时即便端口拥塞( PQ队列有大量拥塞或者丟包并产生反压消息 ) , 但是由于反压消息是通知到 PS业务处理模块, PS业务即便进行降速处 理, 但是对于 CS用户面拥塞解除没有任何帮助, 导致长时间用户面持续 拥塞并大量丟包, 最终 CS用户通话质量非常差, 严重影响用户感受和体 验。
本发明实施例的准入控制方法, 用以取消基于预留带宽的控制面准 入, 解决控制面准入不准的问题以及部分场景下用户面反压失效; 同时, 避免用户手工调整激活因子, 简化网络的运维操作。
结合图 2A和图 2B所示, 图 2A示出了本发明一实施例提供的准入控 制方法的场景图, 图 2B示出了本发明一实施例提供的准入控制方法的流 程示意图。
201、 业务控制模块接收核心网网元在接收终端发起的包括业务类型 的业务请求之后, 根据所述业务类型下发的业务建立指配请求。
在本实施例中, 核心网网元可以接收基站透传的终端发送的包括业务 类型的业务请求, 也可以接收其它核心网网元转发的上述终端的包括业务 类型的业务请求等。 本实施例不限定核心网网元如何接收到终端的业务请 求的过程。 另外, 每一终端发送的业务请求均包括业务类型。
举例来说, 业务类型可为电路业务(Circuit Service, 简称 CS )类型 或分组业务(Packet Service, 简称 PS ) 类型。
通常, 业务类型分为实时业务类型和非实时业务类型, 上述的 CS语 音业务类型属于实时业务类型, PS数据业务类型属于非实时业务类型。 业务类型为 CS语音业务类型时, 与所述 CS语音业务类型对应的队 列为实时队列; 业务类型为其它实时业务类型, 如视频业务、 实时交互类 业务等, 与所述实时业务类型对应的队列为也是实时队列。
业务类型为 PS数据业务类型时, 与所述 PS数据业务类型对应的队 列为非实时队列; 进一步地, 业务类型为其它非实时业务类型时, 与非实 时业务类型对应的队列为也是非实时队列。
202、 业务控制模块确定与业务类型对应的当前业务未处于拥塞反压 态, 或者, 当前业务处于拥塞反压态但未超出预设时长, 则根据业务建立 指配请求向传输资源分配模块申请传输资源, 以及与核心网网元、 基站交 互为终端的业务请求建立传输通道。
例如, 业务控制模块根据业务建立指配请求向传输资源分配模块申请 传输资源,将获取的传输资源信息通过与核心网网元和基站基于 3GPP标 准的消息交互, 相对于全球移动通信系统(Global System for Mobile Communications, 简称 GSM)来说, 完成 A、 Gb、 Abis接口的业务传输 通道建立; 相对于通用移动通信系统 (Universal Mobile
Telecommunications System, 简称 UMTS)来说完成 lu-CS、 lu-PS、 lub 接口的业务传输通道建立。
举例来说, 上述核心网网元可为: 媒体网关( Media Gateway, 简称 MGW ) 、 或者 GPRS服务支持节点 (Serving GPRS support node, 简 称 SGSN ) 等; 基站可为基站收发台 (Base Transceiver Station , 简称 BTS ) , 或 NodeB ( 3G基站) 等。 应了解的是, 业务控制模块、 核心网 网元、 基站之间交互最终为终端业务建立传输通道为现有的技术, 本实施 例仅为举例说明, 本实施例不对该处进行限定, 以实际的交互为准。
进一步地, 如图 3所示, 上述准入控制方法还包括如下的步骤 203。
203、业务控制模块确定与业务类型对应的当前业务处于拥塞反压态 , 且超出预设时长, 则向核心网网元发送的失败响应, 以使核心网网元向所 述终端发送业务请求的失败响应。
由上述实施例可知, 本实施例的准入控制方法, 通过业务控制模块在 接收核心网网元根据业务类型下发的业务建立指配请求之后, 确定与业务 类型对应的当前业务是否处于拥塞反压态, 若确定与业务类型对应的当前 业务未处于反压态, 或者当前业务处于拥塞反压态且未超出预设时长, 则 向传输资源分配模块申请传输资源, 上述方法解决了现有技术中准入不准 导致的欠准入问题和过准入的问题, 并能充分利用传输资源, 进一步地, 去除了多级控制面准入管理, 缩短了终端接入的时长, 解决了控制面准入 不准的一系列问题。
如图 4所示, 图 4示出了本发明一实施例提供的准入控制方法的流程 示意图, 本实施例中的准入控制方法如下文所示。
401、 业务控制模块接收核心网网元在接收终端发起的包括业务类型 的业务请求之后, 根据所述业务类型下发的业务建立指配请求。
402、 业务控制模块确定与业务类型对应的当前业务处于拥塞反压态 但未超出预设时长, 则根据业务建立指配请求向传输资源分配模块申请传 输资源, 以及与核心网网元、 基站交互为终端的业务请求建立传输通道。
403、 业务控制模块向传输资源分配模块申请传输资源的同时, 通知 所述基站和终端允许以一定速率准入所述终端的业务请求。
举例来说,业务类型为 CS语音业务类型,其对应的实时队列拥塞时, 业务控制模块可以通知基站和终端, 要求降低终端的语音业务请求的编码 速率。 例如, 全速率语音编码转换为半速率语音编码接入, 或者选择低速 率的 AMRC编码方式接入。
相应地, 业务类型为 PS数据业务类型,其对应的非实时队列拥塞时, 则业务控制模块可以使 PS数据业务类型对应的新业务请求以基本速率接 入, 例如上行 64K比特 /秒, 下行 64K比特 /秒; 同时, 调整已经接入的 PS用户编码速率, 例如 UMTS的 PS编码速率从上行 64K比特 /秒, 下行 384K比特 /秒, 调整为上行 64K比特 /秒, 下行 64K比特 /秒等。
由上述实施例可知, 本实施例的准入控制方法, 可以解决现有技术中 准入不准导致的欠准入问题和过准入的问题, 进一步地, 去除了多级控制 面准入管理, 缩短了终端接入的时长, 解决了控制面准入不准的一系列问 题。
当然, 在实际应用中, 前述的步骤 202中的 "业务控制模块确定与业 务类型对应的当前业务未处于拥塞反压态" , 可具体为: 202'、 业务控制模块确定在一定时间内一直未接收到用户面传输资源 管理模块根据检测的与业务类型对应队列的拥塞状态所发送的拥塞反压 消息, 进而确定与业务类型对应的当前业务未处于拥塞反压态;
或者
业务控制模块确定接收到用户面传输资源管理模块根据检测的与业 务类型对应队列的拥塞状态所发送的拥塞反压消息之后, 又接收到用户面 传输资源管理模块根据检测的与业务类型对应队列的拥塞状态发送的解 除拥塞消息, 进而确定与业务类型对应的当前业务未处于拥塞反压态。
在实际应用中, 用户面传输资源管理模块实时检测与业务类型对应的 队列的緩存报文的数量, 如果緩存报文的数量超过拥塞门限(如实时队列 对应的第一门限值, 非实时队列对应的第二门限值)就向业务控制模块发 送拥塞反压消息; 此时上层业务模块(如业务控制模块)根据拥塞反压消 息触发 LDR动作, 其负载重整( Load Reshuffling LDR )控制结果会体现 到用户面传输资源管理模块中的与业务类型对应的队列中, 减少发送的数 据报文, 从而使得緩存报文的数量减少等。
如果用户面传输资源管理模块检测到与业务类型对应的队列的緩存 报文的数量低于解拥塞门限, 则认为反压解除, 向业务控制模块发送拥塞 解除消息。
需要注意的是, 在业务控制模块中, 不同业务类型对应的 LDR动作 是不同的。 另外, 上述的拥塞门限和解拥塞门限可以相同也可以不同, 实 际应用中的解拥塞门限可与拥塞门限不同。
在另一实施例中, 前述的步骤 202中的 "业务控制模块确定与业务类 型对应的当前业务处于拥塞反压态但未超出预设时长" , 可具体为:
202'、 业务控制模块确定接收到用户面传输资源管理模块根据检测的 与业务类型对应队列的拥塞状态所发送的拥塞反压消息, 且在业务控制模 块接收到业务请求的时间点与接收到拥塞反压消息的时间点之间的时间 段小于预设时长, 进而确定与业务类型对应的当前业务处于拥塞反压态但 未超出预设时长。
在另一实施例中, 前述图 3中的步骤 203中的 "业务控制模块确定与 所述业务类型对应的当前业务处于拥塞反压态且超出预设时长" , 可具体 为:
203'、 业务控制模块确定接收到用户面传输资源管理模块根据检测的 与业务类型对应队列的拥塞状态所发送的拥塞反压消息之后, 且在业务控 制模块接收到业务请求的时间点与接收到拥塞反压消息的时间点之间的 时间段大于等于预设时长, 以及
在预设时长内未接收到所述用户面传输资源管理模块根据检测的与 业务类型对应队列的拥塞状态发送的解除拥塞消息, 进而确定与业务类型 对应的当前业务处于拥塞反压态且超出预设时长。
在实际应用中, 在某一时间段内持续收到用户面传输资源管理模块根 据检测的与业务类型对应队列的拥塞状态发送的拥塞反压消息, 则确定与 业务类型对应的当前业务处于拥塞反压态且持续有预定时间。
需要说明的是, 在业务控制模块接收到用户面传输资源管理模块根据 检测的实时队列的拥塞状态所发送的拥塞反压消息之后, 业务控制模块触 发实时队列的 LDR动作, 用以緩解实时队列的拥塞状态。
举例来说, 业务控制模块触发实时队列的 LDR动作可为: 对已经接 入的语音用户编码速率进行调整, 进行全半速率切换或者使已经接入的 AMR语音用户编码速率选择低速的编码方式, 同时新接入用户优先选择 半速率或者低速 AMRC编码方式接入。
相对应地, 在业务控制模块接收到用户面传输资源管理模块根据检测 的非实时队列的拥塞状态所发送的拥塞反压消息之后, 业务控制模块触发 非实时队列的 LDR动作, 用以緩解非实时队列的拥塞状态。
举例来说, 业务控制模块触发非实时队列的 LDR动作可为: 对于已 经接入的 PS用户, 调整 PS用户的编码速率; 对于 UMTS网络降低 PS 用户的编码速率; 对于 GSM网络降低 PDCH信道的编码速率, 同时禁止 PS用户的升速请求等。
上述实时队列的 LDR动作和非实时队列的 LDR的动作是不同的。 上述的准入控制方法, 能够解决现有技术中准入不准导致的欠准入问 题和过准入的问题, 进入能充分利用传输资源, 进一步地, 去除了多级控 制面准入管理, 如不再向控制面传输资源管理模块申请传输, 缩短了用户 接入时长, 解决了控制面准入不准的一系列问题。 如图 5A、 图 5B、 图 6A和图 6B所示, 图 5A和图 5B示出了本发明 一实施例提供的准入控制方法的信令图, 图 6A和图 6B示出了本发明准 入控制方法的场景图, 本实施例中的准入控制方法如下文所述。
如图 5A所示, 以下步骤 501至步骤 514举例说明 CS语音业务类型 的业务请求的各种准入过程。
501、 核心网网元接收基站透传的业务请求, 所述业务请求为终端发 起的, 该业务请求中包括 CS语音业务类型。
502、 核心网网元根据 CS语音业务类型向 CS业务控制模块下发业 务建立指配请求。
503、 CS业务控制模块确定未接收到用户面传输资源管理模块根据检 测的与 CS语音业务类型对应的实时队列的拥塞状态所发送的拥塞反压消 息。
504、 CS业务控制模块向传输资源分配模块申请传输资源, 并获得传 输资源信息。
505、 CS业务控制模块将获取的传输资源信息通过与核心网网元和基 站网元基于 3GPP标准的消息交互,最终为所述终端的业务请求建立传输 通道。
506、 CS业务控制模块确定接收到用户面传输资源管理模块根据检测 的与 CS语音业务类型对应的实时队列的拥塞状态所述发送的拥塞反压消 息但未超出预设时长。
也就是说, S1、 用户面传输资源管理模块检测到实时队列的緩存报文 的数量是否达到预设的第一门限值。
S2、在用户面传输资源管理模块检测到实时队列的緩存报文的数量达 到预设的第一门限值时, 用户面传输资源管理模块向 CS业务控制模块发 送 CS语音业务类型的拥塞反压消息。
进而, CS业务控制模块可根据接收到的拥塞反压消息触发 LDR动作, 其 LDR控制结果会体现到用户面传输资源管理模块中的实时队列中, 用 以消除实时队列拥塞状态。
507、 CS业务控制模块向传输资源分配模块申请传输资源, 并获得传 输资源信息。 508、 CS业务控制模块将获取的传输资源信息通过与核心网网元和基 站网元基于 3GPP标准的消息交互,最终为所述终端的业务请求建立传输 通道。
509、 CS业务控制模块获得传输资源信息的同时,通知所述基站和终 端允许一定的速率准入该终端的业务请求。
举例来说, 允许一定速率准入, 还可包括: 对于新接入的业务请求优 先选择半速率编码方式进行接入或者 AMRC选择最低速率接入。
通常, 业务请求中包括优先级标识和 /或紧急业务标识。 相应地, 业务 控制模块在确定当前业务处于反压态时, 查看业务请求中的优先级标识和 /或紧急业务标识, 根据业务请求中的优先级标识和 /或紧急业务标识, 优 先准入高优先级的业务请求, 或者紧急业务的业务请求。
需要说明的是, 上述步骤 508和步骤 509在实际应用中一起实施的, 本实施例为描述方便, 将其分为两个步骤, 本实施例不限定各步骤的实施 顺序。
510、 CS业务控制模块确定接收到用户面传输资源管理模块根据检测 的与 CS语音业务类型对应的实时队列的拥塞状态所述发送的拥塞反压消 息且超出预设时长。
若 CS业务控制模块可根据接收到的拥塞反压消息触发 LDR动作, 但是用户面传输资源管理模块中实时队列的拥塞状态未被消除, 此时, 用 户面传输资源管理模块持续向 CS业务控制模块发送实时队列的拥塞反压 消息, 如持续时间为 5秒、 3秒等, 则 CS业务控制模块确定与 CS语音 业务类型对应的当前业务处于拥塞反压态且持续时间超出预设时长。
51 1、 CS业务控制模块向所述核心网网元发送的失败响应, 以使所述 核心网网元向所述终端发送所述业务请求的失败响应。
在实际应用中, 当前 CS业务控制模块认为当前实时队列已经持续较 长时间拥塞, CS业务控制模块对于已经接入的 CS语音业务类型对应的 业务请求进行降速处理效果不明显, 如果继续接入新的业务请求会加剧拥 塞, 此时对于新的 CS语音业务类型对应的业务请求拒绝准入。
512、 CS业务控制模块确定接收到用户面传输资源管理模块根据检测 的与 CS语音业务类型对应的实时队列的拥塞状态所发送的解除拥塞消 若 CS业务控制模块可根据接收到的拥塞反压消息触发 LDR动作, 此时用户面传输资源管理模块中实时队列的拥塞状态被消除, 即
S2'、 用户面传输资源管理模块检测到实时队列的緩存报文的数量小 于预设的第一解拥塞门限值; 进而向 CS业务控制模块发送实时队列的解 除拥塞消息。
513、 CS业务控制模块向传输资源分配模块申请传输资源, 并获得传 输资源信息。
514、 CS业务控制模块将获取的传输资源信息通过与核心网网元和基 站网元基于 3GPP标准的消息交互,最终为所述终端的业务请求建立传输 通道。
如图 5B所示, 步骤 520至步骤 533举例说明 PS数据业务类型的业 务请求的各种准入过程。
520、 核心网网元接收基站透传的业务请求, 所述业务请求为终端发 起的, 该业务请求中包括 PS数据业务类型。
521、核心网网元根据 PS数据业务类型向 PS业务控制模块下发业务 建立指配请求。
522、 PS业务控制模块确定未接收到用户面传输资源管理模块根据检 测的与 PS数据业务类型对应的非实时队列的拥塞状态所发送的拥塞反压 消息。
523、 PS业务控制模块向传输资源分配模块申请传输资源, 并获得传 输资源信息。
524、 PS业务控制模块将获取的传输资源信息通过与核心网网元和基 站网元基于 3GPP标准的消息交互,最终为所述终端的业务请求建立传输 通道。
525、 PS业务控制模块确定接收到用户面传输资源管理模块根据检测 的与 CS语音业务类型对应的非实时队列的拥塞状态所述发送的拥塞反压 消息但未超出预设时长。
也就是说, M1、 用户面传输资源管理模块检测到非实时队列的緩存 报文的数量是否达到预设的第二门限值。 M2、 在用户面传输资源管理模块检测到非实时队列的緩存报文的数 量达到预设的第二门限值时, 用户面传输资源管理模块向 PS业务控制模 块发送 PS数据业务类型的拥塞反压消息。
进而, PS业务控制模块可根据接收到的拥塞反压消息触发 LDR动作, 其 LDR控制结果会体现到用户面传输资源管理模块中的非实时队列中, 用以消除非实时队列拥塞状态。
526、 PS业务控制模块向传输资源分配模块申请传输资源, 并获得传 输资源信息。
527、 PS业务控制模块将获取的传输资源信息通过与核心网网元和基 站网元基于 3GPP标准的消息交互,最终为所述终端的业务请求建立传输 通道。
528、 PS业务控制模块获得传输资源信息的同时, 通知所述基站和终 端允许正常速率准入该终端的业务请求。
529、 PS业务控制模块确定接收到用户面传输资源管理模块根据检测 的与 PS数据业务类型对应的非实时队列的拥塞状态所述发送的拥塞反压 消息且超出预设时长。
若 PS业务控制模块可根据接收到的拥塞反压消息触发 LDR动作,但 是用户面传输资源管理模块中非实时队列的拥塞状态未被消除, 此时, 用 户面传输资源管理模块持续向 PS业务控制模块发送非实时队列的拥塞反 压消息, 如持续时间为 5秒、 3秒等, 则 PS业务控制模块确定与 PS数 据业务类型对应的当前业务处于拥塞反压态且持续时间超出预设时长。
530、 PS业务控制模块向所述核心网网元发送的失败响应, 以使所述 核心网网元向所述终端发送所述业务请求的失败响应。
在实际应用中, 当前 PS业务控制模块认为当前非实时队列已经持续 较长时间拥塞, PS业务控制模块对于已经接入的 PS数据业务类型对应 的业务请求进行降低 PS业务的编码方式的处理效果不明显, 如果继续接 入新的业务请求会加剧拥塞, 此时对于新的 PS数据业务类型对应的业务 请求拒绝准入。
531、 PS业务控制模块确定接收到用户面传输资源管理模块根据检测 的与 PS数据业务类型对应的非实时队列的拥塞状态所发送的解除拥塞消 若 PS业务控制模块可根据接收到的拥塞反压消息触发 LDR动作,此 时用户面传输资源管理模块中非实时队列的拥塞状态被消除, 即
M2'、 用户面传输资源管理模块检测到非实时队列的緩存报文的数量 小于预设的第二解拥塞门限值; 进而向 PS业务控制模块发送非实时队列 的解除拥塞消息。
532、 PS业务控制模块向传输资源分配模块申请传输资源, 并获得传 输资源信息。
533、 PS业务控制模块将获取的传输资源信息通过与核心网网元和基 站网元基于 3GPP标准的消息交互,最终为所述终端的业务请求建立传输 通道。
当然, 上述的第一门限值、 第二门限值、 第一解拥塞门限值、 第二解 拥塞门限值均是根据实际需求设置的, 本实施不对其进行限定。
上述准入控制方法, 能够解决现有技术中准入不准导致的欠准入问题 和过准入的问题, 并能充分利用传输资源, 进一步地, 去除了多级控制面 准入管理, 如不在向控制面传输资源管理模块申请传输, 缩短了用户接入 时长, 解决了控制面准入不准的一系列问题。
上述不同业务类型对应的队列拥塞反压, 只影响该队列所对应的业务 的准入控制: 实时队列拥塞反压时, 上层业务(如 CS业务控制模块)对 实时业务进行拥塞控制; 非实时队列拥塞反压时, 上层业务(如 PS业务 控制模块)对非实时业务进行拥塞控制, 进而充分利用传输资源, 提升传 输效率; 同时保证不同业务之间准入的公平性, 解决了部分场景下用户面 拥塞反压失效的问题; 避免人工调整激活因子, 降低网络运维的成本; 进 一步地缩短用户接入时延。
如图 7所示, 图 7示出了本发明一实施例提供的准入控制方法的流程 示意图, 本实施例中的准入控制方法如下文所述。
701、 用户面传输资源管理模块实时检测实时队列和非实时队列各自 的緩存报文的数量是否达到预设的门限值。
702、 若实时队列的緩存报文的数量达到预设的第一门限值, 则向业 务控制模块发送实时业务类型的拥塞反压消息, 以使所述业务控制模块根 据所述实时业务类型的拥塞反压消息控制终端的包括实时业务类型的业 务请求的准入。
703、 若非实时队列的緩存报文的数量达到预设的第二门限值, 则向 业务控制模块发送非实时业务类型的拥塞反压消息, 以使所述业务控制模 块根据所述非实时业务类型的拥塞反压消息控制终端的包括非实时业务 类型的业务请求的准入。
进一步地, 上述的准入控制方法还包括:
若实时队列的緩存报文的数量小于预设的第一解拥塞门限值, 则向业 务控制模块发送实时业务类型的解除拥塞消息, 以使所述业务控制模块根 据所述实时业务类型的解除用户消息允许终端的包括实时业务类型的业 务请求的准入;
相应地,
若非实时队列的緩存报文的数量小于预设的第二解拥塞门限值, 则向 业务控制模块发送非实时业务类型的解除拥塞消息, 以使所述业务控制模 块根据所述非实时业务类型的解除拥塞消息允许终端的包括非实时业务 类型的业务请求的准入。
本实施例中的准入控制方法取消基于预留带宽的控制面准入, 完全依 靠用户面拥塞反压信息进行准入控制, 当用户面没有触发拥塞反压时, 业 务默认传输资源都准入成功; 进而充分利用传输资源, 提升了传输效率。
在另一优选的实施例中, 控制器接口单板提供对外接口, 例如快速以 太网(Fast Ethernet, 简称 FE)接口、 千兆以太网 ( Gigabit Ethernet, 简 称 GE )接口、 点到点协议 ( Point-to-Point Protocol , 简称 PPP )链路、 多链路点到点协议 ( Multi-Link Point-to-Point Protocol , 简称 MLPPP ) 链路, 实现对外报文的收发和转发处理。 控制器接口单板的系统资源在实 际应用中也会有瓶颈, 系统资源耗尽时也会影响业务的正常运行, 丟弃报 文, 为了避免这种影响持续发生, 也需要触发拥塞反压消息通知业务控制 模块进行拥塞管理。 因此对于接口单板的系统资源也设置有拥塞门限值 (如第三门限值) , 同样地, 单板实时检测内部的资源使用率, 若单板资 源使用率大于等于预设的第三门限值, 触发向业务控制模块发送反压消 息。 此时, 由于单板是整个系统资源存为瓶颈, 因此对于所有新接入的业 务都进行拒绝准入处理。
具体地, 当单板内部的资源 (单板内部整板接收或者发送的队列)耗 尽时, 直接向业务控制模块发送反压消息, 此时业务控制模块可根据反压 消息同时对各个队列进行 LDR动作, 如对 CS语音类型对应的实时队列 进行 LDR动作, 同时也对 PS数据类型对应的非实时队列也进行 LDR动 作, 以消除单板中的内部资源的拥塞。
进一步地, 在单板中设置有第三解拥塞门限值, 单板实时检测内部的 资源使用率, 若资源使用率小于预设的第三解拥塞门限值, 则触发向业务 控制模块发送解除拥塞的消息, 以使业务控制模块不再对单板中的各个队 列进行 LDR动作, 同时准入各终端的业务请求。
特别地, 上述单板中的每一端口都有一组队列, 例如, 逻辑端口、 以 太网端口、 PPP链路、 MLPPP链路等均各自有一组的队列相对应, 每组 队列既有实时队列, 也有非实时队列。 若非实时队列中緩存的报文数量达 到预设的第二门限值, 则向业务控制模块发送拥塞反压消息, 此时, 业务 控制模块控制 PS数据业务类型对应的新业务请求以基本速率接入,同时, 调整已经接入的 PS用户编码速率, 以緩解非实时队列的拥塞。 相应地, 若实时队列中緩存的报文数量达到预设的第一门限值, 则向业务控制模块 发送与实时队列对应的拥塞反压消息, 此时, 业务控制模块控制 CS语音 业务类型对应的新业务请求优先选择半速率编码方式进行接入或者
AMRC选择最低速率接入。 根据本发明的另一方面, 本发明还提供一种业务控制模块, 如图 8所 示, 业务控制模块包括: 接收单元 81、 确定单元 82、 和传输通道建立单 元 83;
其中, 接收单元 81用于接收核心网网元在接收终端发起的包括业务 类型的业务请求之后, 根据所述业务类型下发的业务建立指配请求;
确定单元 82用于确定与所述业务类型对应的当前业务未处于拥塞反 压态, 或者, 所述当前业务处于拥塞反压态但未超出预设时长;
传输通道建立单元 83用于根据所述业务建立指配请求向传输资源分 配模块申请传输资源, 以及与所述核心网网元、 基站交互为所述终端的业 务请求建立传输通道。 进一步地, 上述确定单元 82还用于, 确定与业务类型对应的当前业 务处于拥塞反压态, 且超出预设时长,
相应地, 传输通道建立单元 83还用于, 向核心网网元发送的失败响 应, 以使核心网网元向所述终端发送所述业务请求的失败响应。
优选地, 在确定单元 82确定与业务类型对应的当前业务处于拥塞反 压态但未超出预设时长时, 传输通道建立单元还用于, 通知基站和终端允 许以一定速率准入所述终端的业务请求。
在实际应用中, 确定单元 82具体用于, 确定未接收到用户面传输资 源管理模块根据检测的与业务类型对应队列的拥塞状态所发送的拥塞反 压消息, 则确定与所述业务类型对应的当前业务未处于拥塞反压态; 或者, 确定接收到用户面传输资源管理模块根据检测的与业务类型对 应队列的拥塞状态发送的解除拥塞消息, 则确定与所述业务类型对应的当 前业务未处于拥塞反压态。
进一步地, 确定单元 82还用于, 确定接收到用户面传输资源管理模 块根据检测的与业务类型对应队列的拥塞状态所发送的拥塞反压消息, 且 在所述业务控制模块接收到所述业务请求的时间点与接收到所述拥塞反 压消息的时间点之间的时间段小于预设时长, 则确定与所述业务类型对应 的当前业务处于拥塞反压态但未超出预设时长。
确定单元 82具体用于, 确定接收到用户面传输资源管理模块根据检 测的与业务类型对应队列的拥塞状态所发送的拥塞反压消息之后, 且在所 述业务控制模块接收到所述业务请求的时间点与接收到所述拥塞反压消 , 的时间 ,、之间的时间段大于等于所述预设时长, 以及
在所述预设时长内未接收到所述用户面传输资源管理模块根据检测 的与业务类型对应队列的拥塞状态发送的解除拥塞消息, 则确定与所述业 务类型对应的当前业务处于拥塞反压态且超出预设时长。
上述业务类型为实时业务类型, 与实时业务类型对应的队列为实时队 列;
或者, 所述业务类型为非实时业务类型, 与所述非实时业务类型对应 的队列为非实时队列。
由上述实施例可知, 本实施例的业务控制模块, 通过接收单元在接收 核心网网元根据业务类型下发的业务建立指配请求之后, 确定单元确定与 业务类型对应的当前业务是否处于拥塞反压态, 若确定与业务类型对应的 当前业务未处于反压态, 或者当前业务处于拥塞反压态且未超出预设时 长, 则通过传输通道建立单元向传输资源分配模块申请传输资源, 上述方 法解决了现有技术中准入不准导致的欠准入问题和过准入的问题, 并能充 分利用传输资源, 进一步地, 去除了多级控制面准入管理, 缩短了终端接 入的时长, 解决了控制面准入不准的一系列问题。
根据本发明的另一方面, 本发明还提供一种用户面传输资源管理模 块, 如图 9所示, 本实施例的用户面传输资源管理模块包括: 检测单元 91、 控制单元 92;
其中, 检测单元 91用于实时检测实时队列和非实时队列各自的緩存 报文的数量是否达到预设的门限值;
控制单元 92用于在实时队列的緩存的数量达到预设的第一门限值 时, 向业务控制模块发送实时业务类型的拥塞反压消息, 以使所述业务控 制模块根据所述实时业务类型的拥塞反压消息控制终端的包括实时业务 类型的业务请求的准入;
用于在非实时队列的緩存报文的数量达到预设的第二门限值时, 向业 务控制模块发送非实时业务类型的拥塞反压消息, 以使所述业务控制模块 根据所述非实时业务类型的拥塞反压消息控制终端的包括非实时业务类 型的业务请求的准入。
进一步地, 控制单元 92还用于, 在实时队列的緩存报文的数量小于 预设的第一解拥塞门限值时, 向业务控制模块发送实时业务类型的解除拥 塞消息, 以使所述业务控制模块根据所述实时业务类型的解除用户消息允 许终端的包括实时业务类型的业务请求的准入;
在非实时队列的緩存报文的数量小于预设的第二解拥塞门限值时, 则 向业务控制模块发送非实时业务类型的解除拥塞消息, 以使所述业务控制 模块根据所述非实时业务类型的解除拥塞消息允许终端的包括非实时业 务类型的业务请求的准入。
本实施例中的用户面传输资源管理模块通过检测单元和控制单元依 靠用户面拥塞反压信息进行准入控制, 当用户面没有触发拥塞反压时, 业 务默认传输资源都准入成功; 进而充分利用传输资源, 提升了传输效率。 根据本发明的另一方面, 本发明实施例还提供一种设备, 包括: 本发 明任一实施例所述的业务控制模块和本发明任一实施例所述的用户面传 输资源管理模块, 其中, 业务控制模块和用户面传输资源管理模块交互。 举例来说, 上述设备可以是基站控制器、 核心网网元等。
图 10示出了本发明一实施例提供的基站控制器的流程示意图, 如图 10所示, 该基站控制器, 包括: 本发明任一实施例所述的业务控制模块, 本发明任一实施例所述的用户面传输资源管理模块, 以及传输资源分配模 块;
其中, 业务控制模块与用户面传输资源管理模块交互, 业务控制模块 与传输资源分配模块交互, 实现为终端的业务请求建立传输通道。
需要说明的是, 上述例举的实施例以基站控制器进行说明的, 但是可 应用终端或者无线等其它网元, 例如基站、 核心网中。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种准入控制方法, 其特征在于, 包括:
业务控制模块接收核心网网元在接收终端发起的包括业务类型的业 务请求之后, 根据所述业务类型下发的业务建立指配请求;
所述业务控制模块确定与所述业务类型对应的当前业务未处于拥塞 反压态, 或者, 所述当前业务处于拥塞反压态但未超出预设时长, 则根据 所述业务建立指配请求向传输资源分配模块申请传输资源, 以及与所述核 心网网元、 基站交互为所述终端的业务请求建立传输通道。
2、 根据权利要求 1所述的方法, 其特征在于, 还包括:
所述业务控制模块确定与所述业务类型对应的当前业务处于拥塞反 压态, 且超出预设时长, 则向所述核心网网元发送的失败响应, 以使所述 核心网网元向所述终端发送所述业务请求的失败响应。
3、 根据权利要求 1所述的方法, 其特征在于, 所述业务控制模块确 定与所述业务类型对应的当前业务处于拥塞反压态但未超出预设时长, 则 向传输资源分配模块申请传输资源的同时, 通知所述基站和终端允许以一 定速率准入所述终端的业务请求。
4、 根据权利要求 1所述的方法, 其特征在于, 所述业务控制模块确 定与所述业务类型对应的当前业务未处于拥塞反压态, 具体为:
所述业务控制模块确定未接收到用户面传输资源管理模块根据检测 的与业务类型对应队列的拥塞状态所发送的拥塞反压消息;
或者
所述业务控制模块确定接收到用户面传输资源管理模块根据检测的 与业务类型对应队列的拥塞状态发送的解除拥塞消息。
5、 根据权利要求 1所述的方法, 其特征在于, 所述业务控制模块确 定与所述业务类型对应的当前业务处于拥塞反压态但未超出预设时长, 具 体为:
所述业务控制模块确定接收到用户面传输资源管理模块根据检测的 与业务类型对应队列的拥塞状态所发送的拥塞反压消息, 且在所述业务控 制模块接收到所述业务请求的时间点与接收到所述拥塞反压消息的时间 点之间的时间段小于预设时长。
6、 根据权利要求 2所述的方法, 其特征在于, 所述业务控制模块确 定与所述业务类型对应的当前业务处于拥塞反压态且超出预设时长, 具体 为:
所述业务控制模块确定接收到用户面传输资源管理模块根据检测的 与业务类型对应队列的拥塞状态所发送的拥塞反压消息之后, 且在所述业 务控制模块接收到所述业务请求的时间点与接收到所述拥塞反压消息的 时间 , 之间的时间段大于等于所述预设时长, 以及
在所述预设时长内未接收到所述用户面传输资源管理模块根据检测 的与业务类型对应队列的拥塞状态发送的解除拥塞消息。
7、 根据权利要求 4至 6任一所述的方法, 其特征在于, 所述业务类 型为实时业务类型, 与所述实时业务类型对应的队列为实时队列;
或者
所述业务类型为非实时业务类型, 与所述非实时业务类型对应的队列 为非实时队列。
8、 一种准入控制方法, 其特征在于, 包括:
用户面传输资源管理模块实时检测实时队列和非实时队列各自的緩 存报文的数量是否达到预设的门限值;
若实时队列的緩存报文的数量达到预设的第一门限值, 则向业务控制 模块发送实时业务类型的拥塞反压消息, 以使所述业务控制模块根据所述 实时业务类型的拥塞反压消息控制终端的包括实时业务类型的业务请求 的准入;
若非实时队列的緩存报文的数量达到预设的第二门限值, 则向业务控 制模块发送非实时业务类型的拥塞反压消息, 以使所述业务控制模块根据 所述非实时业务类型的拥塞反压消息控制终端的包括非实时业务类型的 业务请求的准入。
9、 根据权利要求 8所述的方法, 其特征在于, 还包括:
若实时队列的緩存报文的数量小于预设的第一解拥塞门限值, 则向业 务控制模块发送实时业务类型的解除拥塞消息, 以使所述业务控制模块根 据所述实时业务类型的解除用户消息允许终端的包括实时业务类型的业 务请求的准入; 相应地,
若非实时队列的緩存报文的数量小于预设的第二解拥塞门限值, 则向 业务控制模块发送非实时业务类型的解除拥塞消息, 以使所述业务控制模 块根据所述非实时业务类型的解除拥塞消息允许终端的包括非实时业务 类型的业务请求的准入。
10、 一种业务控制模块, 其特征在于, 包括:
接收单元, 用于接收核心网网元在接收终端发起的包括业务类型的业 务请求之后, 根据所述业务类型下发的业务建立指配请求;
确定单元, 用于确定与所述业务类型对应的当前业务未处于拥塞反压 态, 或者, 所述当前业务处于拥塞反压态但未超出预设时长;
传输通道建立单元, 用于根据所述业务建立指配请求向传输资源分配 模块申请传输资源, 以及与所述核心网网元、 基站交互为所述终端的业务 请求建立传输通道。
1 1、 根据权利要求 10所述的业务控制模块, 其特征在于, 所述确定 单元, 还用于
确定与所述业务类型对应的当前业务处于拥塞反压态, 且超出预设时 长,
相应地, 所述传输通道建立单元, 还用于
向所述核心网网元发送的失败响应, 以使所述核心网网元向所述终端 发送所述业务请求的失败响应。
12、 根据权利要求 10所述的业务控制模块, 其特征在于,
在所述确定单元确定与所述业务类型对应的当前业务处于拥塞反压 态但未超出预设时长时, 所述传输通道建立单元还用于, 通知所述基站和 终端允许以一定速率准入所述终端的业务请求。
13、 根据权利要求 10所述的业务控制模块, 其特征在于, 所述确定 单元具体用于
确定未接收到用户面传输资源管理模块根据检测的与业务类型对应 队列的拥塞状态所发送的拥塞反压消息, 则确定与所述业务类型对应的当 前业务未处于拥塞反压态;
或者 确定接收到用户面传输资源管理模块根据检测的与业务类型对应队 列的拥塞状态发送的解除拥塞消息, 则确定与所述业务类型对应的当前业 务未处于拥塞反压态。
14、 根据权利要求 10所述的业务控制模块, 其特征在于, 所述确定 单元, 具体用于
确定接收到用户面传输资源管理模块根据检测的与业务类型对应队 列的拥塞状态所发送的拥塞反压消息, 且在所述业务控制模块接收到所述 业务请求的时间点与接收到所述拥塞反压消息的时间点之间的时间段 d、 于预设时长, 则确定与所述业务类型对应的当前业务处于拥塞反压态但未 超出预设时长。
15、 根据权利要求 1 1所述的业务控制模块, 其特征在于, 所述确定 单元, 具体用于
确定接收到用户面传输资源管理模块根据检测的与业务类型对应队 列的拥塞状态所发送的拥塞反压消息之后, 且在所述业务控制模块接收到 所述业务请求的时间点与接收到所述拥塞反压消息的时间点之间的时间 段大于等于所述预设时长, 以及
在所述预设时长内未接收到所述用户面传输资源管理模块根据检测 的与业务类型对应队列的拥塞状态发送的解除拥塞消息, 则确定与所述业 务类型对应的当前业务处于拥塞反压态且超出预设时长。
16、 根据权利要求 10至 15任一所述的业务控制模块, 其特征在于, 所述业务类型为实时业务类型, 与所述实时业务类型对应的队列为实 时队列;
或者
所述业务类型为非实时业务类型, 与所述非实时业务类型对应的队列 为非实时队列。
17、 一种用户面传输资源管理模块, 其特征在于, 包括:
检测单元, 用于实时检测实时队列和非实时队列各自的緩存报文的数 量是否达到预设的门限值;
控制单元, 用于在实时队列的緩存的数量达到预设的第一门限值时, 向业务控制模块发送实时业务类型的拥塞反压消息, 以使所述业务控制模 块根据所述实时业务类型的拥塞反压消息控制终端的包括实时业务类型 的业务请求的准入;
用于在非实时队列的緩存报文的数量达到预设的第二门限值时, 向业 务控制模块发送非实时业务类型的拥塞反压消息, 以使所述业务控制模块 根据所述非实时业务类型的拥塞反压消息控制终端的包括非实时业务类 型的业务请求的准入。
18、根据权利要求 17所述的用户面传输资源管理模块, 其特征在于, 所述控制单元, 还用于
在实时队列的緩存报文的数量小于预设的第一解拥塞门限值时, 向业 务控制模块发送实时业务类型的解除拥塞消息, 以使所述业务控制模块根 据所述实时业务类型的解除用户消息允许终端的包括实时业务类型的业 务请求的准入;
在非实时队列的緩存报文的数量小于预设的第二解拥塞门限值时, 则 向业务控制模块发送非实时业务类型的解除拥塞消息, 以使所述业务控制 模块根据所述非实时业务类型的解除拥塞消息允许终端的包括非实时业 务类型的业务请求的准入。
19、 一种设备, 其特征在于, 包括: 如上权利要求 10至 16任一所述 的业务控制模块,和如上权利要求 17或 18所述的用户面传输资源管理模 块, 其中, 所述业务控制模块和所述用户面传输资源管理模块交互。
PCT/CN2012/077647 2012-06-27 2012-06-27 准入控制方法及设备 WO2014000186A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12880241.0A EP2854446B1 (en) 2012-06-27 2012-06-27 Access control method and device
CN201280000823.3A CN103299679B (zh) 2012-06-27 2012-06-27 准入控制方法及设备
CA2877264A CA2877264A1 (en) 2012-06-27 2012-06-27 Admission control method and device
PCT/CN2012/077647 WO2014000186A1 (zh) 2012-06-27 2012-06-27 准入控制方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/077647 WO2014000186A1 (zh) 2012-06-27 2012-06-27 准入控制方法及设备

Publications (1)

Publication Number Publication Date
WO2014000186A1 true WO2014000186A1 (zh) 2014-01-03

Family

ID=49098417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077647 WO2014000186A1 (zh) 2012-06-27 2012-06-27 准入控制方法及设备

Country Status (4)

Country Link
EP (1) EP2854446B1 (zh)
CN (1) CN103299679B (zh)
CA (1) CA2877264A1 (zh)
WO (1) WO2014000186A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105959392A (zh) * 2016-06-14 2016-09-21 乐视控股(北京)有限公司 访问量控制方法及装置
KR101916717B1 (ko) 2018-06-18 2018-11-08 한화시스템 주식회사 위성 통신 시스템에서의 자원 할당 장치
KR101942875B1 (ko) 2018-06-29 2019-01-28 한화시스템 주식회사 위성 통신 시스템에서의 자원 할당 방법
CN110582104A (zh) * 2019-09-14 2019-12-17 北京光宇之勋科技有限公司 化妆品检测信息传输方法及传输系统
CN116094818A (zh) * 2023-02-08 2023-05-09 萍乡市江烨网络科技有限公司 一种人工智能设备的网络接入方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104703223B (zh) * 2015-04-02 2017-12-26 四川理工学院 基于融合负载整合的puc算法缓解小区负载拥塞的方法
EP3413628B1 (en) 2016-03-31 2020-10-28 Huawei Technologies Co., Ltd. Radio access control method, device and system
WO2018058625A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 一种检测报文反压的方法及装置
WO2019136695A1 (zh) * 2018-01-12 2019-07-18 Oppo广东移动通信有限公司 一种数据传输方法及装置、计算机存储介质
CN109257770B (zh) * 2018-10-10 2022-05-06 京信网络系统股份有限公司 过载控制方法、装置、系统及设备
CN111132353B (zh) * 2018-11-01 2023-07-04 中国移动通信集团浙江有限公司 视频业务传输方法及基站、核心网络
CN112312471B (zh) * 2019-07-31 2022-08-02 中国移动通信集团浙江有限公司 业务消息发送方法、装置和设备
CN111726201B (zh) * 2020-06-15 2023-09-12 合肥哈工轩辕智能科技有限公司 一种airt-ros虚拟网卡丢包解决方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1761351A (zh) * 2004-10-13 2006-04-19 中兴通讯股份有限公司 一种高速下行分组接入系统的呼叫接纳控制方法
CN1798086A (zh) * 2004-12-29 2006-07-05 中兴通讯股份有限公司 一种异步转移模式适配层2的传输控制方法
CN1842024A (zh) * 2005-03-31 2006-10-04 华为技术有限公司 无线网络控制器存储资源监控方法及系统
CN1852548A (zh) * 2005-04-22 2006-10-25 中兴通讯股份有限公司 一种第三代移动通讯系统中的拥塞控制方法
CN101626598A (zh) * 2009-07-23 2010-01-13 华为技术有限公司 传输资源管理的方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3961763B2 (ja) * 2000-11-22 2007-08-22 株式会社エヌ・ティ・ティ・ドコモ 複数ネットワーク接続型通信システムの基地局およびその接続方法
KR100834677B1 (ko) * 2006-01-16 2008-06-02 삼성전자주식회사 주파수 분할 다중접속 방식의 무선 통신 시스템에서 자원할당 장치 및 방법
KR101002843B1 (ko) * 2006-02-02 2010-12-21 한국과학기술원 통신 시스템에서 신호 송수신 장치 및 방법
KR101015681B1 (ko) * 2007-07-16 2011-02-22 삼성전자주식회사 통신 시스템에서 대역폭 할당 방법 및 장치
US8593946B2 (en) * 2008-08-25 2013-11-26 International Business Machines Corporation Congestion control using application slowdown
ES2375388B1 (es) * 2010-03-29 2013-01-29 Vodafone España S.A.U Entidad controladora de red de acceso por radio.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1761351A (zh) * 2004-10-13 2006-04-19 中兴通讯股份有限公司 一种高速下行分组接入系统的呼叫接纳控制方法
CN1798086A (zh) * 2004-12-29 2006-07-05 中兴通讯股份有限公司 一种异步转移模式适配层2的传输控制方法
CN1842024A (zh) * 2005-03-31 2006-10-04 华为技术有限公司 无线网络控制器存储资源监控方法及系统
CN1852548A (zh) * 2005-04-22 2006-10-25 中兴通讯股份有限公司 一种第三代移动通讯系统中的拥塞控制方法
CN101626598A (zh) * 2009-07-23 2010-01-13 华为技术有限公司 传输资源管理的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2854446A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105959392A (zh) * 2016-06-14 2016-09-21 乐视控股(北京)有限公司 访问量控制方法及装置
KR101916717B1 (ko) 2018-06-18 2018-11-08 한화시스템 주식회사 위성 통신 시스템에서의 자원 할당 장치
KR101942875B1 (ko) 2018-06-29 2019-01-28 한화시스템 주식회사 위성 통신 시스템에서의 자원 할당 방법
CN110582104A (zh) * 2019-09-14 2019-12-17 北京光宇之勋科技有限公司 化妆品检测信息传输方法及传输系统
CN110582104B (zh) * 2019-09-14 2021-11-30 上海掘谜实业有限公司 化妆品检测信息传输方法及传输系统
CN116094818A (zh) * 2023-02-08 2023-05-09 萍乡市江烨网络科技有限公司 一种人工智能设备的网络接入方法
CN116094818B (zh) * 2023-02-08 2023-11-03 苏州利博特信息科技有限公司 一种人工智能设备的网络接入方法

Also Published As

Publication number Publication date
EP2854446A1 (en) 2015-04-01
EP2854446A4 (en) 2015-08-12
CA2877264A1 (en) 2014-01-03
CN103299679A (zh) 2013-09-11
EP2854446B1 (en) 2018-04-25
CN103299679B (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2014000186A1 (zh) 准入控制方法及设备
JP4847589B2 (ja) 通信ネットワークにおけるトラフィック負荷制御
US9392575B2 (en) QoS-aware paging in a wireless communication system
CN100382647C (zh) 一种码分多址系统中公共信道向专用信道的类型转换方法
US7843832B2 (en) Dynamic bandwidth allocation apparatus and method
JP4985652B2 (ja) 無線通信装置、無線通信方法および無線通信システム
JP4809424B2 (ja) 低品質の検出に基づくip音声呼の接続タイプの引き継ぎ
JP4224458B2 (ja) 無線リソースを管理する方法及び無線システム
US20040170179A1 (en) Radio resource management with adaptive congestion control
WO2009090582A1 (en) Adaptive multi-rate codec bit rate control in a wireless system
JP2007511174A (ja) 無線lanに対するサービス品質の管理
WO2008022588A1 (fr) Procédé permettant de réguler le flux pour une interface iub, appareil et station de base
WO2009100668A1 (zh) 一种触发资源配置的方法、装置及系统
WO2021088977A1 (zh) 一种数据传输的方法及相关设备
WO2010099718A1 (zh) 一种数据传输控制方法、装置及系统
JP2007524330A (ja) 無線通信システムにおける動的なバックホールリソースの管理の方法及び装置
WO2018082597A1 (zh) 拥塞控制方法及装置、基站
WO2015024158A1 (zh) 一种准入控制方法和装置
WO2005099296A1 (ja) 無線基地局装置およびデータ転送制御方法
WO2014075544A1 (zh) 基于多种制式网络的数据传输方法和装置
CN114079977A (zh) 一种5g和tsn融合网络流调度框架与资源分配方法
WO2009117955A1 (zh) 一种上行资源分配方法及用户设备
US9161376B2 (en) System and method for managing access point communication channel utilization
WO2009097820A1 (zh) 解调资源分配方法、基站和系统
WO2008141580A1 (fr) Procédé pour gérer un accès d&#39;appel de support ip transporté et son équipement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12880241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2877264

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012880241

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE