WO2013190959A1 - Head-up display - Google Patents

Head-up display Download PDF

Info

Publication number
WO2013190959A1
WO2013190959A1 PCT/JP2013/064789 JP2013064789W WO2013190959A1 WO 2013190959 A1 WO2013190959 A1 WO 2013190959A1 JP 2013064789 W JP2013064789 W JP 2013064789W WO 2013190959 A1 WO2013190959 A1 WO 2013190959A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display
transparent
polarizing element
reflective polarizing
Prior art date
Application number
PCT/JP2013/064789
Other languages
French (fr)
Japanese (ja)
Inventor
和之 栗原
康宏 池田
寛 坂本
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014521252A priority Critical patent/JPWO2013190959A1/en
Publication of WO2013190959A1 publication Critical patent/WO2013190959A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/1044Invariable transmission
    • B32B17/10458Polarization selective transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • B60K35/23
    • B60K35/60
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • B60K2360/785
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects

Definitions

  • the present invention relates to a head-up display device.
  • a typical example of the transparent screen is a head-up display device for moving means such as a vehicle or an aircraft.
  • a head-up display device for a vehicle can image information such as the vehicle speed in the field of view in front of the driver (for example, Patent Document 1 and Patent Document 2). For this reason, the driver does not need to largely shift his / her line of sight from the front for information confirmation during driving of the vehicle, and safety during driving is improved.
  • a head-up display device for a vehicle is composed of display means installed on a dashboard or the like in the vehicle, and a semi-transmissive and semi-reflective optical element called a combiner.
  • a combiner By irradiating display light toward the combiner and reflecting the display light by the combiner, the driver can visually recognize a display image (virtual image) superimposed on the outside scene.
  • the combiner is used in a form such as being enclosed in a windshield (laminated glass), affixed to the surface of the windshield on the driver side, or installed between the windshield and the driver.
  • part of the display light irradiated to the combiner is transmitted through the combiner and reflected to the driver side at an interface having a different refractive index, such as the surface on the side where the combiner contacts the outside. .
  • the conventional head-up display device in addition to the reflected light (display light) from the originally required combiner, reflected light from other interfaces also exists. Therefore, the conventional head-up display device has a problem that the display image becomes a double image and visibility is deteriorated.
  • Patent Document 1 discloses a measure for reducing the problem of such a double image.
  • a semi-transmission mirror and a retardation film are used as a combiner to change the polarized light incident on the surface of the windshield in contact with the outside world, thereby reducing the reflected light from the surface.
  • a retardation film sets a phase difference at a certain wavelength, so that the effect of suppressing double images is small, and it is difficult to apply to a head-up display device for color display. .
  • the present invention has been made in view of such a background, and the present invention provides a head-up display device that has versatility and can reduce visibility of double images and increase visibility. Objective.
  • a transparent screen having a display means, a transparent member and a reflective polarizing element, and capable of displaying a display image by reflecting display light emitted from the display means;
  • the reflective polarizing element is provided in contact with the transparent member or the resin layer, and the display light is in contact with air of the transparent member or the resin layer provided in contact with the reflective polarizing element.
  • the display light is incident from the first surface, and the display light is P-polarized light parallel to the incident surface, and the reflective polarizing element is arranged so that the reflection axis is parallel to the polarization axis of the display light.
  • the incident angle ⁇ 1 on the first surface is defined as ⁇ B1 (where ⁇ b1 is 0 to 90 °) at the Brewster angle at the interface between air and the material constituting the first surface. In the range of ⁇ b1 ⁇ 20 ° A head-up display device is provided.
  • FIG. 1 is the figure which showed schematically the example of 1 structure of the transparent screen by this embodiment. It is the figure which showed schematically the example of another structure of the transparent screen by this embodiment. It is the figure which showed schematically the 3rd structural example of the transparent screen by this embodiment. It is the figure which showed schematically the example of a structure of the head-up display apparatus by this embodiment. It is the figure which showed schematically the example of another structure of the head-up display apparatus by this embodiment. It is the figure which showed schematically the 3rd structural example of the head-up display apparatus by this embodiment.
  • 3 is a cross-sectional view schematically showing the structure of a transparent screen according to Example 1.
  • FIG. 5 is a cross-sectional view schematically showing the structure of a transparent screen according to Comparative Example 1.
  • a head-up display device for a vehicle is taken up as an example of the transparent screen, and the configuration thereof will be described.
  • FIG. 1 schematically shows a configuration of a conventional head-up display device for a vehicle.
  • a conventional head-up display device 10 for a vehicle includes a windshield 20, a combiner 40 installed on at least a part of the windshield 20, or a display unit 45 such as a projector. And have.
  • the display means 45 is usually installed in a part of or inside the dashboard 80 of the vehicle.
  • the windshield 20 has an inner surface (driver-side surface) 22 and an outer surface (external-side surface) 24. Further, the windshield 20 is usually configured by bonding a first glass substrate 30 and a second glass substrate 35 to each other via an intermediate film 39. In the example of FIG. 1, the first glass substrate 30 is on the inner surface 22 side of the windshield 20, and the second glass substrate 35 is on the outer surface 24 side.
  • the combiner 40 is formed of a metal layer such as a silver thin film, and is disposed on the first glass substrate 30 side, that is, on the inner surface 22 of the windshield 20.
  • the display means 45 is installed to emit display light 60 including a display image from the display means 45.
  • the display light 60 emitted from the display means 45 is S-polarized light in a normal case.
  • S-polarized light means polarized light in which the vibration direction of the electric field of light is perpendicular to the incident surface.
  • P-polarized light polarized light in which the vibration direction of the electric field of light is parallel to the incident surface.
  • the “incident surface” means a plane including the optical paths of incident light and reflected light. To do.
  • the reason why the S-polarized light is used as the display light 60 is that the S-polarized light can reflect more light by the windshield 20 than the P-polarized light, and the display image becomes brighter.
  • the display means 45 When operating such a head-up display device 10, the display means 45 is activated, and the display light 60 including the display image is emitted from the display means 45.
  • the display light 60 travels toward the combiner 40 installed on the inner surface 22 of the windshield 20.
  • an optical element such as a lens is arranged between the display means 45 and the windshield 20, thereby guiding the display light 60 toward the combiner 40. Or you may enlarge the magnitude
  • the display light 60 enters the combiner 40 and is reflected here to become reflected light 65.
  • the reflected light 65 is directed toward the driver 90, so that the driver 90 can visually recognize a display image (virtual image) superimposed on the outside scene in front of himself / herself.
  • the display light 60 that reaches the combiner 40 becomes the reflected light 65, and a part of the display light 60 passes through the combiner 40 to the inner surface 22 of the windshield 20 to transmit the transmitted light. 70 and enters the inside of the windshield 20. Thereafter, the transmitted light 70 is reflected by, for example, the outer surface of the second glass substrate 35 constituting the windshield 20, that is, the outer surface 24 of the windshield 20, and becomes the second reflected light 75. It is emitted toward the driver 90 side.
  • both the reflected light 65 and the second reflected light 75 reach the driver 90 side, which causes a problem that the display image becomes a double image. More precisely, from other interfaces in the windshield 20 (for example, the interface between the first glass substrate 30 and the intermediate film 39 and the interface between the second glass substrate 35 and the intermediate film 39). Since reflection also occurs, the display image visually recognized by the driver 90 may be a multiple image that is more than a triple image.
  • the conventional head-up display device 10 has a problem in the visibility of the display image.
  • a head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means,
  • the transparent screen has a transparent member and a reflective polarizing element embedded in the transparent member,
  • the display light is incident from the first surface;
  • the display light is P-polarized light parallel to the incident surface,
  • the reflective polarizing element is arranged such that the reflection axis is parallel to the polarization axis of the display light,
  • the incident angle ⁇ 1 at the first surface is substantially equal to ⁇ b1 (where ⁇ b1 is 0 to 90 °) when the Brewster angle at the interface between air and the material forming the first surface is ⁇ b1.
  • an incident angle ⁇ 2 on the second surface of transmitted light that travels in the transparent screen without being reflected by the reflective polarizing element is a material that constitutes the second surface.
  • ⁇ b2 where ⁇ b2 is 0 to 90 °
  • a head-up display device substantially in the range of ⁇ b2 ⁇ 20 ° is provided.
  • a head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means,
  • the transparent screen has a transparent member and a reflective polarizing element disposed on the surface of the transparent member, In the transparent member, when two surfaces in contact with air are respectively the first surface and the second surface, The display light is incident from the first surface; The reflective polarizing element is disposed on the second surface; The display light is P-polarized light parallel to the incident surface, The reflective polarizing element is arranged such that the reflection axis is parallel to the polarization axis of the display light, The incident angle ⁇ 1 of the display light on the first surface is the Brewster angle at the interface between the air and the material constituting the first surface, ⁇ b1 (where ⁇ b1 is 0 to 90 °). Then, a head-up display device substantially in the range of ⁇ b1 ⁇ 20 ° is provided.
  • a wire grid type polarizing element or two kinds of polymer layers having different high refractive index layers and low refractive index layers are made to have the same refractive index in one direction and different in refractive index in the other direction.
  • Examples thereof include an optical film in which several hundred layers are arranged, and an optical element in which a cholesteric liquid crystal and a quarter-wave plate are combined.
  • An optical element that combines a cholesteric liquid crystal and a quarter-wave plate is an incident light that is incident on a linearly polarized light, converted into circularly-polarized light by a quarter-wave plate, and selectively transmitted and reflected by the cholesteric liquid crystal.
  • the polarized light is an element that passes through the quarter-wave plate again and is converted from circularly polarized light to linearly polarized light.
  • FIG. 2 shows a wire grid type polarization element as an example of the reflection type polarization element.
  • the wire grid type polarization element 100 includes a transparent substrate 110 and a plurality of metal wires 130 installed on the transparent substrate 110.
  • the transparent substrate 110 is made of, for example, a photocurable resin, a thermoplastic resin, or glass.
  • the metal wires 130 are arranged at equal intervals and in parallel with each other.
  • each metal wire 130 is arranged at a pitch P so as to extend parallel to the Y direction.
  • the pitch P is at least shorter than the wavelength of visible light (about 400 nm), and is about 100 nm to 200 nm, for example. For this reason, each metal wire 130 cannot be visually recognized visually.
  • the extending direction of the metal wire 130 is referred to as a reflection axis.
  • the definition of “reflection axis” will be described later.
  • the wire grid type polarizing element 100 configured as described above operates as follows.
  • S-polarized light means polarized light in which the vibration direction of the electric field of light is perpendicular to the incident surface.
  • P-polarized light means polarized light in which the vibration direction of the electric field of light is parallel to the incident surface.
  • the wire grid type polarizing element 100 has a feature that the optical characteristic of incident light can be changed by reflection / transmission according to the positional relationship between the reflection axis of the wire grid type polarization element 100 and the polarization axis of incident polarized light. .
  • each metal wire 130 has a substantially quadrangular prism shape and is disposed on the flat surface 115 of the transparent substrate 110.
  • the arrangement form of the metal wires is not limited to this.
  • FIG. 5 shows a wire grid type polarizing element 101 having another configuration.
  • the transparent substrate 111 has protrusions 120 arranged at a pitch P along the X direction in FIG. Although not visible from FIG. 5, the protrusions 120 extend parallel to each other along the Y direction (direction perpendicular to the paper surface).
  • the protrusion 120 may be made of the same material as the transparent substrate 111, or may be made of a light transmissive material different from that of the transparent substrate 111.
  • the material of the protrusion 120 include a photo-curing resin, a thermoplastic resin, and glass.
  • the refractive index of the material constituting the protrusion 120 is preferably close to the refractive index of the material constituting the transparent substrate 111.
  • the refractive index difference absolute value
  • the pitch P is the sum of the width T of the protrusion bottom and the width S of the protrusion bottom.
  • the pitch P is preferably 100 to 140 nm. If the pitch P is 140 nm or less, the p-polarized light transmittance in the short wavelength region (450 nm or less) is further increased. Moreover, if the pitch P is 100 nm or more, it is easy to form fine metal wires.
  • the width T of the bottom surface of the protrusion may be the same value as the pitch P, but is preferably 70% or less of the pitch P, and more preferably 60% or less of the pitch P. When the width T is smaller than the pitch P, the transmittance increases, and the angle dependency of the transmittance decreases. H represents the height of the protrusion.
  • the height H of the protrusion is preferably 200 nm or less, and more preferably 150 nm or less. When the height H is 200 nm or less, creation by nanoimprint or the like becomes easy.
  • L represents the height of the metal wire
  • t represents the width of the metal wire. It is this metal wire portion that exhibits polarization separation characteristics in the wire grid polarization element.
  • the width t is preferably 5 nm to 70 nm, and more preferably 5 nm to 60 nm. By setting the width t to 5 nm or more, it is possible to exhibit desired optical characteristics while suppressing deterioration of the metal film quality. By setting the width t to 70 nm or less, both the transmittance and the reflectance can be appropriately achieved as a transparent screen.
  • Each metal wire 131 is disposed on the inclined surface of the corresponding protrusion 120 of the transparent substrate 111.
  • wire grid type polarizing element 101 having such a configuration, when the pitch P is sufficiently shorter than the wavelength of visible light, the same characteristics as those of the wire grid type polarizing element 100 shown in FIG. It will be apparent to those skilled in the art.
  • this feature is not limited to the wire grid type polarizing element 100, but is applicable to all reflective polarizing elements. That is, the same can be said based on the relationship between the reflection axis of the reflective polarizing element and the polarization axis of the incident light (polarization vibration direction).
  • the “reflection axis” of the reflective polarizing element is determined as follows.
  • a transmitted light beam When light in a non-polarized state is incident on the reflective polarizing element, it is separated into two light beams, a transmitted light beam and a reflected light beam, in which the vibration direction of the electric field of the light is orthogonal.
  • a direction parallel to the vibration direction of the reflected light is referred to as a reflection axis
  • a direction parallel to the vibration direction of the transmitted light is referred to as a transmission axis.
  • the first and second inventions of the present embodiment have a feature that the reflection axis of the reflective polarizing element having such characteristics is arranged to be parallel to the polarization axis of the incident P-polarized light.
  • the optical characteristics of the incident light are in a reflection state as shown in FIG. 4B, and most of the incident light 140P can be reflected.
  • the wire grid type polarizing element having the above-mentioned characteristics is manufactured by, for example, preparing a resin grid substrate having a plurality of parallel fine grooves and forming a thin metal wire in the grooves. Can do.
  • the resin grid substrate can be formed by, for example, a nanoimprint (optical imprint, thermal imprint) process or the like. Alternatively, the resin grid substrate may be directly manufactured by interference exposure. On the other hand, the fine metal wire can be formed by using a general film forming technique such as vapor deposition or sputtering.
  • the wire grid type polarizing element is formed by, for example, forming a metal film on a substrate having a flat surface by using a general film forming technique such as a vapor deposition method and a sputtering method, and then photolithography the metal film. Or you may manufacture by patterning to a wire form using techniques, such as an electron beam drawing method.
  • a wire grid type polarizing element can be manufactured by various methods.
  • FIG. 6 schematically shows the influence of the incident angle ⁇ of S-polarized light and P-polarized light on the reflectance (%).
  • S-polarized light refers to polarized light whose vibration direction of the electric field of light is perpendicular to the incident surface
  • P-polarized light refers to polarized light whose vibration direction of the electric field of light is parallel to the incident surface.
  • FIG. 6 assumes that S-polarized light or P-polarized light is incident from the air layer (first medium) toward the resin or glass layer (second medium).
  • the incident angle ⁇ at which the reflectance is almost zero.
  • the incident angle theta such reflectance is zero or a minimum, referred to as Brewster angle theta b.
  • the Brewster angle ⁇ b is
  • P-polarized light is used as display light incident on the first surface of the transparent screen.
  • the incident angle ⁇ 1 of the display light on the first surface of the transparent screen is adjusted to a value close to the Brewster angle ⁇ b1 . For this reason, reflection of the display light on the first surface is suppressed to a minimum.
  • the incident angle ⁇ 2 when the transmitted light that has passed through the reflective polarizing element is applied to the second surface of the transparent screen is set to a value close to the Brewster angle ⁇ b2. It is adjusted to. For this reason, reflection of the transmitted light on the second surface is minimized.
  • P-polarized light is used as display light incident on the first surface of the transparent screen.
  • the incident angle ⁇ 1 of the display light on the first surface of the transparent screen is adjusted to a value close to the Brewster angle ⁇ b1 . For this reason, reflection of the display light on the first surface is suppressed to a minimum.
  • the effect of suppressing the double image according to the present embodiment as described above can be similarly obtained for color display light. Therefore, in the first embodiment and the second embodiment, it is possible to significantly improve the problem related to the above-described Patent Document 1, that is, the problem that the effect can be obtained only with monochromatic display light. Therefore, the transparent screen according to the present embodiment can be applied to a head-up display device for color display.
  • this embodiment is not limited to the configuration using color display light, and may use monochromatic display light.
  • FIG. 7 schematically shows a configuration example of the transparent screen in the present embodiment.
  • the transparent screen 700 includes a first transparent substrate 730, a second transparent substrate 735, and an intermediate film 750 disposed between the transparent substrates.
  • a reflective polarizing element 740 is disposed in the intermediate film 750.
  • the transparent screen 700 has a first surface 722 and a second surface 724.
  • One surface of the first transparent substrate 730 constitutes the first surface 722 of the transparent screen 700, and one surface of the second transparent substrate 735 constitutes the second surface 724 of the transparent screen 700.
  • the material of the first transparent substrate 730 and the second transparent substrate 735 is not particularly limited, and any material may be used as long as it is made of a transparent member.
  • the first and second transparent substrates 730 and 735 may be glass substrates or resin substrates, for example.
  • the material of the intermediate film 750 is not particularly limited as long as it is transparent.
  • an intermediate film used for a known laminated glass such as polyvinyl butyral or ethylene vinyl cetate can be used.
  • the reflective polarizing element 740 is installed between the first and second transparent substrates 730 and 735 so that the reflection axis is parallel to the polarization axis of the incident display light.
  • the reflective polarizing element 740 is not particularly limited as long as it is a polarizing element having the above-described effects, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
  • the transparent screen 700 in this embodiment from the side of the first surface 722 of the transparent screen 700, when the display light 760 is irradiated, the angle of incidence at the first surface 722 is theta 1 (except theta 1 Is configured to be 0-90 °.
  • the incident angle ⁇ 1 is the Brewster angle at the interface between air and the material constituting the first surface 722 of the transparent screen 700 (that is, the first transparent substrate 730), ⁇ b1 (where ⁇ b1 is , 0 to 90 °), it is selected so that it is substantially in the range of ⁇ b1 ⁇ 20 °.
  • the incident angle ⁇ 1 is preferably in the range of ⁇ b1 ⁇ 15 °, more preferably ⁇ b1 ⁇ 10 °, further preferably ⁇ b1 ⁇ 5 °, and ⁇ 1 ⁇ b1 . Most preferably it is.
  • the transparent screen 700 in the present embodiment passes through the reflective polarizing element 740 and the transmitted light 770 traveling through the second transparent substrate 735 is incident on the second surface 724 of the transparent screen 700.
  • the incident angle is configured to be ⁇ 2 (where ⁇ 2 is 0 to 90 °).
  • the incident angle ⁇ 2 is the Brewster angle at the interface between the material constituting the second surface 724 (that is, the second transparent substrate 735) of the incident-side transparent screen 700 and the air ⁇ b2 (where ⁇ b2 is selected to be substantially in the range of ⁇ b2 ⁇ 20 ° when 0 to 90 °).
  • the incident angle ⁇ 2 is preferably in the range of ⁇ b2 ⁇ 15 °, more preferably ⁇ b2 ⁇ 10 °, further preferably ⁇ b2 ⁇ 5 °, and ⁇ 2 ⁇ b2 Most preferably it is.
  • the transparent screen 700 is irradiated with display light 760 that is P-polarized light from the first surface 722 side. That is, in the present embodiment, the display means (not shown) emits P-polarized display light 760.
  • the incident angle ⁇ 1 on the first surface 722 is substantially equal to It is configured to have a range of ⁇ b1 ⁇ 20 °.
  • the first transmitted light 762 travels in the first transparent substrate 730 and reaches the reflective polarizing element 740.
  • the reflective polarizing element 740 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. Therefore, most of the P-polarized transmitted light 762 incident on the reflective polarizing element 740 is reflected here to become reflected light 765.
  • the reflected light 765 is emitted toward the viewer 790 in front of the transparent screen 700, and the viewer 790 can recognize the display image by the reflected light 765.
  • the second transmitted light 770 travels through the second transparent substrate 735 and is irradiated onto the second surface 724 of the transparent screen 700 at an incident angle ⁇ 2 .
  • the incident angle ⁇ 2 of the second transmitted light 770 on the second surface 724 is substantially in the range of ⁇ b2 ⁇ 20 °. It is comprised so that it may become.
  • the reflection of the second transmitted light 770 at the second surface 724 is minimized. That is, most of the second transmitted light 770 becomes the light 774 as it is, and is emitted from the rear of the transparent screen 700 to the outside. For this reason, even if the second transmitted light 770 exists, it is significantly suppressed that the second transmitted light 770 becomes the second reflected light and returns toward the viewer 790.
  • the reflected light other than the reflected light 765 reflected by the reflective polarizing element 740 is significantly suppressed.
  • display is performed. The problem of double image formation can be significantly suppressed.
  • FIG. 8 shows another configuration example of the transparent screen in the present embodiment.
  • another transparent screen 800 (hereinafter referred to as “second transparent screen 800”) in the present embodiment includes a first transparent substrate 830 and a reflective polarizing element 840.
  • the second transparent screen 800 does not have the second transparent substrate 735.
  • the second transparent screen 800 has a first surface 822 and a second surface 824, and the first surface 822 of the second transparent screen 800 is one of the first transparent substrates 830.
  • the second surface 824 of the second transparent screen 800 is composed of the other surface of the first transparent substrate 830 on which the reflective polarizing element 840 is installed.
  • the material of the first transparent substrate 830 is not particularly limited, and any material may be used as long as it is made of a transparent member.
  • the first transparent substrate 830 may be, for example, a glass substrate or a resin substrate.
  • the reflective polarizing element 840 is bonded to the first transparent substrate 830 through the adhesive layer 850.
  • the reflective polarizing element 840 is disposed on the other surface of the first transparent substrate 830 so that the reflection axis is parallel to the polarization axis of the incident display light.
  • the reflective polarizing element 840 is not particularly limited as long as it is a polarizing element having the above-described effects, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
  • the adhesive layer 850 a known pressure-sensitive adhesive or the like used when sticking various films to the transparent substrate 830 may be used.
  • the material constituting the adhesive layer 850 The refractive index is preferably close to the refractive index of the material constituting the transparent substrate 111.
  • the refractive index difference absolute value is preferably 0.1 or less, and more preferably 0.05 or less. By doing so, it is possible to suppress light loss due to reflection occurring at the interface between the transparent substrate 111 and the protrusion 120.
  • the incident angle on the first surface 822 is ⁇ 1. (Where ⁇ 1 is 0 to 90 °).
  • the incident angle ⁇ 1 is the Brewster angle at the interface between air and the material constituting the first surface 822 of the second transparent screen 800 (that is, the first transparent substrate 830), ⁇ b1 (where ⁇ b1 is selected to be substantially in the range of ⁇ b1 ⁇ 20 ° when ⁇ b1 is 0 to 90 °.
  • the incident angle ⁇ 1 is preferably in the range of ⁇ b1 ⁇ 15 °, more preferably ⁇ b1 ⁇ 10 °, further preferably ⁇ b1 ⁇ 5 °, and ⁇ 1 ⁇ b1 . Most preferably it is.
  • the display light 860 having P-polarized light is irradiated onto the transparent screen 800 from the first surface 822 side. That is, in this embodiment, the display means (not shown) emits P-polarized display light 860.
  • the second transparent screen 800 when the display light 860 is incident on the first surface 822 of the second transparent screen 800, the second transparent screen 800 has an incident angle ⁇ 1 substantially equal to the first surface 822. And ⁇ b1 ⁇ 20 °.
  • the transmitted light 862 travels through the first transparent substrate 830 and reaches the reflective polarizing element 840.
  • the reflective polarizing element 840 is arranged so that the reflection axis is parallel to the polarization axis of incident light. For this reason, most of the P-polarized transmitted light 862 incident on the reflective polarizing element 840 is reflected here to become reflected light 865.
  • the reflected light 865 is emitted toward the viewer 890 in front of the second transparent screen 800, and the viewer 890 can recognize the display image by the reflected light 865.
  • the third transparent screen 1300 in the present embodiment includes a first transparent substrate 1330, a second transparent substrate 1335, and an intermediate film 1350 disposed between the two transparent substrates.
  • the third transparent screen 1300 includes a reflective polarizing element 1340 disposed on the opposite side of the first transparent substrate 1330 from the second transparent substrate 1335, and a resin layer covering the reflective polarizing element 1340. 1310.
  • the transparent screen 1300 has a first surface 1322 and a second surface 1324.
  • One surface of the resin layer 1310 constitutes the first surface 1322 of the transparent screen 1300, and one surface of the second transparent substrate 1335 constitutes the second surface 1324 of the transparent screen 1300.
  • the reflective polarizing element 1340 is disposed on the surface of the first transparent substrate 1330 so that the reflection axis is parallel to the polarization axis of the incident display light.
  • the reflective polarizing element 1340 is not particularly limited as long as it is a polarizing element having the effects described above, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
  • Resin layer 1310 is made of a transparent resin.
  • the resin layer 1310 may be made of any resin as long as the reflective polarizing element 1340 can be properly protected.
  • the first transparent substrate 1330, the second transparent substrate 1335, and the intermediate film 1350 are the first transparent substrate 730, the second transparent substrate 735, and the intermediate film 1350 of the first transparent screen 700, respectively.
  • the same film as the film 750 can be used.
  • the incident angle on the first surface 1322 is ⁇ 3 (however, ⁇ 3 Is configured to be 0-90 °.
  • the incident angle ⁇ 3 is the Brewster angle at the interface between air and the material constituting the first surface 1322 of the transparent screen 1300 (that is, the resin layer 1310), ⁇ b3 (where ⁇ b3 is 0 to 90 °), it is selected so that it is substantially in the range of ⁇ b3 ⁇ 20 °.
  • the incident angle ⁇ 3 is preferably in the range of ⁇ b3 ⁇ 15 °, more preferably ⁇ b3 ⁇ 10 °, further preferably ⁇ b3 ⁇ 5 °, and ⁇ 3 ⁇ b3 Most preferably it is.
  • the third transparent screen 1300 passes through the reflective polarizing element 1340, and in the transmitted light 1370 traveling through the first transparent substrate 1330 to the second transparent substrate 1335, the second surface 1324 of the transparent screen 1300.
  • the incident angle when incident on the light is configured to be ⁇ 4 (where ⁇ 4 is 0 to 90 °).
  • the incident angle ⁇ 4 is the Brewster angle at the interface between the material constituting the second surface 1324 (that is, the second transparent substrate 1335) of the incident-side transparent screen 1300 and air and ⁇ b4 (where ⁇ b4 is selected to be substantially in the range of ⁇ b4 ⁇ 20 °, where 0 b is 0 to 90 °.
  • the incident angle ⁇ 4 is preferably in the range of ⁇ b4 ⁇ 15 °, more preferably ⁇ b4 ⁇ 10 °, further preferably ⁇ b4 ⁇ 5 °, and ⁇ 4 ⁇ b4 . Most preferably it is.
  • display light 1360 that is P-polarized light is irradiated onto the transparent screen 1300 from the first surface 1322 side. That is, in this embodiment, the display means (not shown) emits P-polarized display light 860.
  • the third transparent screen 1300 has an incident angle ⁇ 3 at the first surface 1322 that is substantially ⁇ . It is comprised so that it may become the range of b3 +/- 20 degree.
  • the first transmitted light 1362 travels through the resin layer 1310 and reaches the reflective polarizing element 1340.
  • the reflective polarizing element 1340 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. Therefore, most of the P-polarized transmitted light 1362 incident on the reflective polarizing element 1340 is reflected here to become reflected light 1365.
  • the reflected light 1365 is emitted toward the viewer 1390 in front of the transparent screen 1300, and the viewer 1390 can recognize the display image by the reflected light 1365.
  • the transmitted light 1362 incident on the reflective polarizing element 1340 is not reflected, but becomes the second transmitted light 1370 and may enter the transparent screen 1300 as it is.
  • the second transmitted light 1370 travels through the first transparent substrate 1330 to the second transparent substrate 1335 and is irradiated onto the second surface 1324 of the transparent screen 1300 at an incident angle ⁇ 4 .
  • the incident angle ⁇ 4 of the second transmitted light 1370 on the second surface 1324 is substantially in the range of ⁇ b4 ⁇ 20 °. It is comprised so that it may become.
  • the reflection of the second transmitted light 1370 on the second surface 1324 is suppressed to a minimum. That is, most of the second transmitted light 1370 becomes the light 1374 as it is, and is emitted to the outside from the rear of the transparent screen 1300. For this reason, even if the second transmitted light 1370 exists, the second transmitted light 1370 becomes the second reflected light, and the return to the viewer 1390 is significantly suppressed.
  • the reflected light other than the reflected light 1365 reflected by the reflective polarizing element 1340 is significantly suppressed.
  • the problem of double image formation can be significantly suppressed.
  • the light emission direction from the display means can be controlled so that the incident angles ( ⁇ 1 to ⁇ 4 ) fall within the above range.
  • the angle of incidence ( ⁇ 1 to ⁇ 4 ) is adjusted by adjusting the angle of the first transparent substrate (730, 830, 1330), the resin layer 1310, or the second transparent substrate (735, 1335). Can be.
  • the first surface and the (722,822,1322) and the second surface (724,824,1324) may be parallel, taking into account the value of theta b1 and theta b2, the angle of incidence The angle may be different with respect to the light emission direction from the display means so that ( ⁇ 1 to ⁇ 4 ) falls within the above range.
  • a head-up display device for a vehicle such as an automobile and a train is taken up, and this configuration and characteristics will be described in detail.
  • the head-up display device in the present embodiment is not limited to a vehicle, and is similarly applied to other moving means such as an aircraft, a screen attached to a show window or a showcase, and the like. It should be noted that it can.
  • FIG. 10 schematically shows a configuration example of a head-up display device for a vehicle in the present embodiment.
  • the head-up display device 900 includes a windshield 920 including a reflective polarizing element 940 and display means 945 such as a projector.
  • the display means 945 may be installed on a part of the dashboard 980 of the vehicle.
  • the windshield 920 has an inner surface (driver side surface) 922 and an outer surface (external surface side) 924.
  • the front glass 920 is configured by bonding a first glass substrate 930 and a second glass substrate 935 to each other through an intermediate film 950.
  • the first glass substrate 930 is on the inner surface 922 side of the windshield 920 and the second glass substrate 935 is on the outer surface 924 side.
  • a reflective polarizing element 940 is disposed in the intermediate film 950.
  • the display unit 945 is installed to emit display light 960 including a display image from the display unit 945.
  • the display light 960 emitted from the display unit 945 is P-polarized light.
  • the display means 945 is configured such that when the display light 960 is irradiated onto the inner surface 922 of the windshield 920, the incident angle of the display light 960 is ⁇ 1 (where ⁇ 1 is 0 to 90 °). .
  • the incident angle ⁇ 1 is substantially when the Brewster angle at the interface between the air and the material constituting the first glass substrate 930 is ⁇ b1 (where ⁇ b1 is 0 to 90 °).
  • ⁇ b1 ⁇ 20 °.
  • the incident angle ⁇ 1 is preferably in the range of ⁇ b1 ⁇ 15 °, more preferably ⁇ b1 ⁇ 10 °, further preferably ⁇ b1 ⁇ 5 °, and ⁇ 1 ⁇ b1 . Most preferably it is.
  • the display means 945 travels in the windshield 920 of the display light 960, and the incident angle of the transmitted light 970 that reaches the outer surface 924 of the windshield 920 at the outer surface 924 is ⁇ 2 (where ⁇ 2 is 0 to 90 °).
  • the incident angle ⁇ 2 is when the Brewster angle at the interface between the material constituting the second glass substrate 935 on the incident side and the air is ⁇ b2 (where ⁇ b2 is 0 to 90 °). In this case, it is selected to be substantially in the range of ⁇ b2 ⁇ 20 °.
  • the incident angle ⁇ 2 is preferably in the range of ⁇ b2 ⁇ 15 °, more preferably ⁇ b2 ⁇ 10 °, further preferably ⁇ b2 ⁇ 5 °, and ⁇ 2 ⁇ b2 Most preferably it is.
  • the reflective polarizing element 940 is disposed so that the reflection axis is parallel to the polarization axis of the transmitted light 962 that is transmitted through the first glass substrate 930 and incident on the reflective polarizing element 940.
  • the reflective polarizing element 940 is not particularly limited as long as it is a polarizing element having the effects as described above, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
  • the display light 960 having P-polarized light is irradiated from the display unit 945 to the head-up display device 900 according to the present embodiment.
  • the display light 960 is incident on the inner surface 922 of the windshield 920 at an incident angle ⁇ 1 .
  • the incident angle ⁇ 1 at the inner surface 922 of the display light 960 is substantially in the range of ⁇ b1 ⁇ 20 °. ing.
  • the first transmitted light 962 travels in the first glass substrate 930 and reaches the reflective polarizing element 940.
  • the reflective polarizing element 940 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. For this reason, most of the P-polarized first transmitted light 962 incident on the reflective polarizing element 940 is reflected here to become reflected light 965.
  • the reflected light 965 is emitted toward the driver 990 inside the vehicle, and the driver 990 can recognize the display image by the reflected light 965.
  • the second transmitted light 970 travels through the second glass substrate 935 and is incident on the outer surface 924 of the windshield 920 at an incident angle ⁇ 2 .
  • the incident angle ⁇ 2 of the second transmitted light 970 on the outer surface 924 of the windshield 920 is substantially ⁇ b2 ⁇ 20 °. It is comprised so that it may become the range of.
  • the reflection of the second transmitted light 970 on the outer surface 924 of the windshield 920 is minimized. That is, most of the second transmitted light 970 becomes the light 974 as it is, and is emitted from the rear of the windshield 920 toward the outside. For this reason, even if the second transmitted light 970 is present, the second transmitted light 970 becomes the second reflected light, and the return to the driver 990 is significantly suppressed.
  • the problem of the double image of the display image can be significantly suppressed.
  • the configuration includes the front glass 920 configured by bonding the first glass substrate 930 and the second glass substrate 935 to each other with the reflective polarizing element 940 interposed therebetween.
  • the features of the head-up display device in the present embodiment have been described.
  • the head-up display device in the present embodiment is not limited to such a configuration.
  • FIG. 11 schematically shows another configuration example of the head-up display device in the present embodiment.
  • the second head-up display device 1000 basically has the same configuration as the head-up display device 900 shown in FIG. Therefore, in FIG. 11, the same reference numerals as those in FIG.
  • the configuration of the windshield 1020 is different from the configuration of the windshield 920 described above.
  • the windshield 1020 included in the second head-up display device 1000 includes the first glass substrate 930 and the reflective polarizing element 940, and does not have the second glass substrate 935.
  • One surface of the first glass substrate 930 constitutes an inner surface 922 of the windshield 1020, and the other surface of the first glass substrate 930 constitutes an outer surface 924 of the windshield 1020.
  • the reflective polarizing element 940 is provided on the other surface of the first glass substrate 930 with the adhesive layer 952 interposed therebetween.
  • a display unit 945 In the second head-up display device 1000, a display unit 945, display light 960 having a P-polarized light, the inner surface 922 of the windshield 1020, is incident at an incident angle theta 1.
  • the incident angle ⁇ 1 at the inner surface 922 of the display light 960 is configured to be substantially in the range of ⁇ b1 ⁇ 20 °.
  • the first transmitted light 962 travels in the first glass substrate 930 and reaches the reflective polarizing element 940.
  • the reflective polarizing element 940 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. Therefore, most of the P-polarized transmitted light 962 incident on the reflective polarizing element 940 is reflected here to become reflected light 965.
  • the reflected light 965 is emitted toward the driver 990 inside the vehicle, and the driver 990 can recognize the display image by the reflected light 965.
  • FIG. 12 schematically shows a third configuration example of the head-up display device in the present embodiment.
  • the third head-up display device 1400 includes a windshield 1420 having a resin layer 1410 and display means 1445 such as a projector.
  • a reflective polarizing element 1440 is embedded in the resin layer 1410.
  • the display means 1445 may be installed on a part of the dashboard 1480 of the vehicle.
  • the windshield 1420 has an inner surface (driver side surface) 1422 and an outer surface (external surface side surface) 1424.
  • the front glass 1420 is formed by bonding a first glass substrate 1430 and a second glass substrate 1435 to each other through an intermediate film 1450, and further, what is the second glass substrate 1435 of the first glass substrate 1430? After the reflective polarizing element 1440 is installed on the opposite surface, the reflective polarizing element 1440 is protected by the resin layer 1410.
  • the resin layer 1410 is on the inner surface 1422 side of the windshield 1420, and the second glass substrate 1435 is on the outer surface 1424 side.
  • the display unit 1445 is installed to emit display light 1460 including a display image from the display unit 1445. Note that the display light 1460 emitted from the display unit 1445 is P-polarized light.
  • the display means 1445 is configured such that when the display light 1460 is applied to the inner surface 1422 of the windshield 1420, the incident angle of the display light 1460 is ⁇ 3 (where ⁇ 3 is 0 to 90 °). .
  • the incident angle ⁇ 3 is substantially equal to ⁇ b3 (where ⁇ b3 is 0 to 90 °) when the Brewster angle at the interface between the air and the material (that is, resin) constituting the resin layer 1410 is ⁇ b3. Therefore, it is selected to be in the range of ⁇ b3 ⁇ 20 °.
  • the incident angle ⁇ 3 is preferably in the range of ⁇ b3 ⁇ 15 °, more preferably ⁇ b3 ⁇ 10 °, further preferably ⁇ b3 ⁇ 5 °, and ⁇ 3 ⁇ b3 Most preferably it is.
  • the display unit 1445 travels through the windshield 1420 of the display light 1460, and the incident angle of the transmitted light 1470 that reaches the outer surface 1424 of the windshield 1420 at the outer surface 1424 is ⁇ 4 (where ⁇ 4 is 0 to 90 °).
  • the incident angle ⁇ 4 is when the Brewster angle at the interface between the material constituting the second glass substrate 1435 on the incident side and the air is ⁇ b4 (where ⁇ b4 is 0 to 90 °). In practice, it is selected to be in the range of ⁇ b4 ⁇ 20 °.
  • the incident angle ⁇ 4 is preferably in the range of ⁇ b4 ⁇ 15 °, more preferably ⁇ b4 ⁇ 10 °, further preferably ⁇ b4 ⁇ 5 °, and ⁇ 4 ⁇ b4 . Most preferably it is.
  • the reflective polarizing element 1440 is arranged so that the reflection axis is parallel to the polarization axis of the transmitted light 1462 that is transmitted through the resin layer 1410 and incident on the reflective polarizing element 1440.
  • the reflective polarizing element 1440 is not particularly limited as long as it is a polarizing element having the above-described effects, and may be, for example, the wire grid polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
  • the third head-up display device 1400 is irradiated with display light 1460 having P-polarized light from the display unit 1445.
  • the display light 1460 is incident on the inner surface 1422 of the windshield 1420 at an incident angle ⁇ 3 .
  • the incident angle ⁇ 3 of the display light 1460 at the inner surface 1422 is substantially in the range of ⁇ b3 ⁇ 20 °. Yes.
  • the first transmitted light 1462 travels through the resin layer 1410 and reaches the reflective polarizing element 1440.
  • the reflective polarizing element 1440 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. For this reason, most of the P-polarized first transmitted light 1462 incident on the reflective polarizing element 1440 is reflected here to become reflected light 1465.
  • the reflected light 1465 is emitted toward the driver 1490 inside the vehicle, and the driver 1490 can recognize the display image by the reflected light 1465.
  • the second transmitted light 1470 travels through the first glass substrate 1430 to the second glass substrate 1435 and is incident on the outer surface 1424 of the windshield 1420 at an incident angle ⁇ 4 .
  • the incident angle ⁇ 4 of the second transmitted light 1470 on the outer surface 1424 of the windshield 1420 is substantially ⁇ b4 ⁇ 20 °. It is comprised so that it may become a range.
  • the reflection of the second transmitted light 1470 on the outer surface 1424 of the windshield 1420 is minimized. That is, most of the second transmitted light 1470 becomes light 1474 as it is, and is emitted from the rear of the windshield 1420 toward the outside. For this reason, even if the second transmitted light 1470 exists, the second transmitted light 1470 becomes the second reflected light, and the return to the driver 1490 is significantly suppressed.
  • the problem of the double image of the display image can be significantly suppressed.
  • Example 1 Assuming a transparent screen having a wire grid type polarizing element, the reflection / transmission characteristics of light when P-polarized light was irradiated onto the transparent screen were evaluated by simulation.
  • FIG. 13 schematically shows a cross-sectional view of the transparent screen used.
  • the transparent screen 1100 includes a first transparent resin substrate 1130, a second transparent resin substrate 1135, and a wire grid type polarizing element 1140.
  • the first transparent resin substrate 1130 has a first surface 1152.
  • the second transparent resin substrate 1135 has a first surface 1162 and a second surface 1164.
  • the first surface 1152 of the first transparent resin substrate 1130 constitutes the first surface 1122 of the transparent screen 1100, and the second surface 1164 of the second transparent resin substrate 1135 is the second surface of the transparent screen 1100.
  • a surface 1124 is formed.
  • the wire grid type polarization element 1140 is disposed on the first surface 1162 of the second transparent resin substrate 1135.
  • the wire grid type polarizing element 1140 has protrusions 1120 arranged at a constant pitch P along the same direction (X direction in FIG. 13). Each protrusion 1120 extends in a direction (Y direction) perpendicular to the paper surface in FIG.
  • the vertical height H of each protrusion 1120 is set to 150 nm.
  • a metal aluminum wire 1131 is installed on the same inclined surface of each protrusion 1120 along the extending direction of the protrusion 1120.
  • the thickness t of the wire 1131 is 55 nm, and the height (vertical length) L of the wire 1131 is 15 nm.
  • the transparent screen 1100 has a transmittance of about 70% (with P-polarized light) when light having a wavelength of 550 nm is irradiated onto the transparent screen 1100 at an incident angle of 0 °.
  • the average value of S-polarized light is the transmittance of 70% (with P-polarized light) when light having a wavelength of 550 nm is irradiated onto the transparent screen 1100 at an incident angle of 0 °.
  • the average value of S-polarized light The average value of S-polarized light.
  • Table 1 summarizes parameter values of the wire grid type polarizing element 1110 in such a transparent screen 1100 (referred to as configuration 1).
  • GSolver software manufactured by Grafting Solver Development Company
  • the wire grid type polarizing element 910 is arranged so that the reflection axis, that is, the extending direction of the wire is parallel to the polarization axis of the incident light.
  • the column of “Simulation results” in Table 1 above shows the simulation results of the obtained reflectance and transmittance. From this result, the reflectance in Configuration 1 was 25.0%, and the transmittance was 57.0%.
  • the P-polarized light is not reflected by the first surface 1122 of the transparent screen 1100 but becomes first transmitted light and enters the transparent screen 1100.
  • first reflected light light that is reflected by the first surface 1122 of the transparent screen 1100 (hereinafter referred to as “first reflected light”) hardly occurs.
  • the first transmitted light is incident on the wire grid type polarization element 1140.
  • the wire grid type polarization element 1140 is arranged so that the extending direction of the wire 1131 is parallel to the polarization axis of incident light. Therefore, the first transmitted light is reflected by the wire grid type polarization element 1140 and becomes the second reflected light.
  • the reflectance of the P-polarized light in the wire grid type polarizing element 1140 is 25.0% from the result of simulation.
  • the second transmitted light is incident on the second surface 1124 of the transparent screen 1100 at an incident angle ⁇ 2 .
  • ⁇ 2 is about 60 °.
  • This incident angle ⁇ 2 is close to 55 ° which is the Brewster angle ⁇ b at the resin (incident side) / air interface, and sufficiently satisfies ⁇ ⁇ ⁇ b ⁇ 20 °. Therefore, the second transmitted light that has entered the second surface 1124 of the transparent screen 1100 passes through the transparent screen 1100 and is emitted outward without being reflected here. In other words, light that is reflected by the second surface 1124 of the transparent screen 1100 (hereinafter referred to as “third reflected light”) hardly occurs.
  • the first reflected light and the third reflected light reflected at a place other than the wire grid type polarizing element 1140 portion in the transparent screen 1100 hardly occur.
  • Example 5 A transparent screen having a wire grid type polarizing element was assumed by the same method as in Example 1, and the reflection / transmission characteristics of light when P-polarized light was irradiated onto the transparent screen were evaluated by simulation.
  • the thickness t of the wire 1131 was 5 nm, and the height (length in the vertical direction) L of the wire 1131 was 113 nm.
  • Such a transparent screen is hereinafter referred to as “Configuration 2”.
  • the thickness t of the wire 1131 was 10 nm, and the height (vertical length) L of the wire 1131 was 75 nm.
  • Such a transparent screen is hereinafter referred to as “Configuration 3”.
  • the thickness t of the wire 1131 was 25 nm, and the height (vertical length) L of the wire 1131 was 38 nm.
  • Such a transparent screen is hereinafter referred to as “Configuration 4”.
  • the thickness t of the wire 1131 was 40 nm, and the height (vertical length) L of the wire 1131 was 23 nm.
  • Such a transparent screen is hereinafter referred to as “Configuration 5”.
  • Table 2 summarizes the parameter values of the wire grid type polarizing element in the transparent screens of configurations 2 to 5.
  • the reflectance was 14.0% and the transmittance was 51.0%.
  • the reflectance was 16.0%, and the transmittance was 46.0%.
  • the reflectance was 28.0% and the transmittance was 42.0%.
  • the reflectance was 30.0% and the transmittance was 41.0%.
  • Comparative Example 1 By the same method as in Example 1, the reflection / transmission characteristics of light when the transparent screen was irradiated with light were evaluated by simulation. However, in Comparative Example 1, a transparent screen having the structure shown in FIG. 14 was assumed.
  • the transparent screen 1200 includes a resin substrate 1250 having a first surface 1205 and a second surface 1206, and a half mirror 1210 installed on the first surface 1205 of the resin substrate 1250. It consists of.
  • the half mirror 1210 was a metal silver thin film having a thickness of 9.5 nm.
  • the transparent screen 1200 simulates the conditions of a normal vehicle windshield. Therefore, the transmittance when the transparent screen 1100 is irradiated with light having a wavelength of 550 nm at an incident angle of 0 ° is about 70% (with P-polarized light). The average value of S-polarized light).
  • the column of “Simulation result” in Table 3 shows the simulation result of the obtained reflectance and transmittance.
  • the column of “Evaluation Result” in Table 3 the result of evaluating the degree (strength) of double images in Configuration 6 is shown.
  • the reflectance of the S-polarized light is 48.7% from the simulation result. Therefore, in the transparent screen 1200 shown in FIG. 14, when S-polarized light is incident at an incident angle of 60 ° from the first surface 1205 side of the resin substrate 1250, the first surface 1205 is reflected. The amount of one reflected light is 48.7%, and the amount of transmitted light that is transmitted without being reflected is expected to be 47.8%.
  • the transmitted light transmitted through the first surface 1205 is then incident on the second surface 1206 of the resin substrate 1250 at an incident angle ⁇ of about 60 °.
  • the transmitted light is reflected here to become second reflected light, and returns to the first surface 1205 side of the resin substrate 1250.
  • the first reflected light and the second reflected light are reflected from the transparent screen 1200.
  • the intensity of the second reflected light is 47.8%, which is equivalent to 48.7% of the intensity of the first reflected light. For this reason, the degree of double images is expected to be very significant.
  • Comparative Example 2 Next, by the same method as in Comparative Example 1, the reflection / transmission characteristics of light when the transparent screen was irradiated with light were evaluated by simulation. However, in Comparative Example 2, the reflection / transmission characteristics of light when P-polarized light having a wavelength of 550 nm is incident on the transparent screen 1200 shown in FIG. ).
  • the column of “Simulation result” in Table 4 shows the simulation result of the obtained reflectance and transmittance.
  • the column of “Evaluation Result” in Table 4 the result of evaluating the degree (strength) of the double image in Configuration 7 is shown.
  • the reflectance of the P-polarized light was 14.2%, and the transmittance was 81.7%. Therefore, in the transparent screen 1200 shown in FIG. 14, when P-polarized light is incident at an incident angle of 60 ° from the first surface 1205 side of the resin substrate 1250, the first surface 1205 is reflected. The amount of one reflected light is 14.2%, and the amount of transmitted light that is transmitted without being reflected is expected to be 81.7%.
  • the transmitted light transmitted through the first surface 1205 is then incident on the second surface 1206 of the resin substrate 1250 at an incident angle ⁇ of about 60 °.
  • the transmitted light is reflected here to become second reflected light, and returns to the first surface 1205 side of the resin substrate 1250.
  • the first reflected light and the second reflected light are reflected from the transparent screen 1200.
  • the intensity of the second reflected light is 81.7%, which is extremely large. For this reason, in the case of Configuration 7, due to the influence of the first reflected light and the second reflected light, the degree of the double image is expected to be extremely remarkable.
  • This embodiment can be applied to a head-up display device for moving means such as a vehicle or an aircraft.
  • the present invention includes the following measures.
  • a head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means, wherein the transparent screen includes a transparent member, A reflective polarizing element embedded in the transparent member, and in the transparent member, when two surfaces in contact with air are respectively a first surface and a second surface, the display light is The display light is incident from the first surface, and the display light is P-polarized light parallel to the incident surface, and the reflective polarizing element is arranged so that the reflection axis is parallel to the polarization axis of the display light.
  • the incident angle ⁇ 1 on the first surface is defined as ⁇ B1 (where ⁇ b1 is 0 to 90 °) at the Brewster angle at the interface between air and the material constituting the first surface.
  • ⁇ B1 substantially ⁇ b1 ⁇
  • the incident angle ⁇ 2 at the second surface of transmitted light that travels in the transparent screen without being reflected by the reflective polarizing element out of the display light is within the range of 20 °.
  • the head-up display is substantially in the range of ⁇ b2 ⁇ 20 ° when the Brewster angle at the interface between the material constituting the surface and air is ⁇ b2 (where ⁇ b2 is 0 to 90 °).
  • a head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means, wherein the transparent screen includes a transparent member, A reflective polarizing element disposed on the surface of the transparent member, and in the transparent member, when the two surfaces in contact with air are respectively the first surface and the second surface, the display light is: Incident from the first surface, the reflective polarizing element is disposed on the second surface, the display light is P-polarized light parallel to the incident surface, and the reflective polarizing element is The reflection axis is arranged so as to be parallel to the polarization axis of the display light, and the incident angle ⁇ 1 of the display light on the first surface is an interface between air and the material constituting the first surface.
  • the Brewster angle of ⁇ b1 ( However, when ⁇ b1 is 0 to 90 °), a head-up display device substantially in the range of ⁇ b1 ⁇ 20 ° is provided.
  • a head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means, wherein the transparent screen includes a transparent member, A reflective polarizing element disposed on the surface of the transparent member, the reflective polarizing element is covered with a resin layer, the surface of the resin layer covering the reflective polarizing element is a first surface,
  • the transparent member when the surface opposite to the side where the reflective polarizing element is disposed is the second surface, the display light is incident from the first surface, and the display light is P-polarized light parallel to the incident surface, and the reflective polarizing element is disposed such that the reflection axis is parallel to the polarization axis of the display light, and the display light on the first surface the incident angle theta 1 is air and the first The Brewster angle at the interface theta b1 (although theta b1 is 0-90 °) between the material constituting the surface when the substantially located at theta b1 ⁇ 20 ° range, of

Abstract

A head-up display is provided with a display means, a transparent member, and a reflection-type polarization element. The head-up display is also provided with a transparent screen capable of displaying a display image by reflecting display light emitted from the display means. The reflection-type polarization element is provided so as to be in contact with either the transparent member or a resin layer. The display light enters from a first surface of either the transparent member or the resin layer provided so as to be in contact with the reflection-type polarization element, said first surface being in contact with air. The display light is p-polarized light parallel with respect to an incidence plane. The reflection-type polarization element is disposed such that the reflection axis is parallel with the display-light polarization axis. If the Brewster's angle at the interface between the air and the material forming the first surface is θb1 (on condition that θb1 is in the range of 0-90˚), the angle of incidence θ1 on the first surface is substantially in the range θb1±20˚.

Description

ヘッドアップディスプレイ装置Head-up display device
 本発明は、ヘッドアップディスプレイ装置に関する。 The present invention relates to a head-up display device.
 従来より、背面側の景色を遮断することなく、表示像を表示することが可能な透明スクリーンが注目されている。 Conventionally, a transparent screen capable of displaying a display image without blocking the scenery on the back side has attracted attention.
 透明スクリーンの代表的な例は、車両または航空機等の移動手段用のヘッドアップディスプレイ装置である。 A typical example of the transparent screen is a head-up display device for moving means such as a vehicle or an aircraft.
 例えば、車両用のヘッドアップディスプレイ装置は、運転手前方の視野内に、車速等の情報を結像することができる(例えば、特許文献1および特許文献2)。このため、運転者は、車両の運転中に、情報確認のため視線を前方から大きくそらす必要がなくなり、運転中の安全性が向上する。 For example, a head-up display device for a vehicle can image information such as the vehicle speed in the field of view in front of the driver (for example, Patent Document 1 and Patent Document 2). For this reason, the driver does not need to largely shift his / her line of sight from the front for information confirmation during driving of the vehicle, and safety during driving is improved.
特開平2-141720号公報Japanese Patent Laid-Open No. 2-141720 実開平3-59336号公報Japanese Utility Model Publication No. 3-59336
 一般に、車両用のヘッドアップディスプレイ装置は、車内のダッシュボード等に設置された表示手段、およびコンバイナと呼ばれる半透過半反射の光学素子から構成される。このコンバイナに向かって表示光を照射させ、前記コンバイナにより表示光を反射させることにより、運転者に外景と重畳させた表示像(虚像)を視認させる。コンバイナは、フロントガラス(合わせガラス)内に封入させる、またはフロントガラスの運転手側の表面に貼り付ける、またはフロントガラスと運転手の間に設置する、などといった形態で用いられる。 Generally, a head-up display device for a vehicle is composed of display means installed on a dashboard or the like in the vehicle, and a semi-transmissive and semi-reflective optical element called a combiner. By irradiating display light toward the combiner and reflecting the display light by the combiner, the driver can visually recognize a display image (virtual image) superimposed on the outside scene. The combiner is used in a form such as being enclosed in a windshield (laminated glass), affixed to the surface of the windshield on the driver side, or installed between the windshield and the driver.
 しかしながら、いずれの構成においても、コンバイナに照射された表示光の一部は、コンバイナを透過して、例えばコンバイナが外界と接する側の表面など、屈折率の異なる界面で運転者側に反射される。このため、従来のヘッドアップディスプレイ装置では、本来必要なコンバイナからの反射光(表示光)のほかに、そのほかの界面からの反射光も存在することになる。従って、従来のヘッドアップディスプレイ装置では、表示像が二重像になり、視認性が悪くなるという問題が生じる。 However, in any configuration, part of the display light irradiated to the combiner is transmitted through the combiner and reflected to the driver side at an interface having a different refractive index, such as the surface on the side where the combiner contacts the outside. . For this reason, in the conventional head-up display device, in addition to the reflected light (display light) from the originally required combiner, reflected light from other interfaces also exists. Therefore, the conventional head-up display device has a problem that the display image becomes a double image and visibility is deteriorated.
 なお、前述の特許文献1には、このような二重像の問題を軽減するための対策が開示されている。特許文献1に記載の対策では、コンバイナに半透過ミラーと位相差フィルムを用いて、フロントガラスの外界と接する側の表面に入射する偏光を変化させて、前記表面からの反射光を減少させている。しかしながら、一般に位相差フィルムは、ある波長における位相差を設定するため、二重像抑制の効果が小さく、カラー表示用のヘッドアップディスプレイ装置には適用することが難しいなど、汎用性に問題がある。 Note that the above-mentioned Patent Document 1 discloses a measure for reducing the problem of such a double image. In the countermeasure described in Patent Document 1, a semi-transmission mirror and a retardation film are used as a combiner to change the polarized light incident on the surface of the windshield in contact with the outside world, thereby reducing the reflected light from the surface. Yes. However, in general, a retardation film sets a phase difference at a certain wavelength, so that the effect of suppressing double images is small, and it is difficult to apply to a head-up display device for color display. .
 本発明は、このような背景に鑑みなされたものであり、本発明では、汎用性を有する上、二重像を軽減して視認性を高めることが可能なヘッドアップディスプレイ装置を提供することを目的とする。 The present invention has been made in view of such a background, and the present invention provides a head-up display device that has versatility and can reduce visibility of double images and increase visibility. Objective.
 一つの形態によれば、表示手段と、透明部材及び反射型偏光素子を有し、前記表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンと、を有し、前記反射型偏光素子は、前記透明部材または樹脂層に接して設けられるとともに、前記表示光は、前記反射型偏光素子に接して設けられた前記透明部材または樹脂層の空気と接する第1の表面から入射し、前記表示光は、入射面に対して平行なP偏光の光であり、前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、前記第1の表面における入射角θは、空気と前記第1の表面を構成する材料との界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲であるヘッドアップディスプレイ装置が提供される。 According to one aspect, a transparent screen having a display means, a transparent member and a reflective polarizing element, and capable of displaying a display image by reflecting display light emitted from the display means; The reflective polarizing element is provided in contact with the transparent member or the resin layer, and the display light is in contact with air of the transparent member or the resin layer provided in contact with the reflective polarizing element. The display light is incident from the first surface, and the display light is P-polarized light parallel to the incident surface, and the reflective polarizing element is arranged so that the reflection axis is parallel to the polarization axis of the display light. The incident angle θ 1 on the first surface is defined as θ B1 (where θ b1 is 0 to 90 °) at the Brewster angle at the interface between air and the material constituting the first surface. In the range of θ b1 ± 20 ° A head-up display device is provided.
 本実施形態では、二重像を軽減して視認性を高めることが可能なヘッドアップディスプレイ装置を提供することができる。 In this embodiment, it is possible to provide a head-up display device capable of reducing the double image and improving the visibility.
従来のヘッドアップディスプレイ装置の構成を概略的に示した図である。It is the figure which showed schematically the structure of the conventional head-up display apparatus. 反射型偏光素子の一例としての、ワイヤグリッド型偏光素子の構成を概略的に示した図である。It is the figure which showed schematically the structure of the wire grid type polarizing element as an example of a reflective polarizing element. 図2に示したワイヤグリッド型偏光素子に、S偏光の光が入射された際の光学特性を説明するための模式図である。It is a schematic diagram for demonstrating the optical characteristic at the time of the S-polarized light injecting into the wire grid type polarizing element shown in FIG. 図2に示したワイヤグリッド型偏光素子に、P偏光の光が入射された際の光学特性を説明するための模式図である。It is a schematic diagram for demonstrating the optical characteristic at the time of the P-polarized light injecting into the wire grid type polarizing element shown in FIG. 別のワイヤグリッド型偏光素子の構成を概略的に示した図である。It is the figure which showed schematically the structure of another wire grid type polarizing element. S偏光とP偏光の入射角θが反射率(%)に及ぼす影響を模式的に示したグラフである。It is the graph which showed typically the influence which the incident angle (theta) of S polarized light and P polarized light has on reflectance (%). 本実施形態による透明スクリーンの一構成例を概略的に示した図である。It is the figure which showed schematically the example of 1 structure of the transparent screen by this embodiment. 本実施形態による透明スクリーンの別の構成例を概略的に示した図である。It is the figure which showed schematically the example of another structure of the transparent screen by this embodiment. 本実施形態による透明スクリーンの第3の構成例を概略的に示した図である。It is the figure which showed schematically the 3rd structural example of the transparent screen by this embodiment. 本実施形態によるヘッドアップディスプレイ装置の構成例を概略的に示した図である。It is the figure which showed schematically the example of a structure of the head-up display apparatus by this embodiment. 本実施形態によるヘッドアップディスプレイ装置の別の構成例を概略的に示した図である。It is the figure which showed schematically the example of another structure of the head-up display apparatus by this embodiment. 本実施形態によるヘッドアップディスプレイ装置の第3の構成例を概略的に示した図である。It is the figure which showed schematically the 3rd structural example of the head-up display apparatus by this embodiment. 実施例1に係る透明スクリーンの構造を模式的に示した断面図である。3 is a cross-sectional view schematically showing the structure of a transparent screen according to Example 1. FIG. 比較例1に係る透明スクリーンの構造を模式的に示した断面図である。5 is a cross-sectional view schematically showing the structure of a transparent screen according to Comparative Example 1. FIG.
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not departed from the scope of the present invention. Various modifications and substitutions can be made.
 まず、本実施形態による特徴をより良く理解するため、図1を参照して、従来の透明スクリーンの構成について簡単に説明する。なお、ここでは、透明スクリーンの一例として、車両用のヘッドアップディスプレイ装置を取り上げ、その構成を説明する。 First, in order to better understand the characteristics of the present embodiment, the configuration of a conventional transparent screen will be briefly described with reference to FIG. Here, a head-up display device for a vehicle is taken up as an example of the transparent screen, and the configuration thereof will be described.
 図1には、従来の車両用のヘッドアップディスプレイ装置の構成を概略的に示す。 FIG. 1 schematically shows a configuration of a conventional head-up display device for a vehicle.
 図1に示すように、従来の車両用のヘッドアップディスプレイ装置10は、フロントガラス20と、該フロントガラス20の少なくとも一部もしくはその前面に設置されたコンバイナ40と、プロジェクタのような表示手段45とを有する。表示手段45は、通常の場合、車両のダッシュボード80の一部もしくは内部に設置される。 As shown in FIG. 1, a conventional head-up display device 10 for a vehicle includes a windshield 20, a combiner 40 installed on at least a part of the windshield 20, or a display unit 45 such as a projector. And have. The display means 45 is usually installed in a part of or inside the dashboard 80 of the vehicle.
 フロントガラス20は、内面(運転者側の表面)22と、外面(外界側の表面)24とを有する。また、フロントガラス20は、通常の場合、第1のガラス基板30と、第2のガラス基板35とを、中間膜39を介して相互に貼り合わせることにより構成される。図1の例では、第1のガラス基板30がフロントガラス20の内面22の側となり、第2のガラス基板35が外面24の側となる。 The windshield 20 has an inner surface (driver-side surface) 22 and an outer surface (external-side surface) 24. Further, the windshield 20 is usually configured by bonding a first glass substrate 30 and a second glass substrate 35 to each other via an intermediate film 39. In the example of FIG. 1, the first glass substrate 30 is on the inner surface 22 side of the windshield 20, and the second glass substrate 35 is on the outer surface 24 side.
 コンバイナ40は、例えば銀薄膜のような金属層で構成され、第1のガラス基板30の側、すなわちフロントガラス20の内面22に配置される。 The combiner 40 is formed of a metal layer such as a silver thin film, and is disposed on the first glass substrate 30 side, that is, on the inner surface 22 of the windshield 20.
 表示手段45は、該表示手段45から表示像を含む表示光60を出射するために設置される。なお、表示手段45から出射される表示光60は、通常の場合、S偏光の光である。 The display means 45 is installed to emit display light 60 including a display image from the display means 45. The display light 60 emitted from the display means 45 is S-polarized light in a normal case.
 ここで、S偏光とは、光の電場の振動方向が入射面に対して垂直な偏光を意味する。(これに対して、光の電場の振動方向が入射面に対して平行な偏光は、P偏光と呼ばれる。)また、「入射面」とは、入射光と反射光の光路を含む平面を意味する。 Here, S-polarized light means polarized light in which the vibration direction of the electric field of light is perpendicular to the incident surface. (On the other hand, polarized light in which the vibration direction of the electric field of light is parallel to the incident surface is called P-polarized light.) Also, the “incident surface” means a plane including the optical paths of incident light and reflected light. To do.
 一般に表示光60として、S偏光の光を利用するのは、S偏光ではP偏光に比べて、より多くの光をフロントガラス20で反射させることができ、表示像が明るくなるためである。 Generally, the reason why the S-polarized light is used as the display light 60 is that the S-polarized light can reflect more light by the windshield 20 than the P-polarized light, and the display image becomes brighter.
 このようなヘッドアップディスプレイ装置10を作動させる際には、表示手段45が起動され、表示手段45から表示像を含む表示光60が出射される。この表示光60は、フロントガラス20の内面22に設置されたコンバイナ40に向かって進行する。なお、この際には、表示手段45とフロントガラス20の間に、レンズ等の光学素子(図示されていない)を配置しておき、これにより、表示光60をコンバイナ40の方に誘導する、もしくは像の大きさを拡大する、などしても良い。 When operating such a head-up display device 10, the display means 45 is activated, and the display light 60 including the display image is emitted from the display means 45. The display light 60 travels toward the combiner 40 installed on the inner surface 22 of the windshield 20. In this case, an optical element (not shown) such as a lens is arranged between the display means 45 and the windshield 20, thereby guiding the display light 60 toward the combiner 40. Or you may enlarge the magnitude | size of an image.
 次に、表示光60は、コンバイナ40に入射し、ここで反射され、反射光65となる。反射光65は、運転者90の方に向かい、これにより、運転者90は、自身の前方に外景と重畳させた表示像(虚像)を視認することができる。 Next, the display light 60 enters the combiner 40 and is reflected here to become reflected light 65. The reflected light 65 is directed toward the driver 90, so that the driver 90 can visually recognize a display image (virtual image) superimposed on the outside scene in front of himself / herself.
 しかしながら、実際には、コンバイナ40に到達した表示光60の全てが反射光65となる訳ではなく、表示光60の一部は、コンバイナ40~フロントガラス20の内面22を透過して、透過光70となり、フロントガラス20の内部に侵入する。その後、この透過光70は、例えば、フロントガラス20を構成する第2のガラス基板35の外側の表面、すなわちフロントガラス20の外面24で反射され、第2の反射光75となり、フロントガラス20から、運転者90の側に向かって出射される。 However, in reality, not all of the display light 60 that reaches the combiner 40 becomes the reflected light 65, and a part of the display light 60 passes through the combiner 40 to the inner surface 22 of the windshield 20 to transmit the transmitted light. 70 and enters the inside of the windshield 20. Thereafter, the transmitted light 70 is reflected by, for example, the outer surface of the second glass substrate 35 constituting the windshield 20, that is, the outer surface 24 of the windshield 20, and becomes the second reflected light 75. It is emitted toward the driver 90 side.
 その結果、運転者90の側には、反射光65と第2の反射光75の双方が到達することとなり、これにより表示像が二重像になるという問題が生じる。また、より厳密には、フロントガラス20内のその他の界面(例えば、第1のガラス基板30と中間膜39との界面、および第2のガラス基板35と中間膜39との界面など)からの反射も生じるため、運転者90に視認される表示像は、三重像以上の多重像になる場合も生じ得る。 As a result, both the reflected light 65 and the second reflected light 75 reach the driver 90 side, which causes a problem that the display image becomes a double image. More precisely, from other interfaces in the windshield 20 (for example, the interface between the first glass substrate 30 and the intermediate film 39 and the interface between the second glass substrate 35 and the intermediate film 39). Since reflection also occurs, the display image visually recognized by the driver 90 may be a multiple image that is more than a triple image.
 このように、従来のヘッドアップディスプレイ装置10では、表示像の視認性に問題がある。 Thus, the conventional head-up display device 10 has a problem in the visibility of the display image.
 本願発明者らは、このような問題に対処すべく、様々な検討を行ってきた。その結果、反射型偏光素子を利用し、ブリュースタ角θの特性をうまく利用することにより、前述のような二重像の問題が解消または軽減されることを見出し、本願発明に至った。 The inventors of the present application have made various studies in order to deal with such problems. As a result, by using a reflective polarizing element, by taking advantage of the characteristics of the Brewster angle theta b, it found that a problem of double image as described above is eliminated or reduced, leading to the present invention.
 すなわち、第1の実施形態では、
 表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、
 前記透明スクリーンは、透明部材と、当該透明部材中に埋設された反射型偏光素子とを有し、
 前記透明部材において、空気と接する2つの面をそれぞれ第1の表面および第2の表面とした場合に、
 前記表示光は、前記第1の表面から入射し、
 前記表示光は、入射面に対して平行なP偏光の光であり、
 前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、
 前記第1の表面における入射角θは、空気と前記第1の表面を構成する材料との界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲であり、
 前記表示光のうち、前記反射型偏光素子で反射されずに、当該透明スクリーン内に進行する透過光の、前記第2の表面における入射角θは、前記第2の表面を構成する材料と空気との界面でのブリュースタ角をθb2(ただしθb2は、0~90゜)としたとき、実質的に、θb2±20゜の範囲にあるヘッドアップディスプレイ装置が提供される。
That is, in the first embodiment,
A head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means,
The transparent screen has a transparent member and a reflective polarizing element embedded in the transparent member,
In the transparent member, when two surfaces in contact with air are respectively the first surface and the second surface,
The display light is incident from the first surface;
The display light is P-polarized light parallel to the incident surface,
The reflective polarizing element is arranged such that the reflection axis is parallel to the polarization axis of the display light,
The incident angle θ 1 at the first surface is substantially equal to θ b1 (where θ b1 is 0 to 90 °) when the Brewster angle at the interface between air and the material forming the first surface is θ b1. In the range of θ b1 ± 20 °,
Of the display light, an incident angle θ 2 on the second surface of transmitted light that travels in the transparent screen without being reflected by the reflective polarizing element is a material that constitutes the second surface. When the Brewster angle at the interface with air is θ b2 (where θ b2 is 0 to 90 °), a head-up display device substantially in the range of θ b2 ± 20 ° is provided.
 また、第2の実施形態では、
 表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、
 前記透明スクリーンは、透明部材と、当該透明部材の表面に配置された反射型偏光素子とを有し、
 前記透明部材において、空気と接する2つの面をそれぞれ第1の表面および第2の表面とした場合に、
 前記表示光は、前記第1の表面から入射し、
 前記反射型偏光素子は、前記第2の表面に配置され、
 前記表示光は、入射面に対して平行なP偏光の光であり、
 前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、
 前記表示光の前記第1の表面での入射角θは、空気と前記第1の表面を構成する材料の界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲にあるヘッドアップディスプレイ装置が提供される。
In the second embodiment,
A head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means,
The transparent screen has a transparent member and a reflective polarizing element disposed on the surface of the transparent member,
In the transparent member, when two surfaces in contact with air are respectively the first surface and the second surface,
The display light is incident from the first surface;
The reflective polarizing element is disposed on the second surface;
The display light is P-polarized light parallel to the incident surface,
The reflective polarizing element is arranged such that the reflection axis is parallel to the polarization axis of the display light,
The incident angle θ 1 of the display light on the first surface is the Brewster angle at the interface between the air and the material constituting the first surface, θ b1 (where θ b1 is 0 to 90 °). Then, a head-up display device substantially in the range of θ b1 ± 20 ° is provided.
 (反射型偏光素子の構成および作用について)
 ここで、本実施形態の構成に利用される、反射型偏光素子の構成および作用について簡単に説明する。
(Configuration and operation of reflective polarizing element)
Here, the configuration and operation of the reflective polarizing element used in the configuration of the present embodiment will be briefly described.
 反射型偏光素子としては、ワイヤグリッド型偏光素子や、高屈折率層および低屈折率層の異なる2種類の高分子層を一方向の屈折率は完全に一致させ他方向の屈折率は異なるように互いに数百層並べた光学フィルム、コレステリック液晶と4分の1波長板を組み合わせた光学素子等が挙げられる。 As the reflective polarizing element, a wire grid type polarizing element or two kinds of polymer layers having different high refractive index layers and low refractive index layers are made to have the same refractive index in one direction and different in refractive index in the other direction. Examples thereof include an optical film in which several hundred layers are arranged, and an optical element in which a cholesteric liquid crystal and a quarter-wave plate are combined.
 高屈折率層、低屈折率層の異なる2種類の高分子層を、一方向の屈折率は完全に一致させ、他方向の屈折率は異なるように互いに数百層並べた光学フィルムである。表示装置において輝度向上用途に用いられる。本実施形態にあるような透明スクリーンに用いる場合、従来よりもさらに偏光度を落とし、透過率を向上させて用いることが望ましい。このような光学フィルムとしては、住友スリーエム社製のDBEFが挙げられる。 An optical film in which two kinds of polymer layers having different high refractive index layers and low refractive index layers are arranged in several hundred layers so that the refractive indexes in one direction are completely matched and the refractive indexes in other directions are different. Used for brightness enhancement in display devices. When used for a transparent screen as in the present embodiment, it is desirable to further reduce the degree of polarization and improve the transmittance as compared with the prior art. Examples of such an optical film include DBEF manufactured by Sumitomo 3M Limited.
 コレステリック液晶と4分の1波長板を組み合わせた光学素子とは、ある直線偏光を入射させ4分の1波長板により円偏光に変換させ、コレステリック液晶により選択的に透過・反射させ、反射した円偏光は再度4分の1波長板を通り、円偏光から直線偏光へ変換されるという素子である。 An optical element that combines a cholesteric liquid crystal and a quarter-wave plate is an incident light that is incident on a linearly polarized light, converted into circularly-polarized light by a quarter-wave plate, and selectively transmitted and reflected by the cholesteric liquid crystal. The polarized light is an element that passes through the quarter-wave plate again and is converted from circularly polarized light to linearly polarized light.
 図2には、反射型偏光素子の一例として、ワイヤグリッド型偏光素子を示す。 FIG. 2 shows a wire grid type polarization element as an example of the reflection type polarization element.
 図2に示すように、このワイヤグリッド型偏光素子100は、透明基板110と、該透明基板110上に設置された複数の金属ワイヤ130とを有する。透明基板110は、例えば、光硬化樹脂、熱可塑性樹脂、またはガラス等で構成される。 As shown in FIG. 2, the wire grid type polarization element 100 includes a transparent substrate 110 and a plurality of metal wires 130 installed on the transparent substrate 110. The transparent substrate 110 is made of, for example, a photocurable resin, a thermoplastic resin, or glass.
 各金属ワイヤ130は、等間隔で、相互に平行に配置される。例えば、図2の例では、各金属ワイヤ130は、ピッチPで、それぞれY方向に平行に延伸するように配置される。なお、ピッチPは、少なくとも可視光の波長(約400nm)よりも短く、例えば、100nm~200nm程度である。このため、目視では、各金属ワイヤ130を視認することはできない。 The metal wires 130 are arranged at equal intervals and in parallel with each other. For example, in the example of FIG. 2, each metal wire 130 is arranged at a pitch P so as to extend parallel to the Y direction. The pitch P is at least shorter than the wavelength of visible light (about 400 nm), and is about 100 nm to 200 nm, for example. For this reason, each metal wire 130 cannot be visually recognized visually.
 なお、以下、金属ワイヤ130の延伸方向を、反射軸と称する。「反射軸」の定義は、後述する。 In the following, the extending direction of the metal wire 130 is referred to as a reflection axis. The definition of “reflection axis” will be described later.
 このように構成されたワイヤグリッド型偏光素子100は、以下のように作用する。 The wire grid type polarizing element 100 configured as described above operates as follows.
 まず、図2に示すようなワイヤグリッド型偏光素子100に、S偏光の光が入射する場合を説明する。ここで、前述のように、S偏光とは、光の電場の振動方向が入射面に対して垂直な偏光を意味する。 First, the case where S-polarized light is incident on the wire grid type polarizing element 100 as shown in FIG. 2 will be described. Here, as described above, S-polarized light means polarized light in which the vibration direction of the electric field of light is perpendicular to the incident surface.
 この場合、大きく分けて、図3に示すような2通りの光学特性が生じる。 In this case, there are roughly two types of optical characteristics as shown in FIG.
 (a)入射する光140Sの偏光軸(図3(a)の紙面に垂直な方向)と、ワイヤグリッド型偏光素子100の金属ワイヤ130の延伸方向、すなわち反射軸の方向が平行な場合、図3(a)に示すように、光140Sは反射し、反射光150aとなる。 (A) When the polarization axis of the incident light 140S (the direction perpendicular to the paper surface of FIG. 3A) and the extending direction of the metal wire 130 of the wire grid type polarizing element 100, that is, the direction of the reflection axis, are parallel to each other. As shown in FIG. 3A, the light 140S is reflected to become reflected light 150a.
 (b)一方、入射する光140Sの偏光軸(図3(a)の紙面に垂直な方向)と、ワイヤグリッド型偏光素子100の金属ワイヤ130の延伸方向、すなわち反射軸の方向が垂直な場合、図3(b)に示すように、光140Sは透過し、透過光150bとなる。 (B) On the other hand, when the polarization axis of the incident light 140S (the direction perpendicular to the paper surface of FIG. 3A) and the extending direction of the metal wire 130 of the wire grid type polarizing element 100, that is, the direction of the reflection axis, are perpendicular. As shown in FIG. 3B, the light 140S is transmitted to become transmitted light 150b.
 次に、ワイヤグリッド型偏光素子100に、P偏光の光が入射する場合を説明する。ここで、前述のように、P偏光とは、光の電場の振動方向が入射面に対して平行な偏光を意味する。 Next, a case where P-polarized light is incident on the wire grid type polarizing element 100 will be described. Here, as described above, P-polarized light means polarized light in which the vibration direction of the electric field of light is parallel to the incident surface.
 この場合、大きく分けて、図4に示すような2通りの光学特性が生じる。 In this case, there are roughly two types of optical characteristics as shown in FIG.
 (c)入射する光140Pの偏光軸(図4(a)の紙面に平行な方向)と、ワイヤグリッド型偏光素子100の金属ワイヤ130の延伸方向、すなわち反射軸の方向が垂直な場合、図4(a)に示すように、光140Pは透過し、透過光150cとなる。 (C) When the polarization axis of incident light 140P (the direction parallel to the paper surface of FIG. 4A) and the extending direction of the metal wire 130 of the wire grid type polarizing element 100, that is, the direction of the reflection axis, are perpendicular to each other. As shown in FIG. 4A, the light 140P is transmitted to become transmitted light 150c.
 (d)一方、入射する光140Pの偏光軸(図4(a)の紙面に平行な方向)と、ワイヤグリッド型偏光素子100の金属ワイヤ130の延伸方向、すなわち反射軸の方向が平行な場合、図3(b)に示すように、光140Pは反射し、反射光150dとなる。 (D) On the other hand, when the polarization axis of the incident light 140P (the direction parallel to the paper surface of FIG. 4A) and the extending direction of the metal wire 130 of the wire grid type polarizing element 100, that is, the direction of the reflection axis are parallel. As shown in FIG. 3B, the light 140P is reflected to become reflected light 150d.
 このように、ワイヤグリッド型偏光素子100は、自身の反射軸と、入射する偏光の偏光軸との配置関係により、入射光の光学特性を、反射/透過で変化させることができるという特徴を有する。 As described above, the wire grid type polarizing element 100 has a feature that the optical characteristic of incident light can be changed by reflection / transmission according to the positional relationship between the reflection axis of the wire grid type polarization element 100 and the polarization axis of incident polarized light. .
 なお、図2の例では、各金属ワイヤ130は、略四角柱状の形状で、透明基板110の平坦面115上に配置されている。しかしながら、金属ワイヤの配置形態は、これに限られない。 In the example of FIG. 2, each metal wire 130 has a substantially quadrangular prism shape and is disposed on the flat surface 115 of the transparent substrate 110. However, the arrangement form of the metal wires is not limited to this.
 図5には、別の構成のワイヤグリッド型偏光素子101を示す。 FIG. 5 shows a wire grid type polarizing element 101 having another configuration.
 このワイヤグリッド型偏光素子101では、透明基板111は、図5のX方向に沿って、ピッチPで配列された突起120を有する。図5からは視認できないが、各突起120は、Y方向(紙面に垂直な方向)に沿って相互に平行に延伸している。 In this wire grid type polarizing element 101, the transparent substrate 111 has protrusions 120 arranged at a pitch P along the X direction in FIG. Although not visible from FIG. 5, the protrusions 120 extend parallel to each other along the Y direction (direction perpendicular to the paper surface).
 突起120は、透明基板111と同じ材料で構成されても良く、透明基板111と異なる光透過性材料で構成されても良い。突起120の材料としては、光硬化樹脂、熱可塑性樹脂、ガラス等が挙げられる。突起120を構成する材料の屈折率は、透明基板111を構成する材料の屈折率に近いことが好ましい。具体的には、それらの屈折率差(絶対値)は、0.1以下が好ましく、0.05以下がより好ましい。そうすることで、透明基板111と突起120との界面でおこる反射による光のロスを抑えることができる。 The protrusion 120 may be made of the same material as the transparent substrate 111, or may be made of a light transmissive material different from that of the transparent substrate 111. Examples of the material of the protrusion 120 include a photo-curing resin, a thermoplastic resin, and glass. The refractive index of the material constituting the protrusion 120 is preferably close to the refractive index of the material constituting the transparent substrate 111. Specifically, the refractive index difference (absolute value) is preferably 0.1 or less, and more preferably 0.05 or less. By doing so, it is possible to suppress light loss due to reflection occurring at the interface between the transparent substrate 111 and the protrusion 120.
 ピッチPは、突起底面の幅Tと突起底部の幅Sの和である。ピッチPは100~140nmが好ましい。ピッチPが140nm以下であれば、短波長領域(450nm以下)におけるp偏光透過率がさらに高くなる。また、ピッチPが100nm以上であれば、金属細線を形成しやすい。突起底面の幅Tは、ピッチPと同じ値でもかまわないが、ピッチPの70%以下が好ましく、ピッチPの60%以下がより好ましい。幅TがピッチPより小さくなると透過率が高くなり、透過率の角度依存が小さくなる。Hは突起の高さを表す。突起の高さHは200nm以下が好ましく、150nm以下がより好ましい。高さHが200nm以下となるとナノインプリントなどによる作成が容易となる。Lは金属ワイヤの高さ、tは金属ワイヤの幅を表す。ワイヤグリッド偏光素子において偏光分離特性を発揮するのはこの金属ワイヤの部分である。幅tは5nm以上70nm以下が好ましく、5nm以上60nm以下がより好ましい。幅tを5nm以上とすることにより、金属の膜質劣化を抑えて所望の光学特性を発揮できるようにできる。幅tを70nm以下とすることにより、透明スクリーンとして透過率・反射率の両立が適切に行える。 The pitch P is the sum of the width T of the protrusion bottom and the width S of the protrusion bottom. The pitch P is preferably 100 to 140 nm. If the pitch P is 140 nm or less, the p-polarized light transmittance in the short wavelength region (450 nm or less) is further increased. Moreover, if the pitch P is 100 nm or more, it is easy to form fine metal wires. The width T of the bottom surface of the protrusion may be the same value as the pitch P, but is preferably 70% or less of the pitch P, and more preferably 60% or less of the pitch P. When the width T is smaller than the pitch P, the transmittance increases, and the angle dependency of the transmittance decreases. H represents the height of the protrusion. The height H of the protrusion is preferably 200 nm or less, and more preferably 150 nm or less. When the height H is 200 nm or less, creation by nanoimprint or the like becomes easy. L represents the height of the metal wire, and t represents the width of the metal wire. It is this metal wire portion that exhibits polarization separation characteristics in the wire grid polarization element. The width t is preferably 5 nm to 70 nm, and more preferably 5 nm to 60 nm. By setting the width t to 5 nm or more, it is possible to exhibit desired optical characteristics while suppressing deterioration of the metal film quality. By setting the width t to 70 nm or less, both the transmittance and the reflectance can be appropriately achieved as a transparent screen.
 また前述の通り、金属ワイヤの部分で偏光分離特性を発揮するため、図2のように突起を有さず金属ワイヤのみの構成をとることも可能である。 In addition, as described above, since the polarization separation characteristic is exhibited in the metal wire portion, it is possible to adopt a configuration using only the metal wire without a protrusion as shown in FIG.
 各金属ワイヤ131は、透明基板111の対応する突起120の傾斜面に配置される。 Each metal wire 131 is disposed on the inclined surface of the corresponding protrusion 120 of the transparent substrate 111.
 このような構成のワイヤグリッド型偏光素子101においても、ピッチPが可視光の波長に比べて十分に短い場合、図2に示したワイヤグリッド型偏光素子100と同様の特性が得られることは、当業者には明らかである。 Also in the wire grid type polarizing element 101 having such a configuration, when the pitch P is sufficiently shorter than the wavelength of visible light, the same characteristics as those of the wire grid type polarizing element 100 shown in FIG. It will be apparent to those skilled in the art.
 さらに、この特徴は、ワイヤグリッド型偏光素子100に限られるものではなく、反射型偏光素子全般に対して成立する。すなわち、反射型偏光素子の反射軸と、入射される光の偏光軸(偏光の振動方向)との関係により、同様のことが言える。 Furthermore, this feature is not limited to the wire grid type polarizing element 100, but is applicable to all reflective polarizing elements. That is, the same can be said based on the relationship between the reflection axis of the reflective polarizing element and the polarization axis of the incident light (polarization vibration direction).
 ここで、本実施形態において、反射型偏光素子の「反射軸」は、以下のように定められる。 Here, in the present embodiment, the “reflection axis” of the reflective polarizing element is determined as follows.
 反射型偏光素子に非偏光状態の光が入射されると、光の電場の振動方向が直交した、透過光と反射光の2つの光に分離される。反射光の振動方向と平行な方向を反射軸と称し、透過光の振動方向と平行な方向を透過軸と称する。 When light in a non-polarized state is incident on the reflective polarizing element, it is separated into two light beams, a transmitted light beam and a reflected light beam, in which the vibration direction of the electric field of the light is orthogonal. A direction parallel to the vibration direction of the reflected light is referred to as a reflection axis, and a direction parallel to the vibration direction of the transmitted light is referred to as a transmission axis.
 本実施形態の第1発明および第2発明では、このような特性を有する反射型偏光素子の反射軸が、入射されるP偏光の偏光軸と平行となるように配置されるという特徴を有する。 The first and second inventions of the present embodiment have a feature that the reflection axis of the reflective polarizing element having such characteristics is arranged to be parallel to the polarization axis of the incident P-polarized light.
 この場合、入射される光の光学特性は、図4(b)示すような反射状態となり、入射光140Pの大部分を反射させることが可能になる。 In this case, the optical characteristics of the incident light are in a reflection state as shown in FIG. 4B, and most of the incident light 140P can be reflected.
 なお、前述のような特性を有するワイヤグリッド型偏光素子は、例えば、複数の平行な微細溝を有する樹脂グリッド基板を準備し、この溝内に、金属細線を成膜することにより、製造することができる。 The wire grid type polarizing element having the above-mentioned characteristics is manufactured by, for example, preparing a resin grid substrate having a plurality of parallel fine grooves and forming a thin metal wire in the grooves. Can do.
 樹脂グリッド基板は、例えば、ナノインプリント(光インプリント、熱インプリント)プロセス等によって形成することができる。あるいは、干渉露光法により、直接、樹脂グリッド基板を製作しても良い。一方、金属細線は、例えば、蒸着法およびスパッタ法等の一般的な成膜技術を用いて形成することができる。 The resin grid substrate can be formed by, for example, a nanoimprint (optical imprint, thermal imprint) process or the like. Alternatively, the resin grid substrate may be directly manufactured by interference exposure. On the other hand, the fine metal wire can be formed by using a general film forming technique such as vapor deposition or sputtering.
 あるいは、ワイヤグリッド型偏光素子は、例えば、平坦な表面を有する基板上に、蒸着法およびスパッタ法等の一般的な成膜技術を用いて金属膜を成膜した後、この金属膜をフォトリソグラフィまたは電子ビーム描画法等の技術を用いて、ワイヤー状にパターン処理することにより製造しても良い。 Alternatively, the wire grid type polarizing element is formed by, for example, forming a metal film on a substrate having a flat surface by using a general film forming technique such as a vapor deposition method and a sputtering method, and then photolithography the metal film. Or you may manufacture by patterning to a wire form using techniques, such as an electron beam drawing method.
 その他にも、様々な方法で、ワイヤグリッド型偏光素子を製造することができる。 In addition, a wire grid type polarizing element can be manufactured by various methods.
 (ブリュースタ角θについて)
 次に、図6を参照して、ブリュースタ角θについて説明する。
(About Brewster angle θ b )
Next, referring to FIG. 6, it will be described Brewster angle theta b.
 図6には、S偏光とP偏光の入射角θが反射率(%)に及ぼす影響を模式的に示す。前述のように、S偏光とは、光の電界の振動方向が入射面に対して垂直な偏光を意味し、P偏光とは、光の電界の振動方向が入射面に対して平行な偏光を意味する。なお、図6は、S偏光またはP偏光の光が、空気層(第1の媒質)から、樹脂またはガラス層(第2の媒質)に向かって入射する場合を仮定している。 FIG. 6 schematically shows the influence of the incident angle θ of S-polarized light and P-polarized light on the reflectance (%). As described above, S-polarized light refers to polarized light whose vibration direction of the electric field of light is perpendicular to the incident surface, and P-polarized light refers to polarized light whose vibration direction of the electric field of light is parallel to the incident surface. means. FIG. 6 assumes that S-polarized light or P-polarized light is incident from the air layer (first medium) toward the resin or glass layer (second medium).
 図6から、S偏光の場合は、入射角θが大きくなるほど、反射率がほぼ単調に増加する傾向にあることがわかる。 6 that in the case of S-polarized light, the reflectance tends to increase almost monotonically as the incident angle θ increases.
 これに対して、P偏光の場合は、反射率がほぼゼロになる入射角θが存在する。また、この角度の前後では、P偏光の反射率が極めて小さくなる。このような反射率がゼロまたは最小となる入射角θを、ブリュースタ角θと呼ぶ。例えば、第1の透明基板がガラスで構成される場合、ブリュースタ角θは、 On the other hand, in the case of P-polarized light, there is an incident angle θ at which the reflectance is almost zero. In addition, the reflectance of P-polarized light becomes extremely small before and after this angle. The incident angle theta such reflectance is zero or a minimum, referred to as Brewster angle theta b. For example, when the first transparent substrate is made of glass, the Brewster angle θ b is
Figure JPOXMLDOC01-appb-M000001
で定義され、この図の例の場合、空気(n=1.0)、ガラス(n=1.52)であるから、θ=56.7゜と求められる。
Figure JPOXMLDOC01-appb-M000001
In the example of this figure, air (n 1 = 1.0) and glass (n 2 = 1.52), so θ b = 56.7 ° is obtained.
 ここで、第1の実施形態では、透明スクリーンの第1の表面に入射される表示光として、P偏光の光が使用される。また、第1の実施形態では、透明スクリーンの第1の表面での表示光の入射角θを、ブリュースタ角θb1に近い値になるように調整している。このため、第1の表面での表示光の反射は、最小限に抑制される。 Here, in the first embodiment, P-polarized light is used as display light incident on the first surface of the transparent screen. In the first embodiment, the incident angle θ 1 of the display light on the first surface of the transparent screen is adjusted to a value close to the Brewster angle θ b1 . For this reason, reflection of the display light on the first surface is suppressed to a minimum.
 さらに、第1の実施形態では、反射型偏光素子を透過した透過光が、透明スクリーンの第2の表面に照射される際の入射角θを、ブリュースタ角θb2に近い値になるように調整している。このため、透過光の第2の表面での反射は、最小限に抑制される。 Furthermore, in the first embodiment, the incident angle θ 2 when the transmitted light that has passed through the reflective polarizing element is applied to the second surface of the transparent screen is set to a value close to the Brewster angle θ b2. It is adjusted to. For this reason, reflection of the transmitted light on the second surface is minimized.
 従って、第1の実施形態では、反射型偏光素子で反射された光以外の光が、観者に向かって反射することを抑制することができ、二重像の問題を有意に改善することができる。 Therefore, in 1st Embodiment, it can suppress that lights other than the light reflected by the reflective polarizing element reflect toward an observer, and can improve the problem of a double image significantly. it can.
 同様に、第2の実施形態では、透明スクリーンの第1の表面に入射される表示光として、P偏光の光が使用される。また、第2の実施形態では、透明スクリーンの第1の表面での表示光の入射角θを、ブリュースタ角θb1に近い値になるように調整している。このため、第1の表面での表示光の反射は、最小限に抑制される。 Similarly, in the second embodiment, P-polarized light is used as display light incident on the first surface of the transparent screen. In the second embodiment, the incident angle θ 1 of the display light on the first surface of the transparent screen is adjusted to a value close to the Brewster angle θ b1 . For this reason, reflection of the display light on the first surface is suppressed to a minimum.
 従って、第2の実施形態においても、反射型偏光素子で反射された光以外の光が、観者に向かって反射することを抑制することができ、二重像の問題を有意に改善することができる。 Therefore, also in the second embodiment, light other than the light reflected by the reflective polarizing element can be prevented from being reflected toward the viewer, and the problem of double images can be significantly improved. Can do.
 ここで、前述のような本実施形態による二重像の抑制効果は、カラーの表示光に対しても同様に得ることができる。従って、第1の実施形態および第2の実施形態では、前述の特許文献1に関する問題、すなわち、単色の表示光でしか効果を得ることができないという問題を有意に改善することができる。従って、本実施形態による透明スクリーンにより、カラー表示用のヘッドアップディスプレイ装置に適用することができる。 Here, the effect of suppressing the double image according to the present embodiment as described above can be similarly obtained for color display light. Therefore, in the first embodiment and the second embodiment, it is possible to significantly improve the problem related to the above-described Patent Document 1, that is, the problem that the effect can be obtained only with monochromatic display light. Therefore, the transparent screen according to the present embodiment can be applied to a head-up display device for color display.
 ただし、本実施形態は、カラーの表示光を使用する構成に限られるものではなく、単色の表示光を使用しても良い。 However, this embodiment is not limited to the configuration using color display light, and may use monochromatic display light.
 (本実施形態における透明スクリーン)
 以下、図面を参照して、本実施形態における透明スクリーンの一構成例について詳しく説明する。
(Transparent screen in this embodiment)
Hereinafter, a configuration example of the transparent screen in the present embodiment will be described in detail with reference to the drawings.
 図7には、本実施形態における透明スクリーンの一構成例を概略的に示す。 FIG. 7 schematically shows a configuration example of the transparent screen in the present embodiment.
 図7に示すように、この透明スクリーン700は、第1の透明基板730と、第2の透明基板735と、両透明基板の間に配置された中間膜750とを有する。中間膜750と内には、反射型偏光素子740が配置される。 As shown in FIG. 7, the transparent screen 700 includes a first transparent substrate 730, a second transparent substrate 735, and an intermediate film 750 disposed between the transparent substrates. A reflective polarizing element 740 is disposed in the intermediate film 750.
 透明スクリーン700は、第1の表面722と、第2の表面724とを有する。第1の透明基板730の一方の表面は、透明スクリーン700の第1の表面722を構成し、第2の透明基板735の一方の表面は、透明スクリーン700の第2の表面724を構成する。 The transparent screen 700 has a first surface 722 and a second surface 724. One surface of the first transparent substrate 730 constitutes the first surface 722 of the transparent screen 700, and one surface of the second transparent substrate 735 constitutes the second surface 724 of the transparent screen 700.
 第1の透明基板730および第2の透明基板735の材料は、特に限られず、透明な部材で構成されている限り、いかなる材料を用いても良い。第1および第2の透明基板730、735は、例えば、ガラス基板または樹脂基板であっても良い。 The material of the first transparent substrate 730 and the second transparent substrate 735 is not particularly limited, and any material may be used as long as it is made of a transparent member. The first and second transparent substrates 730 and 735 may be glass substrates or resin substrates, for example.
 中間膜750の材質は、透明である限り特に限られず、例えば、公知の合わせガラスに用いられる中間膜、例えばポリビニルブチラールやエチレンビニルセテート等を用いることができる。 The material of the intermediate film 750 is not particularly limited as long as it is transparent. For example, an intermediate film used for a known laminated glass such as polyvinyl butyral or ethylene vinyl cetate can be used.
 反射型偏光素子740は、反射軸が、入射される表示光の偏光軸と平行になるようにして、第1および第2の透明基板730、735の間に設置される。反射型偏光素子740は、前述のような効果を有する偏光素子である限り、特に限られず、例えば、図2または図5に示したようなワイヤグリッド型偏光素子100、101等であっても良い。 The reflective polarizing element 740 is installed between the first and second transparent substrates 730 and 735 so that the reflection axis is parallel to the polarization axis of the incident display light. The reflective polarizing element 740 is not particularly limited as long as it is a polarizing element having the above-described effects, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
 また、本実施形態における透明スクリーン700は、透明スクリーン700の第1の表面722の側から、表示光760が照射された際に、第1の表面722での入射角がθ(ただしθは、0~90゜)となるように構成される。 The transparent screen 700 in this embodiment, from the side of the first surface 722 of the transparent screen 700, when the display light 760 is irradiated, the angle of incidence at the first surface 722 is theta 1 (except theta 1 Is configured to be 0-90 °.
 ここで、入射角θは、空気と、透明スクリーン700の第1の表面722(すなわち第1の透明基板730)を構成する材料との界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲となるように選定される。 Here, the incident angle θ 1 is the Brewster angle at the interface between air and the material constituting the first surface 722 of the transparent screen 700 (that is, the first transparent substrate 730), θ b1 (where θ b1 is , 0 to 90 °), it is selected so that it is substantially in the range of θ b1 ± 20 °.
 この入射角θは、θb1±15゜の範囲であることが好ましく、θb1±10゜であることがより好ましく、θb1±5゜であることがさらに好ましく、θ≒θb1であることが最も好ましい。 The incident angle θ 1 is preferably in the range of θ b1 ± 15 °, more preferably θ b1 ± 10 °, further preferably θ b1 ± 5 °, and θ 1 ≈θ b1 . Most preferably it is.
 さらに、本実施形態における透明スクリーン700は、反射型偏光素子740を通過し、第2の透明基板735内を進行する透過光770が、透明スクリーン700の第2の表面724に入射される際の入射角がθ(ただしθは、0~90゜)となるように構成される。ここで、入射角θは、入射側の透明スクリーン700の第2の表面724(すなわち第2の透明基板735)を構成する材料と、空気との界面でのブリュースタ角をθb2(ただしθb2は、0~90゜)としたとき、実質的に、θb2±20゜の範囲となるように選定される。 Further, the transparent screen 700 in the present embodiment passes through the reflective polarizing element 740 and the transmitted light 770 traveling through the second transparent substrate 735 is incident on the second surface 724 of the transparent screen 700. The incident angle is configured to be θ 2 (where θ 2 is 0 to 90 °). Here, the incident angle θ 2 is the Brewster angle at the interface between the material constituting the second surface 724 (that is, the second transparent substrate 735) of the incident-side transparent screen 700 and the air θ b2 (where θ b2 is selected to be substantially in the range of θ b2 ± 20 ° when 0 to 90 °).
 この入射角θは、θb2±15゜の範囲であることが好ましく、θb2±10゜であることがより好ましく、θb2±5゜であることがさらに好ましく、θ≒θb2であることが最も好ましい。 The incident angle θ 2 is preferably in the range of θ b2 ± 15 °, more preferably θ b2 ± 10 °, further preferably θ b2 ± 5 °, and θ 2 ≈θ b2 Most preferably it is.
 (本実施形態における透明スクリーン700の動作)
 次に、このような構成の本実施形態における透明スクリーン700の動作について説明する。
(Operation of Transparent Screen 700 in the Present Embodiment)
Next, the operation of the transparent screen 700 in the present embodiment having such a configuration will be described.
 まず、透明スクリーン700に、第1の表面722の側から、P偏光である表示光760が照射される。つまり、本実施形態において、表示手段(不図示)はP偏光の表示光760を出射する。 First, the transparent screen 700 is irradiated with display light 760 that is P-polarized light from the first surface 722 side. That is, in the present embodiment, the display means (not shown) emits P-polarized display light 760.
 前述のように、本実施形態における透明スクリーン700は、表示光760が透明スクリーン700の第1の表面722に入射した際に、第1の表面722での入射角θが、実質的に、θb1±20゜の範囲となるように構成されている。 As described above, in the transparent screen 700 according to the present embodiment, when the display light 760 is incident on the first surface 722 of the transparent screen 700, the incident angle θ1 on the first surface 722 is substantially equal to It is configured to have a range of θ b1 ± 20 °.
 このため、表示光760は、そのほとんどが第1の表面722では反射されずに、第1の透過光762となり、そのまま透明スクリーン700内に進入する。 For this reason, most of the display light 760 is not reflected by the first surface 722 but becomes the first transmitted light 762 and enters the transparent screen 700 as it is.
 その後、第1の透過光762は、第1の透明基板730内を進行し、反射型偏光素子740に至る。 Thereafter, the first transmitted light 762 travels in the first transparent substrate 730 and reaches the reflective polarizing element 740.
 前述のように、反射型偏光素子740は、反射軸が、入射される光の偏光軸と平行になるようにして配置されている。このため、反射型偏光素子740に入射されたP偏光の透過光762は、ここで大部分が反射され、反射光765となる。この反射光765は、透明スクリーン700の前方にいる観者790の方に出射され、観者790は、この反射光765により、表示像を認識することができる。 As described above, the reflective polarizing element 740 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. Therefore, most of the P-polarized transmitted light 762 incident on the reflective polarizing element 740 is reflected here to become reflected light 765. The reflected light 765 is emitted toward the viewer 790 in front of the transparent screen 700, and the viewer 790 can recognize the display image by the reflected light 765.
 なお、反射型偏光素子740に入射された透過光762の一部は、反射されずに、第2の透過光770となり、そのまま透明スクリーン700の内部に進入する可能性がある。その場合、この第2の透過光770は、第2の透明基板735内を進行し、透明スクリーン700の第2の表面724に入射角θで照射される。 Note that a part of the transmitted light 762 incident on the reflective polarizing element 740 may not enter the second transmitted light 770 and may enter the transparent screen 700 as it is. In this case, the second transmitted light 770 travels through the second transparent substrate 735 and is irradiated onto the second surface 724 of the transparent screen 700 at an incident angle θ 2 .
 ここで、本実施形態における透明スクリーン700では、前述のように、この第2の透過光770の第2の表面724での入射角θは、実質的に、θb2±20゜の範囲となるように構成されている。 Here, in the transparent screen 700 in the present embodiment, as described above, the incident angle θ 2 of the second transmitted light 770 on the second surface 724 is substantially in the range of θ b2 ± 20 °. It is comprised so that it may become.
 この場合、第2の表面724での第2の透過光770の反射は、最小限に抑制される。すなわち、第2の透過光770の大部分は、そのまま光774となり、透明スクリーン700の後方から外部に出射されるようになる。このため、仮に第2の透過光770が存在する場合であっても、第2の透過光770が第2の反射光となり、観者790の方に戻ることが有意に抑制される。 In this case, the reflection of the second transmitted light 770 at the second surface 724 is minimized. That is, most of the second transmitted light 770 becomes the light 774 as it is, and is emitted from the rear of the transparent screen 700 to the outside. For this reason, even if the second transmitted light 770 exists, it is significantly suppressed that the second transmitted light 770 becomes the second reflected light and returns toward the viewer 790.
 このように、本実施形態における透明スクリーン700では、反射型偏光素子740で反射される反射光765以外の反射される光が有意に抑制され、これにより、本実施形態における透明スクリーン700では、表示像の二重像の問題を有意に抑制することができる。 As described above, in the transparent screen 700 in the present embodiment, the reflected light other than the reflected light 765 reflected by the reflective polarizing element 740 is significantly suppressed. Thus, in the transparent screen 700 in the present embodiment, display is performed. The problem of double image formation can be significantly suppressed.
 (本実施形態における透明スクリーンの別の構成)
 以上、図7を参照して、本実施形態における透明スクリーン700の一構成例について説明した、しかしながら、本実施形態における透明スクリーンの構成は、図7に示した透明スクリーン700に限られるものではない。
(Another configuration of the transparent screen in this embodiment)
The configuration example of the transparent screen 700 according to the present embodiment has been described above with reference to FIG. 7. However, the configuration of the transparent screen according to the present embodiment is not limited to the transparent screen 700 illustrated in FIG. 7. .
 図8には、本実施形態における透明スクリーンの別の構成例を示す。 FIG. 8 shows another configuration example of the transparent screen in the present embodiment.
 図8に示すように、本実施形態における別の透明スクリーン800(以下、「第2の透明スクリーン800」と称する)は、第1の透明基板830と、反射型偏光素子840とを有する。 As shown in FIG. 8, another transparent screen 800 (hereinafter referred to as “second transparent screen 800”) in the present embodiment includes a first transparent substrate 830 and a reflective polarizing element 840.
 ここで、図7に示した透明スクリーン700とは異なり、第2の透明スクリーン800は、第2の透明基板735を有さない。 Here, unlike the transparent screen 700 shown in FIG. 7, the second transparent screen 800 does not have the second transparent substrate 735.
 すなわち、第2の透明スクリーン800は、第1の表面822と、第2の表面824とを有するが、第2の透明スクリーン800の第1の表面822は、第1の透明基板830の一方の表面で構成され、第2の透明スクリーン800の第2の表面824は、反射型偏光素子840が設置された、第1の透明基板830の他方の表面で構成される。 That is, the second transparent screen 800 has a first surface 822 and a second surface 824, and the first surface 822 of the second transparent screen 800 is one of the first transparent substrates 830. The second surface 824 of the second transparent screen 800 is composed of the other surface of the first transparent substrate 830 on which the reflective polarizing element 840 is installed.
 第1の透明基板830の材料は、特に限られず、透明な部材で構成されている限り、いかなる材料を用いても良い。第1の透明基板830は、例えば、ガラス基板または樹脂基板であっても良い。 The material of the first transparent substrate 830 is not particularly limited, and any material may be used as long as it is made of a transparent member. The first transparent substrate 830 may be, for example, a glass substrate or a resin substrate.
 反射型偏光素子840は、接着層850を介して、第1の透明基板830と接合される。 The reflective polarizing element 840 is bonded to the first transparent substrate 830 through the adhesive layer 850.
 反射型偏光素子840は、反射軸が、入射される表示光の偏光軸と平行になるようにして、第1の透明基板830の他方の表面に配置される。反射型偏光素子840は、前述のような効果を有する偏光素子である限り、特に限られず、例えば、図2または図5に示したようなワイヤグリッド型偏光素子100、101等であっても良い。 The reflective polarizing element 840 is disposed on the other surface of the first transparent substrate 830 so that the reflection axis is parallel to the polarization axis of the incident display light. The reflective polarizing element 840 is not particularly limited as long as it is a polarizing element having the above-described effects, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
 接着層850としては、透明基板830に各種フィルム等を貼着する際に用いられる公知の粘着剤等を用いれば良い。反射型偏光素子840として、図5に示す反射型偏光素子101を使用し、かつ反射型偏光素子101の透明基板111が接着層850と接するように配置する場合、接着層850を構成する材料の屈折率は、透明基板111を構成する材料の屈折率に近づけることが好ましい。具体的には、それらの屈折率差(絶対値)は、0.1以下が好ましく、0.05以下がより好ましい。そうすることで、透明基板111と突起120との界面でおこる反射による光のロスを抑えることができる。 As the adhesive layer 850, a known pressure-sensitive adhesive or the like used when sticking various films to the transparent substrate 830 may be used. When the reflective polarizing element 101 shown in FIG. 5 is used as the reflective polarizing element 840 and the transparent substrate 111 of the reflective polarizing element 101 is disposed so as to be in contact with the adhesive layer 850, the material constituting the adhesive layer 850 The refractive index is preferably close to the refractive index of the material constituting the transparent substrate 111. Specifically, the refractive index difference (absolute value) is preferably 0.1 or less, and more preferably 0.05 or less. By doing so, it is possible to suppress light loss due to reflection occurring at the interface between the transparent substrate 111 and the protrusion 120.
 ここで、第2の透明スクリーン800は、該第2の透明スクリーン800の第1の表面822の側から、表示光860が照射された際に、第1の表面822での入射角がθ(ただしθは、0~90゜)となるように構成される。 Here, when the second transparent screen 800 is irradiated with the display light 860 from the first surface 822 side of the second transparent screen 800, the incident angle on the first surface 822 is θ 1. (Where θ 1 is 0 to 90 °).
 ここで、入射角θは、空気と、第2の透明スクリーン800の第1の表面822(すなわち第1の透明基板830)を構成する材料との界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲となるように選定される。 Here, the incident angle θ 1 is the Brewster angle at the interface between air and the material constituting the first surface 822 of the second transparent screen 800 (that is, the first transparent substrate 830), θ b1 (where θ b1 is selected to be substantially in the range of θ b1 ± 20 ° when θ b1 is 0 to 90 °.
 この入射角θは、θb1±15゜の範囲であることが好ましく、θb1±10゜であることがより好ましく、θb1±5゜であることがさらに好ましく、θ≒θb1であることが最も好ましい。 The incident angle θ 1 is preferably in the range of θ b1 ± 15 °, more preferably θ b1 ± 10 °, further preferably θ b1 ± 5 °, and θ 1 ≈θ b1 . Most preferably it is.
 このように構成された第2の透明スクリーン800において、まず、透明スクリーン800に、第1の表面822の側から、P偏光を有する表示光860が照射される。つまり、本実施形態において、表示手段(不図示)はP偏光の表示光860を出射する。 In the second transparent screen 800 configured as described above, first, the display light 860 having P-polarized light is irradiated onto the transparent screen 800 from the first surface 822 side. That is, in this embodiment, the display means (not shown) emits P-polarized display light 860.
 前述のように、第2の透明スクリーン800は、表示光860が第2の透明スクリーン800の第1の表面822に入射した際に、第1の表面822での入射角θが、実質的に、θb1±20゜の範囲となるように構成されている。 As described above, when the display light 860 is incident on the first surface 822 of the second transparent screen 800, the second transparent screen 800 has an incident angle θ 1 substantially equal to the first surface 822. And θ b1 ± 20 °.
 このため、表示光860は、そのほとんどが第1の表面822では反射されずに透過光862となり、そのまま第2の透明スクリーン800内に進入する。 For this reason, most of the display light 860 is not reflected by the first surface 822 but becomes transmitted light 862, and enters the second transparent screen 800 as it is.
 その後、透過光862は、第1の透明基板830内を進行し、反射型偏光素子840に至る。 Thereafter, the transmitted light 862 travels through the first transparent substrate 830 and reaches the reflective polarizing element 840.
 前述のように、反射型偏光素子840は、反射軸が、入射される光の偏光軸と平行になるようにして配置されている。このため、反射型偏光素子840に入射されたP偏光の透過光862は、ここで大部分が反射され、反射光865となる。この反射光865は、第2の透明スクリーン800の前方にいる観者890の方に出射され、観者890は、この反射光865により、表示像を認識することができる。 As described above, the reflective polarizing element 840 is arranged so that the reflection axis is parallel to the polarization axis of incident light. For this reason, most of the P-polarized transmitted light 862 incident on the reflective polarizing element 840 is reflected here to become reflected light 865. The reflected light 865 is emitted toward the viewer 890 in front of the second transparent screen 800, and the viewer 890 can recognize the display image by the reflected light 865.
 この場合も、図7に示した透明スクリーン700の場合と同様に、表示像の二重像の問題を有意に抑制することができることは明らかであろう。
  (本実施形態における透明スクリーンの第3の構成)
 図9には、本実施形態における透明スクリーンの第3の構成例を示す。
In this case as well, it is obvious that the problem of the double image of the display image can be significantly suppressed as in the case of the transparent screen 700 shown in FIG.
(Third configuration of transparent screen in this embodiment)
In FIG. 9, the 3rd structural example of the transparent screen in this embodiment is shown.
 図9に示すように、本実施形態における第3の透明スクリーン1300は、第1の透明基板1330と、第2の透明基板1335と、両透明基板の間に配置された中間膜1350とを有する。また、第3の透明スクリーン1300は、第1の透明基板1330の、第2の透明基板1335とは反対の側に設置された反射型偏光素子1340と、該反射型偏光素子1340を覆う樹脂層1310とを有する。 As shown in FIG. 9, the third transparent screen 1300 in the present embodiment includes a first transparent substrate 1330, a second transparent substrate 1335, and an intermediate film 1350 disposed between the two transparent substrates. . The third transparent screen 1300 includes a reflective polarizing element 1340 disposed on the opposite side of the first transparent substrate 1330 from the second transparent substrate 1335, and a resin layer covering the reflective polarizing element 1340. 1310.
 透明スクリーン1300は、第1の表面1322と、第2の表面1324とを有する。樹脂層1310の一方の表面は、透明スクリーン1300の第1の表面1322を構成し、第2の透明基板1335の一方の表面は、透明スクリーン1300の第2の表面1324を構成する。 The transparent screen 1300 has a first surface 1322 and a second surface 1324. One surface of the resin layer 1310 constitutes the first surface 1322 of the transparent screen 1300, and one surface of the second transparent substrate 1335 constitutes the second surface 1324 of the transparent screen 1300.
 反射型偏光素子1340は、反射軸が、入射される表示光の偏光軸と平行になるようにして、第1の透明基板1330の表面に配置される。反射型偏光素子1340は、前述のような効果を有する偏光素子である限り、特に限られず、例えば、図2または図5に示したようなワイヤグリッド型偏光素子100、101等であっても良い。 The reflective polarizing element 1340 is disposed on the surface of the first transparent substrate 1330 so that the reflection axis is parallel to the polarization axis of the incident display light. The reflective polarizing element 1340 is not particularly limited as long as it is a polarizing element having the effects described above, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
 樹脂層1310は、透明な樹脂で構成される。樹脂層1310は、反射型偏光素子1340を適正に保護することができる限り、いかなる樹脂で構成されても良い。 Resin layer 1310 is made of a transparent resin. The resin layer 1310 may be made of any resin as long as the reflective polarizing element 1340 can be properly protected.
 なお、第1の透明基板1330、第2の透明基板1335、および中間膜1350としては、それぞれ、前述の第1の透明スクリーン700の第1の透明基板730、第2の透明基板735、および中間膜750と同様のものが使用できる。 The first transparent substrate 1330, the second transparent substrate 1335, and the intermediate film 1350 are the first transparent substrate 730, the second transparent substrate 735, and the intermediate film 1350 of the first transparent screen 700, respectively. The same film as the film 750 can be used.
 ここで、第3の透明スクリーン1300は、透明スクリーン1300の第1の表面1322の側から、表示光1360が照射された際に、第1の表面1322での入射角がθ(ただしθは、0~90゜)となるように構成される。 Here, when the third transparent screen 1300 is irradiated with the display light 1360 from the first surface 1322 side of the transparent screen 1300, the incident angle on the first surface 1322 is θ 3 (however, θ 3 Is configured to be 0-90 °.
 ここで、入射角θは、空気と、透明スクリー1300の第1の表面1322(すなわち樹脂層1310)を構成する材料との界面でのブリュースタ角をθb3(ただしθb3は、0~90゜)としたとき、実質的に、θb3±20゜の範囲となるように選定される。 Here, the incident angle θ 3 is the Brewster angle at the interface between air and the material constituting the first surface 1322 of the transparent screen 1300 (that is, the resin layer 1310), θ b3 (where θ b3 is 0 to 90 °), it is selected so that it is substantially in the range of θ b3 ± 20 °.
 この入射角θは、θb3±15゜の範囲であることが好ましく、θb3±10゜であることがより好ましく、θb3±5゜であることがさらに好ましく、θ≒θb3であることが最も好ましい。 The incident angle θ 3 is preferably in the range of θ b3 ± 15 °, more preferably θ b3 ± 10 °, further preferably θ b3 ± 5 °, and θ 3 ≈θ b3 Most preferably it is.
 さらに、第3の透明スクリーン1300は、反射型偏光素子1340を通過し、第1の透明基板1330~第2の透明基板1335内を進行する透過光1370において、透明スクリーン1300の第2の表面1324に入射される際の入射角がθ(ただしθは、0~90゜)となるように構成される。ここで、入射角θは、入射側の透明スクリーン1300の第2の表面1324(すなわち第2の透明基板1335)を構成する材料と、空気との界面でのブリュースタ角をθb4(ただしθb4は、0~90゜)としたとき、実質的に、θb4±20゜の範囲となるように選定される。 Further, the third transparent screen 1300 passes through the reflective polarizing element 1340, and in the transmitted light 1370 traveling through the first transparent substrate 1330 to the second transparent substrate 1335, the second surface 1324 of the transparent screen 1300. The incident angle when incident on the light is configured to be θ 4 (where θ 4 is 0 to 90 °). Here, the incident angle θ 4 is the Brewster angle at the interface between the material constituting the second surface 1324 (that is, the second transparent substrate 1335) of the incident-side transparent screen 1300 and air and θ b4 (where θ b4 is selected to be substantially in the range of θ b4 ± 20 °, where 0 b is 0 to 90 °.
 この入射角θは、θb4±15゜の範囲であることが好ましく、θb4±10゜であることがより好ましく、θb4±5゜であることがさらに好ましく、θ≒θb4であることが最も好ましい。 The incident angle θ 4 is preferably in the range of θ b4 ± 15 °, more preferably θ b4 ± 10 °, further preferably θ b4 ± 5 °, and θ 4 ≈θ b4 . Most preferably it is.
 (第3の透明スクリーン1300の動作)
 次に、このような構成の第3の透明スクリーン1300の動作について説明する。
(Operation of the third transparent screen 1300)
Next, the operation of the third transparent screen 1300 having such a configuration will be described.
 まず、透明スクリーン1300に、第1の表面1322の側から、P偏光である表示光1360が照射される。つまり、本実施形態において、表示手段(不図示)はP偏光の表示光860を出射する。 First, display light 1360 that is P-polarized light is irradiated onto the transparent screen 1300 from the first surface 1322 side. That is, in this embodiment, the display means (not shown) emits P-polarized display light 860.
 前述のように、第3の透明スクリーン1300は、表示光1360が透明スクリーン1300の第1の表面1322に入射した際に、第1の表面1322での入射角θが、実質的に、θb3±20゜の範囲となるように構成されている。 As described above, when the display light 1360 is incident on the first surface 1322 of the transparent screen 1300, the third transparent screen 1300 has an incident angle θ 3 at the first surface 1322 that is substantially θ. It is comprised so that it may become the range of b3 +/- 20 degree.
 このため、表示光1360は、そのほとんどが第1の表面1322では反射されずに、第1の透過光1362となり、そのまま透明スクリーン1300内に進入する。 For this reason, most of the display light 1360 is not reflected by the first surface 1322 but becomes the first transmitted light 1362 and enters the transparent screen 1300 as it is.
 その後、第1の透過光1362は、樹脂層1310内を進行し、反射型偏光素子1340に至る。 Thereafter, the first transmitted light 1362 travels through the resin layer 1310 and reaches the reflective polarizing element 1340.
 前述のように、反射型偏光素子1340は、反射軸が、入射される光の偏光軸と平行になるようにして配置されている。このため、反射型偏光素子1340に入射されたP偏光の透過光1362は、ここで大部分が反射され、反射光1365となる。この反射光1365は、透明スクリーン1300の前方にいる観者1390の方に出射され、観者1390は、この反射光1365により、表示像を認識することができる。 As described above, the reflective polarizing element 1340 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. Therefore, most of the P-polarized transmitted light 1362 incident on the reflective polarizing element 1340 is reflected here to become reflected light 1365. The reflected light 1365 is emitted toward the viewer 1390 in front of the transparent screen 1300, and the viewer 1390 can recognize the display image by the reflected light 1365.
 なお、反射型偏光素子1340に入射された透過光1362の一部は、反射されずに、第2の透過光1370となり、そのまま透明スクリーン1300の内部に進入する可能性がある。その場合、この第2の透過光1370は、第1の透明基板1330~第2の透明基板1335内を進行し、透明スクリーン1300の第2の表面1324に入射角θで照射される。 Note that part of the transmitted light 1362 incident on the reflective polarizing element 1340 is not reflected, but becomes the second transmitted light 1370 and may enter the transparent screen 1300 as it is. In this case, the second transmitted light 1370 travels through the first transparent substrate 1330 to the second transparent substrate 1335 and is irradiated onto the second surface 1324 of the transparent screen 1300 at an incident angle θ 4 .
 ここで、本実施形態における透明スクリーン1300では、前述のように、この第2の透過光1370の第2の表面1324での入射角θは、実質的に、θb4±20゜の範囲となるように構成されている。 Here, in the transparent screen 1300 in the present embodiment, as described above, the incident angle θ 4 of the second transmitted light 1370 on the second surface 1324 is substantially in the range of θ b4 ± 20 °. It is comprised so that it may become.
 この場合、第2の表面1324での第2の透過光1370の反射は、最小限に抑制される。すなわち、第2の透過光1370の大部分は、そのまま光1374となり、透明スクリーン1300の後方から外部に出射されるようになる。このため、仮に第2の透過光1370が存在する場合であっても、第2の透過光1370が第2の反射光となり、観者1390の方に戻ることが有意に抑制される。 In this case, the reflection of the second transmitted light 1370 on the second surface 1324 is suppressed to a minimum. That is, most of the second transmitted light 1370 becomes the light 1374 as it is, and is emitted to the outside from the rear of the transparent screen 1300. For this reason, even if the second transmitted light 1370 exists, the second transmitted light 1370 becomes the second reflected light, and the return to the viewer 1390 is significantly suppressed.
 このように、本実施形態における透明スクリーン1300では、反射型偏光素子1340で反射される反射光1365以外の反射される光が有意に抑制され、これにより、本実施形態における透明スクリーン1300では、表示像の二重像の問題を有意に抑制することができる。 As described above, in the transparent screen 1300 in the present embodiment, the reflected light other than the reflected light 1365 reflected by the reflective polarizing element 1340 is significantly suppressed. The problem of double image formation can be significantly suppressed.
 なお、以上の実施形態において、入射角(θ~θ)がそれぞれ上記範囲となるように、表示手段(不図示)からの表示光の出射方向と第1の表面(722、822、1322)の角度との関係及び表示手段(不図示)からの表示光の出射方向と第2の表面(724、824、1324)の角度との関係を制御することができる。本実施形態において、例えば表示手段からの光の出射方向を制御して、入射角(θ~θ)が上記範囲となるようにすることができる。また、例えば、第1の透明基板(730、830、1330)、樹脂層1310、又は第2の透明基板(735、1335)の角度を調整して入射角(θ~θ)が上記範囲となるようにすることができる。なお、第1の表面(722、822、1322)と第2の表面(724、824、1324)とは、平行であってもよいが、θb1及びθb2の値を考慮して、入射角(θ~θ)が上記範囲となるように、表示手段からの光の出射方向に対して異なる角度とすることもできる。 In the above embodiment, the emission direction of the display light from the display means (not shown) and the first surface (722, 822, 1322) so that the incident angles (θ 1 to θ 4 ) are in the above ranges. ) And the relationship between the display light emission direction from the display means (not shown) and the angle of the second surface (724, 824, 1324). In the present embodiment, for example, the light emission direction from the display means can be controlled so that the incident angles (θ 1 to θ 4 ) fall within the above range. Further, for example, the angle of incidence (θ 1 to θ 4 ) is adjusted by adjusting the angle of the first transparent substrate (730, 830, 1330), the resin layer 1310, or the second transparent substrate (735, 1335). Can be. The first surface and the (722,822,1322) and the second surface (724,824,1324), but may be parallel, taking into account the value of theta b1 and theta b2, the angle of incidence The angle may be different with respect to the light emission direction from the display means so that (θ 1 to θ 4 ) falls within the above range.
 (本実施形態におけるヘッドアップディスプレイ装置)
 次に、本実施形態における透明スクリーンの具体的一例として、自動車および電車等の車両用ヘッドアップディスプレイ装置を取り上げ、この構成および特徴について、詳しく説明する。なお、本実施形態におけるヘッドアップディスプレイ装置は、車両用に限られるものではなく、例えば航空機のような他の移動手段、さらにはショーウィンドウやショーケースに取りつけられるスクリーン等にも、同様に適用することができることに留意する必要がある。
(Head-up display device in this embodiment)
Next, as a specific example of the transparent screen in the present embodiment, a head-up display device for a vehicle such as an automobile and a train is taken up, and this configuration and characteristics will be described in detail. Note that the head-up display device in the present embodiment is not limited to a vehicle, and is similarly applied to other moving means such as an aircraft, a screen attached to a show window or a showcase, and the like. It should be noted that it can.
 図10には、本実施形態における車両用のヘッドアップディスプレイ装置の一構成例を概略的に示す。 FIG. 10 schematically shows a configuration example of a head-up display device for a vehicle in the present embodiment.
 図10に示すように、このヘッドアップディスプレイ装置900は、反射型偏光素子940を備えるフロントガラス920と、プロジェクタのような表示手段945とを有する。表示手段945は、車両のダッシュボード980の一部に設置されても良い。 As shown in FIG. 10, the head-up display device 900 includes a windshield 920 including a reflective polarizing element 940 and display means 945 such as a projector. The display means 945 may be installed on a part of the dashboard 980 of the vehicle.
 フロントガラス920は、内面(運転者側の表面)922と、外面(外界側の表面)924とを有する。 The windshield 920 has an inner surface (driver side surface) 922 and an outer surface (external surface side) 924.
 フロントガラス920は、第1のガラス基板930と、第2のガラス基板935とを、中間膜950を介して相互に貼り合わせることにより構成される。図10の例では、第1のガラス基板930がフロントガラス920の内面922の側となり、第2のガラス基板935が外面924の側となる。 The front glass 920 is configured by bonding a first glass substrate 930 and a second glass substrate 935 to each other through an intermediate film 950. In the example of FIG. 10, the first glass substrate 930 is on the inner surface 922 side of the windshield 920 and the second glass substrate 935 is on the outer surface 924 side.
 また、中間膜950内には、反射型偏光素子940が配置される。 In the intermediate film 950, a reflective polarizing element 940 is disposed.
 表示手段945は、該表示手段945から表示像を含む表示光960を出射するために設置される。なお、表示手段945から出射される表示光960は、P偏光の光である。 The display unit 945 is installed to emit display light 960 including a display image from the display unit 945. The display light 960 emitted from the display unit 945 is P-polarized light.
 表示手段945は、表示光960がフロントガラス920の内面922に照射される際に、この表示光960の入射角がθ(ただしθは、0~90゜)となるように構成される。ここで、入射角θは、空気と、第1のガラス基板930を構成する材料との界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲となるように選定される。 The display means 945 is configured such that when the display light 960 is irradiated onto the inner surface 922 of the windshield 920, the incident angle of the display light 960 is θ 1 (where θ 1 is 0 to 90 °). . Here, the incident angle θ 1 is substantially when the Brewster angle at the interface between the air and the material constituting the first glass substrate 930 is θ b1 (where θ b1 is 0 to 90 °). And θ b1 ± 20 °.
 この入射角θは、θb1±15゜の範囲であることが好ましく、θb1±10゜であることがより好ましく、θb1±5゜であることがさらに好ましく、θ≒θb1であることが最も好ましい。 The incident angle θ 1 is preferably in the range of θ b1 ± 15 °, more preferably θ b1 ± 10 °, further preferably θ b1 ± 5 °, and θ 1 ≈θ b1 . Most preferably it is.
 また、表示手段945は、表示光960のうち、フロントガラス920内を進行し、フロントガラス920の外面924に到達する透過光970の、外面924での入射角がθ(ただしθは、0~90゜)となるように構成される。ここで、入射角θは、入射側の第2のガラス基板935を構成する材料と、空気との界面でのブリュースタ角をθb2(ただしθb2は、0~90゜)としたとき、実質的に、θb2±20゜の範囲となるように選定される。 Further, the display means 945 travels in the windshield 920 of the display light 960, and the incident angle of the transmitted light 970 that reaches the outer surface 924 of the windshield 920 at the outer surface 924 is θ 2 (where θ 2 is 0 to 90 °). Here, the incident angle θ 2 is when the Brewster angle at the interface between the material constituting the second glass substrate 935 on the incident side and the air is θ b2 (where θ b2 is 0 to 90 °). In this case, it is selected to be substantially in the range of θ b2 ± 20 °.
 この入射角θは、θb2±15゜の範囲であることが好ましく、θb2±10゜であることがより好ましく、θb2±5゜であることがさらに好ましく、θ≒θb2であることが最も好ましい。 The incident angle θ 2 is preferably in the range of θ b2 ± 15 °, more preferably θ b2 ± 10 °, further preferably θ b2 ± 5 °, and θ 2 ≈θ b2 Most preferably it is.
 さらに、反射型偏光素子940は、反射軸が、第1のガラス基板930を透過して、反射型偏光素子940に入射される透過光962の偏光軸と平行になるようにして配置される。 Further, the reflective polarizing element 940 is disposed so that the reflection axis is parallel to the polarization axis of the transmitted light 962 that is transmitted through the first glass substrate 930 and incident on the reflective polarizing element 940.
 反射型偏光素子940は、前述のような効果を有する偏光素子である限り、特に限られず、例えば、図2または図5に示したようなワイヤグリッド型偏光素子100、101等であっても良い。 The reflective polarizing element 940 is not particularly limited as long as it is a polarizing element having the effects as described above, and may be, for example, the wire grid type polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
 次に、このように構成された本実施形態におけるヘッドアップディスプレイ装置900の動作について説明する。 Next, the operation of the head-up display device 900 according to this embodiment configured as described above will be described.
 まず、本実施形態におけるヘッドアップディスプレイ装置900に、表示手段945から、P偏光を有する表示光960が照射される。表示光960は、フロントガラス920の内面922に、入射角θで入射される。 First, the display light 960 having P-polarized light is irradiated from the display unit 945 to the head-up display device 900 according to the present embodiment. The display light 960 is incident on the inner surface 922 of the windshield 920 at an incident angle θ 1 .
 ここで、本実施形態におけるヘッドアップディスプレイ装置900では、前述のように、表示光960の内面922での入射角θが、実質的に、θb1±20゜の範囲となるように構成されている。 Here, in the head-up display device 900 according to the present embodiment, as described above, the incident angle θ 1 at the inner surface 922 of the display light 960 is substantially in the range of θ b1 ± 20 °. ing.
 このため、表示光960の大部分は、フロントガラス920の内面922において反射されず、第1の透過光962となり、そのままフロントガラス920内に進入する。 For this reason, most of the display light 960 is not reflected by the inner surface 922 of the windshield 920 but becomes the first transmitted light 962 and enters the windshield 920 as it is.
 その後、第1の透過光962は、第1のガラス基板930内を進行し、反射型偏光素子940に至る。 Thereafter, the first transmitted light 962 travels in the first glass substrate 930 and reaches the reflective polarizing element 940.
 前述のように、反射型偏光素子940は、反射軸が、入射される光の偏光軸と平行になるようにして配置されている。このため、反射型偏光素子940に入射されたP偏光の第1の透過光962は、ここで大部分が反射され、反射光965となる。この反射光965は、車両の内部にいる運転者990の方に出射され、運転者990は、この反射光965により、表示像を認識することができる。 As described above, the reflective polarizing element 940 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. For this reason, most of the P-polarized first transmitted light 962 incident on the reflective polarizing element 940 is reflected here to become reflected light 965. The reflected light 965 is emitted toward the driver 990 inside the vehicle, and the driver 990 can recognize the display image by the reflected light 965.
 なお、反射型偏光素子940に入射された第1の透過光962の一部は、反射されずに、第2の透過光970となり、そのままフロントガラス920の内部に進入する可能性がある。その場合、この第2の透過光970は、第2のガラス基板935内を進行し、フロントガラス920の外面924に、入射角θで入射される。 Note that a part of the first transmitted light 962 incident on the reflective polarizing element 940 may not enter the second transmitted light 970 and may enter the windshield 920 as it is. In this case, the second transmitted light 970 travels through the second glass substrate 935 and is incident on the outer surface 924 of the windshield 920 at an incident angle θ 2 .
 ここで、本実施形態におけるヘッドアップディスプレイ装置900では、前述のように、この第2の透過光970のフロントガラス920の外面924での入射角θが、実質的に、θb2±20゜の範囲となるように構成されている。 Here, in the head-up display device 900 according to the present embodiment, as described above, the incident angle θ 2 of the second transmitted light 970 on the outer surface 924 of the windshield 920 is substantially θ b2 ± 20 °. It is comprised so that it may become the range of.
 この場合、第2の透過光970のフロントガラス920の外面924での反射は、最小限に抑制される。すなわち、第2の透過光970の大部分は、そのまま光974となり、フロントガラス920の後方から、外部に向かって出射されるようになる。このため、仮に第2の透過光970が存在する場合であっても、第2の透過光970が第2の反射光となり、運転者990の方に戻ることが有意に抑制される。 In this case, the reflection of the second transmitted light 970 on the outer surface 924 of the windshield 920 is minimized. That is, most of the second transmitted light 970 becomes the light 974 as it is, and is emitted from the rear of the windshield 920 toward the outside. For this reason, even if the second transmitted light 970 is present, the second transmitted light 970 becomes the second reflected light, and the return to the driver 990 is significantly suppressed.
 このように、本実施形態におけるヘッドアップディスプレイ装置900では、表示像の二重像の問題を有意に抑制することができる。 As described above, in the head-up display device 900 according to the present embodiment, the problem of the double image of the display image can be significantly suppressed.
 (本実施形態におけるヘッドアップディスプレイ装置の別の構成)
 以上の説明では、第1のガラス基板930と、第2のガラス基板935とを、反射型偏光素子940を挟むようにして、相互に貼り合わせることにより構成されたフロントガラス920を備える構成を例に、本実施形態におけるヘッドアップディスプレイ装置の特徴について説明した。
(Another configuration of the head-up display device in the present embodiment)
In the above description, as an example, the configuration includes the front glass 920 configured by bonding the first glass substrate 930 and the second glass substrate 935 to each other with the reflective polarizing element 940 interposed therebetween. The features of the head-up display device in the present embodiment have been described.
 しかしながら、本実施形態におけるヘッドアップディスプレイ装置は、そのような構成に限られるものではない。 However, the head-up display device in the present embodiment is not limited to such a configuration.
 図11には、本実施形態におけるヘッドアップディスプレイ装置の別の構成例を概略的に示す。 FIG. 11 schematically shows another configuration example of the head-up display device in the present embodiment.
 図11に示すように、この第2のヘッドアップディスプレイ装置1000は、基本的に、図10に示したヘッドアップディスプレイ装置900とほぼ同様の構成を有する。従って、図11において、図10と同様の構成部材には、図10と同様の参照符号が付されている。 As shown in FIG. 11, the second head-up display device 1000 basically has the same configuration as the head-up display device 900 shown in FIG. Therefore, in FIG. 11, the same reference numerals as those in FIG.
 しかしながら、第2のヘッドアップディスプレイ装置1000では、フロントガラス1020の構成が、前述のフロントガラス920の構成とは異なっている。 However, in the second head-up display device 1000, the configuration of the windshield 1020 is different from the configuration of the windshield 920 described above.
 すなわち、第2のヘッドアップディスプレイ装置1000が備えるフロントガラス1020は、第1のガラス基板930と、反射型偏光素子940とで構成され、第2のガラス基板935を有さない。 That is, the windshield 1020 included in the second head-up display device 1000 includes the first glass substrate 930 and the reflective polarizing element 940, and does not have the second glass substrate 935.
 第1のガラス基板930の一方の表面は、フロントガラス1020の内面922を構成し、第1のガラス基板930の他方の表面は、フロントガラス1020の外面924を構成する。また、反射型偏光素子940は、接着層952を介して、第1のガラス基板930の他方の表面に設置される。 One surface of the first glass substrate 930 constitutes an inner surface 922 of the windshield 1020, and the other surface of the first glass substrate 930 constitutes an outer surface 924 of the windshield 1020. The reflective polarizing element 940 is provided on the other surface of the first glass substrate 930 with the adhesive layer 952 interposed therebetween.
 第2のヘッドアップディスプレイ装置1000においても、表示手段945から、P偏光を有する表示光960が、フロントガラス1020の内面922に、入射角θで入射される。 In the second head-up display device 1000, a display unit 945, display light 960 having a P-polarized light, the inner surface 922 of the windshield 1020, is incident at an incident angle theta 1.
 また、前述のように、表示光960の内面922での入射角θは、実質的に、θb1±20゜の範囲となるように構成されている。 Further, as described above, the incident angle θ 1 at the inner surface 922 of the display light 960 is configured to be substantially in the range of θ b1 ± 20 °.
 このため、表示光960の大部分は、フロントガラス1020の内面922において反射されず、第1の透過光962となり、そのままフロントガラス1020内に進入する。 Therefore, most of the display light 960 is not reflected by the inner surface 922 of the windshield 1020 but becomes the first transmitted light 962 and enters the windshield 1020 as it is.
 その後、第1の透過光962は、第1のガラス基板930内を進行し、反射型偏光素子940に至る。 Thereafter, the first transmitted light 962 travels in the first glass substrate 930 and reaches the reflective polarizing element 940.
 前述のように、反射型偏光素子940は、反射軸が、入射される光の偏光軸と平行になるようにして配置されている。このため、反射型偏光素子940に入射されたP偏光の透過光962は、ここで大部分が反射され、反射光965となる。この反射光965は、車両の内部にいる運転者990の方に出射され、運転者990は、この反射光965により、表示像を認識することができる。 As described above, the reflective polarizing element 940 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. Therefore, most of the P-polarized transmitted light 962 incident on the reflective polarizing element 940 is reflected here to become reflected light 965. The reflected light 965 is emitted toward the driver 990 inside the vehicle, and the driver 990 can recognize the display image by the reflected light 965.
 この場合も、表示像の二重像の問題を有意に抑制することができることは当業者には明らかであろう。 It will be apparent to those skilled in the art that the problem of the double image of the display image can be significantly suppressed in this case as well.
 (本実施形態におけるヘッドアップディスプレイ装置の第3の構成)
 図12には、本実施形態におけるヘッドアップディスプレイ装置の第3の構成例を概略的に示す。
(Third configuration of the head-up display device in the present embodiment)
FIG. 12 schematically shows a third configuration example of the head-up display device in the present embodiment.
 図12に示すように、この第3のヘッドアップディスプレイ装置1400は、樹脂層1410を有するフロントガラス1420と、プロジェクタのような表示手段1445とを有する。 As shown in FIG. 12, the third head-up display device 1400 includes a windshield 1420 having a resin layer 1410 and display means 1445 such as a projector.
 樹脂層1410内には、反射型偏光素子1440が埋設されている。表示手段1445は、車両のダッシュボード1480の一部に設置されても良い。 In the resin layer 1410, a reflective polarizing element 1440 is embedded. The display means 1445 may be installed on a part of the dashboard 1480 of the vehicle.
 フロントガラス1420は、内面(運転者側の表面)1422と、外面(外界側の表面)1424とを有する。 The windshield 1420 has an inner surface (driver side surface) 1422 and an outer surface (external surface side surface) 1424.
 フロントガラス1420は、第1のガラス基板1430と、第2のガラス基板1435とを、中間膜1450を介して相互に貼り合わせ、さらに、第1のガラス基板1430の第2のガラス基板1435とは反対側の表面に、反射型偏光素子1440を設置した後、この反射型偏光素子1440を樹脂層1410で保護することにより構成される。 The front glass 1420 is formed by bonding a first glass substrate 1430 and a second glass substrate 1435 to each other through an intermediate film 1450, and further, what is the second glass substrate 1435 of the first glass substrate 1430? After the reflective polarizing element 1440 is installed on the opposite surface, the reflective polarizing element 1440 is protected by the resin layer 1410.
 図12の例では、樹脂層1410がフロントガラス1420の内面1422の側となり、第2のガラス基板1435が外面1424の側となる。 12, the resin layer 1410 is on the inner surface 1422 side of the windshield 1420, and the second glass substrate 1435 is on the outer surface 1424 side.
 表示手段1445は、該表示手段1445から表示像を含む表示光1460を出射するために設置される。なお、表示手段1445から出射される表示光1460は、P偏光の光である。 The display unit 1445 is installed to emit display light 1460 including a display image from the display unit 1445. Note that the display light 1460 emitted from the display unit 1445 is P-polarized light.
 表示手段1445は、表示光1460がフロントガラス1420の内面1422に照射される際に、この表示光1460の入射角がθ(ただしθは、0~90゜)となるように構成される。ここで、入射角θは、空気と、樹脂層1410を構成する材料(すなわち樹脂)との界面でのブリュースタ角をθb3(ただしθb3は、0~90゜)としたとき、実質的に、θb3±20゜の範囲となるように選定される。 The display means 1445 is configured such that when the display light 1460 is applied to the inner surface 1422 of the windshield 1420, the incident angle of the display light 1460 is θ 3 (where θ 3 is 0 to 90 °). . Here, the incident angle θ 3 is substantially equal to θ b3 (where θ b3 is 0 to 90 °) when the Brewster angle at the interface between the air and the material (that is, resin) constituting the resin layer 1410 is θ b3. Therefore, it is selected to be in the range of θ b3 ± 20 °.
 この入射角θは、θb3±15゜の範囲であることが好ましく、θb3±10゜であることがより好ましく、θb3±5゜であることがさらに好ましく、θ≒θb3であることが最も好ましい。 The incident angle θ 3 is preferably in the range of θ b3 ± 15 °, more preferably θ b3 ± 10 °, further preferably θ b3 ± 5 °, and θ 3 ≈θ b3 Most preferably it is.
 また、表示手段1445は、表示光1460のうち、フロントガラス1420内を進行し、フロントガラス1420の外面1424に到達する透過光1470の、外面1424での入射角がθ(ただしθは、0~90゜)となるように構成される。ここで、入射角θは、入射側の第2のガラス基板1435を構成する材料と、空気との界面でのブリュースタ角をθb4(ただしθb4は、0~90゜)としたとき、実質的に、θb4±20゜の範囲となるように選定される。 In addition, the display unit 1445 travels through the windshield 1420 of the display light 1460, and the incident angle of the transmitted light 1470 that reaches the outer surface 1424 of the windshield 1420 at the outer surface 1424 is θ 4 (where θ 4 is 0 to 90 °). Here, the incident angle θ 4 is when the Brewster angle at the interface between the material constituting the second glass substrate 1435 on the incident side and the air is θ b4 (where θ b4 is 0 to 90 °). In practice, it is selected to be in the range of θ b4 ± 20 °.
 この入射角θは、θb4±15゜の範囲であることが好ましく、θb4±10゜であることがより好ましく、θb4±5゜であることがさらに好ましく、θ≒θb4であることが最も好ましい。 The incident angle θ 4 is preferably in the range of θ b4 ± 15 °, more preferably θ b4 ± 10 °, further preferably θ b4 ± 5 °, and θ 4 ≈θ b4 . Most preferably it is.
 さらに、反射型偏光素子1440は、反射軸が、樹脂層1410を透過して、反射型偏光素子1440に入射される透過光1462の偏光軸と平行になるようにして配置される。 Further, the reflective polarizing element 1440 is arranged so that the reflection axis is parallel to the polarization axis of the transmitted light 1462 that is transmitted through the resin layer 1410 and incident on the reflective polarizing element 1440.
 反射型偏光素子1440は、前述のような効果を有する偏光素子である限り、特に限られず、例えば、図2または図5に示したようなワイヤグリッド型偏光素子100、101等であっても良い。 The reflective polarizing element 1440 is not particularly limited as long as it is a polarizing element having the above-described effects, and may be, for example, the wire grid polarizing elements 100 and 101 as shown in FIG. 2 or FIG. .
 次に、このように構成された第3のヘッドアップディスプレイ装置1400の動作について説明する。 Next, the operation of the third head-up display device 1400 configured as described above will be described.
 まず、第3のヘッドアップディスプレイ装置1400に、表示手段1445から、P偏光を有する表示光1460が照射される。表示光1460は、フロントガラス1420の内面1422に、入射角θで入射される。 First, the third head-up display device 1400 is irradiated with display light 1460 having P-polarized light from the display unit 1445. The display light 1460 is incident on the inner surface 1422 of the windshield 1420 at an incident angle θ 3 .
 ここで、第3のヘッドアップディスプレイ装置1400では、前述のように、表示光1460の内面1422での入射角θが、実質的に、θb3±20゜の範囲となるように構成されている。 Here, in the third head-up display device 1400, as described above, the incident angle θ 3 of the display light 1460 at the inner surface 1422 is substantially in the range of θ b3 ± 20 °. Yes.
 このため、表示光1460の大部分は、フロントガラス1420の内面1422において反射されず、第1の透過光1462となり、そのままフロントガラス1420内に進入する。 Therefore, most of the display light 1460 is not reflected by the inner surface 1422 of the windshield 1420 but becomes the first transmitted light 1462 and enters the windshield 1420 as it is.
 その後、第1の透過光1462は、樹脂層1410内を進行し、反射型偏光素子1440に至る。 Thereafter, the first transmitted light 1462 travels through the resin layer 1410 and reaches the reflective polarizing element 1440.
 前述のように、反射型偏光素子1440は、反射軸が、入射される光の偏光軸と平行になるようにして配置されている。このため、反射型偏光素子1440に入射されたP偏光の第1の透過光1462は、ここで大部分が反射され、反射光1465となる。この反射光1465は、車両の内部にいる運転者1490の方に出射され、運転者1490は、この反射光1465により、表示像を認識することができる。 As described above, the reflective polarizing element 1440 is arranged so that the reflection axis is parallel to the polarization axis of the incident light. For this reason, most of the P-polarized first transmitted light 1462 incident on the reflective polarizing element 1440 is reflected here to become reflected light 1465. The reflected light 1465 is emitted toward the driver 1490 inside the vehicle, and the driver 1490 can recognize the display image by the reflected light 1465.
 なお、反射型偏光素子1440に入射された第1の透過光1462の一部は、反射されずに、第2の透過光1470となり、そのままフロントガラス1420の内部に進入する可能性がある。その場合、この第2の透過光1470は、第1のガラス基板1430~第2のガラス基板1435内を進行し、フロントガラス1420の外面1424に、入射角θで入射される。 Note that a part of the first transmitted light 1462 that has entered the reflective polarizing element 1440 may not be reflected, but may become the second transmitted light 1470 and enter the windshield 1420 as it is. In this case, the second transmitted light 1470 travels through the first glass substrate 1430 to the second glass substrate 1435 and is incident on the outer surface 1424 of the windshield 1420 at an incident angle θ 4 .
 ここで、第3のヘッドアップディスプレイ装置1400では、前述のように、この第2の透過光1470のフロントガラス1420の外面1424での入射角θが、実質的に、θb4±20゜の範囲となるように構成されている。 Here, in the third head-up display device 1400, as described above, the incident angle θ 4 of the second transmitted light 1470 on the outer surface 1424 of the windshield 1420 is substantially θ b4 ± 20 °. It is comprised so that it may become a range.
 この場合、第2の透過光1470のフロントガラス1420の外面1424での反射は、最小限に抑制される。すなわち、第2の透過光1470の大部分は、そのまま光1474となり、フロントガラス1420の後方から、外部に向かって出射されるようになる。このため、仮に第2の透過光1470が存在する場合であっても、第2の透過光1470が第2の反射光となり、運転者1490の方に戻ることが有意に抑制される。 In this case, the reflection of the second transmitted light 1470 on the outer surface 1424 of the windshield 1420 is minimized. That is, most of the second transmitted light 1470 becomes light 1474 as it is, and is emitted from the rear of the windshield 1420 toward the outside. For this reason, even if the second transmitted light 1470 exists, the second transmitted light 1470 becomes the second reflected light, and the return to the driver 1490 is significantly suppressed.
 このように、第3のヘッドアップディスプレイ装置1400においても、表示像の二重像の問題を有意に抑制することができる。 Thus, also in the third head-up display device 1400, the problem of the double image of the display image can be significantly suppressed.
 以下、本実施形態の実施例について説明する。 Hereinafter, examples of the present embodiment will be described.
 (実施例1)
 ワイヤグリッド型偏光素子を有する透明スクリーンを想定し、この透明スクリーンにP偏光の光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。
Example 1
Assuming a transparent screen having a wire grid type polarizing element, the reflection / transmission characteristics of light when P-polarized light was irradiated onto the transparent screen were evaluated by simulation.
 図13には、使用した透明スクリーンの断面図を模式的に示す。 FIG. 13 schematically shows a cross-sectional view of the transparent screen used.
 図13に示すように、透明スクリーン1100は、第1の透明樹脂基板1130と、第2の透明樹脂基板1135と、ワイヤグリッド型偏光素子1140とで構成される。 As shown in FIG. 13, the transparent screen 1100 includes a first transparent resin substrate 1130, a second transparent resin substrate 1135, and a wire grid type polarizing element 1140.
 第1の透明樹脂基板1130は、第1の表面1152を有する。また、第2の透明樹脂基板1135は、第1の表面1162および第2の表面1164を有する。第1の透明樹脂基板1130の第1の表面1152は、透明スクリーン1100の第1の表面1122を構成し、第2の透明樹脂基板1135の第2の表面1164は、透明スクリーン1100の第2の表面1124を構成する。 The first transparent resin substrate 1130 has a first surface 1152. The second transparent resin substrate 1135 has a first surface 1162 and a second surface 1164. The first surface 1152 of the first transparent resin substrate 1130 constitutes the first surface 1122 of the transparent screen 1100, and the second surface 1164 of the second transparent resin substrate 1135 is the second surface of the transparent screen 1100. A surface 1124 is formed.
 ワイヤグリッド型偏光素子1140は、第2の透明樹脂基板1135の第1の表面1162上に配置される。 The wire grid type polarization element 1140 is disposed on the first surface 1162 of the second transparent resin substrate 1135.
 ワイヤグリッド型偏光素子1140は、同一の方向(図13のX方向)に沿って、一定のピッチPで配列された突起1120を有する。各突起1120は、図13において、紙面に垂直な方向(Y方向)に延在している。各突起1120の底面の長さTを70nmとし、隣接する突起1120同士の間隔Sを70nmとする(従って、ピッチP=T+S=140nm)。各突起1120の垂直な高さHを150nmとする。 The wire grid type polarizing element 1140 has protrusions 1120 arranged at a constant pitch P along the same direction (X direction in FIG. 13). Each protrusion 1120 extends in a direction (Y direction) perpendicular to the paper surface in FIG. The length T of the bottom surface of each protrusion 1120 is set to 70 nm, and the interval S between adjacent protrusions 1120 is set to 70 nm (thus, the pitch P = T + S = 140 nm). The vertical height H of each protrusion 1120 is set to 150 nm.
 各突起1120の同じ側の傾斜面には、金属アルミニウム製のワイヤ1131が、突起1120の延伸方向に沿って、設置されている。ワイヤ1131の厚さtを55nmとし、ワイヤ1131の高さ(垂直方向の長さ)Lを15nmとする。 A metal aluminum wire 1131 is installed on the same inclined surface of each protrusion 1120 along the extending direction of the protrusion 1120. The thickness t of the wire 1131 is 55 nm, and the height (vertical length) L of the wire 1131 is 15 nm.
 なお、通常の車両のフロントガラスの条件を模擬するため、透明スクリーン1100は、波長550nmの光を、透明スクリーン1100に入射角0゜で照射した際の透過率が、約70%(P偏光とS偏光の平均値)となるように構成した。 In order to simulate the conditions of a normal vehicle windshield, the transparent screen 1100 has a transmittance of about 70% (with P-polarized light) when light having a wavelength of 550 nm is irradiated onto the transparent screen 1100 at an incident angle of 0 °. The average value of S-polarized light).
 表1には、そのような透明スクリーン1100(構成1と称する)における、ワイヤグリッド型偏光素子1110のパラメータ値をまとめて示す。 Table 1 summarizes parameter values of the wire grid type polarizing element 1110 in such a transparent screen 1100 (referred to as configuration 1).
Figure JPOXMLDOC01-appb-T000002
 このような条件下で、透明スクリーン900に、波長550nmのP偏光の光を入射角θ=60゜で入射させたときの光の反射/透過特性を、シミュレーションにより評価した。シミュレーションには、GSolverソフト(Grating Solver Development Company社製)を使用した。なお、ワイヤグリッド型偏光素子910は、反射軸、すなわちワイヤの延伸方向が、入射される光の偏光軸と平行となるように配置した。
Figure JPOXMLDOC01-appb-T000002
Under such conditions, the reflection / transmission characteristics of light when P-polarized light having a wavelength of 550 nm was incident on the transparent screen 900 at an incident angle θ 1 = 60 ° were evaluated by simulation. For the simulation, GSolver software (manufactured by Grafting Solver Development Company) was used. Note that the wire grid type polarizing element 910 is arranged so that the reflection axis, that is, the extending direction of the wire is parallel to the polarization axis of the incident light.
 前述の表1の「シミュレーション結果」の欄には、得られた反射率および透過率のシミュレーション結果を示す。この結果から、構成1における反射率は、25.0%となり、透過率は、57.0%となった。 The column of “Simulation results” in Table 1 above shows the simulation results of the obtained reflectance and transmittance. From this result, the reflectance in Configuration 1 was 25.0%, and the transmittance was 57.0%.
 前述の表1の「評価結果」の欄には、構成1における二重像の程度(強さ)を評価した結果を示す。 The column of “Evaluation Result” in Table 1 described above shows the result of evaluating the degree (strength) of the double image in Configuration 1.
 この結果から、以下のことが推察される。 From this result, the following can be inferred.
 まず、図13に示した透明スクリーン1100において、第1の表面1122の側から、入射角θ=60゜でP偏光の光が入射されると、この入射角度は、空気(入射側)/樹脂の界面でのブリュースタ角θである55゜に近く、θ≦θ±20゜を十分に満たす。 First, in the transparent screen 1100 shown in FIG. 13, when P-polarized light is incident at an incident angle θ 1 = 60 ° from the first surface 1122 side, the incident angle is expressed as air (incident side) / The Brewster angle θ b at the resin interface is close to 55 °, and θ ≦ θ b ± 20 ° is sufficiently satisfied.
 従って、P偏光の光は、透明スクリーン1100の第1の表面1122では反射されず、第1透過光となり、透明スクリーン1100の内部に進入する。換言すれば、透明スクリーン1100の第1の表面1122で反射される光(以下、「第1反射光」と称する)は、ほとんど生じない。 Accordingly, the P-polarized light is not reflected by the first surface 1122 of the transparent screen 1100 but becomes first transmitted light and enters the transparent screen 1100. In other words, light that is reflected by the first surface 1122 of the transparent screen 1100 (hereinafter referred to as “first reflected light”) hardly occurs.
 その後、第1透過光は、ワイヤグリッド型偏光素子1140に入射する。ワイヤグリッド型偏光素子1140は、ワイヤ1131の延伸方向が、入射光の偏光軸と平行となるように配置されている。そのため、第1透過光は、ワイヤグリッド型偏光素子1140において反射され、第2反射光となる。ここで、ワイヤグリッド型偏光素子1140でのP偏光の反射率は、シミュレーションの結果から、25.0%である。 Thereafter, the first transmitted light is incident on the wire grid type polarization element 1140. The wire grid type polarization element 1140 is arranged so that the extending direction of the wire 1131 is parallel to the polarization axis of incident light. Therefore, the first transmitted light is reflected by the wire grid type polarization element 1140 and becomes the second reflected light. Here, the reflectance of the P-polarized light in the wire grid type polarizing element 1140 is 25.0% from the result of simulation.
 ワイヤグリッド型偏光素子1140において反射されなかった第1透過光のうち、57.0%は、第2透過光となり、さらに透明スクリーン1100の内部に進入する。 Of the first transmitted light that is not reflected by the wire grid type polarization element 1140, 57.0% becomes the second transmitted light and further enters the inside of the transparent screen 1100.
 その後、第2透過光は、入射角θで、透明スクリーン1100の第2の表面1124に入射される。ここで、θは、約60゜である。 Thereafter, the second transmitted light is incident on the second surface 1124 of the transparent screen 1100 at an incident angle θ 2 . Here, θ 2 is about 60 °.
 この入射角θは、樹脂(入射側)/空気の界面でのブリュースタ角θである55゜に近く、θ≦θ±20゜を十分に満たす。このため、透明スクリーン1100の第2の表面1124に入射した第2透過光は、ここで反射されることなく、透明スクリーン1100を透過して外方に出射される。換言すれば、透明スクリーン1100の第2の表面1124で反射される光(以下、「第3反射光」と称する)は、ほとんど生じない。 This incident angle θ 2 is close to 55 ° which is the Brewster angle θ b at the resin (incident side) / air interface, and sufficiently satisfies θ ≦ θ b ± 20 °. Therefore, the second transmitted light that has entered the second surface 1124 of the transparent screen 1100 passes through the transparent screen 1100 and is emitted outward without being reflected here. In other words, light that is reflected by the second surface 1124 of the transparent screen 1100 (hereinafter referred to as “third reflected light”) hardly occurs.
 このように、構成1の場合、透明スクリーン1100内のワイヤグリッド型偏光素子1140部分以外の場所で反射される第1反射光および第3反射光は、ほとんど生じない。 As described above, in the case of the configuration 1, the first reflected light and the third reflected light reflected at a place other than the wire grid type polarizing element 1140 portion in the transparent screen 1100 hardly occur.
 その結果、透明スクリーン1100からは、第2反射光のみが反射されることになり、二重像の程度は、極めて軽微になると予想される。 As a result, only the second reflected light is reflected from the transparent screen 1100, and the degree of the double image is expected to be extremely small.
 (実施例2~5)
 実施例1と同様の方法により、ワイヤグリッド型偏光素子を有する透明スクリーンを想定し、この透明スクリーンにP偏光の光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。
(Examples 2 to 5)
A transparent screen having a wire grid type polarizing element was assumed by the same method as in Example 1, and the reflection / transmission characteristics of light when P-polarized light was irradiated onto the transparent screen were evaluated by simulation.
 ただし、実施例2の透明スクリーンでは、ワイヤ1131の厚さtを5nmとし、ワイヤ1131の高さ(垂直方向の長さ)Lを113nmとした。そのような透明スクリーンを、以下「構成2」と称する。また、実施例3の透明スクリーンでは、ワイヤ1131の厚さtを10nmとし、ワイヤ1131の高さ(垂直方向の長さ)Lを75nmとした。そのような透明スクリーンを、以下「構成3」と称する。また、実施例4の透明スクリーンでは、ワイヤ1131の厚さtを25nmとし、ワイヤ1131の高さ(垂直方向の長さ)Lを38nmとした。そのような透明スクリーンを、以下「構成4」と称する。また、実施例5の透明スクリーンでは、ワイヤ1131の厚さtを40nmとし、ワイヤ1131の高さ(垂直方向の長さ)Lを23nmとした。そのような透明スクリーンを、以下「構成5」と称する。 However, in the transparent screen of Example 2, the thickness t of the wire 1131 was 5 nm, and the height (length in the vertical direction) L of the wire 1131 was 113 nm. Such a transparent screen is hereinafter referred to as “Configuration 2”. In the transparent screen of Example 3, the thickness t of the wire 1131 was 10 nm, and the height (vertical length) L of the wire 1131 was 75 nm. Such a transparent screen is hereinafter referred to as “Configuration 3”. In the transparent screen of Example 4, the thickness t of the wire 1131 was 25 nm, and the height (vertical length) L of the wire 1131 was 38 nm. Such a transparent screen is hereinafter referred to as “Configuration 4”. In the transparent screen of Example 5, the thickness t of the wire 1131 was 40 nm, and the height (vertical length) L of the wire 1131 was 23 nm. Such a transparent screen is hereinafter referred to as “Configuration 5”.
 表2には、構成2~構成5の透明スクリーンにおける、ワイヤグリッド型偏光素子のパラメータ値をまとめて示した。 Table 2 summarizes the parameter values of the wire grid type polarizing element in the transparent screens of configurations 2 to 5.
Figure JPOXMLDOC01-appb-T000003
 実施例1と同様の方法により、構成2~構成5の各透明スクリーンにP偏光の光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。
Figure JPOXMLDOC01-appb-T000003
By the same method as in Example 1, the reflection / transmission characteristics of light when P-polarized light was irradiated to each of the transparent screens of Configurations 2 to 5 were evaluated by simulation.
 表2の「シミュレーション結果」の欄には、各構成において得られた反射率および透過率のシミュレーション結果を示す。 The column of “Simulation results” in Table 2 shows the simulation results of reflectance and transmittance obtained in each configuration.
 構成2の場合、反射率は、14.0%であり、透過率は、51.0%であった。また、構成3の場合、反射率は、16.0%であり、透過率は、46.0%であった。構成4の場合、反射率は、28.0%であり、透過率は、42.0%であった。構成5の場合、反射率は、30.0%であり、透過率は、41.0%であった。 In the case of Configuration 2, the reflectance was 14.0% and the transmittance was 51.0%. In the case of Configuration 3, the reflectance was 16.0%, and the transmittance was 46.0%. In the case of the structure 4, the reflectance was 28.0% and the transmittance was 42.0%. In the case of the structure 5, the reflectance was 30.0% and the transmittance was 41.0%.
 また、表2の「評価結果」の欄には、構成2~構成5における二重像の程度(強さ)を評価した結果を示す。 Also, the “Evaluation Result” column in Table 2 shows the results of evaluating the degree (strength) of double images in Configurations 2 to 5.
 構成2~構成5の場合、構成1の場合と同じ理由により、「第1反射光」および「第3反射光」は、ほとんど生じず、第2反射光のみが反射される。従って、この場合も、構成2~構成5における透明スクリーンからは、第2反射光のみが反射されることになり、二重像の程度は、極めて軽微になると予想される。 In the case of Configuration 2 to Configuration 5, for the same reason as in Configuration 1, “first reflected light” and “third reflected light” hardly occur, and only the second reflected light is reflected. Accordingly, also in this case, only the second reflected light is reflected from the transparent screens in the configurations 2 to 5, and the degree of the double image is expected to be extremely small.
 (比較例1)
 実施例1と同様の方法により、透明スクリーンに光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。ただし、この比較例1では、透明スクリーンとして、図14に示す構造のものを想定した。
(Comparative Example 1)
By the same method as in Example 1, the reflection / transmission characteristics of light when the transparent screen was irradiated with light were evaluated by simulation. However, in Comparative Example 1, a transparent screen having the structure shown in FIG. 14 was assumed.
 すなわち、図14に示すように、この透明スクリーン1200は、第1の表面1205および第2の表面1206を有する樹脂基板1250と、この樹脂基板1250の第1の表面1205に設置されたハーフミラー1210とで構成される。ハーフミラー1210は、厚さが9.5nmの金属銀薄膜とした。 That is, as shown in FIG. 14, the transparent screen 1200 includes a resin substrate 1250 having a first surface 1205 and a second surface 1206, and a half mirror 1210 installed on the first surface 1205 of the resin substrate 1250. It consists of. The half mirror 1210 was a metal silver thin film having a thickness of 9.5 nm.
 なお、透明スクリーン1200は、通常の車両のフロントガラスの条件を模擬するため、波長550nmの光を、透明スクリーン1100に入射角0゜で照射した際の透過率が、約70%(P偏光とS偏光の平均値)となるように構成した。 The transparent screen 1200 simulates the conditions of a normal vehicle windshield. Therefore, the transmittance when the transparent screen 1100 is irradiated with light having a wavelength of 550 nm at an incident angle of 0 ° is about 70% (with P-polarized light). The average value of S-polarized light).
 このような透明スクリーン1200(構成6)に、波長550nmのS偏光の光を入射角60゜で入射させたときの光の反射/透過特性を、シミュレーションにより評価した。 The reflection / transmission characteristics of light when S-polarized light having a wavelength of 550 nm is incident on such a transparent screen 1200 (configuration 6) at an incident angle of 60 ° were evaluated by simulation.
 表3の「シミュレーション結果」の欄には、得られた反射率および透過率のシミュレーション結果を示す。また、表3の「評価結果」の欄には、構成6における二重像の程度(強さ)を評価した結果を示す。 The column of “Simulation result” in Table 3 shows the simulation result of the obtained reflectance and transmittance. In the column of “Evaluation Result” in Table 3, the result of evaluating the degree (strength) of double images in Configuration 6 is shown.
Figure JPOXMLDOC01-appb-T000004
 ここで、構成6の場合、シミュレーション結果より、S偏光の光の反射率は、48.7%である。従って、図14に示した透明スクリーン1200において、樹脂基板1250の第1の表面1205の側から、入射角60゜でS偏光の光が入射された場合、第1の表面1205で反射される第1反射光の量は、48.7%であり、反射されずに透過する透過光の量は、47.8%であることが予想される。
Figure JPOXMLDOC01-appb-T000004
Here, in the case of the configuration 6, the reflectance of the S-polarized light is 48.7% from the simulation result. Therefore, in the transparent screen 1200 shown in FIG. 14, when S-polarized light is incident at an incident angle of 60 ° from the first surface 1205 side of the resin substrate 1250, the first surface 1205 is reflected. The amount of one reflected light is 48.7%, and the amount of transmitted light that is transmitted without being reflected is expected to be 47.8%.
 第1の表面1205を透過した47.8%の透過光は、その後、樹脂基板1250の第2の表面1206に、約60゜の入射角θで入射される。また、透過光は、ここで反射されて第2反射光となり、樹脂基板1250の第1の表面1205の側に戻る。 47.8% of the transmitted light transmitted through the first surface 1205 is then incident on the second surface 1206 of the resin substrate 1250 at an incident angle θ of about 60 °. The transmitted light is reflected here to become second reflected light, and returns to the first surface 1205 side of the resin substrate 1250.
 その結果、透明スクリーン1200からは、第1反射光および第2反射光が反射されることになる。 As a result, the first reflected light and the second reflected light are reflected from the transparent screen 1200.
 ここで、第2反射光の強度は、47.8%であり、第1反射光の強度の48.7%に匹敵する。このため、二重像の程度は、極めて顕著になると予想される。 Here, the intensity of the second reflected light is 47.8%, which is equivalent to 48.7% of the intensity of the first reflected light. For this reason, the degree of double images is expected to be very significant.
 このように、構成6では、顕著な二重像が生じることがわかる。 In this way, it can be seen that in the configuration 6, a remarkable double image is generated.
 (比較例2)
 次に、比較例1と同様の方法により、透明スクリーンに光を照射した際の光の反射/透過特性を、シミュレーションにより評価した。ただし、この比較例2では、図14に示す透明スクリーン1200に、波長550nmのP偏光の光を入射角60゜で入射させたときの光の反射/透過特性を、シミュレーションにより評価した(構成7)。
(Comparative Example 2)
Next, by the same method as in Comparative Example 1, the reflection / transmission characteristics of light when the transparent screen was irradiated with light were evaluated by simulation. However, in Comparative Example 2, the reflection / transmission characteristics of light when P-polarized light having a wavelength of 550 nm is incident on the transparent screen 1200 shown in FIG. ).
 その他の条件は、比較例1の場合と同様である。 Other conditions are the same as in Comparative Example 1.
 表4の「シミュレーション結果」の欄には、得られた反射率および透過率のシミュレーション結果を示す。また、表4の「評価結果」の欄には、構成7における二重像の程度(強さ)を評価した結果を示す。 The column of “Simulation result” in Table 4 shows the simulation result of the obtained reflectance and transmittance. In the column of “Evaluation Result” in Table 4, the result of evaluating the degree (strength) of the double image in Configuration 7 is shown.
Figure JPOXMLDOC01-appb-T000005
 構成7の場合、シミュレーション結果より、P偏光の光の反射率は、14.2%であり、透過率は、81.7%となった。従って、図14に示した透明スクリーン1200において、樹脂基板1250の第1の表面1205の側から、入射角60゜でP偏光の光が入射された場合、第1の表面1205で反射される第1反射光の量は、14.2%であり、反射されずに透過する透過光の量は、81.7%であることが予想される。
Figure JPOXMLDOC01-appb-T000005
In the case of the configuration 7, from the simulation result, the reflectance of the P-polarized light was 14.2%, and the transmittance was 81.7%. Therefore, in the transparent screen 1200 shown in FIG. 14, when P-polarized light is incident at an incident angle of 60 ° from the first surface 1205 side of the resin substrate 1250, the first surface 1205 is reflected. The amount of one reflected light is 14.2%, and the amount of transmitted light that is transmitted without being reflected is expected to be 81.7%.
 第1の表面1205を透過した81.7%の透過光は、その後、樹脂基板1250の第2の表面1206に、約60゜の入射角θで入射される。また、透過光は、ここで反射されて第2反射光となり、樹脂基板1250の第1の表面1205の側に戻る。 81.7% of the transmitted light transmitted through the first surface 1205 is then incident on the second surface 1206 of the resin substrate 1250 at an incident angle θ of about 60 °. The transmitted light is reflected here to become second reflected light, and returns to the first surface 1205 side of the resin substrate 1250.
 その結果、透明スクリーン1200からは、第1反射光および第2反射光が反射されることになる。 As a result, the first reflected light and the second reflected light are reflected from the transparent screen 1200.
 ここで、第2反射光の強度は、81.7%であり、極めて大きい。このため、構成7の場合、第1反射光および第2反射光の影響により、二重像の程度は、極めて顕著になると予想される。 Here, the intensity of the second reflected light is 81.7%, which is extremely large. For this reason, in the case of Configuration 7, due to the influence of the first reflected light and the second reflected light, the degree of the double image is expected to be extremely remarkable.
 以上のように、構成6および7では、顕著な二重像が生じることがわかった。 As described above, it was found that in configurations 6 and 7, a remarkable double image was generated.
 本実施形態は、車両や航空機等の移動手段用のヘッドアップディスプレイ装置等に適用することができる。 This embodiment can be applied to a head-up display device for moving means such as a vehicle or an aircraft.
 以上、本発明の好ましい実施形態及び実施例について詳述したが、本発明は上記した特定の実施形態及び実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。 The preferred embodiments and examples of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments and examples described above, and is based on the gist of the present invention described in the claims. Various modifications and changes can be made within the range.
 本発明は以下の対応も含む。 The present invention includes the following measures.
 表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、前記透明スクリーンは、透明部材と、当該透明部材中に埋設された反射型偏光素子とを有し、前記透明部材において、空気と接する2つの面をそれぞれ第1の表面および第2の表面とした場合に、前記表示光は、前記第1の表面から入射し、前記表示光は、入射面に対して平行なP偏光の光であり、前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、前記第1の表面における入射角θは、空気と前記第1の表面を構成する材料との界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲であり、前記表示光のうち、前記反射型偏光素子で反射されずに、当該透明スクリーン内に進行する透過光の、前記第2の表面における入射角θは、前記第2の表面を構成する材料と空気との界面でのブリュースタ角をθb2(ただしθb2は、0~90゜)としたとき、実質的に、θb2±20゜の範囲にあるヘッドアップディスプレイ装置が提供される。 A head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means, wherein the transparent screen includes a transparent member, A reflective polarizing element embedded in the transparent member, and in the transparent member, when two surfaces in contact with air are respectively a first surface and a second surface, the display light is The display light is incident from the first surface, and the display light is P-polarized light parallel to the incident surface, and the reflective polarizing element is arranged so that the reflection axis is parallel to the polarization axis of the display light. The incident angle θ 1 on the first surface is defined as θ B1 (where θ b1 is 0 to 90 °) at the Brewster angle at the interface between air and the material constituting the first surface. , Substantially θ b1 ± The incident angle θ 2 at the second surface of transmitted light that travels in the transparent screen without being reflected by the reflective polarizing element out of the display light is within the range of 20 °. The head-up display is substantially in the range of θ b2 ± 20 ° when the Brewster angle at the interface between the material constituting the surface and air is θ b2 (where θ b2 is 0 to 90 °). An apparatus is provided.
 表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、前記透明スクリーンは、透明部材と、当該透明部材の表面に配置された反射型偏光素子とを有し、前記透明部材において、空気と接する2つの面をそれぞれ第1の表面および第2の表面とした場合に、前記表示光は、前記第1の表面から入射し、前記反射型偏光素子は、前記第2の表面に配置され、前記表示光は、入射面に対して平行なP偏光の光であり、前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、前記表示光の前記第1の表面での入射角θは、空気と前記第1の表面を構成する材料の界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲にあるヘッドアップディスプレイ装置が提供される。 A head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means, wherein the transparent screen includes a transparent member, A reflective polarizing element disposed on the surface of the transparent member, and in the transparent member, when the two surfaces in contact with air are respectively the first surface and the second surface, the display light is: Incident from the first surface, the reflective polarizing element is disposed on the second surface, the display light is P-polarized light parallel to the incident surface, and the reflective polarizing element is The reflection axis is arranged so as to be parallel to the polarization axis of the display light, and the incident angle θ 1 of the display light on the first surface is an interface between air and the material constituting the first surface. The Brewster angle of θ b1 ( However, when θ b1 is 0 to 90 °), a head-up display device substantially in the range of θ b1 ± 20 ° is provided.
 表示手段と、当該表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンとを有するヘッドアップディスプレイ装置であって、前記透明スクリーンは、透明部材と、当該透明部材の表面に配置された反射型偏光素子とを有し、前記反射型偏光素子は、樹脂層で覆われ、前記反射型偏光素子を覆う樹脂層の表面を第1の表面とし、前記透明部材において、前記反射型偏光素子が配置されている側とは反対側の表面を第2の表面とした場合に、前記表示光は、前記第1の表面から入射し、前記表示光は、入射面に対して平行なP偏光の光であり、前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、前記表示光の前記第1の表面での入射角θは、空気と前記第1の表面を構成する材料との界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲にあり、前記表示光のうち、前記反射型偏光素子で反射されずに、当該透明スクリーン内に進行する透過光の、前記第2の表面における入射角θは、前記第2の表面を構成する材料と空気との界面でのブリュースタ角をθb2(ただしθb2は、0~90゜)としたとき、実質的に、θb2±20゜の範囲にあるヘッドアップディスプレイ装置が提供される。 A head-up display device having display means and a transparent screen capable of displaying a display image by reflecting display light emitted from the display means, wherein the transparent screen includes a transparent member, A reflective polarizing element disposed on the surface of the transparent member, the reflective polarizing element is covered with a resin layer, the surface of the resin layer covering the reflective polarizing element is a first surface, In the transparent member, when the surface opposite to the side where the reflective polarizing element is disposed is the second surface, the display light is incident from the first surface, and the display light is P-polarized light parallel to the incident surface, and the reflective polarizing element is disposed such that the reflection axis is parallel to the polarization axis of the display light, and the display light on the first surface the incident angle theta 1 is air and the first The Brewster angle at the interface theta b1 (although theta b1 is 0-90 °) between the material constituting the surface when the substantially located at theta b1 ± 20 ° range, of the display light The incident angle θ 2 at the second surface of the transmitted light that travels in the transparent screen without being reflected by the reflective polarizing element is an interface between the material constituting the second surface and air. When the Brewster angle is θ b2 (where θ b2 is 0 to 90 °), a head-up display device substantially in the range of θ b2 ± 20 ° is provided.
 本国際出願は2012年6月22日に出願された日本国特許出願2012-141163号に基づく優先権を主張するものであり、その全内容をここに援用する。 This international application claims priority based on Japanese Patent Application No. 2012-141163 filed on June 22, 2012, the entire contents of which are incorporated herein by reference.
 10   従来の車両用のヘッドアップディスプレイ装置
 20   フロントガラス
 22   内面(運転者側の表面)
 24   外面(外界側の表面)
 30   第1のガラス基板
 35   第2のガラス基板
 39   中間膜
 40   コンバイナ
 45   表示手段
 60   表示光
 65   反射光
 70   透過光
 75   第2の反射光
 80   ダッシュボード
 90   運転者
 100  ワイヤグリッド型偏光素子
 101  別の構成のワイヤグリッド型偏光素子
 110  透明基板
 111  透明基板
 115  平坦面
 120  突起
 130、131 金属ワイヤ
 140S、140P 光
 150a 反射光
 150b 透過光
 150c 透過光
 150d 反射光
 700  本発明による透明スクリーン
 722  第1の表面
 724  第2の表面
 730  第1の透明基板
 735  第2の透明基板
 740  反射型偏光素子
 750  中間膜
 760  表示光
 762  第1の透過光
 765  反射光
 770  第2の透過光
 774  光
 790  観者
 800  第2の透明スクリーン
 822  第1の表面
 824  第2の表面
 830  第1の透明基板
 840  反射型偏光素子
 850  接着層
 860  表示光
 862  透過光
 865  反射光
 890  観者
 900  本発明によるヘッドアップディスプレイ装置
 920  フロントガラス
 922  内面
 924  外面
 930  第1のガラス基板
 935  第2のガラス基板
 940  反射型偏光素子
 945  表示手段
 950  中間膜
 952  接着層
 960  表示光
 962  第1の透過光
 965  反射光
 970  第2の透過光
 974  光
 980  ダッシュボード
 990  運転者
 1000 第2のヘッドアップディスプレイ装置
 1020 フロントガラス
 1100 透明スクリーン
 1120 突起
 1122 透明スクリーンの第1の表面
 1124 透明スクリーンの第2の表面
 1130 第1の透明樹脂基板
 1131 ワイヤ
 1135 第2の透明樹脂基板
 1140 ワイヤグリッド型偏光素子
 1152 第1の透明樹脂基板の第1の表面
 1162 第2の透明樹脂基板の第1の表面
 1164 第2の透明樹脂基板の第2の表面
 1200 比較例1に係る透明スクリーン
 1205 第1の表面
 1206 第2の表面
 1210 ハーフミラー
 1250 樹脂基板
 1300 第3の透明スクリーン
 1310 樹脂層
 1322 第1の表面
 1324 第2の表面
 1330 第1の透明基板
 1335 第2の透明基板
 1340 反射型偏光素子
 1350 中間膜
 1360 表示光
 1362 第1の透過光
 1365 反射光
 1370 第2の透過光
 1374 光
 1390 観者
 1400 第3のヘッドアップディスプレイ装置
 1410 樹脂層
 1420 フロントガラス
 1422 内面
 1424 外面
 1430 第1のガラス基板
 1435 第2のガラス基板
 1440 反射型偏光素子
 1445 表示手段
 1450 中間膜
 1460 表示光
 1462 第1の透過光
 1465 反射光
 1470 第2の透過光
 1474 光
 1480 ダッシュボード
 1490 運転者
DESCRIPTION OF SYMBOLS 10 Head-up display apparatus for conventional vehicles 20 Windshield 22 Inner surface (driver side surface)
24 External surface (surface on the outside world)
30 First glass substrate 35 Second glass substrate 39 Intermediate film 40 Combiner 45 Display means 60 Display light 65 Reflected light 70 Transmitted light 75 Second reflected light 80 Dashboard 90 Driver 100 Wire grid type polarizing element 101 Another Wire grid type polarization element 110 Transparent substrate 111 Transparent substrate 115 Flat surface 120 Projection 130, 131 Metal wire 140S, 140P Light 150a Reflected light 150b Transmitted light 150c Transmitted light 150d Reflected light 700 Transparent screen 722 First surface according to the present invention 724 second surface 730 first transparent substrate 735 second transparent substrate 740 reflective polarizing element 750 intermediate film 760 display light 762 first transmitted light 765 reflected light 770 second transmitted light 774 light 790 viewer 800 Second transparent screen 822 First surface 824 Second surface 830 First transparent substrate 840 Reflective polarizing element 850 Adhesive layer 860 Display light 862 Transmitted light 865 Reflected light 890 Viewer 900 Head-up display device 920 according to the present invention Front glass 922 inner surface 924 outer surface 930 first glass substrate 935 second glass substrate 940 reflective polarizing element 945 display means 950 intermediate film 952 adhesive layer 960 display light 962 first transmitted light 965 reflected light 970 second transmitted light 974 Light 980 Dashboard 990 Driver 1000 Second head-up display device 1020 Windshield 1100 Transparent screen 1120 Projection 1122 Transparent screen first surface 1124 Transparent screen second surface 1 130 1st transparent resin substrate 1131 Wire 1135 2nd transparent resin substrate 1140 Wire grid type polarization element 1152 1st surface of 1st transparent resin substrate 1162 1st surface of 2nd transparent resin substrate 1164 2nd Second surface of transparent resin substrate 1200 Transparent screen according to comparative example 1205 First surface 1206 Second surface 1210 Half mirror 1250 Resin substrate 1300 Third transparent screen 1310 Resin layer 1322 First surface 1324 Second Surface 1330 First transparent substrate 1335 Second transparent substrate 1340 Reflective polarizing element 1350 Intermediate film 1360 Display light 1362 First transmitted light 1365 Reflected light 1370 Second transmitted light 1374 Light 1390 Viewer 1400 Third head-up Display device 1410 Resin layer 142 Front glass 1422 Inner surface 1424 Outer surface 1430 First glass substrate 1435 Second glass substrate 1440 Reflective polarizing element 1445 Display means 1450 Intermediate film 1460 Display light 1462 First transmitted light 1465 Reflected light 1470 Second transmitted light 1474 Light 1480 Dashboard 1490 Driver

Claims (9)

  1.  表示手段と、
     透明部材及び反射型偏光素子を有し、前記表示手段から照射される表示光を反射させることにより、表示像を表示させることが可能な透明スクリーンと、
    を有し、
     前記反射型偏光素子は、前記透明部材または樹脂層に接して設けられるとともに、前記表示光は、前記反射型偏光素子に接して設けられた前記透明部材または樹脂層の空気と接する第1の表面から入射し、
     前記表示光は、入射面に対して平行なP偏光の光であり、
     前記反射型偏光素子は、反射軸が、表示光の偏光軸と平行となるように配置され、
     前記第1の表面における入射角θは、空気と前記第1の表面を構成する材料との界面でのブリュースタ角をθb1(ただしθb1は、0~90゜)としたとき、実質的に、θb1±20゜の範囲であることを特徴とするヘッドアップディスプレイ装置。
    Display means;
    A transparent screen having a transparent member and a reflective polarizing element and capable of displaying a display image by reflecting display light emitted from the display means;
    Have
    The reflective polarizing element is provided in contact with the transparent member or the resin layer, and the display light is in contact with the air of the transparent member or resin layer provided in contact with the reflective polarizing element. Incident from
    The display light is P-polarized light parallel to the incident surface,
    The reflective polarizing element is arranged such that the reflection axis is parallel to the polarization axis of the display light,
    The incident angle θ 1 at the first surface is substantially equal to θ b1 (where θ b1 is 0 to 90 °) when the Brewster angle at the interface between air and the material forming the first surface is θ b1. In particular, a head-up display device having a range of θ b1 ± 20 °.
  2.  前記透明スクリーンにおいて、前記反射型偏光素子は前記透明部材中に埋設されており、
     前記第1の表面は、前記透明部材の空気と接する面であって、
     前記透明部材において、前記第1の表面と反対側で空気と接する表面を第2の表面とした場合に、
     前記表示光のうち、前記反射型偏光素子で反射されずに、当該透明スクリーン内に進行する透過光の、前記第2の表面における入射角θは、前記第2の表面を構成する材料と空気との界面でのブリュースタ角をθb2(ただしθb2は、0~90゜)としたとき、実質的に、θb2±20゜の範囲にあることを特徴とする請求項1に記載のヘッドアップディスプレイ装置。
    In the transparent screen, the reflective polarizing element is embedded in the transparent member,
    The first surface is a surface in contact with air of the transparent member,
    In the transparent member, when the surface in contact with air on the opposite side to the first surface is the second surface,
    Of the display light, an incident angle θ 2 on the second surface of transmitted light that travels in the transparent screen without being reflected by the reflective polarizing element is a material that constitutes the second surface. 2. The Brewster angle at the interface with the air is θ b2 (where θ b2 is 0 to 90 °), and is substantially in the range of θ b2 ± 20 °. Head up display device.
  3.  前記透明部材は、2つの透明基板と、両透明基板の間に配置された中間層とから構成され、前記反射型偏光素子は、前記中間層中に埋設されていることを特徴とする請求項2に記載のヘッドアップディスプレイ装置。 The transparent member includes two transparent substrates and an intermediate layer disposed between the transparent substrates, and the reflective polarizing element is embedded in the intermediate layer. The head-up display device according to 2.
  4.  前記第1の表面は、前記透明部材が空気と接する面であって、
     前記透明部材において、前記第1の表面と反対側で空気と接する表面を第2の表面とした場合に、
     前記透明スクリーンにおいて、前記反射型偏光素子は前記透明部材の前記第2の表面に配置されたことを特徴とする請求項1に記載のヘッドアップディスプレイ装置。
    The first surface is a surface where the transparent member is in contact with air,
    In the transparent member, when the surface in contact with air on the opposite side to the first surface is the second surface,
    The head-up display device according to claim 1, wherein the reflective polarizing element is disposed on the second surface of the transparent member in the transparent screen.
  5.  前記透明スクリーンにおいて、前記反射型偏光素子は前記透明部材の表面に配置されるとともに樹脂層で覆われ、
     前記第1の表面は、前記反射型偏光素子を覆う前記樹脂層の空気と接する面であって、
     前記透明部材において、前記反射型偏光素子が配置されている側とは反対側の表面を第2の表面とした場合に、
     前記表示光のうち、前記反射型偏光素子で反射されずに、当該透明スクリーン内に進行する透過光の、前記第2の表面における入射角θは、前記第2の表面を構成する材料と空気との界面でのブリュースタ角をθb2(ただしθb2は、0~90゜)としたとき、実質的に、θb2±20゜の範囲にあることを特徴とする請求項1に記載のヘッドアップディスプレイ装置。
    In the transparent screen, the reflective polarizing element is disposed on the surface of the transparent member and covered with a resin layer,
    The first surface is a surface in contact with air of the resin layer covering the reflective polarizing element,
    In the transparent member, when the surface opposite to the side where the reflective polarizing element is disposed is the second surface,
    Of the display light, an incident angle θ 2 on the second surface of transmitted light that travels in the transparent screen without being reflected by the reflective polarizing element is a material that constitutes the second surface. 2. The Brewster angle at the interface with the air is θ b2 (where θ b2 is 0 to 90 °), and is substantially in the range of θ b2 ± 20 °. Head up display device.
  6.  前記透明部材は、1つの透明基板から構成されるか、あるいは、2つの透明基板と両透明基板の間に配置された中間層とから構成されることを特徴とする請求項4または5に記載のヘッドアップディスプレイ装置。 The said transparent member is comprised from one transparent substrate, or is comprised from two transparent substrates and the intermediate | middle layer arrange | positioned between both transparent substrates, The Claim 4 or 5 characterized by the above-mentioned. Head up display device.
  7.  前記透明基板は、樹脂またはガラスで構成されることを特徴とする請求項3または6に記載のヘッドアップディスプレイ装置。 The head-up display device according to claim 3 or 6, wherein the transparent substrate is made of resin or glass.
  8.  前記反射型偏光素子は、ワイヤグリッド型偏光素子であることを特徴とする請求項1乃至7のいずれか一つに記載のヘッドアップディスプレイ装置。 The head-up display device according to any one of claims 1 to 7, wherein the reflective polarizing element is a wire grid polarizing element.
  9.  前記透明スクリーンは、輸送機器用のフロントガラスであることを特徴とする請求項1乃至8のいずれか一つに記載のヘッドアップディスプレイ装置。 The head-up display device according to any one of claims 1 to 8, wherein the transparent screen is a windshield for transportation equipment.
PCT/JP2013/064789 2012-06-22 2013-05-28 Head-up display WO2013190959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521252A JPWO2013190959A1 (en) 2012-06-22 2013-05-28 Head-up display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-141163 2012-06-22
JP2012141163 2012-06-22

Publications (1)

Publication Number Publication Date
WO2013190959A1 true WO2013190959A1 (en) 2013-12-27

Family

ID=49768562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064789 WO2013190959A1 (en) 2012-06-22 2013-05-28 Head-up display

Country Status (2)

Country Link
JP (1) JPWO2013190959A1 (en)
WO (1) WO2013190959A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219490A (en) * 2014-05-21 2015-12-07 株式会社東芝 Display device
JP5896075B1 (en) * 2015-11-17 2016-03-30 大日本印刷株式会社 Light guide plate, display device
WO2016056617A1 (en) * 2014-10-10 2016-04-14 日本化薬株式会社 Light reflecting film, and light controlling film, optical film, functional glass, and head-up display using light reflecting film
JP2016122041A (en) * 2014-12-24 2016-07-07 旭化成イーマテリアルズ株式会社 Head-up display device
JP2017090860A (en) * 2015-11-17 2017-05-25 大日本印刷株式会社 Display device
JP2017122825A (en) * 2016-01-07 2017-07-13 大日本印刷株式会社 Optical sheet and vehicle window
JP2017538141A (en) * 2014-10-14 2017-12-21 フーイャォ グラス インダストリー グループ カンパニー Head-up display system
CN107924084A (en) * 2015-08-14 2018-04-17 金泰克斯公司 Head-up display system
WO2019046157A1 (en) * 2017-08-31 2019-03-07 Vitro Flat Glass Llc Heads-up display and coating therefor
JP2019172512A (en) * 2018-03-28 2019-10-10 Agc株式会社 Glass laminate
WO2020149078A1 (en) * 2019-01-17 2020-07-23 マクセル株式会社 Vehicular information display system and information display device
US10823963B2 (en) 2018-08-30 2020-11-03 Ford Global Technologies, Llc Head-up display system for a vehicle
US10824004B2 (en) 2017-11-27 2020-11-03 Gentex Corporation Switchable polarized displays
WO2021064498A1 (en) * 2019-10-02 2021-04-08 3M Innovative Properties Company Polarization optimized heads-up display
US10981358B2 (en) * 2018-04-03 2021-04-20 AGC Inc. Laminated glass
CN112965246A (en) * 2021-02-03 2021-06-15 业成科技(成都)有限公司 Augmented reality heads-up display device and conveyer
KR20210071043A (en) * 2018-11-09 2021-06-15 쌩-고벵 글래스 프랑스 Projection device for head-up display (HUD) with p-polarized radiation
WO2021145387A1 (en) * 2020-01-15 2021-07-22 Agc株式会社 Head-up display system
US11458707B2 (en) 2020-09-01 2022-10-04 AGC Inc. Laminated glass
US11624861B2 (en) 2017-11-27 2023-04-11 Gentex Corporation Vehicular rearview assemblies having polarized displays using electro-optic element
WO2023186636A1 (en) * 2022-03-30 2023-10-05 Saint-Gobain Glass France Composite panel with a linear polarisation filter
CN114981707B (en) * 2020-01-15 2024-04-30 Agc株式会社 Head-up display system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4355574A1 (en) * 2021-06-17 2024-04-24 Carlex Glass America, LLC Laminated glazing for head-up display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273691A (en) * 1993-03-24 1994-09-30 Nissan Motor Co Ltd Head-up type display device for vehicle
JPH08259280A (en) * 1995-03-28 1996-10-08 Central Glass Co Ltd Laminated glass
JPH1195156A (en) * 1997-06-30 1999-04-09 Central Glass Co Ltd Display device
JP2006512622A (en) * 2002-12-31 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー Head-up display with polarized light source and wide-angle p-polarized reflective polarizer
JP2007101677A (en) * 2005-09-30 2007-04-19 Kyocera Corp Polarization converting element, light source device and projection-type liquid crystal display apparatus having the same
JP2010204626A (en) * 2009-02-05 2010-09-16 Asahi Glass Co Ltd Wire grid polarizer and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273691A (en) * 1993-03-24 1994-09-30 Nissan Motor Co Ltd Head-up type display device for vehicle
JPH08259280A (en) * 1995-03-28 1996-10-08 Central Glass Co Ltd Laminated glass
JPH1195156A (en) * 1997-06-30 1999-04-09 Central Glass Co Ltd Display device
JP2006512622A (en) * 2002-12-31 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー Head-up display with polarized light source and wide-angle p-polarized reflective polarizer
JP2007101677A (en) * 2005-09-30 2007-04-19 Kyocera Corp Polarization converting element, light source device and projection-type liquid crystal display apparatus having the same
JP2010204626A (en) * 2009-02-05 2010-09-16 Asahi Glass Co Ltd Wire grid polarizer and manufacturing method therefor

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219490A (en) * 2014-05-21 2015-12-07 株式会社東芝 Display device
WO2016056617A1 (en) * 2014-10-10 2016-04-14 日本化薬株式会社 Light reflecting film, and light controlling film, optical film, functional glass, and head-up display using light reflecting film
US10241241B2 (en) 2014-10-10 2019-03-26 Nippon Kayaku Kabushiki Kaisha Light reflecting film, and light controlling film, optical film, functional glass and head-up display including the light reflecting film
JP5973109B1 (en) * 2014-10-10 2016-08-23 日本化薬株式会社 Light reflecting film, and light control film, optical film, functional glass and head-up display using the same
JP2016216039A (en) * 2014-10-10 2016-12-22 日本化薬株式会社 Light reflecting film, and light controlling film, optical film, functional glass, and head-up display using light reflecting film
CN106415335A (en) * 2014-10-10 2017-02-15 日本化药株式会社 Light reflecting film, and light controlling film, optical film, functional glass, and head-up display using light reflecting film
JP2017538141A (en) * 2014-10-14 2017-12-21 フーイャォ グラス インダストリー グループ カンパニー Head-up display system
JP2016122041A (en) * 2014-12-24 2016-07-07 旭化成イーマテリアルズ株式会社 Head-up display device
JP7080951B2 (en) 2015-08-14 2022-06-06 ジェンテックス コーポレイション Head-up display system
CN107924084A (en) * 2015-08-14 2018-04-17 金泰克斯公司 Head-up display system
JP2021036324A (en) * 2015-08-14 2021-03-04 ジェンテックス コーポレイション Head-up display system
US11340452B2 (en) 2015-08-14 2022-05-24 Gentex Corporation Heads up display system
EP3335073A4 (en) * 2015-08-14 2018-08-29 Gentex Corporation Heads up display system
JP2018533075A (en) * 2015-08-14 2018-11-08 ジェンテックス コーポレイション Head-up display system
US10551620B2 (en) 2015-08-14 2020-02-04 Gentex Corporation Heads up display system
JP5896075B1 (en) * 2015-11-17 2016-03-30 大日本印刷株式会社 Light guide plate, display device
JP2017090860A (en) * 2015-11-17 2017-05-25 大日本印刷株式会社 Display device
JP2016110108A (en) * 2015-11-17 2016-06-20 大日本印刷株式会社 Light guide plate and display device
JP2017122825A (en) * 2016-01-07 2017-07-13 大日本印刷株式会社 Optical sheet and vehicle window
CN111164492A (en) * 2017-08-31 2020-05-15 维特罗平板玻璃有限责任公司 Head-up display and coating therefor
US10788667B2 (en) 2017-08-31 2020-09-29 Vitro Flat Glass Llc Heads-up display and coating therefor
WO2019046157A1 (en) * 2017-08-31 2019-03-07 Vitro Flat Glass Llc Heads-up display and coating therefor
US11630301B2 (en) 2017-08-31 2023-04-18 Vitro Flat Glass Llc Heads-up display and coating therefor
US11906733B2 (en) 2017-08-31 2024-02-20 Vitro Flat Glass Llc Heads-up display and coating therefor
EP3676652B1 (en) 2017-08-31 2021-10-20 Vitro Flat Glass LLC Heads-up display and coating therefor
EP3889671A1 (en) * 2017-08-31 2021-10-06 Vitro Flat Glass LLC Laminate having enhanced p-polarized radiation reflecting properties
US11586066B2 (en) 2017-11-27 2023-02-21 Gentex Corporation Switchable polarized displays
US11624861B2 (en) 2017-11-27 2023-04-11 Gentex Corporation Vehicular rearview assemblies having polarized displays using electro-optic element
US10824004B2 (en) 2017-11-27 2020-11-03 Gentex Corporation Switchable polarized displays
JP2019172512A (en) * 2018-03-28 2019-10-10 Agc株式会社 Glass laminate
JP7114982B2 (en) 2018-03-28 2022-08-09 Agc株式会社 laminated glass
US10981358B2 (en) * 2018-04-03 2021-04-20 AGC Inc. Laminated glass
JP7460005B2 (en) 2018-04-03 2024-04-02 Agc株式会社 Laminated Glass
US10823963B2 (en) 2018-08-30 2020-11-03 Ford Global Technologies, Llc Head-up display system for a vehicle
KR102626086B1 (en) 2018-11-09 2024-01-18 쌩-고벵 글래스 프랑스 Projection device for head-up display (HUD) with p-polarized radiation
KR20210071043A (en) * 2018-11-09 2021-06-15 쌩-고벵 글래스 프랑스 Projection device for head-up display (HUD) with p-polarized radiation
JP7202191B2 (en) 2019-01-17 2023-01-11 マクセル株式会社 Vehicle information display system
JP2020115158A (en) * 2019-01-17 2020-07-30 マクセル株式会社 Vehicular information display system and information display device
US11586040B2 (en) 2019-01-17 2023-02-21 Maxell, Ltd. In-vehicle information display system and information display apparatus
WO2020149078A1 (en) * 2019-01-17 2020-07-23 マクセル株式会社 Vehicular information display system and information display device
WO2021064498A1 (en) * 2019-10-02 2021-04-08 3M Innovative Properties Company Polarization optimized heads-up display
CN114981707A (en) * 2020-01-15 2022-08-30 Agc株式会社 Head-up display system
WO2021145387A1 (en) * 2020-01-15 2021-07-22 Agc株式会社 Head-up display system
CN114981707B (en) * 2020-01-15 2024-04-30 Agc株式会社 Head-up display system
US11458707B2 (en) 2020-09-01 2022-10-04 AGC Inc. Laminated glass
CN112965246A (en) * 2021-02-03 2021-06-15 业成科技(成都)有限公司 Augmented reality heads-up display device and conveyer
WO2023186636A1 (en) * 2022-03-30 2023-10-05 Saint-Gobain Glass France Composite panel with a linear polarisation filter

Also Published As

Publication number Publication date
JPWO2013190959A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2013190959A1 (en) Head-up display
US7839574B2 (en) Head-up display optical film, head-up display, and vehicle
CN106990530B (en) Cold mirror for head-up display device and head-up display device
US9857586B2 (en) Reflective projection display device
US7355796B2 (en) Automobile windshield for HUD system
WO2013190958A1 (en) Head-up display
WO2016157815A1 (en) Head-up display device
WO2016208133A1 (en) Head-up display device
JP2006512622A (en) Head-up display with polarized light source and wide-angle p-polarized reflective polarizer
TWI604224B (en) Display system and transflective optical plate
JP5577162B2 (en) In-vehicle display device
US10234684B2 (en) Projection member, head up display device, and polarized sunglasses
JP2023505181A (en) Optical system and head-up display system
JP7176177B2 (en) Video display device, vehicle
TWI422860B (en) Display system
WO2023026131A1 (en) Multilayer optical film and display system
WO2018025741A1 (en) Combiner and head-up display device using same
JP7110575B2 (en) Video display device, vehicle
WO2018177281A1 (en) Laminated glass for implementing hud function
US20240027757A1 (en) Windshield, display system, and reflective polarizer
JP7423619B2 (en) Multilayer film and display system
WO2023245660A1 (en) Compact and large field-of-view angle head-up display system
JP2017090860A (en) Display device
JP2023502408A (en) Method for improving image quality in HUD systems, polarizing elements, and HUD systems with such polarizing elements
JP2023101953A (en) Optical system and head-up display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13806495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13806495

Country of ref document: EP

Kind code of ref document: A1