WO2013191100A1 - Brake device, control method, and program - Google Patents

Brake device, control method, and program Download PDF

Info

Publication number
WO2013191100A1
WO2013191100A1 PCT/JP2013/066452 JP2013066452W WO2013191100A1 WO 2013191100 A1 WO2013191100 A1 WO 2013191100A1 JP 2013066452 W JP2013066452 W JP 2013066452W WO 2013191100 A1 WO2013191100 A1 WO 2013191100A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative pressure
pump
brake
threshold
determined
Prior art date
Application number
PCT/JP2013/066452
Other languages
French (fr)
Japanese (ja)
Inventor
信悟 田畑
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Publication of WO2013191100A1 publication Critical patent/WO2013191100A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/02Arrangements of pumps or compressors, or control devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/683Electrical control in fluid-pressure brake systems by electrically-controlled valves in pneumatic systems or parts thereof

Definitions

  • the present invention relates to a brake device, a control method, and a program.
  • Brake boosters using negative pressure are used in small cars.
  • the intake air pressure of an internal combustion engine is used to generate the negative pressure.
  • a vacuum pump is used to generate a negative pressure because the difference between the intake air pressure and the atmospheric pressure is small or no intake air pressure is generated.
  • a master brake cylinder in particular a tandem master brake cylinder (THZ), a vacuum brake force amplifier (booster) and at least one further pressure source for assisting the braking force, preferably a control unit.
  • THZ tandem master brake cylinder
  • booster vacuum brake force amplifier
  • a method for controlling pressure generation in an electronically controllable brake installation for an automobile advantageously with a hydraulic pump capable of applying that pressure to a vehicle wheel brake Detecting an approach to a point below a predetermined ratio with the operating force (operation limit point) of the brake force amplifier (booster), detecting a pressure gradient (THZ pressure gradient) of the master brake cylinder, and the booster It is detected that the operating limit point is approached, and the detected THZ pressure gradient exceeds the pressure gradient limit value. If, further pressure source for the brake force assistance by driving, some are so as to generate additional braking pressure (for example, see Patent Document 1).
  • an object of the present invention is to solve the above-described problems, that is, to provide a brake device, a control method, and a program that can reduce the capacity of the pump while accommodating various operations.
  • one aspect of the brake device of the present invention includes a brake booster that increases a force applied to a brake pedal by a negative pressure that is lower than atmospheric pressure, and a pump that generates a negative pressure.
  • Control means for controlling the driving of the pump and the control means determines whether the frequency of the operation applied to the brake pedal is higher than a predetermined first threshold value, and is applied to the brake pedal. When it is determined that the frequency of the operation is greater than the first threshold, it is determined whether the negative pressure is higher than a predetermined second threshold, and the negative pressure is determined to be higher than the second threshold. If the pump is driven at a high speed and the pump is driven at a high speed, it is determined whether the negative pressure is higher than a predetermined third threshold and the negative pressure is determined to be higher than the third threshold. Drive the pump at low speed.
  • the control unit determines whether or not the speed at which the negative pressure increases is faster than a predetermined fourth threshold value. When it is determined that the speed at which the speed becomes higher than the fourth threshold value, it is determined whether or not the frequency of the operation applied to the brake pedal is higher than the first threshold value.
  • the pump when the control means is activated, the pump is driven at a high speed.
  • one aspect of the control method of the present invention is a control of a brake device having a brake booster that increases a force applied to the brake pedal by a negative pressure that is lower than the atmospheric pressure, and a pump that generates the negative pressure.
  • a step of determining whether or not the negative pressure is higher than a predetermined second threshold, and a step of driving the pump at a high speed if the negative pressure is determined to be higher than the second threshold.
  • one aspect of the program of the present invention is provided in a brake device having a brake booster that increases a force applied to a brake pedal by a negative pressure that is lower than atmospheric pressure, and a pump that generates the negative pressure. Determining whether the frequency of the operation applied to the brake pedal is greater than a predetermined first threshold; and the frequency of the operation applied to the brake pedal is greater than the first threshold.
  • the step of determining whether or not the negative pressure is higher than a predetermined third threshold, and if the negative pressure is determined to be higher than the third threshold It is supposed to carry out the process including the step of driving up at a low speed.
  • FIG. 7 is a flowchart illustrating pump drive processing 41. It is a figure which shows the example of a threshold value.
  • FIG. 1 is a block diagram showing the functional configuration of the brake device.
  • the brake device 11 is provided in a vehicle such as a gasoline vehicle, a hybrid vehicle, or an electric vehicle, and generates a braking force.
  • the brake device 11 includes a brake pedal 21, a brake booster 22, an electric vacuum pump 23, a master cylinder 24, a brake 25, an ECU (Electronic Control Unit) 26, a hydraulic pressure sensor 27, a negative pressure sensor 28, and a brake switch 29. Is done.
  • the brake pedal 21 is provided in the driver's seat and is stepped on by the driver when generating braking force. That is, a pedaling force is applied to the brake pedal 21 by a pedal operation 20 that is depressed by the driver. When a pedal operation 20 is applied to the brake pedal 21, the force generated thereby is transmitted to the brake booster 22 by a rod, a ring, or the like.
  • the brake booster 22 is a so-called booster that increases the force applied to the brake pedal 21. More specifically, the brake booster 22 increases the force applied to the brake pedal 21 by the negative pressure generated by the electric vacuum pump 23. Negative pressure is a pressure lower than atmospheric pressure.
  • the brake booster 22 is a vacuum brake booster. Inside the housing of the brake booster 22 are formed two chambers partitioned by a movable rubber diaphragm. In a state where the brake pedal 21 is not operated, the diaphragm is held substantially at the center of the housing. In a state where the diaphragm is held substantially at the center, a vacuum valve for releasing pressure from one chamber is opened, and an air valve for introducing air pressure into one chamber is closed. The pressure is released from the other chamber. Thereby, the pressure of the two chambers partitioned by the diaphragm is set to an equal negative pressure.
  • the vacuum valve is closed and the air valve is opened by the force from the brake pedal 21. From the opened air valve, atmospheric pressure is introduced into one of the chambers. Since the pressure inside one chamber is higher than the pressure in the other chamber, a force (a force in the same direction as the force from the brake pedal 21) is generated to move the diaphragm to the low pressure chamber side.
  • the brake booster 22 increases the force applied to the brake pedal 21 by the force that the diaphragm moves.
  • the chamber is also referred to as a tank.
  • the force increased by the brake booster 22 is transmitted to the master cylinder 24.
  • the electric vacuum pump 23 is a piston type, rotary type, diaphragm type or other type of pump, and generates a negative pressure that is lower than the atmospheric pressure. In other words, the electric vacuum pump 23 supplies negative pressure to the brake booster 22 by drawing air from the brake booster 22 (chamber thereof).
  • the master cylinder 24 changes the force transmitted from the brake booster 22 to the pressure of the brake fluid in the pipe.
  • the pressure generated in the master cylinder 24 is transmitted to the brake 25 through the brake fluid in the pipe.
  • the brake 25 is a disc brake, a drum brake, or the like, and generates a braking force by sandwiching the disc with a pad or pressing a shoe against the inner periphery of the drum by the pressure transmitted by the brake fluid.
  • the ECU 26 includes a dedicated IC, a general-purpose embedded microcomputer, and the like, and controls the engine and the brake device 11 by executing a control program. That is, the ECU 26 receives a signal from the hydraulic pressure sensor 27 that detects the pressure generated in the master cylinder 24, a signal from the negative pressure sensor 28 that detects the pressure in the chamber of the brake booster 22, and the pedal operation 20. A signal from the brake switch 29 that is turned on or off, vehicle speed information 31 indicating the speed of the vehicle, GPS (Global Positioning System) information 32 indicating the position of the vehicle, ITS (Intelligent Transport Systems) information 33, and navigation information 34 Based on the above, various processes such as a pump drive process 41 for controlling the electric vacuum pump 23 are executed.
  • a pump drive process 41 for controlling the electric vacuum pump 23 are executed.
  • step S11 when the vehicle power is turned on (turned on), the pump drive process 41 sets the mode of the brake device 11 to the vehicle activation mode.
  • step S12 the pump drive process 41 determines whether or not the mode of the brake device 11 is the vehicle activation mode.
  • step S12 when the mode of the brake device 11 is not the vehicle activation mode, that is, the constant speed operation mode or the variable speed operation mode, the procedure proceeds to step S13.
  • the pump drive processing 41 refers to the signal from the brake switch 29 or the signal from the hydraulic pressure sensor 27 that detects the pressure generated by the master cylinder 24, and determines the number of pedal operations 20 per unit time. It is calculated
  • FIG. 3 is a diagram showing an example of threshold values.
  • the threshold value of the normal / low-consumption startup level ⁇ MkPa is, for example, ⁇ 50 kPa.
  • step S14 If it is determined in step S14 that the negative pressure in the tank indicated by the signal from the negative pressure sensor 28 that detects the pressure in the chamber of the brake booster 22 is -MkPa or more, the procedure proceeds to step S15, and the pump The drive process 41 drives the pump motor of the electric vacuum pump 23 at a low speed.
  • step S16 the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or lower than a predetermined threshold value ⁇ QkPa.
  • a predetermined threshold value ⁇ QkPa As shown in FIG. 3, -Q kPa, which is a threshold value of the pump stop level, is set to -70 kPa, for example. Note that ⁇ Q kPa which is a threshold value of the pump stop level may be, for example, ⁇ 80 kPa.
  • step S16 If it is determined in step S16 that the negative pressure in the tank is not lower than -QkPa, the procedure returns to step S15, and the pump motor of the electric vacuum pump 23 is driven at a low speed.
  • step S16 If it is determined in step S16 that the negative pressure in the tank is ⁇ Q kPa or less, the procedure proceeds to step S17, and the pump drive processing 41 stops driving the pump motor of the electric vacuum pump 23, and the procedure is step Returning to S13, the determination process is repeated.
  • step S13 If it is determined in step S13 that the operation frequency of the brake pedal 21 is not less than or equal to A times / minute, the operation frequency of the brake pedal 21 is high. Therefore, the procedure proceeds to step S21, and the pump drive processing 41 is performed by the brake device 11. Is set to the variable speed operation mode, and it is determined whether or not the consumption speed of the negative pressure in the tank is equal to or lower than GkPa / second which is a predetermined threshold value. If it is determined in step S21 that the negative pressure consumption rate in the tank is equal to or lower than GkPa / sec, that is, the speed at which the negative pressure increases is not faster than a predetermined threshold, the procedure goes to step S22. move on. In step S22, the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or higher than a predetermined threshold value ⁇ MkPa.
  • step S22 If it is determined in step S22 that the negative pressure in the tank is equal to or higher than a predetermined threshold value ⁇ MkPa, that is, the negative pressure in the tank is equal to or higher than the normal / low-consumption start level, In S23, the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at high speed.
  • a predetermined threshold value ⁇ MkPa that is, the negative pressure in the tank is equal to or higher than the normal / low-consumption start level
  • step S24 the pump driving process 41 determines whether or not the negative pressure in the tank is equal to or higher than a predetermined threshold value ⁇ PkPa.
  • a predetermined threshold value ⁇ PkPa As shown in FIG. 3, the speed switching level threshold value ⁇ PkPa is set higher than the pump stop level threshold value ⁇ Q kPa and lower than the normal / low consumption start level threshold value ⁇ MkPa, for example. .
  • step S24 If it is determined in step S24 that the negative pressure in the tank is equal to or higher than -PkPa, the procedure proceeds to step S25, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a low speed.
  • step S26 the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or lower than a predetermined threshold value ⁇ QkPa.
  • step S26 If it is determined in step S26 that the negative pressure in the tank is ⁇ Q kPa or less, the procedure proceeds to step S27, and the pump drive process 41 stops driving the pump motor of the electric vacuum pump 23. Returning to S13, the determination process is repeated.
  • step S26 If it is determined in step S26 that the negative pressure in the tank is not lower than -QkPa, the procedure returns to step S25, and the pump motor of the electric vacuum pump 23 is driven at a low speed.
  • step S24 If it is determined in step S24 that the negative pressure in the tank is not greater than -PkPa, the procedure returns to step S23, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at high speed.
  • step S22 If it is determined in step S22 that the negative pressure in the tank is not equal to or higher than a predetermined threshold value ⁇ MkPa, that is, the negative pressure in the tank is not higher than the normal / low-consumption start level, the procedure Returning to S21, the pump drive process 41 repeats the procedure for determining whether or not the consumption rate of the negative pressure in the tank is equal to or less than a predetermined threshold value of GkPa / sec.
  • step S21 If it is determined in step S21 that the consumption rate of the negative pressure in the tank is not less than GkPa / sec, that is, the speed at which the negative pressure increases is faster than a predetermined threshold, the procedure proceeds to step S28.
  • step S28 the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or higher than a predetermined threshold value ⁇ NkPa, and the determination process is performed until the negative pressure in the tank reaches ⁇ NkPa or higher. Is repeated. As shown in FIG.
  • -NkPa which is the threshold for the startup level during startup / high consumption
  • -PkPa which is the threshold for speed switching level
  • -MkPa which is the threshold for startup levels during normal / low consumption.
  • step S28 If it is determined in step S28 that the negative pressure in the tank has reached ⁇ N kPa or more, the procedure proceeds to step S23, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a high speed. Proceed to S24.
  • Step S12 when it is determined that the mode of the brake device 11 is the vehicle activation mode, the procedure proceeds to Step S31.
  • step S31 the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a high speed.
  • step S32 the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or higher than a predetermined threshold value ⁇ NkPa. If it is determined in step S32 that the negative pressure in the tank is not greater than -NkPa, the procedure returns to step S31, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a high speed.
  • step S32 If it is determined in step S32 that the negative pressure in the tank is equal to or higher than ⁇ N kPa, the procedure proceeds to step S25, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a low speed. Proceed to S26.
  • step S11 when the vehicle power is turned on (turned on), steps S41 and S42 are performed in parallel with steps S12 to S32.
  • step S41 the pump drive process 41 performs vehicle speed information 31, GPS (Global Positioning System) information 32 indicating vehicle position, ITS (Intelligent Transport System) information 33, and vehicle data acquired as navigation information 34 ( Based on vehicle speed, GPS information, ITS information, navigation data), it is discriminated whether it is city driving or highway driving.
  • step S42 the pump drive process 41 updates (learns) the level values of the high-speed consumption activation level (activation level during activation / high consumption) and the low-speed consumption activation level (normal / low consumption activation level).
  • the pump drive process 41 sets the mode of the brake device 11 to the constant speed operation mode when it is determined that the vehicle is traveling in the city in step S41, and the mode of the brake device 11 when it is determined that the vehicle is traveling on the highway. Is set to variable speed operating mode.
  • the pump drive process 41 sets the mode of the brake device 11 to the variable speed operation mode when it is determined that the vehicle is traveling in an urban area, and when it is determined that the vehicle is traveling on a highway, the brake device 11 This mode may be set to a constant speed operation mode.
  • the mode of the brake device 11 changes to either the constant speed operation mode or the variable speed operation mode, and the control pattern for driving the pump motor of the electric vacuum pump 23 changes.
  • the normal / low-consumption start level or the start / high-consumption start level which is a threshold used for determination when the pump motor of the electric vacuum pump 23 is driven at high speed, drives the pump motor of the electric vacuum pump 23 at low speed. This is different from the value of the speed switching level, which is a threshold value used for determination.
  • the mode of the brake device 11 includes a start mode, a constant speed operation mode, and a variable speed operation mode.
  • the brake device 11 includes the brake booster 23 that increases the force applied to the brake pedal by the negative pressure that is lower than the atmospheric pressure, the electric vacuum pump 23 that generates the negative pressure, and the electric vacuum pump.
  • ECU26 which controls the drive of 23 is provided.
  • the ECU 26 that executes the pump drive process 41 determines whether or not the frequency of the pedal operation 20 applied to the brake pedal 21 is higher than a predetermined first threshold value (for example, A times / minute) (for example, In step S13), when it is determined that the frequency of the pedal operation 20 applied to the brake pedal 21 is higher than the first threshold value, the negative pressure is higher than a predetermined second threshold value (for example, -NkPa).
  • a predetermined first threshold value for example, A times / minute
  • the electric vacuum pump 23 is driven at a high speed (for example, the procedure of step S23).
  • a predetermined third threshold value for example, -PkPa
  • the capacity of the electric vacuum pump 23 is reduced as compared with the conventional one (for example, the capacity is reduced by about 20%), the brake operation is repeated in a short time, so-called pumping brake is performed, Even if a strong braking operation is repeated, the negative pressure can be maintained and a desired negative pressure can be generated more quickly. Therefore, the braking force with respect to the pedaling force applied to the brake pedal 21 does not decrease, and the brake operation feeling is uncomfortable. Don't give. That is, the capacity of the pump can be further reduced while accommodating various operations.
  • the ECU 26 that executes the pump drive process 41 determines whether or not the speed at which the negative pressure increases is faster than a predetermined fourth threshold (for example, GkPa / second) (for example, the procedure of step S21). ), When it is determined that the speed at which the negative pressure increases is faster than the fourth threshold value, it is determined whether the frequency of the operation applied to the brake pedal is higher than the first threshold value. In this case, even if the capacity of the electric vacuum pump 23 is reduced, a desired negative pressure can be generated more quickly when necessary, the braking force applied to the pedal force applied to the brake pedal 21 does not decrease, and the brake operation feeling is uncomfortable. Don't give.
  • a predetermined fourth threshold for example, GkPa / second
  • the ECU 26 that executes the pump driving process 41 drives the electric vacuum pump 23 at a high speed when it is activated (for example, the procedure of step S31). Even if the capacity of the electric vacuum pump 23 is reduced, a desired negative pressure can be generated more quickly after the start-up. Therefore, even if the brake is applied immediately after the start-up, the braking force can be generated and the brake operation feeling can be generated. Does not give a sense of incongruity.
  • the pump capacity can be further reduced while accommodating various operations.
  • the series of processes described above can be executed by hardware or software.
  • a program constituting the software executes various functions by installing a computer incorporated in dedicated hardware or various programs.
  • the program is installed in a general-purpose microcomputer from a program recording medium.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • SYMBOLS 11 ... Brake device, 21 ... Brake pedal, 22 ... Brake booster, 23 ... Electric vacuum pump (pump), 24 ... Master cylinder, 25 ... Brake, 26 ... ECU (control means), 27 ... Hydraulic pressure sensor, 28 ... Negative Pressure sensor, 29 ... Brake switch, 31 ... Vehicle speed information, 32 ... GPS information, 33 ... ITS information, 34 ... Navigation information, 41 ... Pump drive processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)

Abstract

In order to reduce the capacity of a pump while dealing with various driving, a brake booster for increasing force applied to a brake pedal by negative pressure that is pressure lower than atmospheric pressure, a pump for generating the negative pressure, and a control means for controlling driving of the pump are provided. The control means determines whether or not the frequency of an operation applied to the brake pedal is larger than a predetermined first threshold value, when the frequency of the operation applied to the brake pedal is determined to be larger than the first threshold value, determines whether or not the negative pressure is higher than a predetermined second threshold value, when the negative pressure is determined to be higher than the second threshold value, drives the pump at high speed, when the pump is driven at high speed, determines whether or not the negative pressure is higher than a predetermined third threshold value, and when the negative pressure is determined to be higher than the third threshold value, drives the pump at low speed.

Description

ブレーキ装置および制御方法、並びにプログラムBrake device, control method, and program
 本発明はブレーキ装置および制御方法、並びにプログラムに関する。 The present invention relates to a brake device, a control method, and a program.
 小型の自動車では、負圧を利用したブレーキブースタが利用されている。一般に、この負圧の発生には、内燃機関の吸入空気圧が用いられる。 Brake boosters using negative pressure are used in small cars. In general, the intake air pressure of an internal combustion engine is used to generate the negative pressure.
 内燃機関として直噴型のガソリンエンジンやディーゼルエンジンを用いる自動車やいわゆる電気自動車では、吸入空気圧と大気圧との差が小さいか、吸入空気圧が発生しないので、負圧の発生に真空ポンプが用いられる。 In an automobile using a direct-injection type gasoline engine or diesel engine as an internal combustion engine or a so-called electric vehicle, a vacuum pump is used to generate a negative pressure because the difference between the intake air pressure and the atmospheric pressure is small or no intake air pressure is generated. .
 運転者の多様な運転の仕方でも充分な負圧を発生させるために、真空ポンプの容量を十分大きくする必要がある。 ∙ In order to generate a sufficient negative pressure even in various ways of driving by the driver, it is necessary to increase the capacity of the vacuum pump sufficiently.
 従来、マスターブレーキシリンダー、特に、タンデム式マスターブレーキシリンダー(THZ)と、真空ブレーキ力増幅器(ブースター)と、ブレーキ力支援用の少なくとも一つの更なる圧力源、有利には、制御ユニットによって駆動可能であり、その圧力を車両の車輪ブレーキに加えることが可能な油圧ポンプとを備えた、有利には、自動車用の、電子制御可能なブレーキ設備での圧力生成を制御する方法に関し、補助力と真空ブレーキ力増幅器(ブースター)の操作力(動作限界点)との所定の比率を下回る点への接近を検出することと、マスターブレーキシリンダーの圧力勾配(THZ圧力勾配)を検出することと、このブースター動作限界点に接近したことを検知するとともに、検出したTHZ圧力勾配が圧力勾配限界値を上回った場合、このブレーキ力支援用の更なる圧力源を駆動して、追加ブレーキ圧を生成するようにしているものもある(例えば、特許文献1参照)。 Conventionally, it can be driven by a master brake cylinder, in particular a tandem master brake cylinder (THZ), a vacuum brake force amplifier (booster) and at least one further pressure source for assisting the braking force, preferably a control unit. A method for controlling pressure generation in an electronically controllable brake installation for an automobile, advantageously with a hydraulic pump capable of applying that pressure to a vehicle wheel brake Detecting an approach to a point below a predetermined ratio with the operating force (operation limit point) of the brake force amplifier (booster), detecting a pressure gradient (THZ pressure gradient) of the master brake cylinder, and the booster It is detected that the operating limit point is approached, and the detected THZ pressure gradient exceeds the pressure gradient limit value. If, further pressure source for the brake force assistance by driving, some are so as to generate additional braking pressure (for example, see Patent Document 1).
特表2007-516897号公報Special Table 2007-516897
 しかしながら、一般的な運転の仕方を基準とすると、真空ポンプの容量は大きく、無駄が生じている。 However, based on the general operation method, the capacity of the vacuum pump is large and wasteful.
 そこで、本発明は、上記課題を解決すること、すなわち、多様な運転に対応しつつ、ポンプの容量をより小さくできるブレーキ装置および制御方法、並びにプログラムを提供することを目的とする。 Therefore, an object of the present invention is to solve the above-described problems, that is, to provide a brake device, a control method, and a program that can reduce the capacity of the pump while accommodating various operations.
 上記課題を解決するために、本発明のブレーキ装置の一側面は、大気圧より低い圧力である負圧により、ブレーキペダルに加えられた力を増加させるブレーキブースタと、負圧を発生させるポンプと、ポンプの駆動を制御する制御手段とを有し、制御手段が、ブレーキペダルに加えられた操作の頻度が予め決められた第1の閾値より多いか否かを判定し、ブレーキペダルに加えられた操作の頻度が第1の閾値より多いと判定された場合、負圧が予め決められた第2の閾値より高いか否かを判定し、負圧が第2の閾値より高いと判定された場合、ポンプを高速で駆動し、ポンプが高速で駆動されている場合、負圧が予め決められた第3の閾値より高いか否かを判定し、負圧が第3の閾値より高いと判定された場合、ポンプを低速で駆動することを特徴とする。 In order to solve the above problems, one aspect of the brake device of the present invention includes a brake booster that increases a force applied to a brake pedal by a negative pressure that is lower than atmospheric pressure, and a pump that generates a negative pressure. Control means for controlling the driving of the pump, and the control means determines whether the frequency of the operation applied to the brake pedal is higher than a predetermined first threshold value, and is applied to the brake pedal. When it is determined that the frequency of the operation is greater than the first threshold, it is determined whether the negative pressure is higher than a predetermined second threshold, and the negative pressure is determined to be higher than the second threshold. If the pump is driven at a high speed and the pump is driven at a high speed, it is determined whether the negative pressure is higher than a predetermined third threshold and the negative pressure is determined to be higher than the third threshold. Drive the pump at low speed. The features.
 また、本発明のブレーキ装置の一側面は、上述の構成に加えて、制御手段が、負圧が高くなる速さが予め決められた第4の閾値より速いか否かを判定し、負圧が高くなる速さが第4の閾値より速いと判定された場合、ブレーキペダルに加えられた操作の頻度が第1の閾値より多いか否かを判定するものとされている。 Further, according to one aspect of the brake device of the present invention, in addition to the above-described configuration, the control unit determines whether or not the speed at which the negative pressure increases is faster than a predetermined fourth threshold value. When it is determined that the speed at which the speed becomes higher than the fourth threshold value, it is determined whether or not the frequency of the operation applied to the brake pedal is higher than the first threshold value.
 さらに、本発明のブレーキ装置の一側面は、上述の構成に加えて、制御手段が、起動するとき、ポンプを高速で駆動するものとされている。 Furthermore, in one aspect of the brake device of the present invention, in addition to the above-described configuration, when the control means is activated, the pump is driven at a high speed.
 また、本発明の制御方法の一側面は、大気圧より低い圧力である負圧により、ブレーキペダルに加えられた力を増加させるブレーキブースタと、負圧を発生させるポンプとを有するブレーキ装置の制御方法であって、ブレーキペダルに加えられた操作の頻度が予め決められた第1の閾値より多いか否かを判定するステップと、ブレーキペダルに加えられた操作の頻度が第1の閾値より多いと判定された場合、負圧が予め決められた第2の閾値より高いか否かを判定するステップと、負圧が第2の閾値より高いと判定された場合、ポンプを高速で駆動するステップと、ポンプが高速で駆動されている場合、負圧が予め決められた第3の閾値より高いか否かを判定するステップと、負圧が第3の閾値より高いと判定された場合、ポンプを低速で駆動するステップとを含むものとされている。 Further, one aspect of the control method of the present invention is a control of a brake device having a brake booster that increases a force applied to the brake pedal by a negative pressure that is lower than the atmospheric pressure, and a pump that generates the negative pressure. A step of determining whether the frequency of an operation applied to the brake pedal is greater than a predetermined first threshold; and the frequency of the operation applied to the brake pedal is greater than a first threshold. A step of determining whether or not the negative pressure is higher than a predetermined second threshold, and a step of driving the pump at a high speed if the negative pressure is determined to be higher than the second threshold. And determining whether the negative pressure is higher than a predetermined third threshold when the pump is driven at a high speed; and determining that the negative pressure is higher than the third threshold, At low speed It is intended to include a step of moving.
 さらに、本発明のプログラムの一側面は、大気圧より低い圧力である負圧により、ブレーキペダルに加えられた力を増加させるブレーキブースタと、負圧を発生させるポンプとを有するブレーキ装置に設けられたコンピュータに、ブレーキペダルに加えられた操作の頻度が予め決められた第1の閾値より多いか否かを判定するステップと、ブレーキペダルに加えられた操作の頻度が第1の閾値より多いと判定された場合、負圧が予め決められた第2の閾値より高いか否かを判定するステップと、負圧が第2の閾値より高いと判定された場合、ポンプを高速で駆動するステップと、ポンプが高速で駆動されている場合、負圧が予め決められた第3の閾値より高いか否かを判定するステップと、負圧が第3の閾値より高いと判定された場合、ポンプを低速で駆動するステップとを含む処理を行わせるものとされている。 Furthermore, one aspect of the program of the present invention is provided in a brake device having a brake booster that increases a force applied to a brake pedal by a negative pressure that is lower than atmospheric pressure, and a pump that generates the negative pressure. Determining whether the frequency of the operation applied to the brake pedal is greater than a predetermined first threshold; and the frequency of the operation applied to the brake pedal is greater than the first threshold. A step of determining whether or not the negative pressure is higher than a predetermined second threshold when determined, and a step of driving the pump at a high speed when it is determined that the negative pressure is higher than the second threshold; When the pump is driven at a high speed, the step of determining whether or not the negative pressure is higher than a predetermined third threshold, and if the negative pressure is determined to be higher than the third threshold, It is supposed to carry out the process including the step of driving up at a low speed.
 本発明の一側面によれば、多様な運転に対応しつつ、ポンプの容量をより小さくできるブレーキ装置および制御方法、並びにプログラムを提供することができる。 According to one aspect of the present invention, it is possible to provide a brake device, a control method, and a program that can reduce the capacity of the pump while accommodating various operations.
ブレーキ装置の機能の構成を示すブロック図である。It is a block diagram which shows the function structure of a brake device. ポンプ駆動処理41を説明するフローチャートである。7 is a flowchart illustrating pump drive processing 41. 閾値の例を示す図である。It is a figure which shows the example of a threshold value.
 以下、本発明の一実施の形態のブレーキ装置について、図1~図3を参照しながら説明する。 Hereinafter, a brake device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.
 図1は、ブレーキ装置の機能の構成を示すブロック図である。ブレーキ装置11は、ガソリン自動車、ハイブリッド自動車、または電気自動車など車両に設けられ、制動力を発生させる。 FIG. 1 is a block diagram showing the functional configuration of the brake device. The brake device 11 is provided in a vehicle such as a gasoline vehicle, a hybrid vehicle, or an electric vehicle, and generates a braking force.
 ブレーキ装置11は、ブレーキペダル21、ブレーキブースタ22、電動真空ポンプ23、マスターシリンダー24、ブレーキ25、ECU(Electronic Control Unit)26、液圧センサ27、負圧センサ28、およびブレーキスイッチ29を備え構成される。ブレーキペダル21は、運転席に設けられ、制動力を発生させるとき、運転者に踏まれる。すなわち、ブレーキペダル21には、運転者に踏まれるペダル操作20によって踏力が加えられる。ブレーキペダル21にペダル操作20が加えられると、これにより生じた力がロッドやリングなどによりブレーキブースタ22に伝達される。 The brake device 11 includes a brake pedal 21, a brake booster 22, an electric vacuum pump 23, a master cylinder 24, a brake 25, an ECU (Electronic Control Unit) 26, a hydraulic pressure sensor 27, a negative pressure sensor 28, and a brake switch 29. Is done. The brake pedal 21 is provided in the driver's seat and is stepped on by the driver when generating braking force. That is, a pedaling force is applied to the brake pedal 21 by a pedal operation 20 that is depressed by the driver. When a pedal operation 20 is applied to the brake pedal 21, the force generated thereby is transmitted to the brake booster 22 by a rod, a ring, or the like.
 ブレーキブースタ22は、いわゆる倍力装置であり、ブレーキペダル21に加えられた力を増加させる。より詳細には、ブレーキブースタ22は、電動真空ポンプ23によって発生させられた負圧により、ブレーキペダル21に加えられた力を増加させる。負圧は、大気圧より低い圧力である。 The brake booster 22 is a so-called booster that increases the force applied to the brake pedal 21. More specifically, the brake booster 22 increases the force applied to the brake pedal 21 by the negative pressure generated by the electric vacuum pump 23. Negative pressure is a pressure lower than atmospheric pressure.
 さらに詳しく説明すると、ブレーキブースタ22は、真空式ブレーキブースタである。ブレーキブースタ22のハウジングの内部には、可動するゴム製のダイヤフラムで仕切られた2つのチャンバーが形成されている。ブレーキペダル21が操作されていない状態において、ダイヤフラムは、ハウジングのほぼ中央に保持される。ダイヤフラムが、ほぼ中央に保持された状態において、一方のチャンバーから圧力を抜くためのバキュームバルブが開かれ、一方のチャンバーに空気圧を導入するためのエアバルブが閉じられる。他方のチャンバーからは圧力が抜かれる。これにより、ダイヤフラムで仕切られた2つのチャンバーの圧力は、等しい負圧とされる。 More specifically, the brake booster 22 is a vacuum brake booster. Inside the housing of the brake booster 22 are formed two chambers partitioned by a movable rubber diaphragm. In a state where the brake pedal 21 is not operated, the diaphragm is held substantially at the center of the housing. In a state where the diaphragm is held substantially at the center, a vacuum valve for releasing pressure from one chamber is opened, and an air valve for introducing air pressure into one chamber is closed. The pressure is released from the other chamber. Thereby, the pressure of the two chambers partitioned by the diaphragm is set to an equal negative pressure.
 ブレーキペダル21が操作されると、ブレーキペダル21からの力によって、バキュームバルブが閉じられると共に、エアバルブが開かれる。開かれたエアバルブから、一方のチャンバーの内部に大気圧が導入される。一方のチャンバーの内部の圧力が他方のチャンバーの圧力より高くなるので、ダイヤフラムを低圧のチャンバー側に移動させようとする力(ブレーキペダル21からの力と同じ向きの力)が発生する。このダイヤフラムの移動させる力によって、ブレーキブースタ22は、ブレーキペダル21に加えられた力を増加させる。 When the brake pedal 21 is operated, the vacuum valve is closed and the air valve is opened by the force from the brake pedal 21. From the opened air valve, atmospheric pressure is introduced into one of the chambers. Since the pressure inside one chamber is higher than the pressure in the other chamber, a force (a force in the same direction as the force from the brake pedal 21) is generated to move the diaphragm to the low pressure chamber side. The brake booster 22 increases the force applied to the brake pedal 21 by the force that the diaphragm moves.
 以下、チャンバーをタンクとも称する。 Hereinafter, the chamber is also referred to as a tank.
 ブレーキブースタ22によって増加された力は、マスターシリンダー24に伝達される。 The force increased by the brake booster 22 is transmitted to the master cylinder 24.
 電動真空ポンプ23は、ピストン型、ロータリー型、またはダイヤフラム型その他の方式のポンプであり、大気圧より低い圧力である負圧を発生させる。言い換えれば、電動真空ポンプ23は、ブレーキブースタ22(のチャンバー)から空気を引き込むことにより、ブレーキブースタ22に負圧を供給する。 The electric vacuum pump 23 is a piston type, rotary type, diaphragm type or other type of pump, and generates a negative pressure that is lower than the atmospheric pressure. In other words, the electric vacuum pump 23 supplies negative pressure to the brake booster 22 by drawing air from the brake booster 22 (chamber thereof).
 マスターシリンダー24は、ブレーキブースタ22から伝達された力を配管内のブレーキフルードの圧力に換える。マスターシリンダー24で生成された圧力は、配管内のブレーキフルードを通して、ブレーキ25に伝達される。ブレーキ25は、ディスクブレーキまたはドラムブレーキなどであり、ブレーキフルードによって伝達された圧力により、パットでディスクを挟むかまたはドラムの内周にシューを押し付けるなどして制動力を発生させる。 The master cylinder 24 changes the force transmitted from the brake booster 22 to the pressure of the brake fluid in the pipe. The pressure generated in the master cylinder 24 is transmitted to the brake 25 through the brake fluid in the pipe. The brake 25 is a disc brake, a drum brake, or the like, and generates a braking force by sandwiching the disc with a pad or pressing a shoe against the inner periphery of the drum by the pressure transmitted by the brake fluid.
 ECU26は、専用のICや汎用の組み込み型マイクロコンピュータなどからなり、制御プログラムを実行することにより、エンジンおよびブレーキ装置11を制御する。すなわち、ECU26は、マスターシリンダー24で生成された圧力を検知する液圧センサ27からの信号、ブレーキブースタ22のチャンバー内の圧力を検知する負圧センサ28からの信号、およびペダル操作20が加えられるとオンまたはオフするブレーキスイッチ29からの信号、並びに車両の速度を示す車両速度情報31、車両の位置を示すGPS(Global Positioning System)情報32、ITS(Intelligent Transport Systems)情報33、およびナビゲーション情報34を基に、電動真空ポンプ23を制御するポンプ駆動処理41などの各種の処理を実行する。 The ECU 26 includes a dedicated IC, a general-purpose embedded microcomputer, and the like, and controls the engine and the brake device 11 by executing a control program. That is, the ECU 26 receives a signal from the hydraulic pressure sensor 27 that detects the pressure generated in the master cylinder 24, a signal from the negative pressure sensor 28 that detects the pressure in the chamber of the brake booster 22, and the pedal operation 20. A signal from the brake switch 29 that is turned on or off, vehicle speed information 31 indicating the speed of the vehicle, GPS (Global Positioning System) information 32 indicating the position of the vehicle, ITS (Intelligent Transport Systems) information 33, and navigation information 34 Based on the above, various processes such as a pump drive process 41 for controlling the electric vacuum pump 23 are executed.
 次に、図2のフローチャートを参照して、ポンプ駆動処理41を説明する。ステップS11において、車両電源が入れられる(ONされる)と、ポンプ駆動処理41は、ブレーキ装置11のモードを車両起動モードに設定する。ステップS12において、ポンプ駆動処理41は、ブレーキ装置11のモードが車両起動モードであるか否かを判定する。 Next, the pump drive process 41 will be described with reference to the flowchart of FIG. In step S11, when the vehicle power is turned on (turned on), the pump drive process 41 sets the mode of the brake device 11 to the vehicle activation mode. In step S12, the pump drive process 41 determines whether or not the mode of the brake device 11 is the vehicle activation mode.
 ステップS12において、ブレーキ装置11のモードが車両起動モードでない、すなわち、一定速作動モードまたは可変速作動モードである場合、手続はステップS13に進む。ステップS13において、ポンプ駆動処理41は、ブレーキスイッチ29からの信号またはマスターシリンダー24で生成された圧力を検知する液圧センサ27からの信号を参照して、単位時間当たりのペダル操作20の回数を求めて、ブレーキペダル21の操作頻度が、予め定められた閾値であるA回/分以下であるか否かを判定する。ステップS13において、ブレーキペダル21の操作頻度がA回/分以下であると判定された場合、手続は、ステップS14に進み、ポンプ駆動処理41は、ブレーキ装置11のモードを一定速作動モードに設定し、タンク内の負圧が予め定められた閾値である-MkPa以上であるか否かを判定し、タンク内の負圧が-MkPa以上になるまで判定の処理を繰り返す。 In step S12, when the mode of the brake device 11 is not the vehicle activation mode, that is, the constant speed operation mode or the variable speed operation mode, the procedure proceeds to step S13. In step S13, the pump drive processing 41 refers to the signal from the brake switch 29 or the signal from the hydraulic pressure sensor 27 that detects the pressure generated by the master cylinder 24, and determines the number of pedal operations 20 per unit time. It is calculated | required and it is determined whether the operation frequency of the brake pedal 21 is below A times / minute which is a predetermined threshold value. If it is determined in step S13 that the operation frequency of the brake pedal 21 is A times / minute or less, the procedure proceeds to step S14, and the pump drive process 41 sets the mode of the brake device 11 to the constant speed operation mode. Then, it is determined whether or not the negative pressure in the tank is equal to or higher than a predetermined threshold value −MkPa, and the determination process is repeated until the negative pressure in the tank becomes −MkPa or higher.
 図3は、閾値の例を示す図である。図3に示されるように通常・低消費時起動レベルの閾値である-MkPaは、例えば、-50kPaとされる。 FIG. 3 is a diagram showing an example of threshold values. As shown in FIG. 3, the threshold value of the normal / low-consumption startup level −MkPa is, for example, −50 kPa.
 ステップS14において、ブレーキブースタ22のチャンバー内の圧力を検知する負圧センサ28からの信号で示されるタンク内の負圧が-MkPa以上であると判定された場合、手続はステップS15に進み、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータを低速で駆動する。 If it is determined in step S14 that the negative pressure in the tank indicated by the signal from the negative pressure sensor 28 that detects the pressure in the chamber of the brake booster 22 is -MkPa or more, the procedure proceeds to step S15, and the pump The drive process 41 drives the pump motor of the electric vacuum pump 23 at a low speed.
 ステップS16において、ポンプ駆動処理41は、タンク内の負圧が予め定められた閾値である-QkPa以下であるか否かを判定する。図3に示されるようにポンプ停止レベルの閾値である-QkPaは、例えば、-70kPaとされる。なお、ポンプ停止レベルの閾値である-QkPaは、例えば、-80kPaとしてもよい。 In step S16, the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or lower than a predetermined threshold value −QkPa. As shown in FIG. 3, -Q kPa, which is a threshold value of the pump stop level, is set to -70 kPa, for example. Note that −Q kPa which is a threshold value of the pump stop level may be, for example, −80 kPa.
 ステップS16において、タンク内の負圧が-QkPa以下でないと判定された場合、手続はステップS15に戻り、電動真空ポンプ23のポンプモータが低速で駆動される。 If it is determined in step S16 that the negative pressure in the tank is not lower than -QkPa, the procedure returns to step S15, and the pump motor of the electric vacuum pump 23 is driven at a low speed.
 ステップS16において、タンク内の負圧が-QkPa以下であると判定された場合、手続はステップS17に進み、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータの駆動を停止し、手続はステップS13に戻り、判定の処理が繰り返される。 If it is determined in step S16 that the negative pressure in the tank is −Q kPa or less, the procedure proceeds to step S17, and the pump drive processing 41 stops driving the pump motor of the electric vacuum pump 23, and the procedure is step Returning to S13, the determination process is repeated.
 ステップS13において、ブレーキペダル21の操作頻度がA回/分以下でないと判定された場合、ブレーキペダル21の操作頻度が多いので、手続は、ステップS21に進み、ポンプ駆動処理41は、ブレーキ装置11のモードを可変速作動モードに設定し、タンク内の負圧の消費速度が予め定められた閾値であるGkPa/秒以下であるか否かを判定する。ステップS21において、タンク内の負圧の消費速度がGkPa/秒以下であると判定された場合、すなわち、負圧が高くなる速さが予め決められた閾値より速くないので、手続はステップS22に進む。ステップS22において、ポンプ駆動処理41は、タンク内の負圧が予め定められた閾値である-MkPa以上であるか否かを判定する。 If it is determined in step S13 that the operation frequency of the brake pedal 21 is not less than or equal to A times / minute, the operation frequency of the brake pedal 21 is high. Therefore, the procedure proceeds to step S21, and the pump drive processing 41 is performed by the brake device 11. Is set to the variable speed operation mode, and it is determined whether or not the consumption speed of the negative pressure in the tank is equal to or lower than GkPa / second which is a predetermined threshold value. If it is determined in step S21 that the negative pressure consumption rate in the tank is equal to or lower than GkPa / sec, that is, the speed at which the negative pressure increases is not faster than a predetermined threshold, the procedure goes to step S22. move on. In step S22, the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or higher than a predetermined threshold value −MkPa.
 ステップS22において、タンク内の負圧が予め定められた閾値である-MkPa以上である、すなわち、タンク内の負圧が通常・低消費時起動レベル以上であると判定された場合、手続はステップS23に進み、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータを高速で駆動する。 If it is determined in step S22 that the negative pressure in the tank is equal to or higher than a predetermined threshold value −MkPa, that is, the negative pressure in the tank is equal to or higher than the normal / low-consumption start level, In S23, the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at high speed.
 ステップS24において、ポンプ駆動処理41は、タンク内の負圧が予め定められた閾値である-PkPa以上であるか否かを判定する。図3に示されるように速度切換えレベルの閾値である-PkPaは、例えば、ポンプ停止レベルの閾値である-QkPaより高く、通常・低消費時起動レベルの閾値である-MkPaより低く設定される。 In step S24, the pump driving process 41 determines whether or not the negative pressure in the tank is equal to or higher than a predetermined threshold value −PkPa. As shown in FIG. 3, the speed switching level threshold value −PkPa is set higher than the pump stop level threshold value −Q kPa and lower than the normal / low consumption start level threshold value −MkPa, for example. .
 ステップS24において、タンク内の負圧が-PkPa以上であると判定された場合、手続はステップS25に進み、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータを低速で駆動する。 If it is determined in step S24 that the negative pressure in the tank is equal to or higher than -PkPa, the procedure proceeds to step S25, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a low speed.
 ステップS26において、ポンプ駆動処理41は、タンク内の負圧が予め定められた閾値である-QkPa以下であるか否かを判定する。 In step S26, the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or lower than a predetermined threshold value −QkPa.
 ステップS26において、タンク内の負圧が-QkPa以下であると判定された場合、手続はステップS27に進み、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータの駆動を停止し、手続はステップS13に戻り、判定の処理が繰り返される。 If it is determined in step S26 that the negative pressure in the tank is −Q kPa or less, the procedure proceeds to step S27, and the pump drive process 41 stops driving the pump motor of the electric vacuum pump 23. Returning to S13, the determination process is repeated.
 ステップS26において、タンク内の負圧が-QkPa以下でないと判定された場合、手続はステップS25に戻り、電動真空ポンプ23のポンプモータが低速で駆動される。 If it is determined in step S26 that the negative pressure in the tank is not lower than -QkPa, the procedure returns to step S25, and the pump motor of the electric vacuum pump 23 is driven at a low speed.
 ステップS24において、タンク内の負圧が-PkPa以上でないと判定された場合、手続はステップS23に戻り、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータを高速で駆動する。 If it is determined in step S24 that the negative pressure in the tank is not greater than -PkPa, the procedure returns to step S23, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at high speed.
 また、ステップS22において、タンク内の負圧が予め定められた閾値である-MkPa以上でない、すなわち、タンク内の負圧が通常・低消費時起動レベル以上でないと判定された場合、手続はステップS21に戻り、ポンプ駆動処理41は、タンク内の負圧の消費速度が予め定められた閾値であるGkPa/秒以下であるか否かの判定の手続を繰り返す。 If it is determined in step S22 that the negative pressure in the tank is not equal to or higher than a predetermined threshold value −MkPa, that is, the negative pressure in the tank is not higher than the normal / low-consumption start level, the procedure Returning to S21, the pump drive process 41 repeats the procedure for determining whether or not the consumption rate of the negative pressure in the tank is equal to or less than a predetermined threshold value of GkPa / sec.
 ステップS21において、タンク内の負圧の消費速度がGkPa/秒以下でないと判定された場合、すなわち、負圧が高くなる速さが予め決められた閾値より速いので、手続はステップS28に進む。ステップS28において、ポンプ駆動処理41は、タンク内の負圧が予め定められた閾値である-NkPa以上であるか否かを判定し、タンク内の負圧が-NkPa以上になるまで判定の処理が繰り返される。図3に示されるように起動・高消費時起動レベルの閾値である-NkPaは、例えば、速度切換えレベルの閾値である-PkPaより高く、通常・低消費時起動レベルの閾値である-MkPaより低く設定される。 If it is determined in step S21 that the consumption rate of the negative pressure in the tank is not less than GkPa / sec, that is, the speed at which the negative pressure increases is faster than a predetermined threshold, the procedure proceeds to step S28. In step S28, the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or higher than a predetermined threshold value −NkPa, and the determination process is performed until the negative pressure in the tank reaches −NkPa or higher. Is repeated. As shown in FIG. 3, -NkPa, which is the threshold for the startup level during startup / high consumption, is higher than, for example, -PkPa, which is the threshold for speed switching level, and from -MkPa, which is the threshold for startup levels during normal / low consumption. Set low.
 ステップS28において、タンク内の負圧が-NkPa以上になったと判定された場合、手続はステップS23に進み、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータを高速で駆動し、手続はステップS24に進む。 If it is determined in step S28 that the negative pressure in the tank has reached −N kPa or more, the procedure proceeds to step S23, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a high speed. Proceed to S24.
 また、ステップS12において、ブレーキ装置11のモードが車両起動モードであると判定された場合、手続はステップS31に進む。ステップS31において、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータを高速で駆動する。ステップS32において、ポンプ駆動処理41は、タンク内の負圧が予め定められた閾値である-NkPa以上であるか否かを判定する。ステップS32において、タンク内の負圧が-NkPa以上でないと判定された場合、手続はステップS31に戻り、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータを高速で駆動する。 In Step S12, when it is determined that the mode of the brake device 11 is the vehicle activation mode, the procedure proceeds to Step S31. In step S31, the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a high speed. In step S32, the pump drive process 41 determines whether or not the negative pressure in the tank is equal to or higher than a predetermined threshold value −NkPa. If it is determined in step S32 that the negative pressure in the tank is not greater than -NkPa, the procedure returns to step S31, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a high speed.
 ステップS32において、タンク内の負圧が-NkPa以上であると判定された場合、手続はステップS25に進み、ポンプ駆動処理41は、電動真空ポンプ23のポンプモータを低速で駆動し、手続はステップS26に進む。 If it is determined in step S32 that the negative pressure in the tank is equal to or higher than −N kPa, the procedure proceeds to step S25, and the pump drive process 41 drives the pump motor of the electric vacuum pump 23 at a low speed. Proceed to S26.
 なお、ステップS11において、車両電源が入れられる(ONされる)と、ステップS12~ステップS32の手続と並列に、ステップS41およびステップS42の手続が行われる。すなわち、ステップS41において、ポンプ駆動処理41は、車両速度情報31、車両の位置を示すGPS(Global Positioning System)情報32、ITS(Intelligent Transport Systems)情報33、およびナビゲーション情報34として取得した車両データ(車両速度、GPS情報、ITS情報、ナビゲーションデータ)より、市街地走行であるか高速路走行であるかを見分ける。ステップS42において、ポンプ駆動処理41は、高速消費起動レベル(起動・高消費時起動レベル)および低速消費起動レベル(通常・低消費時起動レベル)のレベル値を更新(学習)する。 In step S11, when the vehicle power is turned on (turned on), steps S41 and S42 are performed in parallel with steps S12 to S32. In other words, in step S41, the pump drive process 41 performs vehicle speed information 31, GPS (Global Positioning System) information 32 indicating vehicle position, ITS (Intelligent Transport System) information 33, and vehicle data acquired as navigation information 34 ( Based on vehicle speed, GPS information, ITS information, navigation data), it is discriminated whether it is city driving or highway driving. In step S42, the pump drive process 41 updates (learns) the level values of the high-speed consumption activation level (activation level during activation / high consumption) and the low-speed consumption activation level (normal / low consumption activation level).
 例えば、ポンプ駆動処理41は、ステップS41において、市街地走行であるとされた場合、ブレーキ装置11のモードを一定速作動モードに設定し、高速路走行であるとされた場合、ブレーキ装置11のモードを可変速作動モードに設定する。または、例えば、ポンプ駆動処理41は、ステップS41において、市街地走行であるとされた場合、ブレーキ装置11のモードを可変速作動モードに設定し、高速路走行であるとされた場合、ブレーキ装置11のモードを一定速作動モードに設定するようにしてもよい。 For example, the pump drive process 41 sets the mode of the brake device 11 to the constant speed operation mode when it is determined that the vehicle is traveling in the city in step S41, and the mode of the brake device 11 when it is determined that the vehicle is traveling on the highway. Is set to variable speed operating mode. Alternatively, for example, in step S41, the pump drive process 41 sets the mode of the brake device 11 to the variable speed operation mode when it is determined that the vehicle is traveling in an urban area, and when it is determined that the vehicle is traveling on a highway, the brake device 11 This mode may be set to a constant speed operation mode.
 このように、ペダル操作20の頻度により、ブレーキ装置11のモードが、一定速作動モードまたは可変速作動モードのいずれかに変わり、電動真空ポンプ23のポンプモータを駆動する制御パターンが変化する。 Thus, depending on the frequency of the pedal operation 20, the mode of the brake device 11 changes to either the constant speed operation mode or the variable speed operation mode, and the control pattern for driving the pump motor of the electric vacuum pump 23 changes.
 電動真空ポンプ23のポンプモータを高速で駆動するときの判定に用いる閾値である通常・低消費時起動レベルまたは起動・高消費時起動レベルの値は、電動真空ポンプ23のポンプモータを低速で駆動するときの判定に用いる閾値である速度切換えレベルの値と異なる。 The normal / low-consumption start level or the start / high-consumption start level, which is a threshold used for determination when the pump motor of the electric vacuum pump 23 is driven at high speed, drives the pump motor of the electric vacuum pump 23 at low speed. This is different from the value of the speed switching level, which is a threshold value used for determination.
 また、ブレーキ装置11のモードには、起動モード、一定速作動モード、および可変速作動モードが設けられている。 Also, the mode of the brake device 11 includes a start mode, a constant speed operation mode, and a variable speed operation mode.
 このように、ブレーキ装置11には、大気圧より低い圧力である負圧により、ブレーキペダルに加えられた力を増加させるブレーキブースタ23と、負圧を発生させる電動真空ポンプ23と、電動真空ポンプ23の駆動を制御するECU26とが設けられている。ポンプ駆動処理41を実行するECU26は、ブレーキペダル21に加えられたペダル操作20の頻度が予め決められた第1の閾値(例えば、A回/分)より多いか否かを判定し(例えば、ステップS13の手続)、ブレーキペダル21に加えられたペダル操作20の頻度が第1の閾値より多いと判定された場合、負圧が予め決められた第2の閾値(例えば、-NkPa)より高いか否かを判定し(例えば、ステップS28の手続)、負圧が第2の閾値より高いと判定された場合、電動真空ポンプ23を高速で駆動し(例えば、ステップS23の手続)、電動真空ポンプ23が高速で駆動されている場合、負圧が予め決められた第3の閾値(例えば、-PkPa)より高いか否かを判定し(例えば、ステップS24の手続)、負圧が第3の閾値より高いと判定された場合、電動真空ポンプ23を低速で駆動する(例えば、ステップS25の手続)。従って、電動真空ポンプ23の容量を従来に比較して小さくしても(例えば20%程度容量を小さくしても)、短時間でブレーキ操作を繰り返す、いわゆるポンピングブレーキが行われても、また、強いブレーキ操作が繰り返されても、負圧を維持でき、また、より速く所望の負圧を発生できるので、ブレーキペダル21に加えられる踏力に対する制動力が低下せず、ブレーキの操作感に違和感を与えない。すなわち、多様な運転に対応しつつ、ポンプの容量をより小さくできる。 As described above, the brake device 11 includes the brake booster 23 that increases the force applied to the brake pedal by the negative pressure that is lower than the atmospheric pressure, the electric vacuum pump 23 that generates the negative pressure, and the electric vacuum pump. ECU26 which controls the drive of 23 is provided. The ECU 26 that executes the pump drive process 41 determines whether or not the frequency of the pedal operation 20 applied to the brake pedal 21 is higher than a predetermined first threshold value (for example, A times / minute) (for example, In step S13), when it is determined that the frequency of the pedal operation 20 applied to the brake pedal 21 is higher than the first threshold value, the negative pressure is higher than a predetermined second threshold value (for example, -NkPa). If it is determined that the negative pressure is higher than the second threshold value, the electric vacuum pump 23 is driven at a high speed (for example, the procedure of step S23). When the pump 23 is driven at a high speed, it is determined whether or not the negative pressure is higher than a predetermined third threshold value (for example, -PkPa) (for example, the procedure of step S24). The threshold of If it is judged to be high, driving the electric vacuum pump 23 at a low speed (e.g., procedure of step S25). Therefore, even if the capacity of the electric vacuum pump 23 is reduced as compared with the conventional one (for example, the capacity is reduced by about 20%), the brake operation is repeated in a short time, so-called pumping brake is performed, Even if a strong braking operation is repeated, the negative pressure can be maintained and a desired negative pressure can be generated more quickly. Therefore, the braking force with respect to the pedaling force applied to the brake pedal 21 does not decrease, and the brake operation feeling is uncomfortable. Don't give. That is, the capacity of the pump can be further reduced while accommodating various operations.
 さらに、ポンプ駆動処理41を実行するECU26は、負圧が高くなる速さが予め決められた第4の閾値(例えば、GkPa/秒)より速いか否かを判定し(例えば、ステップS21の手続)、負圧が高くなる速さが第4の閾値より速いと判定された場合、ブレーキペダルに加えられた操作の頻度が第1の閾値より多いか否かを判定する。この場合、電動真空ポンプ23の容量を小さくしても、必要なときにより速く所望の負圧を発生でき、ブレーキペダル21に加えられる踏力に対する制動力が低下せず、ブレーキの操作感に違和感を与えない。 Further, the ECU 26 that executes the pump drive process 41 determines whether or not the speed at which the negative pressure increases is faster than a predetermined fourth threshold (for example, GkPa / second) (for example, the procedure of step S21). ), When it is determined that the speed at which the negative pressure increases is faster than the fourth threshold value, it is determined whether the frequency of the operation applied to the brake pedal is higher than the first threshold value. In this case, even if the capacity of the electric vacuum pump 23 is reduced, a desired negative pressure can be generated more quickly when necessary, the braking force applied to the pedal force applied to the brake pedal 21 does not decrease, and the brake operation feeling is uncomfortable. Don't give.
 さらにまた、ポンプ駆動処理41を実行するECU26は、起動するとき、電動真空ポンプ23を高速で駆動する(例えば、ステップS31の手続)。電動真空ポンプ23の容量を小さくしても、起動後により速く所望の負圧を発生できるので、起動後に直ぐに走行してブレーキをかけても、制動力を発生させることができ、ブレーキの操作感に違和感を与えない。 Furthermore, the ECU 26 that executes the pump driving process 41 drives the electric vacuum pump 23 at a high speed when it is activated (for example, the procedure of step S31). Even if the capacity of the electric vacuum pump 23 is reduced, a desired negative pressure can be generated more quickly after the start-up. Therefore, even if the brake is applied immediately after the start-up, the braking force can be generated and the brake operation feeling can be generated. Does not give a sense of incongruity.
 以上のように、多様な運転に対応しつつ、ポンプの容量をより小さくできる。 As described above, the pump capacity can be further reduced while accommodating various operations.
 上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、専用のハードウエアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のマイクロコンピュータなどに、プログラム記録媒体からインストールされる。 The series of processes described above can be executed by hardware or software. When a series of processing is executed by software, a program constituting the software executes various functions by installing a computer incorporated in dedicated hardware or various programs. For example, the program is installed in a general-purpose microcomputer from a program recording medium.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
 また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiments of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
 11…ブレーキ装置、21…ブレーキペダル、22…ブレーキブースタ、23…電動真空ポンプ(ポンプ)、24…マスターシリンダー、25…ブレーキ、26…ECU(制御手段)、27…液圧センサ、28…負圧センサ、29…ブレーキスイッチ、31…車両速度情報、32…GPS情報、33…ITS情報、34…ナビゲーション情報、41…ポンプ駆動処理

 
DESCRIPTION OF SYMBOLS 11 ... Brake device, 21 ... Brake pedal, 22 ... Brake booster, 23 ... Electric vacuum pump (pump), 24 ... Master cylinder, 25 ... Brake, 26 ... ECU (control means), 27 ... Hydraulic pressure sensor, 28 ... Negative Pressure sensor, 29 ... Brake switch, 31 ... Vehicle speed information, 32 ... GPS information, 33 ... ITS information, 34 ... Navigation information, 41 ... Pump drive processing

Claims (5)

  1.  大気圧より低い圧力である負圧により、ブレーキペダルに加えられた力を増加させるブレーキブースタと、
     上記負圧を発生させるポンプと、
     上記ポンプの駆動を制御する制御手段と
     を有し、
     上記制御手段は、
     上記ブレーキペダルに加えられた操作の頻度が予め決められた第1の閾値より多いか否かを判定し、
     上記ブレーキペダルに加えられた操作の頻度が上記第1の閾値より多いと判定された場合、上記負圧が予め決められた第2の閾値より高いか否かを判定し、
     上記負圧が上記第2の閾値より高いと判定された場合、上記ポンプを高速で駆動し、
     上記ポンプが高速で駆動されている場合、上記負圧が予め決められた第3の閾値より高いか否かを判定し、
     上記負圧が上記第3の閾値より高いと判定された場合、上記ポンプを低速で駆動する
     ことを特徴とするブレーキ装置。
    A brake booster that increases the force applied to the brake pedal by negative pressure, which is lower than atmospheric pressure,
    A pump for generating the negative pressure;
    Control means for controlling the drive of the pump,
    The control means includes
    Determining whether the frequency of the operation applied to the brake pedal is greater than a predetermined first threshold;
    If it is determined that the frequency of operations applied to the brake pedal is greater than the first threshold, it is determined whether the negative pressure is higher than a predetermined second threshold;
    When it is determined that the negative pressure is higher than the second threshold, the pump is driven at a high speed,
    When the pump is driven at high speed, it is determined whether the negative pressure is higher than a predetermined third threshold;
    When it is determined that the negative pressure is higher than the third threshold, the pump is driven at a low speed.
  2.  請求項1に記載のブレーキ装置において、
     前記制御手段は、
     前記負圧が高くなる速さが予め決められた第4の閾値より速いか否かを判定し、
     前記負圧が高くなる速さが前記第4の閾値より速いと判定された場合、前記ブレーキペダルに加えられた操作の頻度が前記第1の閾値より多いか否かを判定する
     ことを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    The control means includes
    Determining whether or not the speed at which the negative pressure increases is faster than a predetermined fourth threshold;
    When it is determined that the speed at which the negative pressure increases is faster than the fourth threshold value, it is determined whether or not the frequency of the operation applied to the brake pedal is higher than the first threshold value. Brake device to play.
  3.  請求項1に記載のブレーキ装置において、
     前記制御手段は、
     起動するとき、前記ポンプを高速で駆動する
     ことを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    The control means includes
    A brake device characterized by driving the pump at high speed when starting.
  4.  大気圧より低い圧力である負圧により、ブレーキペダルに加えられた力を増加させるブレーキブースタと、上記負圧を発生させるポンプとを有するブレーキ装置の制御方法において、
     上記ブレーキペダルに加えられた操作の頻度が予め決められた第1の閾値より多いか否かを判定するステップと、
     上記ブレーキペダルに加えられた操作の頻度が上記第1の閾値より多いと判定された場合、上記負圧が予め決められた第2の閾値より高いか否かを判定するステップと、
     上記負圧が上記第2の閾値より高いと判定された場合、上記ポンプを高速で駆動するステップと、
     上記ポンプが高速で駆動されている場合、上記負圧が予め決められた第3の閾値より高いか否かを判定するステップと、
     上記負圧が上記第3の閾値より高いと判定された場合、上記ポンプを低速で駆動するステップと
     を含むことを特徴とする制御方法。
    In a control method of a brake device having a brake booster that increases a force applied to a brake pedal by a negative pressure that is lower than an atmospheric pressure, and a pump that generates the negative pressure,
    Determining whether the frequency of operations applied to the brake pedal is greater than a predetermined first threshold;
    When it is determined that the frequency of operations applied to the brake pedal is greater than the first threshold, the step of determining whether the negative pressure is higher than a predetermined second threshold;
    If it is determined that the negative pressure is higher than the second threshold, driving the pump at a high speed;
    When the pump is driven at high speed, determining whether the negative pressure is higher than a predetermined third threshold;
    And a step of driving the pump at a low speed when it is determined that the negative pressure is higher than the third threshold value.
  5.  大気圧より低い圧力である負圧により、ブレーキペダルに加えられた力を増加させるブレーキブースタと、上記負圧を発生させるポンプとを有するブレーキ装置に設けられたコンピュータに、
     上記ブレーキペダルに加えられた操作の頻度が予め決められた第1の閾値より多いか否かを判定するステップと、
     上記ブレーキペダルに加えられた操作の頻度が上記第1の閾値より多いと判定された場合、上記負圧が予め決められた第2の閾値より高いか否かを判定するステップと、
     上記負圧が上記第2の閾値より高いと判定された場合、上記ポンプを高速で駆動するステップと、
     上記ポンプが高速で駆動されている場合、上記負圧が予め決められた第3の閾値より高いか否かを判定するステップと、
     上記負圧が上記第3の閾値より高いと判定された場合、上記ポンプを低速で駆動するステップと
     を含む処理を行わせるプログラム。

     
    A computer provided in a brake device having a brake booster that increases the force applied to the brake pedal by a negative pressure that is lower than the atmospheric pressure, and a pump that generates the negative pressure.
    Determining whether the frequency of operations applied to the brake pedal is greater than a predetermined first threshold;
    When it is determined that the frequency of operations applied to the brake pedal is greater than the first threshold, the step of determining whether the negative pressure is higher than a predetermined second threshold;
    If it is determined that the negative pressure is higher than the second threshold, driving the pump at a high speed;
    When the pump is driven at high speed, determining whether the negative pressure is higher than a predetermined third threshold;
    When the negative pressure is determined to be higher than the third threshold value, a program for performing a process including a step of driving the pump at a low speed.

PCT/JP2013/066452 2012-06-19 2013-06-14 Brake device, control method, and program WO2013191100A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-138255 2012-06-19
JP2012138255A JP2014000903A (en) 2012-06-19 2012-06-19 Brake grear, control method, and program

Publications (1)

Publication Number Publication Date
WO2013191100A1 true WO2013191100A1 (en) 2013-12-27

Family

ID=49768697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066452 WO2013191100A1 (en) 2012-06-19 2013-06-14 Brake device, control method, and program

Country Status (2)

Country Link
JP (1) JP2014000903A (en)
WO (1) WO2013191100A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206285B2 (en) 2013-09-06 2017-10-04 トヨタ自動車株式会社 Internal combustion engine
CN110775039A (en) * 2019-09-24 2020-02-11 浙江零跑科技有限公司 Vacuum control logic method based on electric automobile service braking safety
KR102558013B1 (en) * 2021-02-24 2023-07-21 주식회사 한중엔시에스 Vehicle brake apparatus and controlling method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164252A (en) * 1983-03-04 1984-09-17 Toyota Motor Corp Apparatus for supplying negative pressure of brake booster
JPH04244471A (en) * 1991-01-31 1992-09-01 Nippondenso Co Ltd Brake device for vehicle
JPH05338528A (en) * 1992-06-09 1993-12-21 Mazda Motor Corp Brake device for automobile
JPH09177678A (en) * 1995-12-26 1997-07-11 Honda Motor Co Ltd Control method for negative pressure pump
JP2012101571A (en) * 2010-11-05 2012-05-31 Mazda Motor Corp Brake system of electric vehicle, and control method of electric negative pressure pump
JP2012162914A (en) * 2011-02-07 2012-08-30 Tokai Rika Co Ltd Electronic key registration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164252A (en) * 1983-03-04 1984-09-17 Toyota Motor Corp Apparatus for supplying negative pressure of brake booster
JPH04244471A (en) * 1991-01-31 1992-09-01 Nippondenso Co Ltd Brake device for vehicle
JPH05338528A (en) * 1992-06-09 1993-12-21 Mazda Motor Corp Brake device for automobile
JPH09177678A (en) * 1995-12-26 1997-07-11 Honda Motor Co Ltd Control method for negative pressure pump
JP2012101571A (en) * 2010-11-05 2012-05-31 Mazda Motor Corp Brake system of electric vehicle, and control method of electric negative pressure pump
JP2012162914A (en) * 2011-02-07 2012-08-30 Tokai Rika Co Ltd Electronic key registration system

Also Published As

Publication number Publication date
JP2014000903A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP5045815B2 (en) Vehicle control system
US9434367B2 (en) Brake control apparatus
JP5278014B2 (en) Vehicle travel control device
JP5831486B2 (en) Brake system
US20070200424A1 (en) Vehicle control apparatus and vehicle control method
WO2007013246A1 (en) Parking assist controller and parking assist control system
JP2006321268A (en) Economic running control method and economic running controlling device
US20130131946A1 (en) Reduced Energy Vacuum Pump Control
JP6256456B2 (en) Vehicle stop maintenance device
WO2013191100A1 (en) Brake device, control method, and program
JPWO2012049747A1 (en) Brake device and control device for vehicle
US20210179174A1 (en) Parking assist system and vehicle with automated parking capability
JP2013119269A (en) Vehicular control device
KR102181685B1 (en) Brake system of hybrid electric vehicle
JP6355071B2 (en) Vehicle stop maintenance device
JP2010137706A (en) Braking control device
JP2014080126A (en) Vehicular brake control device
JP2002173009A (en) Automatic engine stopping and starting device
JP2015024668A (en) Fluid pressure brake control device
WO2013094593A1 (en) Brake control device
JP2014218158A (en) Vehicular braking force control device
JP6137677B2 (en) Vehicle control device
JP2013141338A (en) Braking device for vehicle
JP2004132248A (en) Vehicle with idle stop device
JP2008049784A (en) Braking control device for vehicle and braking control method for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806628

Country of ref document: EP

Kind code of ref document: A1