WO2013191234A1 - Combination weighing device - Google Patents

Combination weighing device Download PDF

Info

Publication number
WO2013191234A1
WO2013191234A1 PCT/JP2013/066916 JP2013066916W WO2013191234A1 WO 2013191234 A1 WO2013191234 A1 WO 2013191234A1 JP 2013066916 W JP2013066916 W JP 2013066916W WO 2013191234 A1 WO2013191234 A1 WO 2013191234A1
Authority
WO
WIPO (PCT)
Prior art keywords
combination
weighing
evaluation
accuracy
weighing device
Prior art date
Application number
PCT/JP2013/066916
Other languages
French (fr)
Japanese (ja)
Inventor
斉志 伊庭
慶人 稲積
拓右 久保
Original Assignee
株式会社イシダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イシダ filed Critical 株式会社イシダ
Priority to DE201311003115 priority Critical patent/DE112013003115T5/en
Priority to JP2014521499A priority patent/JP6053782B2/en
Publication of WO2013191234A1 publication Critical patent/WO2013191234A1/en
Priority to DKPA201570021A priority patent/DK178699B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/387Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for combinatorial weighing, i.e. selecting a combination of articles whose total weight or number is closest to a desired value
    • G01G19/393Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for combinatorial weighing, i.e. selecting a combination of articles whose total weight or number is closest to a desired value using two or more weighing units

Definitions

  • the present invention relates to a combination weighing device that combines a plurality of weighing values input from a plurality of weighing machines, selects an optimum combination of weighing machines, and discharges articles from the selected weighing machine.
  • the weighed articles are discharged, and then new articles are supplied to enter the next weighing cycle. While such a cycle is repeated in the individual weighing hoppers, the availability of the device is improved. However, in some weighing hoppers, if such a cycle is delayed, articles easily adhere to the weighing hopper, and even if they are selected in combination, it becomes a factor affecting the weighing accuracy. Moreover, since the probability that such a staying hopper article is selected is relatively small, it also affects the weighing accuracy.
  • the allowable range if there are multiple combinations where the combined total value falls within the set upper and lower limits (hereinafter referred to as the allowable range), many combinations that remain within the allowable range remain in the next weighing cycle. If you leave it, it will lead to an improvement in the operating rate. Furthermore, it may be preferable to select the second or third combination within the allowable range in order to improve accuracy and operating rate.
  • the present invention is intended to solve such a problem, and an object of the present invention is to provide a new combination weighing device that can improve both the average accuracy and the operation rate after long-time operation.
  • a combination weighing device is a combination weighing device that selects an optimum combination of weighing machines by combining weighing values obtained by a plurality of weighing machines for weighing articles, and each of the combinations is selected.
  • a combination that maximizes the sum of the calculated evaluation values is selected as an optimal combination.
  • Each of the evaluation functions includes a weighting coefficient that represents the degree of relevance of each evaluation function, and the weighting coefficient is determined by a computer that executes a genetic algorithm.
  • the combination weighing device is provided with an operation unit. From the operation unit, it is possible to arbitrarily set whether to perform an operation focusing on accuracy or an operation focusing on the operation rate.
  • an operation with an emphasis on accuracy and an operation with an emphasis on the operation rate can be performed by an operation from the operation unit.
  • FIG. 1 is a configuration block diagram of a combination weighing device according to an embodiment of the present invention.
  • the evaluation function of the equation (1) is a linear function that becomes 1 if the combined total value is equal to the target value, and that gradually decreases as the distance from the target value increases.
  • the deviation from the target value is e W
  • the upper limit value of the deviation is e u
  • b 1 ⁇ 1 / e u
  • b 2 1.
  • the combination weighing device supplies articles to the weighing hopper of each weighing machine and weighs them, and selects the optimum combination by combining the obtained weighing values. Further, the article is discharged from the weighing hopper of each selected weighing machine, and the article is supplied again to the discharged weighing hopper. Repeat such a series of cycles.
  • Each weighing machine has its own counter. When the article has not been discharged, the count value of the counter is increased by one, and when the article is discharged, the counter value of the counter is reset to zero. When the count value of the counter is high, articles are staying in the weighing machine for many cycles. If it is left as it is, the number of combinations that fall within the allowable range decreases and the measurement accuracy deteriorates.
  • the combination weighing device includes a plurality of weighing machines.
  • the number of times belonging to any set is counted for each weighing machine, and the contribution of each weighing machine is defined by the following equation (4) based on the count value. Then, in this case, the contribution of each weighing machine is as shown in Table 1.
  • the total value of contribution of the remaining weighing machines becomes the highest. Selecting such a combination will leave many combinations that fall within the allowable range in the next cycle, and as a result, the operating rate will be improved. Therefore, the following equation (5) is defined as an evaluation function for obtaining the total value of contributions of the remaining weighing machines.
  • Table 1 the total value of the contributions of each group and the total value of the contributions of the remaining weighing machines are displayed as shown in Table 2. Therefore, if only the case of Table 1 is seen without considering other evaluation functions, the set 4 is the optimum combination. Then, since the remaining weighing machines belonging to the set 6 are within the allowable range even in the next cycle, the operating rate is improved.
  • Equation (7) is defined as an evaluation function in which the evaluation value increases as V increases.
  • W T is a combination target value.
  • the combination when selecting a target number of articles, the combination may not be established in any way depending on the number of articles put into each weighing machine. For example, when the target number is set to an odd number, if an even number is supplied to each weighing machine, a combination failure occurs. Here, this state is referred to as a tabu state, but when the state falls into this state, the operation rate decreases. Therefore, the margin of each combination until falling into such a taboo state is calculated. For example, Table 3 assumes the case where the number shown in Table 3 is input to each of eight weighing machines, and the target number is seven.
  • the weighing machine that satisfies the target number is the combination 1 from the remaining weighing machines. There are two. However, since there are no more combinations beyond this, in the case of this selected route, it is possible to guarantee the combination of the target numbers up to two cycles ahead. Therefore, the margin of the selected route in this case is set to 2. Subsequently, it is the combination 3 that can be selected from the weighing machines except the No. 3, 4, and 5 units, and then the combination 4 can be selected. In this case as well, since up to two cycles are guaranteed, the margin is set to 2 in this case as well.
  • the margin of each selected route is obtained for all combinations satisfying the target number, and the one having the largest margin is defined as the margin T in the combination.
  • the margin T in the combination of Nos. 3, 4, and 5 is 2.
  • the following equation (8) is defined as an evaluation function in the case of the number combination using the margin T.
  • the evaluation value V C of each combination is obtained by the following equation (9). look, the evaluation value V C is selected as the optimal combination largest one.
  • a i is a weighting factor and is set to an arbitrary value under the constraint condition of the following equation (10).
  • the coefficient a i serves as an index indicating how much importance is given to which evaluation function. By adjusting these coefficients, it is possible to perform an operation focusing on accuracy and an operation focusing on the operating rate. However, since it is difficult for humans to determine each coefficient, a Pareto optimal solution is obtained using a computer that executes a genetic algorithm.
  • Pareto optimal solution a set of solutions that represent the limits of the trade-off relationship. This Pareto optimal solution tries to improve any value (eg, accuracy) of the objective function. It is a solution in which the value (operation rate) of another objective function is corrupted.
  • FIG. 1 is a diagram for explaining the Pareto optimal solution, where the solutions a, b, c, and d are Pareto optimal solutions, and the solutions e and f that deviate therefrom are inferior solutions.
  • the limit surface formed by the set of solutions a, b, c, and d is called a Pareto front.
  • a genetic algorithm is used to obtain the Pareto optimal solution.
  • the genetic algorithm is based on the process of natural evolution (chromosome selection, crossover and mutation) as a hint. This is an algorithm proposed by Holland.
  • this algorithm for example, the weighing value of each weighing machine obtained in 10,000 weighing cycles is recorded as sample data. Then, a solid (coefficient a i ) is randomly generated to evaluate the fitness of each individual. In other words, 10,000 optimal combinations are obtained using equation (9), and the average accuracy and operating rate of the 10,000 pieces are obtained. And it leaves so that possibility that it will be selected as a solid with good fitness becomes high becomes high. That is, when changing individual (coefficient a i), will leave the average accuracy and availability and well made towards individuals (coefficients a i).
  • Genetic algorithms include MOGA (Multiobjective Genetic Algorithm) by Fonseca et al., NSGA-II (Non-Dominated Sorting Genetic Algorithm II) by Deb et al., SPEA2 (Strength Pareto Evolution Algorithm 2) by Zitzler et al.
  • MOGA Metal Organic Chemical Vapor Algorithm
  • NSGA-II Non-Dominated Sorting Genetic Algorithm II
  • SPEA2 Strength Pareto Evolution Algorithm 2
  • Zitzler et al Zitzler et al.
  • NSGA-II is used, but is not limited to this genetic algorithm.
  • FIG. 2 is a schematic diagram of a main part of a combination weighing device according to an embodiment of the present invention.
  • the combination weighing device 100 includes a dispersion feeder DF, a plurality of radiation feeders RF, a plurality of pool hoppers PH, a plurality of weighing hoppers WH, and a collective chute CS.
  • the dispersion feeder DF is disposed at the upper center of the apparatus.
  • the plurality of radiation feeders RF are arranged radially around the dispersion feeder DF so as to surround the dispersion feeder DF.
  • the plurality of pool hoppers PH are arranged in the lower stage of each radiation feeder RF.
  • the plurality of weighing hoppers WH are arranged below the plurality of pool hoppers PH.
  • the number of weighing hoppers WH and pool hoppers PH is the same.
  • the collective chute CS is disposed below the plurality of weighing hoppers WH.
  • Dispersion feeder DF disperses the article dropped on it in the circumferential direction by the vibration of electromagnetic feeder DV.
  • the radiation feeder RF conveys the article conveyed from the dispersion feeder DF to the tip of the trough TR by the vibration of the electromagnetic feeder RV, and discharges the article to the lower pool hopper PH.
  • the pool hopper PH temporarily stores articles discharged from the radiation feeder RF.
  • the pool hopper PH opens and closes, the pool hopper PH opens and closes the gate g based on a command from the control unit CU, and discharges the articles stored in the pool hopper PH to the lower weigh hopper WH.
  • a weight sensor WS is attached to the weighing hopper WH.
  • the weight detected by the weight sensor WS is input to the control unit CU and used for the combination calculation. Since each hopper PH, WH has a known configuration, a gate opening / closing mechanism, a support mechanism for the hopper PH, WH, and the like are omitted here.
  • the control unit CU includes a CPU 10 and a ROM 11, a RAM 12, and a hard disk 13 that are controlled by the CPU 10.
  • the CPU 10, the ROM 11, the RAM 12, the hard disk 13, and the like are connected to each other via a bus line such as an address bus or a data bus.
  • the control unit CU is connected via an interface 14 to the operation unit RU having a dispersion feeder DF, a radiation feeder RF, a pool hopper PH, a weighing hopper WH, and a touch panel function.
  • the operation unit RU is connected to the computer C that executes the genetic algorithm, and the above-described weighting factor a i is updated.
  • the CPU 10 reads and executes various programs stored in the ROM 11 to perform calculations of the equations (1) to (8), management of the stay count value, and gate opening / closing control for the pool hopper PH and the weighing hopper WH. Is called. Also, the hard disk 13 stores evaluation functions of equations (1) to (8).
  • the weighting factor a i used is periodically updated by the computer C executing the genetic algorithm.
  • the CPU 10 When the CPU 10 receives a discharge request signal from a packaging machine (not shown) or starts with its own cycle timer, the CPU 10 inputs the weight value from the weight sensor WS of each of the weighing machines M1 to Mn and stores it in the RAM 12. Subsequently, the calculations of equations (1) to (9) are executed based on the stored measurement values. At this time, if there is an allowance in the calculation time, the calculations of the formulas (1) to (9) are executed for all combinations. On the other hand, if the operation speed increases and the calculation time is not sufficient, a combination in which the combined total value falls within the allowable range is extracted first, and then, for each extracted combination, each of the formulas (1) to (1) The calculation of 9) is executed.
  • the calculation of the expression (9) is executed by the linear sum of the remaining expressions excluding the expression (8) used in the number combination. If the number is a combination, the calculation of Expression (9) is executed with a linear sum including Expression (8).
  • a discharge command is transmitted to the selected weighing machines M1 to Mn, and then the discharge command is sent to the corresponding pool hopper PH with a slight delay. Send. Then, the weighing hoppers WH of the weighing machines M1 to Mn that have received the discharge command open and close to discharge the articles, and then the pool hopper PH opens and closes to supply the articles to the empty weighing hopper WH. Subsequently, when the pool hopper PH becomes empty, a drive command is transmitted to the radiation feeder RF and the dispersion feeder DF, and a new article is supplied from the corresponding radiation feeder RF to the empty pool hopper PH. Thus, the combination weighing of one cycle is completed, and then the next weighing cycle is started by the next discharge request signal or the start signal from the cycle timer.
  • the measured values of the weighing machines M1 to Mn in each cycle and the total weight of the optimum combination are recorded on the hard disk 13.
  • the computer C periodically accesses the hard disk 13, takes in the recorded data, executes a genetic algorithm based on the data, and updates the weighting coefficient a i while calculating the average accuracy and the operating rate. To go.
  • the operation unit RU displays, for example, a Pareto front as shown in FIG. 1 on the operation screen.
  • a weighting factor a i giving the specified accuracy and operating rate is specified and stored in the RAM 12.
  • the CPU 10 executes the above equations (1) to (9) based on the weighting coefficient a i stored in the RAM 12. Thereby, the accuracy and the operation rate can be changed to desired values.
  • Each weighting factor a i varies depending on the type of goods to be weighed, the transport characteristics, operating conditions, etc., but when tested with snacks, the accuracy was set to 0.2%. It has been confirmed that the rate is improved by 3%.
  • the computer C that executes the genetic algorithm is externally attached.
  • the computer C is incorporated in the operation unit RU, and the weighting coefficient a i is updated while driving. You can also display the operating rate.
  • the external computer C may be connected by either wired or wireless connection. Further, the external computer C may be a computer provided in a remote data center. Moreover, you may be comprised so that the function of the external computer C might be borne in a cloud.
  • the execution of the genetic algorithm may be configured to be executed when the combination weighing device is not operating (for example, at night) in order to reduce the processing load.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention addresses the problem of providing a new combination weighing device capable of improving both mean precision and operation rate after running over an extended time. A plurality of evaluation functions are provided to evaluate the effect on the precision and the effect on the operation rate for each combination when the same is selected. When combining each weighing value, for each combination, an evaluation value is calculated based on the evaluation functions, and the combination for which the sum of the calculated evaluation values is maximized is selected as the optimal combination.

Description

組合せ計量装置Combination weighing device
 本発明は、複数の計量機から入力した複数個の計量値を組合せて、最適な計量機の組合せを選択し、選択した計量機から物品を排出するようにした組合せ計量装置に関する。 The present invention relates to a combination weighing device that combines a plurality of weighing values input from a plurality of weighing machines, selects an optimum combination of weighing machines, and discharges articles from the selected weighing machine.
 この種の組合せ計量装置は、常に高精度であると同時に、高稼働率であることが要求される。高精度であると、組合せ計量された物品のロスが少なくなるし、高い稼働率であると、生産性が向上する。そのため、これまでは、精度(歩留り)と稼働率の双方の向上を狙って、下記特許文献に開示されるような発明が提案されていた。 This kind of combination weighing device is required to always have high accuracy and high availability. High accuracy reduces the loss of articles weighed in combination, and high availability improves productivity. For this reason, in the past, inventions as disclosed in the following patent documents have been proposed with the aim of improving both accuracy (yield) and availability.
 しかし、これらの装置では、計量サイクル毎に目標値に最も近いものを最適な組合せとして選択していたので、サイクル毎にはベストな精度であっても、長時間運転した後の平均精度や稼働率で見ると、必ずしもベストではなかった。 However, with these devices, the closest combination to the target value was selected as the optimal combination for each weighing cycle, so even if the best accuracy for each cycle, the average accuracy and operation after a long time operation In terms of rate, it was not always the best.
 一般に、組合せ計量装置に使用される個々の計量ホッパは、組合せ選択されると、計量した物品を排出し、続いて新たな物品が供給されて次の計量サイクルに入る。そうしたサイクルが個々の計量ホッパで繰り返されている間は、装置の稼働率は向上する。しかし、一部の計量ホッパにおいて、そうしたサイクルが滞ると、その計量ホッパに物品が付着し易くなり、例えそれが組合せ選択されても、計量精度に影響を与える要因となる。また、そうした滞留したホッパの物品が選ばれる確率は、相対的に少なくなっているから、それによっても計量精度に影響を与えてしまう。 In general, when the individual weighing hoppers used in the combination weighing device are selected in combination, the weighed articles are discharged, and then new articles are supplied to enter the next weighing cycle. While such a cycle is repeated in the individual weighing hoppers, the availability of the device is improved. However, in some weighing hoppers, if such a cycle is delayed, articles easily adhere to the weighing hopper, and even if they are selected in combination, it becomes a factor affecting the weighing accuracy. Moreover, since the probability that such a staying hopper article is selected is relatively small, it also affects the weighing accuracy.
 一方、組合せ合計値が、設定された上下限内(以下、これを許容範囲内という、)に収まる組合せが複数組ある場合に、次の計量サイクルにおいても、許容範囲内に収まる組合せを多く残しておいた方が、稼働率向上に繋がる。さらには、許容範囲内の2番手や3番手の組合せを選んだ方が、精度や稼働率を向上させる上で好ましい場合もある。 On the other hand, if there are multiple combinations where the combined total value falls within the set upper and lower limits (hereinafter referred to as the allowable range), many combinations that remain within the allowable range remain in the next weighing cycle. If you leave it, it will lead to an improvement in the operating rate. Furthermore, it may be preferable to select the second or third combination within the allowable range in order to improve accuracy and operating rate.
 しかしながら、これまでの装置では、将来性を考慮した選択はしてこなかったので、長時間運転した後の平均精度や稼働率は、必ずしもベストではないという問題があった。 However, since the conventional devices have not been selected in consideration of the future, there has been a problem that the average accuracy and operating rate after long-time operation are not always the best.
 本発明は、このような問題を解決しようとするもので、長時間運転した後の平均精度と稼働率を共に向上することのできる新たな組合せ計量装置を提供することを課題とする。 The present invention is intended to solve such a problem, and an object of the present invention is to provide a new combination weighing device that can improve both the average accuracy and the operation rate after long-time operation.
 本発明に係る組合せ計量装置は、物品を計量する複数の計量機で得られた計量値を組合せて最適な計量機の組合せを選択する組合せ計量装置であって、各組合せについて、それぞれを選択したときの、精度に及ぼす影響と稼働率に及ぼす影響とをそれぞれ評価する複数の評価関数を用意し、各計量値を組合せるときは、各組合せについて、前記評価関数に基づく評価値を算出し、算出した各評価値の和が最大となる組合せを最適な組合せとして選択することを特徴とする。 A combination weighing device according to the present invention is a combination weighing device that selects an optimum combination of weighing machines by combining weighing values obtained by a plurality of weighing machines for weighing articles, and each of the combinations is selected. When preparing a plurality of evaluation functions for evaluating the impact on accuracy and the impact on operating rate, and combining each measurement value, for each combination, calculate an evaluation value based on the evaluation function, A combination that maximizes the sum of the calculated evaluation values is selected as an optimal combination.
 また、前記各評価関数には、それぞれの評価関数の関わり度を表す重み係数が含まれており、それらの重み係数が、遺伝的アルゴリズムを実行するコンピュータによって決定されることを特徴とする。 Each of the evaluation functions includes a weighting coefficient that represents the degree of relevance of each evaluation function, and the weighting coefficient is determined by a computer that executes a genetic algorithm.
 また、前記組合せ計量装置には、操作ユニットが備えられる。操作ユニットから、精度を重視した運転を行うか、稼働率を重視した運転を行うかが任意に設定可能とされていることを特徴とする。 Further, the combination weighing device is provided with an operation unit. From the operation unit, it is possible to arbitrarily set whether to perform an operation focusing on accuracy or an operation focusing on the operation rate.
 組合せ計量装置では一般的に、計量精度を向上させると、稼働率が悪くなり、稼働率を向上させると、計量精度が悪くなる。このように、精度と稼働率とは相反する関係にある。このような関係(トレードオフ関係)にあるものを同時に改善していく手法として、多目的最適化の手法がある。 In general, in combination weighing devices, when the measurement accuracy is improved, the operation rate is deteriorated, and when the operation rate is improved, the measurement accuracy is deteriorated. Thus, there is a contradictory relationship between accuracy and availability. There is a multi-objective optimization method as a method for improving such a relationship (trade-off relationship) at the same time.
 本発明では、この多目的最適化の手法を用いて、トレードオフ関係にある精度と稼働率とを同時に改善するために、各組合せについて、それぞれを選択したときの精度に及ぼす影響と稼働率に及ぼす影響とをそれぞれ数式(評価関数)で表現する。 In the present invention, using this multi-objective optimization method, in order to simultaneously improve the accuracy and the operating rate that are in a trade-off relationship, the effect on the accuracy and the operating rate when each combination is selected are affected. The influence is expressed by a mathematical expression (evaluation function).
 本発明によれば、長時間運転した後の、互いに相反する関係にある平均精度と稼働率を共に向上することができる。また、操作ユニットからの操作で、精度を重視した運転や、稼働率を重視した運転を行うことができる。 According to the present invention, it is possible to improve both the average accuracy and the operating rate which are in a mutually contradictory relationship after long-time operation. Further, an operation with an emphasis on accuracy and an operation with an emphasis on the operation rate can be performed by an operation from the operation unit.
パレート最適解を説明する図。The figure explaining a Pareto optimal solution. 本発明の一実施形態に係る組合せ計量装置の要部概略図Schematic of the principal part of the combination weighing device according to one embodiment of the present invention. 本発明の一実施形態に係る組合せ計量装置の構成ブロック線図。1 is a configuration block diagram of a combination weighing device according to an embodiment of the present invention.
 本発明では、一例として次の6つの評価関数を定義する。 In the present invention, the following six evaluation functions are defined as an example.
 一つは、各組合せについての精度に及ぼす影響を評価するもので、下記(1)式で定義する。この(1)式の評価関数は、組合せ合計値が目標値に等しければ、1となり、目標値から遠ざかるにしたがって漸次減少する一次関数とする。ただし、目標値からの偏差を
 、偏差の上限値をe 、b=-1/e,b=1としている。
One is to evaluate the influence of each combination on the accuracy and is defined by the following equation (1). The evaluation function of the equation (1) is a linear function that becomes 1 if the combined total value is equal to the target value, and that gradually decreases as the distance from the target value increases. However, the deviation from the target value is e W , the upper limit value of the deviation is e u , b 1 = −1 / e u , and b 2 = 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この(1)式により、それぞれの組合せ合計値の誤差が許容範囲内で正規化される。 The error of each combined total value is normalized within the allowable range by this equation (1).
 次に、各組合せについての精度に及ぼす影響度、あるいは、稼働率に及ぼす影響度をそれぞれ評価するために、次の4つの評価関数を定義する。 Next, in order to evaluate the degree of influence on the accuracy of each combination or the degree of influence on the operation rate, the following four evaluation functions are defined.
 1. 滞留カウントに関する評価関数
 2. 選択計量機台数に関する評価関数
 3. 寄与度に関する評価関数
 4. 分散度に関する評価関数
以下、これらの評価関数について、順次説明する。
1. 1. Evaluation function for stay count 2. Evaluation function regarding the number of selected weighing machines 3. Evaluation function for contribution degree Evaluation functions regarding the degree of dispersion Hereinafter, these evaluation functions will be sequentially described.
1:滞留カウントに関する評価関数
 組合せ計量装置は、各計量機の計量ホッパに物品を供給して計量し、得られた計量値を組合せて最適組合せを選択する。また、選択した各計量機の計量ホッパから物品を排出し、排出した計量ホッパには、再び物品を供給する。そうした一連のサイクルを繰り返す。各計量機は、それぞれカウンターを備えている。物品を排出しなかった場合は、カウンターのカウント値を1つアップし、物品を排出すると、カウンターのカウント値をゼロに戻す。カウンターのカウント値が高いと、その計量機には、何サイクルも物品が滞留していることになる。それを放置しておくと、許容範囲内に収まる組合せ数が少なくなり、計量精度が悪化する。また、物品を滞留した計量機が増えると、許容範囲内に収まる組合せ数が相対的に減り、組合せ不良が発生し易くなる。それは、精度と稼働率に影響する。そこで、そうしたカウント値の高い計量機から積極的に物品を排出させるために、下記(2)式の評価関数を定義する。ただし、1つの組合せに属する計量機の中でカウント値が最大のものをCとし、滞留したカウント値の上限値をCとしている。
1: Evaluation function regarding stay count The combination weighing device supplies articles to the weighing hopper of each weighing machine and weighs them, and selects the optimum combination by combining the obtained weighing values. Further, the article is discharged from the weighing hopper of each selected weighing machine, and the article is supplied again to the discharged weighing hopper. Repeat such a series of cycles. Each weighing machine has its own counter. When the article has not been discharged, the count value of the counter is increased by one, and when the article is discharged, the counter value of the counter is reset to zero. When the count value of the counter is high, articles are staying in the weighing machine for many cycles. If it is left as it is, the number of combinations that fall within the allowable range decreases and the measurement accuracy deteriorates. In addition, when the number of weighing machines that retain articles increases, the number of combinations that fall within the allowable range is relatively reduced, and a combination failure is likely to occur. It affects accuracy and availability. Therefore, in order to positively discharge articles from a weighing machine with a high count value, an evaluation function of the following equation (2) is defined. However, and one count value in the weighing machine belonging to combination the largest of the C M, the upper limit of the retention count value and C L.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
2:選択計量機台数に関する評価関数
 組合せ計量装置は、複数の計量機を備える。各組合せにおいて、組合せ許容範囲内に収まる計量機台数が少ない程、次のサイクルで使用可能となる計量機台数が増える。それは、主に稼働率に影響する。そこで、計量機台数の少ない組合せ程、選択され易くするために、下記(3)式の評価関数を定義する。ただし、許容範囲内に収まる計量機台数をNとし、全計量機台数をNとしている。
2: Evaluation function regarding the number of selected weighing machines The combination weighing device includes a plurality of weighing machines. In each combination, the smaller the number of weighing machines that fall within the combination allowable range, the more weighing machines that can be used in the next cycle. It mainly affects the utilization rate. Therefore, in order to make it easier to select a combination with a smaller number of weighing machines, an evaluation function of the following equation (3) is defined. However, the weighing machine number that falls within the allowable range and N S, and the entire weighing machine number as the N L.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
3.寄与度に関する評価関数
 許容範囲内に収まる複数の組合せの中から最適組合せを選択する場合、次のサイクルにおいても、許容範囲内に収まる組合せを多く残しておく方が、稼働率が向上する。そこで、例えば、10台の計量機の計量値を組合せた結果、表1のように、許容範囲内に収まる組合せが6組見つかったとする。ここで、〇印は、許容範囲内に収まる計量機として選択されたものを表している。
3. Evaluation function regarding contribution When selecting an optimal combination from a plurality of combinations that fall within the allowable range, the operation rate is improved by leaving many combinations that fall within the allowable range even in the next cycle. Thus, for example, as a result of combining the measurement values of ten weighing machines, six combinations that fall within the allowable range are found as shown in Table 1. Here, the symbol “◯” represents a selected weighing machine that falls within the allowable range.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 そして、何れかの組に属した回数を計量機毎にカウントし、そのカウント値に基づいて各計量機の寄与度を下記(4)式で定義する。すると、この事例では、各計量機の寄与度は、表1のようになる。ここで、計量機h番目の寄与度をCとし、所属した回数をn、全計量機台数をNとしている。 Then, the number of times belonging to any set is counted for each weighing machine, and the contribution of each weighing machine is defined by the following equation (4) based on the count value. Then, in this case, the contribution of each weighing machine is as shown in Table 1. Here, the weighing machine h th contribution and C h, and the number of times that belong to n h, the total weighing machine number and N L.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 そして、この寄与度の合計値が最も低い組合せを選ぶと、残された計量機の寄与度の合計値が最も高くなる。そうした組合せを選ぶ方が、次のサイクルにおいて、許容範囲内に収まる組合せを多く残すことになるから、結果的に稼働率を向上させることになる。そこで、この残された計量機の寄与度の合計値を求める評価関数として、下記(5)式を定義する。 Then, if the combination with the lowest total value of contribution is selected, the total value of contribution of the remaining weighing machines becomes the highest. Selecting such a combination will leave many combinations that fall within the allowable range in the next cycle, and as a result, the operating rate will be improved. Therefore, the following equation (5) is defined as an evaluation function for obtaining the total value of contributions of the remaining weighing machines.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 表1について、各組の寄与度の合計値と、残された計量機の寄与度の合計値を表示すると、表2のようになる。したがって、他の評価関数を考量せずに、表1のケースだけを見れば、組4が最適組合せとなる。そうすると、残された組6に属する計量機は、次のサイクルにおいても、許容範囲内に収まるから、稼働率を向上させることになる。 Referring to Table 1, the total value of the contributions of each group and the total value of the contributions of the remaining weighing machines are displayed as shown in Table 2. Therefore, if only the case of Table 1 is seen without considering other evaluation functions, the set 4 is the optimum combination. Then, since the remaining weighing machines belonging to the set 6 are within the allowable range even in the next cycle, the operating rate is improved.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
4:分散度に関する評価関数
 ところで、組合せ計量装置においては、各計量機の計量値がばらついている方が、許容範囲内に収まる組合せ数が多く発生することが判っている。そこで、選択されずに残された計量機の計量値のばらつき度合いが大きいものを積極的に残すために、残された各計量機の分散度を下記(6)式で定義する。ここで、残された計量機の台数をn、残された計量機の計量値をh、各計量値hの平均値をμとしている。
4: Evaluation function regarding degree of dispersion By the way, in the combination weighing device, it is known that the number of combinations that fall within the allowable range is more generated when the measurement values of each weighing machine vary. Therefore, in order to positively leave a weighing machine with a large degree of variation in the weighing values left unselected, the degree of dispersion of each remaining weighing machine is defined by the following equation (6). Here, the number of remaining weighing machines is n, the weighing value of the remaining weighing machines is h i , and the average value of each weighing value h i is μ.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 そして、Vが大きくなるほど評価値が高くなる評価関数として、下記(7)式を定義する。ただし、Wは、組合せ目標値である。 Then, the following equation (7) is defined as an evaluation function in which the evaluation value increases as V increases. However, W T is a combination target value.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 以上の評価関数は、何れも計量値(重量)を組合せるものであるが、組合せ計量装置には、個数組合せを行うものもある。例えば、袋詰されるウインナソーセージを計量対象とする場合は、組合せ合計値が許容範囲内にあり、かつ、個数も目標個数であるものを排出する。そうした個数組合せの評価について、次に説明する。 All of the above evaluation functions are combinations of measurement values (weights), but some combination weighing devices perform combination of numbers. For example, when the sausage to be packed is to be weighed, the combination total value is within the allowable range and the number is the target number is discharged. The evaluation of such a number combination will be described next.
 例えば、目標個数の物品を選択する場合に、各計量機に投入された個数によっては、どのようにしても組合せが成立しない場合がある。例えば、目標個数が奇数本に設定された場合に、各計量機に偶数本ずつ供給されている場合は、組合せ不良に陥る。この状態をここでは、タブー状態と称するが、この状態に陥ると、稼働率は低下する。そこで、このようなタブー状態に陥るまでの各組合せの余裕度を算出する。例えば、表3は、8台の計量機にそれぞれ表3に示す個数が投入され、目標個数は、7個とした場合を想定している。 For example, when selecting a target number of articles, the combination may not be established in any way depending on the number of articles put into each weighing machine. For example, when the target number is set to an odd number, if an even number is supplied to each weighing machine, a combination failure occurs. Here, this state is referred to as a tabu state, but when the state falls into this state, the operation rate decreases. Therefore, the margin of each combination until falling into such a taboo state is calculated. For example, Table 3 assumes the case where the number shown in Table 3 is input to each of eight weighing machines, and the target number is seven.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 この表3において、最初に3、4、5号機を組合せ選択したとすると、残された計量機の中から目標個数を満たす計量機は、組合せ1があり、それらを除く計量機からは、組合せ2がある。しかし、それ以上は、組合せがなくなるから、この選択ルートの場合は、2サイクル先まで目標個数の組合せを保障することができる。そこで、この場合の選択ルートの余裕度を2とする。続いて、3、4、5号機を除く計量機の中から選択できるのは、組合せ3であり、続いて、組合せ4を選ぶことができる。この場合も2サイクル先まで保障されているから、この場合も余裕度を2とする。 In Table 3, if you select the combination of Units 3, 4, and 5 for the first time, the weighing machine that satisfies the target number is the combination 1 from the remaining weighing machines. There are two. However, since there are no more combinations beyond this, in the case of this selected route, it is possible to guarantee the combination of the target numbers up to two cycles ahead. Therefore, the margin of the selected route in this case is set to 2. Subsequently, it is the combination 3 that can be selected from the weighing machines except the No. 3, 4, and 5 units, and then the combination 4 can be selected. In this case as well, since up to two cycles are guaranteed, the margin is set to 2 in this case as well.
 こうして、目標個数を満たす全ての組合せについて、各選択ルートの余裕度を求め、それらの余裕度が最大のものを、その組合せにおける余裕度Tとして定義する。例えば、表3の事例では、3、4、5号機の組合せにおける余裕度Tは、2となる。この余裕度Tを使って個数組合せの場合の評価関数として、下記(8)式を定義する。 Thus, the margin of each selected route is obtained for all combinations satisfying the target number, and the one having the largest margin is defined as the margin T in the combination. For example, in the case of Table 3, the margin T in the combination of Nos. 3, 4, and 5 is 2. The following equation (8) is defined as an evaluation function in the case of the number combination using the margin T.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 こうして6つの評価関数を定義することによって、各組合せについて、それぞれの精度に及ぼす影響と稼働率に及ぼす影響とを評価する。しかし、これらの評価関数をどの程度関与させれば、精度が最大になるのか、あるいは、稼働率が最大になるのか、判らないから、下記(9)式でもって、各組合せの評価値Vを求め、その評価値Vが最大のものを最適組合せとして選択する。 By defining the six evaluation functions in this manner, the influence on the accuracy and the influence on the operation rate are evaluated for each combination. However, since it is not known to what extent these evaluation functions are involved, whether the accuracy is maximized or the operating rate is maximized, the evaluation value V C of each combination is obtained by the following equation (9). look, the evaluation value V C is selected as the optimal combination largest one.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここで、aは、重み係数で下記(10)式の制約条件下で任意の値に設定される。 Here, a i is a weighting factor and is set to an arbitrary value under the constraint condition of the following equation (10).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 この係数aは、どの評価関数をどの程度重視するかという指標となるもので、これらの係数を加減することにより、精度を重視した運転や、稼働率を重視した運転を行うことができる。しかし、各係数を人間が決めることは困難であるから、遺伝的アルゴリズムを実行するコンピュータを使ってパレート最適解を求める。 The coefficient a i serves as an index indicating how much importance is given to which evaluation function. By adjusting these coefficients, it is possible to perform an operation focusing on accuracy and an operation focusing on the operating rate. However, since it is difficult for humans to determine each coefficient, a Pareto optimal solution is obtained using a computer that executes a genetic algorithm.
 一般に、トレードオフ関係の限界を表す解の集合のことを「パレート最適解」という。
このパレート最適解は、目的関数の何れかの値(例えば、精度)を改善しようとすると、
他の目的関数の値(稼働率)が改悪されてしまうような解のことである。
In general, a set of solutions that represent the limits of the trade-off relationship is called a “Pareto optimal solution”.
This Pareto optimal solution tries to improve any value (eg, accuracy) of the objective function.
It is a solution in which the value (operation rate) of another objective function is corrupted.
 図1は、パレート最適解を説明するための図で、解a、b、c、dは、それぞれパレート最適解となり、それから外れた解e、fは、劣る解となる。この解a、b、c、dの集合が形成する限界面をパレートフロントと称している。そして、パレート最適解は、複数存在し、どの解を選ぶかによって、精度を重視したり稼働率を重視したりすることができる。例えば、解aを選べば、精度はよくなるが、稼働率は落ちる。解dを選べば、精度は落ちるが、稼働率は良くなる。 FIG. 1 is a diagram for explaining the Pareto optimal solution, where the solutions a, b, c, and d are Pareto optimal solutions, and the solutions e and f that deviate therefrom are inferior solutions. The limit surface formed by the set of solutions a, b, c, and d is called a Pareto front. There are a plurality of Pareto optimal solutions, and it is possible to place importance on accuracy or on the operating rate depending on which solution is selected. For example, if the solution a is selected, the accuracy is improved, but the operating rate is lowered. If the solution d is selected, the accuracy is lowered, but the operating rate is improved.
 そこで、このパレート最適解を求めるために、遺伝的アルゴリズムを利用する。遺伝的アルゴリズムは、自然進化に見られる過程(染色体の選択、交叉および突然変異)をヒントにして、J.Hollandによって提唱されたアルゴリズムである。このアルゴリズムを利用するに際しては、例えば、1万回の計量サイクルで得られた各計量機の計量値をサンプルデータとし記録しておく。そして、ランダムに固体(係数a)を生成して各個体の適応度を評価する。すなわち、(9)式を用いて1万個の最適組合せを求め、その1万個の平均精度と稼働率を求める。そして、適応度のよい固体ほど選択される可能性が高くなるように残していく。すなわち、個体(係数a)を変えたとき、平均精度と稼働率とが良くなる方の個体(係数a)を残していく。さらに、交叉と突然変異とにより新たな個体(係数a)を生成して、各固体(係数a)の適応度を評価していく。このようにして、評価、選択、交叉および突然変異による世代交代を繰り返して、淘汰された重み係数aでパレート最適解を求める。 Therefore, a genetic algorithm is used to obtain the Pareto optimal solution. The genetic algorithm is based on the process of natural evolution (chromosome selection, crossover and mutation) as a hint. This is an algorithm proposed by Holland. When using this algorithm, for example, the weighing value of each weighing machine obtained in 10,000 weighing cycles is recorded as sample data. Then, a solid (coefficient a i ) is randomly generated to evaluate the fitness of each individual. In other words, 10,000 optimal combinations are obtained using equation (9), and the average accuracy and operating rate of the 10,000 pieces are obtained. And it leaves so that possibility that it will be selected as a solid with good fitness becomes high becomes high. That is, when changing individual (coefficient a i), will leave the average accuracy and availability and well made towards individuals (coefficients a i). Furthermore, to generate a new population (coefficient a i) by the crossover and mutation, continue to evaluate the fitness of each solid (coefficient a i). In this way, generational alternation by evaluation, selection, crossover, and mutation is repeated, and a Pareto optimal solution is obtained with a weighted weight coefficient a i .
 遺伝的アルゴリズムとしては、FonsecaらのMOGA(Multiobjective Genetic Algorithm)、DebらのNSGA-II(Non-Dominated Sorting Genetic Algorithm-II)、ZitzlerらのSPEA2(Strength Pareto Evolutionary Algorithm 2)等がある。本発明では、NSGA-IIを使うが、この遺伝的アルゴリズムに限定されるわけではない。 Genetic algorithms include MOGA (Multiobjective Genetic Algorithm) by Fonseca et al., NSGA-II (Non-Dominated Sorting Genetic Algorithm II) by Deb et al., SPEA2 (Strength Pareto Evolution Algorithm 2) by Zitzler et al. In the present invention, NSGA-II is used, but is not limited to this genetic algorithm.
 以下、本発明の一実施形態に係る組合せ計量装置を図面に基づいて説明する。 Hereinafter, a combination weighing device according to an embodiment of the present invention will be described with reference to the drawings.
 図2は、本発明の一実施形態に係る組合せ計量装置の要部概略図である。この図において、組合せ計量装置100は、分散フィーダDFと、複数の放射フィーダRFと、複数のプールホッパPHと、複数の計量ホッパWHと、集合シュートCSとを備える。分散フィーダDFは、装置中央上部に配置される。複数の放射フィーダRFは、分散フィーダDFを囲むように、分散フィーダDFの周囲に放射状に配列される。複数のプールホッパPHは、各放射フィーダRFの下段に配列される。複数の計量ホッパWHは、複数のプールホッパPHの下方に配列される。計量ホッパWHおよびプールホッパPHの数は、同数である。集合シュートCSは、複数の計量ホッパWHの下方に配置される。 FIG. 2 is a schematic diagram of a main part of a combination weighing device according to an embodiment of the present invention. In this figure, the combination weighing device 100 includes a dispersion feeder DF, a plurality of radiation feeders RF, a plurality of pool hoppers PH, a plurality of weighing hoppers WH, and a collective chute CS. The dispersion feeder DF is disposed at the upper center of the apparatus. The plurality of radiation feeders RF are arranged radially around the dispersion feeder DF so as to surround the dispersion feeder DF. The plurality of pool hoppers PH are arranged in the lower stage of each radiation feeder RF. The plurality of weighing hoppers WH are arranged below the plurality of pool hoppers PH. The number of weighing hoppers WH and pool hoppers PH is the same. The collective chute CS is disposed below the plurality of weighing hoppers WH.
 分散フィーダDFは、その上に投下された物品を電磁フィーダDVの振動によって円周方向に分散させる。 Dispersion feeder DF disperses the article dropped on it in the circumferential direction by the vibration of electromagnetic feeder DV.
 放射フィーダRFは、分散フィーダDFから搬送されてきた物品を電磁フィーダRVの振動によりトラフTRの先端部へと搬送して、下段のプールホッパPHへ物品を排出する。 The radiation feeder RF conveys the article conveyed from the dispersion feeder DF to the tip of the trough TR by the vibration of the electromagnetic feeder RV, and discharges the article to the lower pool hopper PH.
 プールホッパPHは、放射フィーダRFから排出された物品を一時的に貯留する。プールホッパPHは、下段の計量ホッパWHが開閉すれば、制御部CUの指令に基づいてゲートgを開閉して、プールホッパPH内に貯留された物品を下段の計量ホッパWHへ排出する。 The pool hopper PH temporarily stores articles discharged from the radiation feeder RF. When the lower hopper PH opens and closes, the pool hopper PH opens and closes the gate g based on a command from the control unit CU, and discharges the articles stored in the pool hopper PH to the lower weigh hopper WH.
 また、計量ホッパWHには、重量センサWSが取り付けられる。重量センサWSで検出された重量が制御部CUに入力されて、組合せ演算に利用される。なお、各ホッパPH,WHは、周知の構成であるため、ここでは、ゲート開閉機構やホッパPH,WHの支持機構等は省略して示している。 Also, a weight sensor WS is attached to the weighing hopper WH. The weight detected by the weight sensor WS is input to the control unit CU and used for the combination calculation. Since each hopper PH, WH has a known configuration, a gate opening / closing mechanism, a support mechanism for the hopper PH, WH, and the like are omitted here.
 制御部CUは、コンピュータで構成され、図3に示すように、CPU10を搭載するとともに、このCPU10が制御するROM11、RAM12と、ハードディスク13とを搭載する。CPU10、ROM11、RAM12、ハードディスク13等は、アドレスバス、データバス等のバスラインを介して相互に接続されている。また、制御部CUは、インターフェイス14を介して分散フィーダDF、放射フィーダRF、プールホッパPH、計量ホッパWH、およびタッチパネル機能を備えた操作ユニットRUと接続される。また、操作ユニットRUは、遺伝的アルゴリズムを実行するコンピュータCと接続されて、前述の重み係数aの更新が行われる。 As shown in FIG. 3, the control unit CU includes a CPU 10 and a ROM 11, a RAM 12, and a hard disk 13 that are controlled by the CPU 10. The CPU 10, the ROM 11, the RAM 12, the hard disk 13, and the like are connected to each other via a bus line such as an address bus or a data bus. Further, the control unit CU is connected via an interface 14 to the operation unit RU having a dispersion feeder DF, a radiation feeder RF, a pool hopper PH, a weighing hopper WH, and a touch panel function. Further, the operation unit RU is connected to the computer C that executes the genetic algorithm, and the above-described weighting factor a i is updated.
 ROM11には、各種のプログラムが記憶される。CPU10が、ROM11に記憶された各種プログラムを読み出して実行することにより、各式(1)~(8)の演算や、滞留カウント値の管理、プールホッパPHや計量ホッパWHに対するゲート開閉制御が行われる。また、ハードディスク13には、各式(1)~(8)の評価関数が記憶される。使用される重み係数aは、遺伝的アルゴリズムを実行するコンピュータCによって定期的に更新される。 Various programs are stored in the ROM 11. The CPU 10 reads and executes various programs stored in the ROM 11 to perform calculations of the equations (1) to (8), management of the stay count value, and gate opening / closing control for the pool hopper PH and the weighing hopper WH. Is called. Also, the hard disk 13 stores evaluation functions of equations (1) to (8). The weighting factor a i used is periodically updated by the computer C executing the genetic algorithm.
 CPU10は、図示しない包装機から排出要求信号を受け取ると、あるいは、自身のサイクルタイマーでスタートすると、各計量機M1~Mnの重量センサWSから計量値を入力してRAM12に記憶する。続いて、記憶した各計量値に基づいて各式(1)~(9)の演算を実行する。その際、演算時間に余裕があれば、全ての組合せについて、前記各式(1)~(9)の演算を実行する。一方、運転速度が速くなって、演算時間に余裕がなくなれば、組合せ合計値が許容範囲内に収まる組合せを先に抽出し、続いて、抽出した各組合せについて、前記各式(1)~(9)の演算を実行する。その際、重量組合せであれば、個数組合せで使用する式(8)を除いた残りの式の線形和でもって式(9)の演算を実行する。また、個数組合せであれば、式(8)を含めた線形和でもって式(9)の演算を実行する。 When the CPU 10 receives a discharge request signal from a packaging machine (not shown) or starts with its own cycle timer, the CPU 10 inputs the weight value from the weight sensor WS of each of the weighing machines M1 to Mn and stores it in the RAM 12. Subsequently, the calculations of equations (1) to (9) are executed based on the stored measurement values. At this time, if there is an allowance in the calculation time, the calculations of the formulas (1) to (9) are executed for all combinations. On the other hand, if the operation speed increases and the calculation time is not sufficient, a combination in which the combined total value falls within the allowable range is extracted first, and then, for each extracted combination, each of the formulas (1) to (1) The calculation of 9) is executed. At this time, if it is a weight combination, the calculation of the expression (9) is executed by the linear sum of the remaining expressions excluding the expression (8) used in the number combination. If the number is a combination, the calculation of Expression (9) is executed with a linear sum including Expression (8).
 この演算によって、CPU10が評価値の最大のものを最適組合せとして選択すると、選択した各計量機M1~Mnに対して排出指令を送信し、続いて、若干遅れて対応するプールホッパPHに排出指令を送信する。すると、排出指令を受け取った計量機M1~Mnの計量ホッパWHが開閉して物品を排出し、続いて、プールホッパPHが開閉して、空になった計量ホッパWHに物品を供給する。続いて、プールホッパPHが空になると、放射フィーダRFと分散フィーダDFに駆動指令を送信して、空になったプールホッパPHに、対応する放射フィーダRFから新たな物品を供給する。このようにして1サイクルの組合せ計量が終了し、続いて、次の排出要求信号やサイクルタイマーからのスタート信号によって、次の計量サイクルに入る。 When the CPU 10 selects the largest evaluation value as the optimum combination by this calculation, a discharge command is transmitted to the selected weighing machines M1 to Mn, and then the discharge command is sent to the corresponding pool hopper PH with a slight delay. Send. Then, the weighing hoppers WH of the weighing machines M1 to Mn that have received the discharge command open and close to discharge the articles, and then the pool hopper PH opens and closes to supply the articles to the empty weighing hopper WH. Subsequently, when the pool hopper PH becomes empty, a drive command is transmitted to the radiation feeder RF and the dispersion feeder DF, and a new article is supplied from the corresponding radiation feeder RF to the empty pool hopper PH. Thus, the combination weighing of one cycle is completed, and then the next weighing cycle is started by the next discharge request signal or the start signal from the cycle timer.
 一方、各サイクルにおける各計量機M1~Mnの計量値と最適組合せの合計重量とがハードディスク13に記録される。コンピュータCは、定期的にハードディスク13にアクセスして、記録されたデータを取り込み、それに基づいて遺伝的アルゴリズムを実行して、平均精度と稼働率とを算出しながら、重み係数aを更新していく。 On the other hand, the measured values of the weighing machines M1 to Mn in each cycle and the total weight of the optimum combination are recorded on the hard disk 13. The computer C periodically accesses the hard disk 13, takes in the recorded data, executes a genetic algorithm based on the data, and updates the weighting coefficient a i while calculating the average accuracy and the operating rate. To go.
 こうして重み係数aが更新され、パレート最適解を与える精度と稼働率とが特定されると、操作ユニットRUは、例えば、図1に示すようなパレートフロントを操作画面に表示する。そして、オペレータがパレートフロントにタッチして、所望の精度と稼働率とを指定すると、指定された精度と稼働率とを与える重み係数aが特定され、それが、RAM12に記憶される。CPU10は、そのRAM12に記憶された重み係数aに基づいて、前述の各式(1)~(9)を実行する。これにより、精度と稼働率とを所望な値に変えることができる。なお、各重み係数aは、計量対象となる物品の種類や搬送特性、運転条件等によって異なってくるが、スナック菓子類で実験したところ、精度を0.2%義性にすることで、稼動率を3%も改善することが確認できている。 When the weighting factor a i is updated in this way and the accuracy and operating rate for providing the Pareto optimal solution are specified, the operation unit RU displays, for example, a Pareto front as shown in FIG. 1 on the operation screen. When the operator touches the Pareto front and designates desired accuracy and operating rate, a weighting factor a i giving the specified accuracy and operating rate is specified and stored in the RAM 12. The CPU 10 executes the above equations (1) to (9) based on the weighting coefficient a i stored in the RAM 12. Thereby, the accuracy and the operation rate can be changed to desired values. Each weighting factor a i varies depending on the type of goods to be weighed, the transport characteristics, operating conditions, etc., but when tested with snacks, the accuracy was set to 0.2%. It has been confirmed that the rate is improved by 3%.
 以上、この発明の一実施形態を説明したが、これに限定されるものではなく、他の形態も採用可能である。例えば、この実施形態では、遺伝的アルゴリズムを実行するコンピュータCを外付けとしたが、このコンピュータCを操作ユニットRU内に組み込んで、運転しながら重み係数aを更新したり、それまでの精度や稼働率を表示させたりすることもできる。 As mentioned above, although one Embodiment of this invention was described, it is not limited to this, Other forms are employable. For example, in this embodiment, the computer C that executes the genetic algorithm is externally attached. However, the computer C is incorporated in the operation unit RU, and the weighting coefficient a i is updated while driving. You can also display the operating rate.
 なお、外付けのコンピュータCは、有線・無線のいずれで接続されていてもよい。さらに、外付けのコンピュータCは、遠隔のデータセンタに設けられたコンピュータであってもよい。また、外付けのコンピュータCの機能をクラウドで担うように構成されていてもよい。 Note that the external computer C may be connected by either wired or wireless connection. Further, the external computer C may be a computer provided in a remote data center. Moreover, you may be comprised so that the function of the external computer C might be borne in a cloud.
 また、遺伝的アルゴリズムの実行は、処理負担を軽減するため、組合せ計量装置の非稼動時(例えば、夜間)に実行されるように構成されていてもよい。 Further, the execution of the genetic algorithm may be configured to be executed when the combination weighing device is not operating (for example, at night) in order to reduce the processing load.
    100 組合せ計量装置
  M1~Mn 計量機
     RU 操作ユニット
      C 遺伝的アルゴリズムを実行するコンピュータ
100 Combination Weighing Apparatus M1 to Mn Weighing Machine RU Operation Unit C Computer that executes genetic algorithm
特許第3360895号公報Japanese Patent No. 3360895 特開2009-47519号公報JP 2009-47519 A

Claims (3)

  1.  物品を計量する複数の計量機で得られた計量値を組合せて最適な計量機の組合せを選択する組合せ計量装置であって、各組合せについて、それぞれを選択したときの、精度に及ぼす影響と稼働率に及ぼす影響とをそれぞれ評価する複数の評価関数を用意し、各計量値を組合せるときは、各組合せについて、前記評価関数に基づく評価値を算出し、算出した各評価値の和が最大となる組合せを最適な組合せとして選択することを特徴とする組合せ
    計量装置。
    A combination weighing device that selects the optimum combination of weighing machines by combining weighing values obtained from multiple weighing machines that weigh items, and the effect on the accuracy and operation of each combination selected. Prepare multiple evaluation functions for evaluating the impact on the rate, and when combining each measurement value, calculate the evaluation value based on the evaluation function for each combination, and the sum of the calculated evaluation values is the maximum A combination weighing device characterized by selecting a combination to be an optimal combination.
  2.  前記各評価関数には、それぞれの評価関数の関わり度を表す重み係数が含まれており、
    それらの重み係数が、遺伝的アルゴリズムを実行するコンピュータによって決定されることを特徴とする請求項1に記載の組合せ計量装置。
    Each of the evaluation functions includes a weighting coefficient that represents the degree of involvement of each evaluation function,
    2. The combination weighing device according to claim 1, wherein the weighting factors are determined by a computer executing a genetic algorithm.
  3.  請求項1又は2に記載の組合せ計量装置に操作ユニットが備えられ、その操作ユニットから、精度を重視した運転を行うか、稼働率を重視した運転を行うかが任意に設定可能とされていることを特徴とする組合せ計量装置。 The combination weighing device according to claim 1 or 2 is provided with an operation unit, and from the operation unit, it is possible to arbitrarily set whether to perform an operation focusing on accuracy or an operation focusing on an operating rate. A combination weighing device characterized by that.
PCT/JP2013/066916 2012-06-21 2013-06-20 Combination weighing device WO2013191234A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE201311003115 DE112013003115T5 (en) 2012-06-21 2013-06-20 Combination measuring device
JP2014521499A JP6053782B2 (en) 2012-06-21 2013-06-20 Combination weighing device
DKPA201570021A DK178699B1 (en) 2012-06-21 2015-01-15 Combination measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012140266 2012-06-21
JP2012-140266 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013191234A1 true WO2013191234A1 (en) 2013-12-27

Family

ID=49768828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066916 WO2013191234A1 (en) 2012-06-21 2013-06-20 Combination weighing device

Country Status (4)

Country Link
JP (1) JP6053782B2 (en)
DE (1) DE112013003115T5 (en)
DK (1) DK178699B1 (en)
WO (1) WO2013191234A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128125A (en) * 1993-10-29 1995-05-19 Ishida Co Ltd Method and apparatus for combination metering
JP2000088634A (en) * 1998-09-09 2000-03-31 Ishida Co Ltd Combinational weighing/counting system
JP2011196712A (en) * 2010-03-17 2011-10-06 Anritsu Sanki System Co Ltd Combination weighing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683651B2 (en) * 1987-11-12 1997-12-03 株式会社イシダ Supply control device for distributed feeder
JP2645391B2 (en) * 1987-12-26 1997-08-25 カルビー株式会社 Combination weighing device
JP3402687B2 (en) * 1993-08-24 2003-05-06 株式会社イシダ Combination weighing or counting method and combination weighing or counting device
JP3360895B2 (en) * 1993-09-10 2003-01-07 株式会社イシダ Combination weighing method and apparatus
US7071426B2 (en) * 2002-12-09 2006-07-04 Ishida Co., Ltd. Combination weighing device with multi-layered hoppers having controllable supply function
JP4809623B2 (en) * 2005-04-19 2011-11-09 大和製衡株式会社 Combination weigher for mixed weighing
JP2009047519A (en) * 2007-08-17 2009-03-05 Ishida Co Ltd Weighing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128125A (en) * 1993-10-29 1995-05-19 Ishida Co Ltd Method and apparatus for combination metering
JP2000088634A (en) * 1998-09-09 2000-03-31 Ishida Co Ltd Combinational weighing/counting system
JP2011196712A (en) * 2010-03-17 2011-10-06 Anritsu Sanki System Co Ltd Combination weighing apparatus

Also Published As

Publication number Publication date
JP6053782B2 (en) 2016-12-27
DK178699B1 (en) 2016-11-21
JPWO2013191234A1 (en) 2016-05-26
DE112013003115T5 (en) 2015-04-02
DK201570021A1 (en) 2015-02-02

Similar Documents

Publication Publication Date Title
JP4809623B2 (en) Combination weigher for mixed weighing
Fang et al. Friction coefficient calibration of corn stalk particle mixtures using Plackett-Burman design and response surface methodology
EP1832858A1 (en) Combination scale
JP2009008400A (en) Combinational balance
JP6680387B1 (en) Robot control system, robot control method, and control program
JP5229631B2 (en) Manufacturing condition adjustment device
JP6053782B2 (en) Combination weighing device
KR102212875B1 (en) Solution search system and method, and solution search program
JP4128840B2 (en) Combination balance retention prevention device
JP2020205026A (en) Information processor, information processing system, model learning method
JP2014222193A (en) Weight selector and filling measurement system
JP2014163864A (en) Weighing device
EP0643288B1 (en) Self adjusting combinational weighings
JP2011043463A (en) Combination weighing device
JP6391492B2 (en) Supply selection apparatus and supply method of selection object
JP6342732B2 (en) Combination scale
JP5475515B2 (en) Combination weighing device
JP6157951B2 (en) Counting scale
JP5979964B2 (en) Combination scale
JP2014178263A (en) Combination weighing apparatus
JP2006258534A (en) Combinational metering device
JP4152735B2 (en) Combination weighing device
JP5547536B2 (en) Combination weigher and weighing method in combination weigher
JP5329205B2 (en) Combination scale
JP4619017B2 (en) Combination weighing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521499

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130031159

Country of ref document: DE

Ref document number: 112013003115

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806712

Country of ref document: EP

Kind code of ref document: A1