WO2013191422A1 - 보조 베어링이 결합된 복합 자기 베어링 - Google Patents

보조 베어링이 결합된 복합 자기 베어링 Download PDF

Info

Publication number
WO2013191422A1
WO2013191422A1 PCT/KR2013/005323 KR2013005323W WO2013191422A1 WO 2013191422 A1 WO2013191422 A1 WO 2013191422A1 KR 2013005323 W KR2013005323 W KR 2013005323W WO 2013191422 A1 WO2013191422 A1 WO 2013191422A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
rotor
magnetic bearing
auxiliary
composite magnetic
Prior art date
Application number
PCT/KR2013/005323
Other languages
English (en)
French (fr)
Inventor
박철훈
최상규
함상용
홍두의
윤태광
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to CN201380006733.XA priority Critical patent/CN104520599B/zh
Priority to US14/366,074 priority patent/US9273723B2/en
Publication of WO2013191422A1 publication Critical patent/WO2013191422A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings

Definitions

  • the present invention relates to a composite magnetic bearing incorporating an auxiliary bearing, and more particularly, to a composite magnetic bearing incorporating an auxiliary bearing having an improved structure to minimize the length and system volume of a rotor.
  • bearings For parts with movements such as rotation or reciprocation (rotation axis, moving shaft, etc.), it is possible to solve problems such as part wear or damage, noise, energy waste, etc. which may be caused by friction during the movement of the part.
  • bearings include sliding bearings and rolling bearings.
  • the sliding bearings are formed around the shaft so that lubricating oil is interposed in contact with the bearings.
  • Rotatable parts, such as balls and rollers, are placed in contact with the bearings to minimize friction.
  • the magnetic bearing is a strong magnetic around the axis, as shown in Korean Patent Publication No. 2009-0070178 ("Cylinder Radial Displacement Measurement System of Magnetic Bearing Using Capacitance and Its Determination Method", 2009.07.01 publication) It is supposed to act as a bearing by placing a magnet or electromagnet having a magnetic pole to lift the shaft by magnetic levitation. Since the magnetic bearings have zero contact with the shaft at all, the friction is zero, and thus there are many advantages such as high durability and very low noise due to no wear or damage of parts. However, rather than being designed to support the shaft substantially only with magnetic bearings, it is common to further include auxiliary bearings in the form of direct contact for more stable shaft support.
  • FIG. 1 is a cross-sectional view showing a rotor provided with a conventional magnetic bearing system.
  • the rotor 1 that is rotated by the motor 2 is generally equipped with several bearings 3, 4, 6, 7, 9 and gap sensors 5, 8, 10. Since the rotor 1 is formed in a column shape extending in one direction, at least two radial bearings are generally provided, one at a top and a bottom, and a thrust bearing is provided at one side.
  • the radial bearings and thrust bearings are magnetic bearings 3, 6 and 9, which support the rotor 1 by magnetic levitation and therefore do not have direct contact with the rotor 1.
  • the radial magnetic bearings 3 and 6 are operated to support the rotor 1 by magnetic levitation.
  • the system is stationary, no power is supplied to the radial magnetic bearings 3 and 6 so that no magnetic force is generated, so that the rotor 1 cannot be supported.
  • Radial auxiliary bearings 4, 7 in the form of general contact bearings such as bearings are provided.
  • the radial auxiliary bearings 4 and 7 not only support the rotor 1 when the system is stopped, but also allow the rotor 1 to stop safely without damage to the rotor 1 even in the event of a fault. It supports 1).
  • the radial auxiliary bearings 4, 7 are therefore essential parts of such a rotor.
  • the rotor 1 In order to ensure space for the radial auxiliary bearings 4 and 7, the rotor 1 is designed to increase its length by the volume occupied by the radial auxiliary bearings 4 and 7. However, as the length of the rotor 1 increases, the volume of the system itself increases. In addition, the longer the length of the rotor 1 has a problem that the dangerous speed due to the bending mode is lowered, there is a limit in increasing the operating speed of the rotor (1).
  • Patent Document 1 Korean Patent Laid-Open Publication No. 2009-0070178 ("A cylindrical radial displacement measurement system of magnetic bearings using capacitance and a method for determining whether there is a failure", published on July 1, 2009)
  • Patent Document 2 Korean Patent Publication No. 2010-0054253 ("Spring-Touchdown Ball Bearing with Damper System", 2010.05.25 publication)
  • the present invention has been made to solve the problems of the prior art as described above, the present invention is to improve the structure to minimize the length and system volume of the rotor, the composite magnetic bearing combined with the auxiliary bearing To provide.
  • a composite magnetic bearing in which an auxiliary bearing is coupled is a radial magnetic composite magnetic bearing provided around a rotor to reduce friction, and includes a rotor-side core attached to the rotor, An empty space is formed therein, and a plurality of stator side cores are disposed radially around the rotor side core, a plurality of permanent magnets respectively provided at the outermost portion of each of the stator side cores, and the stator side cores.
  • a magnetic bearing provided with a plurality of coils disposed around the permanent magnet and surrounding the permanent magnet; And an auxiliary bearing fixed to the inner space of the stator side core inside the coil and the permanent magnet providing position.
  • the magnetic bearing may be a homopolar magnetic bearing.
  • auxiliary bearing may be a rolling bearing type including a ball bearing, a roller bearing.
  • auxiliary bearing may be fixedly supported by an auxiliary bearing housing fixedly coupled to the stator side core.
  • the composite magnetic bearing may be further provided with a magnetic bearing housing formed in a shape surrounding the outer side of the magnetic bearing.
  • the composite magnetic bearing may further include a gap sensor provided on one side of the magnetic bearing housing to measure a gap between the composite magnetic bearing and the rotor.
  • a rotor having both a non-contact magnetic bearing and a contact auxiliary bearing is provided with a magnetic bearing in a form in which an auxiliary bearing is provided therein.
  • FIG. 1 is a cross-sectional view showing a rotor provided with a conventional magnetic bearing system.
  • FIG. 2 is a perspective view showing a composite magnetic bearing according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a composite magnetic bearing according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a rotor provided with a composite magnetic bearing according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a rotor having a conventional magnetic bearing system and a composite magnetic bearing according to an exemplary embodiment of the present invention.
  • auxiliary bearing 121 auxiliary bearing housing
  • on means to be located above or below the target member, and does not necessarily mean to be located above the gravity direction.
  • FIGS. 2 and 3 are perspective views of a composite magnetic bearing according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view of the composite magnetic bearing according to an embodiment of the present invention.
  • the composite magnetic bearing 100 of the present embodiment is basically provided in a radial type to reduce friction by being provided around the rotor 500. At this time, the composite magnetic bearing 100 has a structure in which the magnetic bearing 110 and the auxiliary bearing 120 are coupled to each other.
  • the magnetic bearing 110 has a rotor side core 114 attached to the rotor 500 and an empty space formed therein, and a plurality of the magnetic bearings 110 are disposed radially around the rotor side core 114.
  • the stator side core 113, a plurality of permanent magnets 112 respectively provided on the outermost side of each of the stator side cores 113, and the stator side core 113 and the permanent magnets 112 are provided. It comprises a plurality of coils 111 are arranged in a form surrounding the permanent magnet 112 in the center. That is, the one stator side core 113, the permanent magnet 112 is provided at the farthest part from the rotor 500, the coil 111 in a form surrounding the permanent magnet 112 It is provided.
  • the coil 111 is formed in a winding direction on an axis in the same direction as the axial direction of the rotor 500.
  • the stator side core 113 provided with the said coil 111 and the said permanent magnet 112 is arrange
  • the rotor 500 When power is supplied, magnetic forces are generated in the coil 111 and the permanent magnet 112 of each of the plurality of stator cores 113.
  • the rotor 500 is subjected to a force in each direction in which the stator side core 113 is provided, so that the rotor 500 is a plurality of the stator by the repulsive force with each of the stator side core 113 Is floated in the space between the side cores 113.
  • This phenomenon is due to the magnetic levitation principle, and thus the magnetic bearing 110 supports the rotor 500 using the magnetic levitation principle.
  • the magnetic force generated in the magnetic bearing 110 may be adjusted by adjusting the strength, direction, phase, period, etc. of the power supplied to the coil 111.
  • the magnetic bearing 110 is preferably a homopolar magnetic bearing as can be seen from the above structure.
  • Homopolar type magnetic bearing has no heating problem due to eddy currunt, easy to manufacture shaft core, and uses permanent magnet and electromagnet (coil) together, compared to heteropolar type, which minimizes energy use. There is an advantage that it can.
  • the electromagnet core is disposed in the axial direction, there is also an advantage of allowing more free space in the circumferential direction of the shaft.
  • the magnetic bearing 110 operates when power is supplied, the magnetic force is normally applied when the entire system is normally operated (that is, when power is normally supplied to both the magnetic bearing 110 and the rotor 500). Since the magnetic bearing 110 is not in contact with the rotor 500, there is no problem in supporting the rotor 500. However, in the system stop state, no power is supplied to the magnetic bearing 110 and the rotor 500. In this case, since the magnetic force is not generated in the magnetic bearing 110, the rotor 500 is the magnetic bearing 110. It comes in contact with.
  • the problem is when a system failure occurs.
  • the rotor 500 continues to rotate.
  • the magnetic bearing 110 and the The rotor 500 is forced to contact, in this case, the magnetic bearing 110 may be damaged or damaged by the rotation of the rotor 500, and the rotor 500 may be very unstable. This increases the risk of accidents such as damage to the entire system.
  • an auxiliary bearing was further provided on the rotor separately from the magnetic bearing (corresponding to the magnetic bearing 110).
  • the auxiliary bearings are provided separately as described above, the following problems are further generated.
  • the length of the rotor must be increased by at least the length of the auxiliary bearing, thereby causing a problem that the volume of the entire system becomes large.
  • a tendency of bending occurs in the rotor increases, thereby lowering a dangerous speed value, which is a threshold speed at which the rotor can stably rotate in the bending mode.
  • a problem arises in that the operating speed range in which the rotor can stably rotate is reduced.
  • the auxiliary bearing ( A composite magnetic bearing 100 having a structure in which 120 is provided is provided.
  • the auxiliary bearing 120 is fixed to the inner space of the stator side core 113 inside the coil 111 and the permanent magnet 112 provided position (close to the rotor).
  • the auxiliary bearing 120 is preferably to be fixedly supported by the auxiliary bearing housing 121 is fixedly coupled to the stator side core 113 as shown.
  • the auxiliary bearing 120 is preferably a rolling bearing type including a ball bearing, a roller bearing.
  • the auxiliary bearing 120 is provided to stably support the rotor 500 during a system stop or in particular a system abnormal operation. Therefore, the auxiliary bearing 120 should have rigidity enough to withstand some degree of external shock or vibration, as well as when the auxiliary bearing 120 is in contact with the rotor 500.
  • the most fundamental reason for adopting a structure in which the auxiliary bearing 120 is provided inside the magnetic bearing 110 is to reduce the length of the rotor 500.
  • the bearing used as the auxiliary bearing 120 is not formed to have a long length.
  • auxiliary bearing 120 is preferably a bearing of a type such as a ball bearing.
  • the composite magnetic bearing 100 is preferably further provided with a magnetic bearing housing 115 formed in a shape surrounding the outer side of the magnetic bearing 110, as shown in FIG. Each component such as the magnetic bearing 110 is protected from the outside by the magnetic bearing housing 115.
  • the composite magnetic bearing 100 is provided on one side of the magnetic bearing housing 115 to measure a gap between the composite magnetic bearing 100 and the rotor 500. It may be made to include more. Referring to the conventional bearing system of Figure 1, it can be seen that the gap sensor for measuring the gap between the rotor and the bearing is provided separately. At this time, the composite magnetic bearing 100 of the present invention is also provided on the magnetic sensor 110, the gap sensor 130, there is no need to increase the space for the gap sensor 130 is also unnecessary, The space utilization and rotor length minimization effect can be maximized.
  • Figure 4 is a cross-sectional view showing a rotor provided with a composite magnetic bearing according to an embodiment of the present invention
  • Figure 5 is a comparison between the conventional magnetic bearing system and the rotor provided with a composite magnetic bearing according to an embodiment of the present invention It is a cross-sectional view shown. 4 and 5 will be described in more detail with respect to the advantages obtained by employing the composite magnetic bearing of the present invention.
  • the magnetic bearing 110 originally has a free space therein (even without the auxiliary bearing 120). Therefore, the auxiliary bearing 120 may be installed in a free space originally existing in the magnetic bearing 110. That is, since the volume of the magnetic bearing 110 does not need to be increased or increased at all according to the installation of the auxiliary bearing 120, the magnetic bearing is originally placed on the rotor 500 when the composite magnetic bearing 100 of the present invention is installed. You only need to secure the space you installed. That is, the composite magnetic bearing 100 of the present embodiment can minimize the effect of increasing the rotor length and system volume by installing the bearing on the rotor.
  • the bearing is generally provided with at least two or more at both ends of the rotor (Fig. 4 is a composite of the present embodiment The case where two magnetic bearings are provided is shown, and each composite magnetic bearing is represented by 100a and 100b).
  • a magnetic bearing was provided, an auxiliary bearing had to be provided in the vicinity thereof (see FIG. 1), so that at least two or more sets of the magnetic bearing and the auxiliary bearing had to be provided on the rotor.
  • the composite magnetic bearing 100 of the present invention can replace the existing [magnetic bearing + auxiliary bearing] set with one composite magnetic bearing, the larger the number of bearing sets to be provided on the rotor, the effect of reducing the rotor length Also grows.
  • FIG. 5 compares the conventional rotor (left side of FIG. 5) having two bearing sets and the rotor (right side of FIG. 5) in which all of the bearing sets are replaced with the composite magnetic bearing of the present invention, in which only two bearing sets are provided. If the bearing set is replaced with the composite magnetic bearing of the present invention, it can be seen from the comparative cross-sectional view of FIG. 5 that the total length of the rotor 500 is much shorter.
  • the composite magnetic bearing 100 of the present invention can be surely reduced the length of the rotor 500 as shown in Figure 5, it is possible to increase the dangerous speed value due to the bending mode of the rotor 500 And it is possible to increase the operating speed range that the rotor 500 can operate stably, ultimately it is possible to operate the rotor 500 at a higher speed than conventional.

Abstract

본 기재는 그 구조를 개선함으로써 로터의 길이 및 시스템 부피를 최소화할 수 있도록 하는, 보조 베어링이 결합된 복합 자기 베어링에 관한 것이다. 본 기재의 보조 베어링이 결합된 복합 자기 베어링은, 로터 둘레에 구비되어 마찰을 저감하는 래디얼(radial) 형의 복합 자기 베어링으로서, 자기 베어링,; 및 상기 코일 및 상기 영구자석 구비 위치 내측의 상기 고정자측 코어 내부 빈 공간에 고정 구비되는 보조 베어링을 포함한다.

Description

보조 베어링이 결합된 복합 자기 베어링
본 발명은 보조 베어링이 결합된 복합 자기 베어링에 관한 것으로, 보다 상세하게는 로터의 길이 및 시스템 부피를 최소화할 수 있도록 개선된 구조를 가지는, 보조 베어링이 결합된 복합 자기 베어링에 관한 것이다.
회전 또는 왕복 운동과 같은 움직임이 있는 부품(회전축, 이동축 등)에 있어서, 부품의 운동 과정에서 일어나는 마찰 때문에 발생될 수 있는 부품 마모나 손상 문제, 소음 문제, 에너지 낭비 문제 등과 같은 문제들을 해소하기 위하여 다양한 종류의 베어링이 구비되고 있다. 일반적으로 널리 사용되는 베어링에는 미끄럼 베어링(sliding bearing)과 구름 베어링(rolling bearing)이 있는데, 미끄럼 베어링은 축을 둘러싼 형태로 되어 베어링과 접촉하는 부분에 윤활유가 개재되어 있도록 한 형태로 되고, 구름 베어링은 베어링과 접촉하는 부분에 볼, 롤러 등과 같이 회전 가능한 부품들이 들어가 있어서 마찰을 최소화하도록 형성된다.
고전적으로 널리 사용되는 이러한 베어링들은 어떤 부분이든 간에 축과의 접촉이 반드시 발생하게 되는데, 축과의 접촉이 없도록 하여 마찰을 그야말로 최소화한 자기 베어링(magnetic bearing)이 최근 다양한 분야에서 그 사용이 확대되어 가고 있다. 자기 베어링은 한국특허공개 제2009-0070178호("정전용량을 이용하는 자기베어링의 원통형 반경방향 변위측정 시스템 및 이의 고장 유무 판단 방법", 2009.07.01 공개) 등에 나타나 있는 바와 같이, 축 둘레에 강한 자성을 띠는 자석 또는 전자석을 배치하여 자기 부상에 의해 축을 띄워 줌으로써 베어링 역할을 하도록 되어 있다. 자기 베어링은 축과의 접촉이 전혀 없어 마찰이 0이 되므로, 부품의 마모나 손상 등이 발생하지 않아 내구성이 높고 소음이 매우 적은 등의 많은 장점이 있다. 그러나 실질적으로 자기 베어링만으로 축을 지지하도록 설계되기보다는, 보다 안정적인 축의 지지를 위하여 직접 접촉이 있는 형태로 된 보조 베어링이 더 구비되어 있는 것이 일반적이다.
도 1은 종래의 자기 베어링 시스템이 구비되는 로터를 도시한 단면도이다. 도시된 바와 같이 모터(2)에 의하여 회전하는 로터(1)에는 일반적으로 여러 베어링들(3, 4, 6, 7, 9) 및 갭 센서들(5, 8, 10)이 구비된다. 상기 로터(1)는 한 방향으로 길게 연장된 기둥 형태로 형성되므로 일반적으로 상하에 하나씩 적어도 2개의 래디얼(radial) 베어링이 구비되며, 일측에는 스러스트(thrust) 베어링이 구비된다. 도 1에서 상기 래디얼 베어링들 및 상기 스러스트 베어링은 자기 베어링들(3,6, 9)로서, 자기 부상에 의하여 상기 로터(1)를 지지하므로 상기 로터(1)와의 직접 접촉이 없다.
상기 로터 및 자기 베어링 시스템 전체가 정상적인 작동 중일 때에는 상기 래디얼 자기 베어링들(3, 6)이 작동하여 상기 로터(1)를 자기 부상에 의하여 지지하고 있게 된다. 그러나 시스템이 정지해 있을 때에는 상기 래디얼 자기 베어링(3, 6)에 전력이 공급되지 않아 자력이 발생되지 않으므로 상기 로터(1)를 지지할 수 없으며, 따라서 이런 경우를 위해 상기 로터(1)에는 볼 베어링 등과 같은 일반적인 접촉식 베어링 형태로 된 래디얼 보조 베어링(4, 7)이 구비된다. 상기 래디얼 보조 베어링(4, 7)은 시스템 정지 시 상기 로터(1)를 지지할 뿐 아니라, 비정상 동작(fault) 시에도 상기 로터(1)가 최대한 손상되지 않고 안전하게 회전이 멈출 수 있도록 상기 로터(1)를 지지하여 주는 역할을 한다. 따라서 이러한 상기 래디얼 보조 베어링(4, 7)은 이러한 로터에 필수적으로 구비되는 부품이다. 도 1과 형태는 다르나 유사한 구조로서, 회전체에 자기 베어링과 더불어 보조적으로 볼 베어링이 더 구비되는 형태의 장치가 한국특허공개 제2010-0054253호("스프링 - 댐퍼 시스템을 구비한 터치다운 볼베어링", 2010.05.25 공개)에 개시되어 있다.
상기 래디얼 보조 베어링(4, 7)을 구비하기 위한 공간 확보를 위하여, 상기 로터(1)는 상기 래디얼 보조 베어링(4, 7)이 차지하는 부피만큼 그 길이를 늘리도록 설계된다. 그런데, 이처럼 상기 로터(1)의 길이가 길어질수록 시스템 자체의 부피가 커지게 되는 문제점이 있다. 뿐만 아니라 상기 로터(1)의 길이가 길어질수록 굽힘 모드에 의한 위험 속도가 낮아지게 되는 문제가 있어, 상기 로터(1)의 동작 속도를 높이는데 제한이 생기게 된다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 1. 한국특허공개 제2009-0070178호("정전용량을 이용하는 자기베어링의 원통형 반경방향 변위측정 시스템 및 이의 고장 유무 판단 방법", 2009.07.01 공개)
(특허문헌 2) 2. 한국특허공개 제2010-0054253호("스프링 - 댐퍼 시스템을 구비한 터치다운 볼베어링", 2010.05.25 공개)
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명은 그 구조를 개선함으로써 로터의 길이 및 시스템 부피를 최소화할 수 있도록 하는, 보조 베어링이 결합된 복합 자기 베어링을 제공하고자 한다.
본 발명의 일 실시예에 따른 보조 베어링이 결합된 복합 자기 베어링은, 로터 둘레에 구비되어 마찰을 저감하는 래디얼(radial) 형의 복합 자기 베어링으로서, 상기 로터 둘레에 부착 구비되는 로터측 코어와, 그 내부에 빈 공간이 형성되며 상기 로터측 코어 둘레에 복수 개가 방사상으로 배치 구비되는 고정자측 코어와, 각각의 상기 고정자측 코어의 최외측부에 각각 구비되는 복수 개의 영구자석과, 상기 고정자측 코어에 구비되며 상기 영구자석을 중심으로 상기 영구자석을 둘러싸는 형태로 배치되는 복수 개의 코일을 포함하여 이루어지는 자기 베어링; 상기 코일 및 상기 영구자석 구비 위치 내측의 상기 고정자측 코어 내부 빈 공간에 고정 구비되는 보조 베어링을 포함 한다.
이 때, 상기 자기 베어링은 호모폴라(homopolar, 동극) 형 자기 베어링일 수 있다.
또한, 상기 보조 베어링은 볼 베어링, 롤러 베어링을 포함하는 구름 베어링 형일 수 있다.
또한, 상기 보조 베어링은 상기 고정자측 코어에 고정 결합되는 보조 베어링 하우징에 의해 고정 지지될 수 있다.
또한, 상기 복합 자기 베어링은 상기 자기 베어링의 외측을 둘러싸는 형태로 형성되는 자기 베어링 하우징이 더 구비될 수 있다. 이 때 상기 복합 자기 베어링은, 상기 자기 베어링 하우징 상의 일측에 구비되어 상기 복합 자기 베어링 및 상기 로터 간의 갭(gap)을 측정하는 갭 센서 를 더 포함할 수 있다.
본 발명의 실시예에 의하면, 비접촉식의 자기 베어링 및 접촉식의 보조 베어링이 모두 구비되는 로터에 대하여, 그 내부에 보조 베어링이 구비되는 형태로 된 자기 베어링이 구비되도록 함으로써, 종래에 보조 베어링을 구비할 공간을 확보하기 위한 만큼의 로터 길이를 축소할 수 있도록 하는 효과가 있다. 이처럼 로터 길이를 최소화함으로써, 시스템 전체의 부피를 줄일 수 있는 효과가 있다. 더불어 본 발명의 실시예에 의하면, 이처럼 로터 길이가 종래보다 줄어듦으로써 로터의 굽힘 모드에 의한 위험 속도가 종래에 비하여 높아지게 되므로, 로터가 안정적으로 동작할 수 있는 동작 속도 범위를 보다 넓힐 수 있는 효과 또한 있다.
도 1은 종래의 자기 베어링 시스템이 구비되는 로터를 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 복합 자기 베어링을 도시한 사시도이다.
도 3은 본 발명의 일 실시예에 따른 복합 자기 베어링의 단면도이다.
도 4는 본 발명의 일 실시예에 따른 복합 자기 베어링이 구비되는 로터를 도시한 단면도이다.
도 5는 종래의 자기 베어링 시스템 및 본 발명의 일 실시예에 따른 복합 자기 베어링이 구비되는 로터들을 비교하여 도시한 단면도이다.
<부호의 설명>
100: 복합 자기 베어링
110: 자기 베어링 111: 코일
112: 영구자석 113: 고정자측 코어
114: 로터측 코어 115: 자기 베어링 하우징
120: 보조 베어링 121: 보조 베어링 하우징
500: 로터 510: 모터
첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
본 명세서의 기재에 있어서 "~상에"라 함은 대상부재의 위 또는 아래에 위치함을 의미하는 것이며, 반드시 중력방향을 기준으로 상부에 위치하는 것을 의미하는 것은 아니다.
이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 보조 베어링이 결합된 복합 자기 베어링을 첨부된 도면을 참고하여 상세하게 설명한다.
도 2는 본 발명의 일 실시예에 따른 복합 자기 베어링의 사시도이며, 도 3은 본 발명의 일 실시예에 따른 복합 자기 베어링의 단면도이다. 먼저 도 2 및 도 3을 통해 본 발명의 베어링의 구조에 대하여 상세히 설명한다.
본 실시예의 복합 자기 베어링(100)은 기본적으로 로터(500) 둘레에 구비되어 마찰을 저감하는 래디얼(radial) 형으로 되어 있다. 이 때, 상기 복합 자기 베어링(100)은 자기 베어링(110)과 보조 베어링(120)이 서로 결합되어 있는 구조로 이루어진다.
상기 자기 베어링(110)은, 상기 로터(500) 둘레에 부착 구비되는 로터측 코어(114)와, 그 내부에 빈 공간이 형성되며 상기 로터측 코어(114) 둘레에 복수 개가 방사상으로 배치 구비되는 고정자측 코어(113)와, 각각의 상기 고정자측 코어(113)의 최외측부에 각각 구비되는 복수 개의 영구자석(112)과, 상기 고정자측 코어(113)에 구비되며 상기 영구자석(112)을 중심으로 상기 영구자석(112)을 둘러싸는 형태로 배치되는 복수 개의 코일(111)을 포함하여 이루어진다. 즉 하나의 상기 고정자측 코어(113)에는, 상기 로터(500)에서 제일 먼 쪽 부분에 상기 영구자석(112)이 구비되며, 상기 영구자석(112)을 둘러싸는 형태로 상기 코일(111)이 구비된다. 또한 도시된 바와 같이 상기 코일(111)은, 상기 로터(500)의 축 방향과 동일한 방향의 축에 감기는 방향으로 형성된다. 이와 같이 상기 코일(111) 및 상기 영구자석(112)이 구비된 상기 고정자측 코어(113)가, 상기 로터측 코어(114)의 둘레에 방사상으로 복수 개 배치된다.
전력이 공급되면 복수 개의 상기 고정자측 코어(113) 각각의 상기 코일(111) 및 상기 영구자석(112)에서 자기력이 발생된다. 상기 로터(500)는 각각의 상기 고정자측 코어(113)가 구비된 각 방향에서 힘을 받게 되며, 따라서 상기 로터(500)는 각각의 상기 고정자측 코어(113)와의 반발력에 의하여 복수 개의 상기 고정자측 코어(113)들 사이의 공간에 부양된다. 이러한 현상이 바로 자기 부상 원리에 의한 것으로서, 이처럼 상기 자기 베어링(110)은 상기 로터(500)를 자기 부상 원리를 이용하여 지지하는 것이다. 상기 코일(111)에 공급되는 전력의 세기, 방향, 위상, 주기 등을 조절함으로써 상기 자기 베어링(110)에서 발생되는 자기력을 조절할 수 있다.
이 때, 상기 자기 베어링(110)은 상기 구조에서 알 수 있는 바와 같이 호모폴라(homopolar, 동극) 형 자기 베어링인 것이 바람직하다. 호모폴라 형 자기 베어링은 헤테로폴라 형에 비하여 와전류(eddy currunt)에 의한 발열 문제가 없고, 샤프트 코어를 제작하기가 용이하며, 영구자석 및 전자석(코일)을 함께 사용하는 형태이므로 에너지 사용이 최소화될 수 있다는 장점이 있다. 또한 전자석 코어가 축방향으로 배치되므로 축의 둘레 방향으로의 여유 공간을 좀더 확보할 수 있다는 장점 또한 있다.
이 때, 앞서 설명한 바와 같이 일반적으로 로터(500)를 자기 베어링(110)만으로 지지하게 될 경우 다음과 같은 문제가 생긴다. 상기 자기 베어링(110)은 전력이 공급되면 작동을 하기 때문에, 시스템 전체가 정상적으로 작동할 때(즉 상기 자기 베어링(110) 및 상기 로터(500) 모두에 정상적으로 전력이 공급될 때)에는 정상적으로 자기력이 발생되므로, 상기 자기 베어링(110)이 상기 로터(500)와 접촉하지 않은 상태로 상기 로터(500)를 지지하는데 아무런 문제가 없다. 그러나 시스템 정지 상태에서는 상기 자기 베어링(110) 및 상기 로터(500)에 전력이 공급되지 않으며, 이 경우 상기 자기 베어링(110)에서 자기력이 발생되지 않으므로 상기 로터(500)는 상기 자기 베어링(110)에 접촉한 상태가 된다.
물론 상기 로터(500)가 회전하고 있지 않은 상태라면 상기 자기 베어링(110)에 상기 로터(500)가 접촉한다 해도 큰 문제가 되지 않을 수 있겠으나, 문제는 시스템 이상이 발생했을 때이다. 상기 로터(500)는 계속 회전 동작을 하고 있는데, 상기 자기 베어링(110)으로의 전력 공급에 이상이 발생하여 상기 자기 베어링(110)이 정상적으로 동작하지 않게 될 경우, 상기 자기 베어링(110)과 상기 로터(500)가 접촉할 수밖에 없게 되며, 이 경우 상기 로터(500)의 회전에 의하여 상기 자기 베어링(110)이 파손되거나 손상되는 등의 문제가 생길 수 있고 또한 상기 로터(500)가 매우 불안정한 회전을 하게 되어 시스템 전체의 손상 등 사고 발생의 위험성이 커진다.
이러한 문제를 피하기 위하여, 종래에는 도 1에 도시되어 있는 바와 같이, (상기 자기 베어링(110)에 해당하는) 자기 베어링과는 별도로 로터 상에 보조 베어링을 더 구비하도록 하고 있었다. 그런데 이와 같이 보조 베어링이 별도 구비될 경우 다음과 같은 문제가 더 발생한다. 먼저, 보조 베어링이 로터 상에 구비될 수 있는 공간을 확보하기 위해서는, 최소한 보조 베어링의 길이만큼 로터의 길이가 늘어나야 하기 때문에 시스템 전체의 부피가 커지는 문제가 생긴다. 뿐만 아니라, 로터의 길이가 늘어남에 따라 로터에서의 굽힘 발생 경향이 커지게 되어, 굽힘 모드에서 안정적으로 회전할 수 있는 한계치 속도인 위험 속도 값이 낮아지게 된다. 따라서 결과적으로는 로터가 안정적으로 회전할 수 있는 동작 속도 범위가 줄어들게 되는 문제가 생기는 것이다.
본 실시예에서는 이와 같이 로터 길이가 늘어남에 따라 발생되는 문제들을 예방함과 동시에, 시스템 정지 또는 이상 동작 시에도 안정적으로 동작할 수 있도록 하기 위하여, 상기 자기 베어링(110)의 내부에 상기 보조 베어링(120)이 결합 구비되는 구조를 가지는 복합 자기 베어링(100)을 제시한다.
상기 보조 베어링(120)은, 상기 코일(111) 및 상기 영구자석(112) 구비 위치 내측(로터에 가까운 쪽)의 상기 고정자측 코어(113) 내부 빈 공간에 고정 구비된다. 보다 안정적인 결합을 위해서, 상기 보조 베어링(120)은 도시된 바와 같이 상기 고정자측 코어(113)에 고정 결합되는 보조 베어링 하우징(121)에 의해 고정 지지되도록 하는 것이 바람직하다.
또한 상기 보조 베어링(120)은 볼 베어링, 롤러 베어링을 포함하는 구름 베어링 형인 것이 바람직하다. 앞서 설명한 바와 같이 상기 보조 베어링(120)은 시스템 정지 또는 특히 시스템 이상 동작 시에 상기 로터(500)를 안정적으로 지지할 수 있도록 구비되는 것이다. 따라서 상기 보조 베어링(120)은 상기 로터(500)와 접촉하였을 때는 물론이거니와 외부 충격이나 진동 등을 어느 정도 견딜 수 있을 정도의 강성을 가져야 한다. 더불어, 앞서 설명한 바와 같이 본 발명에서 상기 보조 베어링(120)이 상기 자기 베어링(110)의 내부에 구비되도록 하는 구조를 채용한 가장 근본적인 이유는 바로 상기 로터(500)의 길이를 줄이기 위함인 바, 상기 보조 베어링(120)으로 사용되는 베어링도 그 자체의 길이가 길게 형성되는 것은 아니다.
이러한 조건들을 고려할 때, 그 자체의 강성이 충분하여 로터와의 접촉 및 충격 등에도 손상의 우려 없이 로터를 지지할 수 있고, 길이를 매우 짧게 형성할 수 있는 볼 베어링 등과 같은 형태의 베어링이, 상기 보조 베어링(120)으로서 사용되기에 매우 적합하다. 따라서 상기 보조 베어링(120)은 볼 베어링 등과 같은 형태의 베어링인 것이 바람직한 것이다.
부가적으로, 상기 복합 자기 베어링(100)에는 도 3에 도시된 바와 같이 상기 자기 베어링(110)의 외측을 둘러싸는 형태로 형성되는 자기 베어링 하우징(115)이 더 구비되는 것이 바람직하다. 상기 자기 베어링 하우징(115)에 의하여 상기 자기 베어링(110) 등의 각 부품이 외부로부터 보호된다.
더불어 이 때, 상기 복합 자기 베어링(100)은 상기 자기 베어링 하우징(115) 상의 일측에 구비되어 상기 복합 자기 베어링(100) 및 상기 로터(500) 간의 갭(gap)을 측정하는 갭 센서(130)를 더 포함하여 이루어질 수 있다. 도 1의 종래 베어링 시스템을 보면, 로터와 베어링 간 갭을 측정하는 갭 센서가 별도로 구비되어 있는 것을 알 수 있다. 이 때 본 발명의 복합 자기 베어링(100)은 상기 갭 센서(130) 또한 상기 자기 베어링(110) 상에 구비되도록 함으로써, 상기 갭 센서(130)가 구비되기 위한 공간 또한 불필요하게 늘릴 필요가 없어, 공간 활용성 및 로터 길이 최소화 효과를 극대화할 수 있다.
도 4는 본 발명의 일 실시예에 따른 복합 자기 베어링이 구비되는 로터를 도시한 단면도이며, 도 5는 종래의 자기 베어링 시스템 및 본 발명의 일 실시예에 따른 복합 자기 베어링이 구비되는 로터들을 비교하여 도시한 단면도이다. 도 4 및 도 5를 통해 본 발명의 복합 자기 베어링을 채용함으로써 얻을 수 있는 장점들에 대하여 보다 상세히 설명한다.
본 실시예에서, 상기 자기 베어링(110)은 (상기 보조 베어링(120)이 없는 경우에도) 그 내부에 원래 여유 공간이 존재한다. 따라서 상기 보조 베어링(120)은 상기 자기 베어링(110) 내에 원래 존재하고 있던 여유 공간 내에 설치할 수 있다. 즉 상기 보조 베어링(120)의 설치에 따라 상기 자기 베어링(110)의 부피가 늘어난다거나 할 필요가 전혀 없으므로, 본 발명의 복합 자기 베어링(100)을 설치할 경우 원래 상기 로터(500)에 자기 베어링을 설치하던 공간만 확보되면 된다. 즉 본 실시예의 복합 자기 베어링(100)은 로터 상에 베어링을 설치함에 따른 로터 길이, 시스템 부피 증가 영향을 최소화할 수 있다.
이처럼 로터 상에 베어링을 설치할 때에 단지 베어링 설치만을 위한 불필요한 길이 증가 영향이 없어지게 되므로, 상기 로터(500)는 기존보다 훨씬 짧게 형성할 수 있다. 한편 도 4에 도시되어 있는 바와 같이, 로터는 일측 방향으로 길게 연장된 형태로 형성되기 때문에, 일반적으로 베어링은 로터의 양측 끝단에 적어도 둘 이상이 구비되는 것이 일반적이다(도 4는 본 실시예의 복합 자기 베어링이 둘 구비되는 경우를 도시한 것으로, 각각의 복합 자기 베어링은 100a, 100b로 표시하였다). 종래에는 자기 베어링을 구비할 때 반드시 그 근처에 보조 베어링이 구비되어야만 했으므로(도 1 참조), 자기 베어링 및 보조 베어링 한 세트가 적어도 둘 이상, 결과적으로 최소한 4개의 베어링이 로터 상에 구비되어야만 했다. 그러나 본 발명의 복합 자기 베어링(100)은 기존의 [자기 베어링 + 보조 베어링] 세트를 하나의 복합 자기 베어링으로 대체할 수 있으므로, 로터 상에 구비되어야 하는 베어링 세트의 개수가 많을수록 로터 길이를 줄이는 효과 또한 커진다.
도 5는 베어링 세트가 둘 구비되는 종래의 로터(도 5 좌측) 및 베어링 세트를 모두 본 발명의 복합 자기 베어링으로 대체한 로터(도 5 우측)를 비교한 것으로서, 단지 베어링 세트가 둘 구비되던 경우라도 베어링 세트를 본 발명의 복합 자기 베어링으로 대체하면, 도 5의 비교 단면도를 보면 확실히 알 수 있는 바와 같이 상기 로터(500)의 전체 길이가 훨씬 짧아진다는 것을 확인할 수 있다.
앞서 설명한 바와 같이, 상기 로터(500)의 길이가 길면 길수록 굽힘 발생 위험성이 커지고, 따라서 상기 로터(500)가 안정적으로 동작할 수 있는 최대 한계치인 위험 속도 값이 낮아지게 된다(다시 말해 상기 로터(500)가 안정적으로 동작할 수 있는 동작 속도 범위가 줄어들게 된다). 그러나 본 발명의 복합 자기 베어링(100)을 채용함으로써 도 5에 도시된 바와 같이 확실하게 상기 로터(500)의 길이를 줄일 수 있으므로, 상기 로터(500)의 굽힘 모드에 의한 위험 속도 값을 높일 수 있고 상기 로터(500)가 안정적으로 동작할 수 있는 동작 속도 범위를 늘릴 수 있어, 궁극적으로는 상기 로터(500)를 종래보다 더욱 고속으로 동작시킬 수 있게 된다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.

Claims (6)

  1. 로터 둘레에 구비되어 마찰을 저감하는 래디얼(radial) 형의 복합 자기 베어링으로서,
    상기 로터 둘레에 부착 구비되는 로터측 코어와, 내부에 빈 공간이 형성되며 상기 로터측 코어 둘레에 복수 개가 방사상으로 배치 구비되는 고정자측 코어와, 각각의 상기 고정자측 코어의 최외측부에 각각 구비되는 복수 개의 영구자석과, 상기 고정자측 코어에 구비되며 상기 영구자석을 중심으로 상기 영구자석을 둘러싸는 형태로 배치되는 복수 개의 코일을 포함하여 이루어지는 자기 베어링;
    상기 코일 및 상기 영구자석 구비 위치 내측의 상기 고정자측 코어 내부 빈 공간에 고정 구비되는 보조 베어링;
    을 포함하는, 보조 베어링이 결합된 복합 자기 베어링.
  2. 제 1 항에 있어서,
    상기 자기 베어링은
    호모폴라(homopolar, 동극) 형 자기 베어링인 것을 특징으로 하는, 보조 베어링이 결합된 복합 자기 베어링.
  3. 제 1 항에 있어서,
    상기 보조 베어링은 볼 베어링, 롤러 베어링을 포함하는 구름 베어링 형인 것을 특징으로 하는, 보조 베어링이 결합된 복합 자기 베어링.
  4. 제 1항에 있어서,
    상기 보조 베어링은 상기 고정자측 코어에 고정 결합되는 보조 베어링 하우징에 의해 고정 지지되는 것을 특징으로 하는, 보조 베어링이 결합된 복합 자기 베어링.
  5. 제 1항에 있어서,
    상기 복합 자기 베어링은 상기 자기 베어링의 외측을 둘러싸는 형태로 형성되는 자기 베어링 하우징이 더 구비되는 것을 특징으로 하는, 보조 베어링이 결합된 복합 자기 베어링.
  6. 제 5항에 있어서,
    상기 복합 자기 베어링은 상기 자기 베어링 하우징 상의 일측에 구비되어 상기 복합 자기 베어링 및 상기 로터 간의 갭(gap)을 측정하는 갭 센서
    를 더 포함하는, 보조 베어링이 결합된 복합 자기 베어링.
PCT/KR2013/005323 2012-06-19 2013-06-17 보조 베어링이 결합된 복합 자기 베어링 WO2013191422A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380006733.XA CN104520599B (zh) 2012-06-19 2013-06-17 具有结合到其的辅助轴承的径向类型复合磁轴承
US14/366,074 US9273723B2 (en) 2012-06-19 2013-06-17 Composite magnetic bearing having auxiliary bearing coupled thereto

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0065578 2012-06-19
KR1020120065578A KR101408060B1 (ko) 2012-06-19 2012-06-19 보조 베어링이 결합된 복합 자기 베어링

Publications (1)

Publication Number Publication Date
WO2013191422A1 true WO2013191422A1 (ko) 2013-12-27

Family

ID=49768974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005323 WO2013191422A1 (ko) 2012-06-19 2013-06-17 보조 베어링이 결합된 복합 자기 베어링

Country Status (4)

Country Link
US (1) US9273723B2 (ko)
KR (1) KR101408060B1 (ko)
CN (1) CN104520599B (ko)
WO (1) WO2013191422A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180050533A1 (en) * 2015-09-03 2018-02-22 Korea Institute Of Macinery & Materials Roller module with magnetic bearings and permanent magnets

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160363003A1 (en) * 2014-08-15 2016-12-15 Gen Electric Mechanical drive architectures with hybrid-type low-loss bearings and low-density materials
WO2016140426A1 (ko) * 2015-03-04 2016-09-09 한국에너지기술연구원 하이브리드 패시브 마그네틱 베어링
US10465954B2 (en) 2017-02-06 2019-11-05 Emerson Climate Technologies, Inc. Co-rotating compressor with multiple compression mechanisms and system having same
US10215174B2 (en) 2017-02-06 2019-02-26 Emerson Climate Technologies, Inc. Co-rotating compressor with multiple compression mechanisms
US10995754B2 (en) 2017-02-06 2021-05-04 Emerson Climate Technologies, Inc. Co-rotating compressor
US11111921B2 (en) 2017-02-06 2021-09-07 Emerson Climate Technologies, Inc. Co-rotating compressor
CN108035906B (zh) * 2017-12-10 2019-10-18 北京化工大学 一种离心压缩机轴位移故障自愈调控装置
US11566663B2 (en) 2019-06-26 2023-01-31 Trane International Inc. Bearing for supporting a rotating compressor shaft
EP4058675A4 (en) 2019-11-15 2023-11-29 Emerson Climate Technologies, Inc. CO-ROTATING SPIRAL COMPRESSOR
CN112610603B (zh) * 2020-11-30 2021-11-23 珠海格力电器股份有限公司 磁悬浮转子起浮控制方法和控制装置、磁悬浮轴承
CN113251910B (zh) * 2021-07-06 2021-11-19 中国人民解放军海军工程大学 一种探测线圈与磁轴承弱耦合的位移检测方法
US11624366B1 (en) 2021-11-05 2023-04-11 Emerson Climate Technologies, Inc. Co-rotating scroll compressor having first and second Oldham couplings
US11732713B2 (en) 2021-11-05 2023-08-22 Emerson Climate Technologies, Inc. Co-rotating scroll compressor having synchronization mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326751A (ja) * 1995-06-05 1996-12-10 Koyo Seiko Co Ltd 磁気軸受装置
JP2001074050A (ja) * 1999-07-06 2001-03-23 Nsk Ltd ラジアル磁気軸受
US6353273B1 (en) * 1997-09-15 2002-03-05 Mohawk Innovative Technology, Inc. Hybrid foil-magnetic bearing
JP2002199655A (ja) * 2000-12-27 2002-07-12 Ishikawajima Harima Heavy Ind Co Ltd 高速電動機

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3141841A1 (de) * 1981-10-22 1983-05-05 Brown, Boveri & Cie Ag, 6800 Mannheim "zentrier- und fangvorrichtung fuer beruehrungslos gelagerte rotoren"
US4641978A (en) * 1984-10-23 1987-02-10 The United States Of America As Represented By The United States Department Of Energy Bearing system
DE3808331A1 (de) * 1988-03-12 1989-09-28 Kernforschungsanlage Juelich Magnetische lagerung mit permanentmagneten zur aufnahme der radialen lagerkraefte
US5021697A (en) * 1990-05-24 1991-06-04 Mechanical Technology Incorporated Auxiliary bearing design for active magnetic bearings
US5315197A (en) * 1992-04-30 1994-05-24 Avcon - Advance Controls Technology, Inc. Electromagnetic thrust bearing using passive and active magnets, for coupling a rotatable member to a stationary member
JPH06134667A (ja) * 1992-10-26 1994-05-17 Seiko Seiki Co Ltd 砥石軸装置
JPH06326751A (ja) 1993-05-11 1994-11-25 Sumitomo Electric Ind Ltd ネットワーク障害対策管理システム
WO1997002437A1 (en) * 1995-06-30 1997-01-23 Alliedsignal Inc. Hybrid foil/magnetic bearing
US6313555B1 (en) * 1998-08-19 2001-11-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low loss pole configuration for multi-pole homopolar magnetic bearings
JP4426049B2 (ja) * 1999-03-31 2010-03-03 エドワーズ株式会社 磁気軸受装置及び真空ポンプ
JP3490074B2 (ja) 2001-09-17 2004-01-26 光洋精工株式会社 磁気軸受装置
DE10216421A1 (de) * 2002-04-12 2003-10-30 Forschungszentrum Juelich Gmbh Magnetführungseinrichtung
JP2004162834A (ja) * 2002-11-14 2004-06-10 Ishikawajima Harima Heavy Ind Co Ltd 磁気軸受
CN1307373C (zh) * 2004-12-30 2007-03-28 北京航空航天大学 一种低功耗永磁偏置混合径向磁轴承
CN1322244C (zh) * 2005-05-27 2007-06-20 南京航空航天大学 永磁偏置径向磁轴承
EP2188541B1 (de) * 2007-08-14 2012-04-18 Rothe Erde GmbH Verfahren und lager zur lagerung von drehbaren geräten, insbesondere eines medizinischen scanners
KR100928551B1 (ko) 2007-12-27 2009-11-24 한국전기연구원 정전용량을 이용하는 자기베어링의 원통형 반경방향 변위측정 시스템 및 이의 고장 유무 판단 방법
KR101553709B1 (ko) 2008-11-14 2015-09-17 주성엔지니어링(주) 반도체 소자 제조용 로드락 챔버와 이를 이용한 반도체 소자의 제조장치
KR101133257B1 (ko) 2010-02-25 2012-04-09 서울대학교산학협력단 에어포일-전자기 하이브리드 베어링

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326751A (ja) * 1995-06-05 1996-12-10 Koyo Seiko Co Ltd 磁気軸受装置
US6353273B1 (en) * 1997-09-15 2002-03-05 Mohawk Innovative Technology, Inc. Hybrid foil-magnetic bearing
JP2001074050A (ja) * 1999-07-06 2001-03-23 Nsk Ltd ラジアル磁気軸受
JP2002199655A (ja) * 2000-12-27 2002-07-12 Ishikawajima Harima Heavy Ind Co Ltd 高速電動機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180050533A1 (en) * 2015-09-03 2018-02-22 Korea Institute Of Macinery & Materials Roller module with magnetic bearings and permanent magnets
US10632739B2 (en) * 2015-09-03 2020-04-28 Korea Institute Of Machinery & Materials Roller module with magnetic bearings and permanent magnets
GB2547394B (en) * 2015-09-03 2021-05-05 Korea Inst Mach & Materials Roller module with magnetic bearings and permanent magnets

Also Published As

Publication number Publication date
CN104520599B (zh) 2017-08-04
CN104520599A (zh) 2015-04-15
US20140361651A1 (en) 2014-12-11
KR101408060B1 (ko) 2014-06-18
KR20130142392A (ko) 2013-12-30
US9273723B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
WO2013191422A1 (ko) 보조 베어링이 결합된 복합 자기 베어링
US9048701B2 (en) Passive magnetic bearings for rotating equipment including induction machines
US8319385B2 (en) Method and bearing for supporting rotatable devices, particularly a medical scanner
US8283826B2 (en) Bearing arrangement and bearing block having a magnetic radial bearing and a touchdown bearing for a rotating machine
EP3045752B1 (en) Magnetic suspension bearing and centrifugal compressor
JP2010530516A (ja) フライホイール電力貯蔵システムのためのリフトマグネット機構
CN107100878B (zh) 一种带磁悬浮轴承的磁力泵
CN101341348A (zh) 电磁式磁浮机构轴承
KR101343876B1 (ko) 래디얼 및 쓰러스트 일체형 보조 베어링이 구비된 복합 자기 베어링
CN115606079A (zh) 轴流式电机以及用于轴流式电机的移位装置
CA2861903C (en) Electrical machine
KR101444139B1 (ko) 센서 및 보조 베어링이 결합된 복합 자기 베어링
CN210034173U (zh) 磁悬浮轴承、电机、压缩机
CN104295602A (zh) 一种用于航天的直线运动滚子轴承
WO2011108842A2 (ko) 능동형 자기 베어링
JPS63190930A (ja) 磁気軸受装置
CN101482143A (zh) 磁悬浮轴承
CN101504034A (zh) 三维平衡磁力轴承
CN201443566U (zh) 三维平衡磁力轴承
CN106712365A (zh) 组合轴承磁悬浮电动机/电主轴
CN115045914B (zh) 一种不接触式回转支承
WO2019151766A1 (ko) 모터
CN109026987A (zh) 一种便于安装的轴承
CN217036954U (zh) 一种采用磁悬浮轴承支撑的高速电机
CN218006053U (zh) 磁悬浮电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14366074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807591

Country of ref document: EP

Kind code of ref document: A1