WO2013190707A1 - Composition cosmétique comprenant une huile de phényl-diméthicone non volatile, une huile d'hydrocarbure apolaire non volatile, une huile d'hydrocarbure polaire non volatile et un ester de dextrine - Google Patents

Composition cosmétique comprenant une huile de phényl-diméthicone non volatile, une huile d'hydrocarbure apolaire non volatile, une huile d'hydrocarbure polaire non volatile et un ester de dextrine Download PDF

Info

Publication number
WO2013190707A1
WO2013190707A1 PCT/JP2012/066469 JP2012066469W WO2013190707A1 WO 2013190707 A1 WO2013190707 A1 WO 2013190707A1 JP 2012066469 W JP2012066469 W JP 2012066469W WO 2013190707 A1 WO2013190707 A1 WO 2013190707A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
composition
non volatile
weight
composition according
Prior art date
Application number
PCT/JP2012/066469
Other languages
English (en)
Inventor
Momoko Shimizu
Maki Ishida
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Priority to PCT/JP2012/066469 priority Critical patent/WO2013190707A1/fr
Priority to PCT/JP2013/067743 priority patent/WO2013191301A1/fr
Priority to JP2014560186A priority patent/JP2015520116A/ja
Publication of WO2013190707A1 publication Critical patent/WO2013190707A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/732Starch; Amylose; Amylopectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8111Homopolymers or copolymers of aliphatic olefines, e.g. polyethylene, polyisobutene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/001Preparations for care of the lips

Definitions

  • the present invention relates to a cosmetic composition, more particularly to a cosmetic composition for making up and/or caring for the skin and/or the lips, comprising at least a hydrocarbonated-based resin, a hydrocarbon-based block copolymer, a non volatile phenylated dimethicone oil, a non volatile hydrocarbonated apolar oil, a non volatile hydrocarbonated polar oil and a dextrin ester.
  • the present invention also relates to the processes using such composition for making up and/or caring for the skin and/or the lips, comprising the application to the skin and/or the lips of such cosmetic composition.
  • compositions comprising non volatile oils for obtaining a shiny deposit on the skin or the lips and gloss remanence.
  • the cosmetic properties of the said compositions in particular the applications properties such as the glide and the easiness to apply and to obtain a uniform deposit on the lips and/or the skin, and in particular to have a deposit on the skin and / or the lips that has a good transfer resistance, and in particular a good color transfer resistance.
  • the deposit should also be sparingly tacky or not tacky and have a good shine level.
  • the aim of the present invention is to overcome these drawbacks and to propose a cosmetic composition that is homogenous, stable (for example no separation into two phases, and/or exsudation, and/or sedimentation of the pigments, particularly after 24 hours at room temperature and/or at 47°C), and capable, on the one hand, of affording good cosmetic properties; in particular applications properties such as glide and easiness to apply, in particular on the lips, good adhesion to the support (skin or lips) and thus good remanence of the deposit of the composition, in particular no or low level transfer of the color of the deposit, and forming a non-tacky or sparingly tacky deposit, having a good level of shine.
  • the invention relates to a cosmetic composition for making up and/or caring for the skin and/or the lips, comprising in a physiologically acceptable medium, at least one fatty phase comprising:
  • weight ratio of total non volatile apolar hydrocarbonated oil / total non volatile phenylated silicone oil having at least a dimethicone part is lower than 0,9
  • Such a composition is stable and homogenous, and are preferably makeup compositions, whose deposition on keratin materials, and in particular the lips and/or the skin, is easy to apply (good glide, homogenous deposit) and the deposit has good transfer resistance after application (in particular, no transfer or poor transfer of the color of the deposit, in particular on a cup or a glass while drinking for example).
  • the deposit obtained with such composition is sparingly tacky or non-tacky, and has a good level of shine.
  • the present invention also relates to a cosmetic process for making up and/or caring for the skin and/or the lips, comprising at least the application to the said skin and/or the said lips of composition comprising, in a physiologically acceptable medium, at least one fatty phase comprising:
  • weight ratio of total non volatile apolar hydrocarbonated oil / total non volatile phenylated silicone oil(s), more preferably to the non volatile silicone oils(s) having at least a dimethicone part, is lower than 0,9;
  • the composition under consideration according to the invention is an oil-in-oil type composition.
  • the non volatile silicone oil and the non volatile hydrocarbon oil is in a stable oil in oil state before application, without being separated from each other. After application, the non volatile silicone oil comes up to the surface of the deposit, and this separated non volatile silicone oil covers an adherent layer of the non volatile hydrocarbonated oil. Therefore, the resulting composition has good transfer resistance and offers a good level of shine. Rubbing t he hps again each other during application further enhance this separation.
  • composition under consideration according to the invention is anhydrous.
  • physiologically acceptable medium is intended to denote a medium that is suitable for the application of a composition to the skin and/or the lips, for instance the oils or organic solvents commonly used in cosmetic compositions.
  • the physiologically acceptable medium (acceptable tolerance, toxicology and feel) is generally adapted to the nature of the support onto which the composition is to be applied, and also to the form in which the composition is to be conditioned.
  • the combination under consideration according to the invention proves to be most particularly effective for affording a composition whose deposit on the skin or the lips that simultaneously has improved gloss and non transfer properties.
  • the deposit also exibit remanence over time, in particular of remanence of the colour of the deposit (no embrittlement or fragmentation of the deposit, which remains homogeneous) and satisfactory comfort properties, both on application (especially glidance, breakdown, thickness and uniformity of the deposit formed, and reduction of the tack on drying) and during wearing, namely softness, absence of a tacky sensation or of a sensation of tautness or dryness.
  • the invention also preferably relates to a composition for making up and/or caring for the skin and/or the lips, comprising, in a physiologically acceptable medium, at least at least one fatty phase comprising:
  • compositions under consideration according to the invention and used in the processes according to the invention may be in solid or liquid form at 20°C.
  • the composition used according to the invention is anhydrous or contains less than 3% by weight of water and preferably less than 1% by weight of water, relative to the total weight of the composition.
  • anhydrous especially means that water is preferably not deliberately added to the composition, but may be present in trace amount in the various compounds used in the composition.
  • composition according to the invention and/or that used according to the process according to the invention may be in the form of a composition for making up the skin and/or the lips, especially for facial or bodily skin; it may be a complexion product such as a foundation, a face powder or an eyeshadow; a lip product such as a lipstick or a lipcare product; a concealer product; a blusher; an eyeliner; a lip pencil or an eye pencil; a body makeup product; a gloss (lip gloss).
  • the composition is intended for making up the lips and it is more particularly a lipstick (lipstick wand) or a gloss (liquid lipstick).
  • the lipstick compositions according to the invention are anhydrous.
  • solid characterizes the state of the composition at a temperature of 20°C.
  • a solid composition according to the invention has, at a temperature of 20°C and at atmospheric pressure (760 mmHg), a hardness of greater than 30 Nm "1 and preferably greater than 35 Nm "1 .
  • composition especially of lipstick wand type is measured according to the following protocol:
  • the stick of lipstick is stored at 20°C for 24 hours before measuring the hardness.
  • the hardness may be measured at 20°C via the "cheese wire” method, which consists in transversely cutting a wand of product, which is preferably a circular cylinder, by means of a rigid tungsten wire 250 ⁇ in diameter, by moving the wire relative to the stick at a speed of 100 mm/minute.
  • the hardness of the samples of compositions of the invention, expressed in Nm "1 is measured using a DFGS2 tensile testing machine from the company Indelco-ChauTlon.
  • the measurement is repeated three times and then averaged.
  • the average of the three values read using the tensile testing machine mentioned above, noted Y, is given in grams. This average is converted into newtons and then divided by L which represents the longest distance through which the wire passes. In the case of a cylindrical wand, L is equal to the diameter (in metres).
  • the stick is stored for 24 hours at this new temperature before the measurement.
  • the composition according to the invention especially has a hardness at 20°C of less than 500 Nm "1 , especially less than 400 Nm "1 and preferably less than 300 Nm '1 .
  • composition whose hardness is greater than 30 Nm "1 is said to be "solid” at 20°C and at atmospheric pressure (760 mmHg).
  • the composition according to the invention is liquid at 20°C.
  • the viscosity measurement is generally performed at 25°C, using a Rheomat RM180 viscometer equipped with a No. 4 spindle , the measurement being performed after 10 minutes of rotation of the spindle in the composition (after which time stabilization of the viscosity and of the spin speed of the spindle are observed), at a shear rate of 200 rpm.
  • the composition has at 25°C a viscosity of between 1 and 25 Pa.s, preferably between 2 and 20 Pa.s and preferably between 4 and 17 Pa.s.
  • the viscosity at 25°C of a composition according to the invention is between 5 and 16 Pa.s.
  • the terms "between” and “ranging from” should be understood as including the limits.
  • the example that follows is given as an illustration, without any limiting nature.
  • the composition according to the invention comprises at least a volatile oil, preferably a volatile hydrocarbonated oil, preferably from 0,1 to 10% by weight of volatile oil relative to the total weight of the composition.
  • composition according to the invention comprises at least one non volatile phenylated silicone oil having at least a dimethicone part.
  • composition according to the invention comprise from 20% to 60% by total weight of non volatile phenylated silicone oil(s) having at least a dimethicone part, or mixture thereof, relative to the total weight of the composition.
  • the composition according to the invention comprise from 20% to 60% by weight, preferably from 30% to 60% by total weight of non volatile phenylated silicone oil(s) having at least a dimethicone part, relative to the total weight of the composition.
  • composition according to the invention for caring for and/or making up the lips and more particularly of lipstick or lipgloss type may comprise from 20% to 60% by total weight of non volatile phenylated silicone oil(s) having at least a dimethicone part, or mixture thereof, relative to the total weight of the composition.
  • a composition according to the invention for caring for and/or making up the lips and more particularly of lipstick or lipgloss type may comprise from 25% to 55% by total weight of non volatile phenylated silicone oil(s) having at least a dimethicone part, or mixture thereof, relative to the total weight of the composition.
  • a composition according to the invention for caring for and/or making up the lips and more particularly of lipstick or lipgloss type may comprise from 30% to 50% by total weight of non volatile phenylated silicone oil(s) having at least a dimethicone part, or mixture thereof, according to the invention relative to the total weight of the composition.
  • oil means a water-immiscible non-aqueous compound that is liquid at room temperature (25°C) and at atmospheric pressure (760 mmHg).
  • the silicone oils that may be used according to the invention are non-volatile.
  • the non-volatile silicone oils that may be used in the invention preferably have a viscosity at 25°C comprised between 9cSt and 800000 cSt, preferably less than or equal to 600 000 cSt and preferably less than or equal to 500000 cSt.
  • the viscosity of these silicone oils may be measured according to standard ASTM D-445.
  • non-volatile oil means an oil whose vapour pressure at room temperature and atmospheric pressure is non-zero and less than 0.02 mmHg (2.66 Pa) and better still less than 10 " mmHg (0.13 Pa).
  • the non-volatile silicone oil that may be used in the invention may be chosen especially from silicone oils especially with a viscosity at 25 °C of greater than or equal to 9 centistokes (cSt) (9 x 10 m /s) and preferably less than 800000 cSt, preferably between 50 and 600 000 cSt and preferably between 100 and 500000 cSt.
  • the viscosity of this silicone oil may be measured according to standard ASTM D- 445.
  • phenylated silicone oil or "phenyl silicone oil” means a silicone oil having at least one phenyl substituent.
  • phenyl silicone oil means a silicone oil having at least one phenyl substituent.
  • the non volatile phenylated silicone oil having at least a dimethicone part can also be called a non volatile "phenyl dimethicone oil”.
  • the non volatile phenylated silicone oil having at least a dimethicone part may be chosen from: a) the phenyl silicone oils corresponding to the following formula (TV):
  • Rj to R 10 are saturated or unsaturated, linear, cyclic or branched Ci-C 30 hydrocarbon-based radicals,
  • n, p and q are, independently of each other, integers between 0 and 900, p is an integer between 1 and 900, with the proviso that the sum m+n+q is other than 0.
  • the sum m+n+q is between 1 and 100.
  • the sum m+n+p+q is between 1 and 900 and better still between 1 and 800.
  • q is equal to 0.
  • R to R 10 independently of each other, represent a saturated or unsaturated linear or branched -C30, hydrocarbon radical, preferably saturated, and especially Ci-C 12 hydrocarbon-based radical, in particular C 3 -C 16 and more particularly C 4 -C 10 , or a monocyclic or polycyclic C 6 -C 14 and especially C 10 -C 13 aryl radical, or an aralkyl radical.
  • R ⁇ to R 10 may each represent a methyl, ethyl, propyl, butyl, isopropyl, decyl, dodecyl or octadecyl radical, or alternatively a phenyl, tolyl, benzyl or phenethyl radical.
  • R ⁇ to R 10 may especially be identical, and in addition may preferably be a methyl radical.
  • Rt R 2 , R 5 and R6 independently of each other, are saturated or unsaturated, linear, cyclic or branched Q-Qo hydrocarbon-based radicals, preferably are a -C30 alkyl radical, an aryl radical or an aralkyl radical,
  • R3 and R-t are independently of each other -C30 hydrocarbon-based alkyl radicals, preferably methyl, -p is an integer between 1 and 100,
  • R 1? R 2 , R 5 and R5 independently of each other, represent a saturated or unsaturated linear or branched -Qo, hydrocarbon radical, preferably saturated, and especially Ci-C 12 hydrocarbon-based radical, in particular C 3 -C 16 and more particularly C 4 -C 10 , or a monocyclic or polycyclic C 6 -C 14 and especially C 10 -C 13 aryl radical, or an aralkyl radical.
  • Rj R 2 , R 5 and Re may each represent a methyl, ethyl, propyl, butyl, isopropyl, decyl, dodecyl or octadecyl radical, or alternatively a phenyl, tolyl, benzyl or phenethyl radical.
  • Ri R 2 , R 5 and Re may especially be identical, and in addition may be a methyl radical.
  • m 1 or 2 or 3
  • R l9 R 2 , R 5 and 3 ⁇ 4 are, together or separately, an alkyl radical containing 1 to 6 carbon atoms,
  • the weight-average molecular weight of the non-volatile phenyl silicone oil having at least a dimethicone part according to the invention ranges from 500 to 10 000 g mol.
  • the non volatile phenylated silicone oil having at least a dimethicone part is chosen from phenyl dimethicone oil corresponding to formula (VH)
  • p is between 1 and 100 in formula (VH)
  • the sum m is between 1 and 100
  • n 0 , in formula (VII).
  • a silicone oil chosen from rrimethylsiloxyphenyl dimethicone such as Belsil PDM 1000 from Wacker.
  • the non-volatile silicone oils having at least a dimethicone part are chosen from:
  • trimethylsiloxyphenyl dimethicone for instance Belsil PDM 1000 from the company Wacker (cf. formula (V) above)
  • phenyl dimethicones for instance Belsil PDM 1000 from the company Wacker (cf. formula (V) above
  • phenyl dimethicones for instance Belsil PDM 1000 from the company Wacker (cf. formula (V) above
  • phenyl dimethicones phenyltrimethylsiloxydiphenylsiloxanes
  • diphenyl dimethicones such as KF-54 from Shin Etsu (400 cSt), KF54HV from Shin Etsu (5000 cSt), KF-50- 300CS from Shin Etsu (300 cSt), KF-53 from Shin Etsu (175cSt), KF-50-100CS from Shin Etsu (100 cSt).
  • the non volatile silicon oil is a phenyl silicone oil having at least a dimethicone part, and is preferably chosen from:
  • KF-54 from Shin Etsu (400 cSt)
  • KF54HV from Shin Etsu (5000 cSt)
  • KF-50-300CS from Shin Etsu (300 cSt)
  • KF-53 from Shin Etsu (175cSt)
  • KF-50-100CS from Shin Etsu
  • composition according to the invention may comprise at least one additional non volatile silicon oil, different from said non volatile phenylated silicon oil having at least a dimethicone part.
  • the additional non-volatile silicone oil is a non-phenylated silicone oil.
  • non phenylated silicone oil or "non phenyl silicone oil” means a silicon oil having no phenyl substituent.
  • non-volatile non phenylated silicone oils include polydimethylsiloxanes; alkyl dimethicones; vinyl methyl methicones; and also silicones modified with optionally fiuorinated aliphatic groups, or with functional groups such as hydroxyl, thiol and/or amine groups.
  • the additional non volatile silicon oil is a non phenylated oil, preferably chosen from polydimethylsiloxanes; alkyl dimethicones; vinyl methyl methicones; and also silicones modified with optionally fluorinated aliphatic groups, or with functional groups such as hydroxyl, thiol and/or amine groups.
  • the additional non volatile non phenylated silicon oil is preferably chosen from dimethicone oils, preferably chosen from polydimethylsiloxanes; alkyl dimethicones.
  • TNCI Name corresponds to polydimethylsiloxane (chemical name).
  • Additional non-phenylated non-volatile silicone oils can be chosen from:
  • alkyl or alkoxy groups which are pendent and/or at the end of the silicone chain, these groups each containing from 2 to 24 carbon atoms, such as cetyldimethicone sold under the commercial reference ABIL WAX 9801 from Evonik Goldschmidt
  • - PDMSs comprising aliphatic and/or aromatic groups, or functional groups such as hydroxyl, thiol and/or amine groups,
  • polyalkylmethylsiloxanes such as cetyldimethicone sold under the commercial reference ABIL WAX 9801 from Evonik Goldschmidt, or polyalkylmethylsiloxane optionally substituted with a fluorinated group, such as polymethyltrifluoropropyldimethylsiloxanes,
  • composition according to the invention contains at least one additional non-phenylated linear silicone oil.
  • non-volatile non phenylated linear silicone oils may be chosen from
  • polydimethylsiloxanes alkyl dimethicones; vinyl methyl methicones; and also silicones modified with optionally fluorinated aliphatic groups, or with functional groups such as hydroxyl, thiol and/or amine groups.
  • the additional non-phenylated linear silicone oil may be chosen especially from the silicones of formula (I):
  • Ri, R 2 , R 5 and Re are, together or separately, an alkyl radical containing 1 to 6 carbon atoms,
  • R 3 and R ⁇ are, together or separately, an alkyl radical containing from 1 to 6 carbon atoms, a vinyl radical, an amine radical or a hydroxyl radical,
  • X is an alkyl radical containing from 1 to 6 carbon atoms, a hydroxyl radical or an amine radical, n and p are integers chosen so as to have a fluid compound, in particular whose viscosity at 25°C is between 9 centistokes (cSt) (9 x 10 " V 2 /s) and 800 000 cSt.
  • cSt centistokes
  • the substituents to R5 and X represent a methyl group
  • p and n are such that the viscosity is 500000 cSt, such as the product sold under the name SE30 by the company General Electric, the product sold under the name AK 500000 by the company Wacker, the product sold under the name Mirasil DM 500 000 by the company Bluestar, and the product sold under the name Dow Corning 200 Fluid 500000 cSt by the company Dow Corning,
  • the substituents R] to R5 and X represent a methyl group
  • p and n are such that the viscosity is 60 000 cSt, such as the product sold under the name Dow Corning 200 Fluid 60000 CS by the company Dow Corning, and the product sold under the name Wacker Belsil DM 60 000 by the company Wacker,
  • the substituents Ri to R$ and X represent a methyl group, and p and n are such that the viscosity is 350 cSt, such as the product sold under the name Dow Corning 200 Fluid 350 CS by the company Dow Corning,
  • the substituents to R represent a methyl group
  • the group X represents a hydroxyl group
  • n and p are such that the viscosity is 700 cSt, such as the product sold under the name Baysilone Fluid
  • composition compositions comprises a
  • polyalkylmethylsiloxanes such as cetyldimethicone sold under the commercial reference ABIL WAX 9801 from Evonik Goldschmidt.
  • the composition comprises from 0, 1 to 10% polyalkylmethylsiloxanes, such as cetyldimethicone.
  • Non volatile phenylated silicone oil having no dimethicone part contains at least one additional non-volatile phenylated silicone oil having no dimethicone part.
  • phenylated silicone oil or "phenyl silicone oil” means a silicone oil having at least one phenyl substituent.
  • the non volatile phenylated silicone oil having no dimethicone part may be chosen from:
  • the phenyl silicone oil comprises at least three phenyl groups, for example at least four, at least five or at least six. b) the phenyl silicone oils corresponding to the following formula ( ⁇ ):
  • the groups R represent, independently of each other, a methyl or a phenyl, with the proviso that at least one group R represents a phenyl.
  • the said organopolysiloxane comprises at least three phenyl groups, for example at least four or at least five. Mixtures of the phenyl organopolysiloxanes described previously may be used. Examples that may be mentioned include mixtures of triphenyl, tetraphenyl or pentaphenyl organopolysiloxanes.
  • the phenyl silicone oils corresponding to the following formula (Tfl):
  • Such a phenyl silicone oil is preferably trimethyl pentaphenyl trisiloxane, or Tetramethyl Tetraphenyl Trisiloxane.
  • oils are especially manufactured by Dow Corning under the reference PH- 1555 HRI or Dow Corning 555 Cosmetic Fluid (chemical name: l,3,5-trimethyl-l,l,3,5,5-pentaphenyl trisiloxane; INCI name: trimethyl pentaphenyl trisiloxane), or Tetramethyl Tetraphenyl Trisiloxane sold under the reference Dow Corning 554 Cosmetic Fluid by Dow Corning may also be used.
  • the phenyl silicone oils corres onding to formula (V') below:
  • y is equal to 0.
  • Use may be made, for example, of phenyl trimethylsiloxy trisiloxane, sold especially under the reference Dow Corning 556 Cosmetic Grade Fluid (DC556).
  • DC556 Cosmetic Grade Fluid
  • e the phenyl silicone oils corresponding to formula (VTfl) below, and mixtures thereof:
  • R independently of each other, are saturated or unsaturated, linear, cyclic or branched -C30 hydrocarbon-based radicals, preferably R is a C1-C30 alkyl radical, an aryl radical or an aralkyl radical,
  • n are, independently of each other, integers between 0 and 100, with the proviso that the sum n+m is between 1 and 100.
  • R independently of each other, represent a saturated or unsaturated linear or branched d- C30, hydrocarbon radical, preferably saturated, and especially d-C 12 hydrocarbon-based radical, in particular C 3 -C 16 and more particularly C 4 -C 10 , or a monocyclic or polycyclic C 6 -C 14 and especially C 10 -C 13 aryl radical, or an aralkyl radical.
  • R may each represent a methyl, ethyl, propyl, butyl, isopropyl, decyl, dodecyl or octadecyl radical, or alternatively a phenyl, tolyl, benzyl or phenethyl radical.
  • R may especially be identical, and in addition may be a methyl radical.
  • n is an integer between 0 and 100 and m is an integer between 1 and 100, with the proviso that the sum n+m is between 1 and 100, in formula (VIII).
  • R is methyl radical.
  • a phenyl silicone oil of formula (Vffl) with a viscosity at 25°C of between 5 and 1500 mm Is (i.e. 5 to 1500 cSt), and preferably with a viscosity of between 5 and 1000 mm 2 /s (i.e. 5 to 1000 cSt) may be used.
  • the non volatile phenyl silicone oil is preferably chosen from phenyl Iximethicones; such as DC556 from Dow Coming (22.5 cSt), the oil diphenylsiloxy
  • the additional silicone oil is a phenyl silicone oil having no dimethicone part
  • non-volatile silicone oils different from said non volatile phenyl dimethicone oil, examples that may be mentioned include silicone oils such as:
  • phenyl silicone oil with no dimethicone part preferably chosen from : Tetramethyl Tetraphenyl Trisiloxane (such as as PH-1554 HRI or Dow Corning 554 Cosmetic Fluid from Dow Corning), phenyl trimethicones (such as the phenyl trimethicone sold under the trade name DC556 by Dow Corning), phenyltrimethylsiloxydiphenylsiloxanes, diphenylmethyldiphenyltrisiloxanes, 2- phenylethyl trimethylsiloxysilicates, trimethylpentaphenyl trisiloxane (such as the product sold under the name Dow Corning PH-1555 HRI Cosmetic fluid by Dow Corning) (cf. formula ( ⁇ ) above), diphenylsiloxy phenyltrimethicone (such as KF56 A from Shin Etsu),
  • PDMS polydimethylsiloxanes
  • alkyl or alkoxy groups which are pendent and/or at the end of the silicone
  • composition according to the invention may contain from 0,1% to 80% by weight, in particular from 1% to 70%) by weight and preferably from 5%> to 60%> by weight in total of additional non volatile silicone oil(s), relative to the total weight of the composition.
  • the composition according to the invention comprise no additional non volatile silicon oil, different from said non volatile phenylated silicon oil having at least a dimethicone part.
  • composition according to the invention comprises at least one non volatile apolar hydrocarbonated oil (also called apolar "hydrocarbon-based" oil). More particularly, the composition according to the invention comprises from 15% to 30% by total weight of non volatile hydrocarbonated apolar oil(s), or mixture thereof, relative to the total weight of the composition.
  • apolar oil means an oil whose solubility parameter at 25°C, 6 a , is equal to 0 (J/cm 3 ) 1 ⁇ .
  • hydrocarbon-based oil (or “hydrocarbonated oil”, or “hydrocarbon oil”) means an oil formed essentially from, or even constituted by, carbon and hydrogen atoms, and optionally oxygen and nitrogen atoms, and not containing any silicon or fluorine atoms. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.
  • oils may be of plant, mineral or synthetic origin.
  • said -volatile apolar hydrocarbon-based oil may be chosen from:
  • composition according to the invention comprises at least one non volatile
  • hydrocarbon-based apolar oil preferably chosen from polybutenes, polyisobutenes, hydrogenated polyisobutenes, polydecenes and/or hydrogenated polydecenes, and mixtures thereof.
  • a composition according to the invention may comprise a total content of non volatile apolar hydrocarbonated oil(s) ranging from 20% to 30% by weight, preferably from 22% to 28% by weight, relative to the total weight of the composition.
  • said non volatile hydrocarbon oil comprise at least a hydrogenated polydecene and/or hydrogenated polyisobutene, preferably in a total content ranging from 20 to 30%, preferably from 22% to 28%o by weight, relative to the total weight of the composition.
  • the weight ratio of the total apolar non volatile hydrocarbonated oil(s) to the total non volatile phenyl dimethicone oil(s) is lower than 0,9. More preferably, the weight ratio of the total apolar non volatile hydrocarbonated oil(s) to the total non volatile phenyl dimethicone oil(s) is equal or lower than 0,8, preferably between 0,25 and 0,8.
  • the weight ratio of the total apolar non volatile hydrocarbonated oil(s) to the total non volatile phenyl dimethicone oil(s) is comprised between 0,3 and 0,8.
  • the weight ratio of the total non volatile phenylated dimethicone oil(s) to the total non volatile hydrocarbonated oil(s) is between 0,5 to 1,5.
  • composition according to the invention comprise at least a non volatile polar hydrocarbonated oil. More particularly, the composition according to the invention comprises from 3% to 20% by total weight of non volatile hydrocarbonated polar oil, or mixture thereof, relative to the total weight of the composition.
  • polar oil means an oil whose solubility parameter at 25°C, 6 a , is other than 0 (J/cm 3 ) w .
  • oils may be of plant, mineral or synthetic origin.
  • the additional hydrocarbon-based non-volatile polar oil may be chosen from the list of oils below, and niixtures thereof:
  • hydrocarbon-based plant oils such as liquid triglycerides of fatty acids containing from 4 to 10 carbon atoms, for instance heptanoic or octanoic acid triglycerides or jojoba oil;
  • - fatty acid esters in particular of 4 to 22 carbon atoms, and especially of octanoic acid, heptanoic acid, lanolic acid, oleic acid, lauric acid or stearic acid, for instance propylene glycol dioctanoate, propylene glycol monoisostearate or neopentyl glycol diheptanoate;
  • R COORa oils of formula R COORa in which R ⁇ represents a linear or branched fatty acid residue comprising from 4 to 40 carbon atoms and R 2 represents a hydrocarbon-based chain, which is especially branched, containing from 4 to 40 carbon atoms, on condition that R ⁇ + R 2 > 16, for instance purcellin oil (cetostearyl octanoate), isononyl isononanoate, C 12 to C 15 alkyl benzoate, 2- ethylhexyl palmitate, octyldodecyl neopentanoate, 2-octyldodecyl stearate, 2-octyldodecyl erucate, oleyl erucate, isostearyl isostearate, 2-octyldodecyl benzoate, alcohol orpolyalcohol octanoates, decanoates or ricino
  • - diesters of fatty alcohols comprising from 12 to 24 carbon atoms, such as diisostearyle malate;
  • R 1 represents a diol dimer residue obtained by hydrogenation of dilinoleic diacid
  • R represents a hydrogenated dilinoleic diacid residue
  • h represents an integer ranging from 1 to 9
  • - fatty alcohols containing from 12 to 26 carbon atoms which are preferably branched, for instance octyldodecanol, 2-butyloctanol, 2-hexyldecanol, 2-undecylpentadecanol and oleyl alcohol;
  • - 2-C22 higher fatty acids such as oleic acid, linoleic acid and linolenic acid, and mixtures thereof;
  • oils of plant origin such as sesame oil (820.6 g mol);
  • dialkyl carbonates the two alkyl chains possibly being identical or different, such as dicaprylyl carbonate sold under the name Cetiol CC ® by Cognis; and
  • composition according to the invention comprises at least one additional non- volatile polar hydrocarbon oil chosen from:
  • vinylpyrrolidone copolymers preferably such as the vinylpyrrolidone/l-hexadecene copolymer
  • esters preferably with a total carbon number ranging from 35 to 70, preferably chosen from polyglyceryl-2 triisostearate, isostearyl lactate, octyl hydroxystearate, octyldodecyl
  • oils from plant origin preferably chosen from liquid triglycerides of fatty acids
  • R ⁇ represents a linear or branched fatty acid residue containing from 4 to 40 carbon atoms and R 2 represents a hydrocarbon-based chain that is especially branched, containing from 4 to 40 carbon atoms, provided that Ri + R 2 > 16;
  • the non volatile hydrocarbonated polar oil is chosen from ester oils, preferably diester oils and/or hydroxylated ester oils, preferably diisostearyl malate.
  • a composition according to the invention comprise a total content of non volatile polar hydrocarbonated oil ranging from 5% to 15% by weight and preferably from 5% to 10% by weight, relative to the total weight of the composition.
  • a cosmetic makeup and/or care composition according to the invention also comprises a cosmetically acceptable medium that may comprise the usual ingredients, as a function of the intended use of the composition.
  • the composition according to the invention may also comprises at least one additional compound preferably chosen from a volatile oil, preferably hydrocarbonated such as isododecane and/or a fatty pasty compound, preferably chosen from petrolatum and/or esters of a diol dimer and of a diacid dimer, and/or a filler, and/or a colouring agent, and/or mixture thereof.
  • a volatile oil preferably hydrocarbonated such as isododecane and/or a fatty pasty compound, preferably chosen from petrolatum and/or esters of a diol dimer and of a diacid dimer, and/or a filler, and/or a colouring agent, and/or mixture thereof.
  • the weight ratio of the total non volatile hydrocarbonated oil(s) to the total non volatile silicone oil(s) comprise
  • the weight ratio of the total apolar non volatile hydrocarbonated oil(s) to the total non volatile silicone oil(s), preferably to the non volatile phenyl dimethicone oil(s), is lower than 0,9, preferably comprised between 0,25 and 0,8, even more preferably between 0,3 and 0,8.
  • composition according to the invention may comprise, besides said non volatile silicone oil, said non volatile hydrocarbonated apolar oil, and said non volatile
  • hydrocarbonated polar oil an additional liquid fatty phase, preferably chosen from volatile oils and/or non volatile silicone oils, different from said non phenylated dimethicone oil(s), as described before.
  • the additional liquid fatty phase may represent from 0, 1 % to 60% by weight relative to the total weight of the composition.
  • composition according to the invention and/or used in a composition according to the invention may comprise from 0.5% to 20% by weight of an additional liquid fatty phase relative to its total weight.
  • the composition according to the invention may comprise a volatile oil.
  • a composition under consideration according to the invention may advantageously comprise one or more oils, which may be chosen especially from volatile hydrocarbon-based oils, volatile silicone oil and fluoro oils, and mixtures thereof.
  • the term 'Volatile oil means an oil that is capable of evaporating on contact with keratin materials in less than one hour, at room temperature (25°C) and atmospheric pressure (760 mmHg).
  • the volatile oil is a volatile cosmetic oil, which is liquid at room temperature, especially having a non-zero vapour pressure, at room temperature and atmospheric pressure, in particular having a vapour pressure ranging from 0.13 Pa to 40000 Pa (10 "3 to 300 mmHg), preferably ranging from 1.3 Pa to 13 000 Pa (0.01 to 100 mmHg) and preferentially ranging from 1.3 Pa to 1300 Pa (0.1 to 10 mmHg).
  • the oils may be of animal, plant, mineral or synthetic origin. Volatile fluoro oil
  • fluoro oil means an oil comprising at least one fluorine atom.
  • the term "perfluoro compounds” means compounds in which all the hydrogen atoms have been replaced with fluorine atoms.
  • the fluoro oil according to the invention is chosen from perfluoro oils.
  • perfluoro oils that may be used in the invention, mention may be made of perfluorodecalins and perfluoroperhydrophenanthrenes.
  • the fluoro oil is chosen from
  • perfluoroperhydrophenanthrenes and especially the Fiflow® products sold by the company Creations Couliv.
  • use may be made of the fluoro oil whose INCI name is
  • the composition according to the invention further comprises a volatile hydrocarbonated oil such as isododecane and/or isohexadecane.
  • Such compound is compatible with the non volatile hydrocarbonated and silicone oil and improve the spreadability during application and the transfer resistance of the deposit.
  • hydrocarbon-based oil (or “hydrocarbonated oil”, or “hydrocarbon oil”) means an oil formed essentially from, or even constituted by, carbon and hydrogen atoms, and optionally oxygen and nitrogen atoms, and not containing any silicon or fluorine atoms. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.
  • the volatile hydrocarbon-based oils may be chosen from hydrocarbon-based oils containing from 8 to 16 carbon atoms, and especially C 8 -C 16 branched alkanes (also known as isoparaffrns), for instance isododecane (also called 2,2,4,4,6-pentamethylheptane), isodecane and isohexadecane, and mixture thereof.
  • hydrocarbon-based oils containing from 8 to 16 carbon atoms, and especially C 8 -C 16 branched alkanes (also known as isoparaffrns), for instance isododecane (also called 2,2,4,4,6-pentamethylheptane), isodecane and isohexadecane, and mixture thereof.
  • hydrocarbon-based oil is intended to mean an oil formed essentially, or even constituted, of carbon and hydrogen atoms, and optionally of oxygen and nitrogen atoms, and containing no silicon or fluorine atoms. It may contain alcohol, ester, ether, carboxylic acid, amine and/or amide groups.
  • composition according to the invention also comprises at least isododecane and/or isohexadecane.
  • the composition is free of additional volatile hydrocarbonated oil other than isododecane and/or isohexadecane.
  • composition according to the invention contains between 1% and 10% by weight of volatile oil, preferably of isododecane and/or isohexadecane, relative to its total weight.
  • ketones which are liquid at ambient temperature, such as methyl ethyl ketone or acetone
  • short-chain esters containing from 3 to 8 carbon atoms in total
  • ethers which are liquid at ambient temperature, such as diethyl ether, dimethyl ether or dichlorodiethyl ether
  • alcohols and in particular linear or branched lower monoalcohols containing from 2 to 5 carbon atoms, for instance ethanol, isopropanol or n-propanol.
  • composition according to the invention comprises less than 15% and better still less than 12% by weight of volatile oil having a flash point of less than 80°C, relative to the total weight of the composition.
  • volatile oil having a flash point of less than 80°C, relative to the total weight of the composition.
  • compositions according to the invention may comprise at least one volatile silicone oil.
  • silicone oil is intended to mean an oil comprising at least one silicon atom, and in particular comprising Si-0 groups.
  • the volatile silicone oil that may be used in the invention may be chosen from silicone oils especially having a viscosity ⁇ 8 centistokes (cSt) (8 x 10 -6 m 2 /s) and preferably greater than 0.5 cSt .
  • silicon oil is intended to mean an oil comprising at least one silicon atom, and in particular comprising Si-0 groups.
  • the volatile silicone oil that can be used in the invention may be chosen from silicone oils having a flash point ranging from 40°C to 150°C, preferably having a flash point of greater than 55°C and less than or equal to 105 °C, and preferentially ranging from 65°C to 95°C.
  • the flash point is in particular measured according to ISO standard 3679.
  • the volatile silicone oil may be chosen from linear or cyclic silicone oils such as linear or cyclic polydimethylsiloxanes (PDMSs) having from 3 to 7 silicon atoms.
  • PDMSs linear or cyclic polydimethylsiloxanes
  • Volatile silicone oils that may more particularly be mentioned include decamethylcyclopentasiloxane sold especially under the name DC-245 by the company Dow Corning,
  • a composition according to the invention may preferably also comprise at least one solid fatty substance especially chosen from waxes and/or pasty fatty substances.
  • the composition is free of wax or contains less than 5% by weight of waxes, preferably less than 3%, relative to the total weight of the composition.
  • the composition is liquid at room temperature.
  • the composition can be a lipgloss.
  • the composition comprises at least one wax.
  • the amount of wax(es) in the makeup and/or care composition according to the invention is between 0.5% and 30% by weight, especially from 1% to 20% by weight or even 2% to 15% by weight, relative to the total weight of the composition.
  • the presence of waxes is preferred when the composition according to the invention is solid at room temperature.
  • the composition in case a makeup composition, for instance for the lips, the composition can be a lipsticks.
  • wax means a lipophilic compound that is solid at room temperature (25°C), with a reversible solid/liquid change of state, having a melting point of greater than or equal to 30°C, which may be up to 200°C.
  • the waxes may be chosen from waxes of animal, plant, mineral or synthetic origin, and mixtures thereof.
  • hydrogenated sunflower oil hydrogenated castor oil, hydrogenated coconut oil, hydrogenated lanolin oil and bis(l,l,l-trimethylolpropane) tetrastearate.
  • Mention may also be made of silicone waxes and fluoro waxes.
  • the waxes obtained by hydrogenation of castor oil esterified with cetyl alcohol may also be used.
  • composition according to the invention may comprise at least one wax, especially a hydrocarbon-based wax.
  • the total amount of pasty fatty compounds in the composition according to the invention is between 5% and 30% by weight, especially from 10% to 20% by weight, relative to the total weight of the composition.
  • the term "pasty”, within the meaning of the present invention, is understood to mean a lipophilic fatty compound with a reversible solid/liquid change of state exhibiting, in the solid state, an anisotropic crystalline arrangement and comprising, at a temperature of 23 °C, a liquid fraction and a solid fraction.
  • the term "pasty compound”, within the meaning of the invention is understood to mean a compound having a hardness at 20°C ranging from 0.001 to 0.5 MPa, preferably from 0.002 to 0.4 MPa.
  • the hardness is measured according to a method of penetration of a probe into a sample of compound and in particular using a texture analyser (for example, the ⁇ - ⁇ 2 ⁇ from Rheo) equipped with a stainless steel cylinder with a diameter of 2 mm.
  • the hardness measurement is carried out at 20°C at the centre of 5 samples.
  • the cylinder is introduced into each sample at a pre-rate of 1 mm/s and then at a measuring rate of 0.1 mm/s, the depth of penetration being 0.3 mm.
  • the value recorded for the hardness is that of the maximum peak.
  • this pasty compound is, at a temperature of 23 °C, in the form of a liquid fraction and of a solid fraction.
  • the starting melting temperature of the pasty compound is less than 23°C.
  • the liquid fraction of the pasty compound, measured at 23 °C, represents 9 to 97% by weight of the compound. This liquid fraction at 23°C preferably represents between 15 and 85%, more preferably between 40 and 85%, by weight.
  • lanolin and derivatives thereof, such as lanolin alcohol, oxyethylenated lanolins, acetylated lanolin, lanolin esters such as isopropyl lanolate, and oxypropylenated lanolins,
  • esters ie pasty fatty substance comprising at least one ester function
  • liposoluble polyethers that are particularly preferred are copolymers of ethylene oxide and/or of propylene oxide with C 6 -C 30 long-chain alkylene oxides, more preferably such that the weight ratio of the ethylene oxide and/or of the propylene oxide to the alkylene oxides in the copolymer is from 5:95 to 70:30.
  • the aliphatic carboxylic acid comprises from 4 to 30 and preferably from 8 to 30 carbon atoms.
  • the aliphatic carboxylic acid is preferably branched.
  • the aliphatic hydroxycarboxylic acid ester is advantageously derived from a hydroxylated aliphatic carboxylic acid containing from 2 to 40 carbon atoms, preferably from 10 to 34 carbon atoms and better still from 12 to 28 carbon atoms, and from 1 to 20 hydroxyl groups, preferably from 1 to 10 hydroxyl groups and better still from 1 to 6 hydroxyl groups.
  • the aliphatic hydroxycarboxylic acid ester is chosen from:
  • esters of a diol dimer and of a diacid dimer where appropriate esterified on their free alcohol or acid function(s) with acid or alcohol radicals, especially dimer dilinoleate esters; such esters may be chosen especially from the esters having the following ENfCI nomenclature: bis-behenyl/isostearyl/phytosteryl dimer dilinoleyl dimer dilinoleate (commercialised under the references Plandool G and Plandool G7), phytosteryl/isostearyl/stearyl/behenyl dimer dilinoleate (Plandool H or Plandool S), and mixtures thereof,
  • Aarhuskarlshamn - hydrogenated oils of plant origin such as hydrogenated castor oil isostearate (sold as (SALACOS HCIS (V -L) Big par NISSHIN OIL), hydrogenated soybean oil, hydrogenated coconut oil, hydrogenated rape seed oil, mixtures of hydrogenated plant oils such as the mixture of hydrogenated soybean, coconut, palm and rape seed plant oil, for example the mixture sold under the reference Akogel® by the company Aarhuskarlshamn (TNCI name: Hydrogenated Vegetable Oil).
  • rosinate esters such as dilinoleyl dimers of hydrogenated rosinate (Lusplan DD-DHR or DD-DHR from Nippon Fine Chemical);
  • the pasty fatty substance is a hydrocarbon-based compound comprising at least one ester function.
  • the pasty fatty substance is chosen from hydrogenated castor oil isostearate (SALACOS HCIS (V -L) Big par NISSHIN OIL), bis-behenyl/isostearyl/phytosteryl dimer dilinoleyl dimer dilinoleate, bis-diglyceryl polyacyladipate-2, hydrogenated castor oil dimer dilinoleate (Risocast-DA- L®, Risocast DA-H®, sold by Kokyu Alcohol Kogyo), polyvinyl laurate, petrolatum, mango butter, shea butter, hydrogenated soybean oil, hydrogenated coconut oil and hydrogenated rape seed oil, and mixtures thereof.
  • SALACOS HCIS V -L
  • NISSHIN OIL hydrogenated castor oil isostearate
  • the fatty pasty compound is chosen from petrolatum and/or esters of a diol dimer and of a diacid dimer.
  • the composition comprise at least one additional fatty phase preferably chosen from volatile oil, preferably hydrocarbonated such as isododecane and/or a fatty pasty compound, preferably chosen from petrolatum and/or esters of a diol dimer and of a diacid dimer.
  • a makeup and/or care composition according to the invention may also comprise one or more filler(s).
  • the composition is free of fillers.
  • the composition comprises at least one or more filler(s).
  • fillers should be understood as meaning colorless or white, mineral or synthetic particles of any shape, which are insoluble in the medium of the composition, irrespective of the temperature at which the composition is manufactured. These fillers serve especially to modify the rheology or the texture of the composition.
  • the fillers may be mineral or organic and of any shape, platelet-shaped, spherical or oblong, irrespective of the crystallographic form (for example lamellar, cubic, hexagonal, orthorhombic, etc.). Mention may be made of talc, mica, silica, kaolin, clay, bentone, fumed silica particles, optionally hydrophilic- or hydrophobic-treated, polyamide (Nylon®) powder (Orgasol® from Atochem), poly- ⁇ - alanine powder and polyethylene powder, tetrafluoroethylene polymer (Teflon®) powder, lauroyllysine, starch, boron nitride, hollow polymer microspheres such as polyvinylidene
  • chloride/acrylonitrile microspheres for instance Expancel® (Nobel Industrie), acrylic acid copolymer microspheres (Polytrap® from the company Dow Corning) and silicone resin microbeads (for example Tospearls® from Toshiba), precipitated calcium carbonate, magnesium carbonate, magnesium hydrogen carbonate, hydroxyapatite, hollow silica microspheres (Silica Beads® from Maprecos), elastomeric polyorganosiloxane particles, glass or ceramic microcapsules, and metal soaps derived from organic carboxylic acids containing from 8 to 22 carbon atoms and preferably from 12 to 18 carbon atoms, for example zinc stearate, magnesium stearate, lithium stearate, zinc laurate or magnesium myristate, and mixtures thereof.
  • organic carboxylic acids containing from 8 to 22 carbon atoms and preferably from 12 to 18 carbon atoms, for example zinc stearate, magnesium stearate, lithium stearate, zinc laur
  • the composition according to the invention comprises at least silica, preferably hydrophobic treated silica.
  • the composition comprises at least one filler, and in particular chosen from fumed silicas that have optionally been hydrophilic- or hydrophobic-treated, preferably hydrophobic-treated.
  • the composition comprises at least one filler known as Silica
  • the hydrophobic groups may especially be dimethylsilyloxyl or polydimethylsiloxane groups, which are especially obtained by treating fumed silica in the presence of polydimethylsiloxane or dimethyldichlorosilane.
  • Silicas thus treated are known as Silica Dimethyl Silylate according to the CTFA (6th edition, 1995). They are sold, for example, under the references Aerosil R972® and Aerosil R974® by the company Degussa, and Cab-O-Sil TS-610® and Cab-O-Sil TS-720® by the company Cabot.
  • composition according to the invention is free of
  • the composition when in liquid form, it comprises at least one filler, preferably chosen from silica, kaolin, bentone, fumed silica particles, which have preferably been hydrophobic-treated, lauroyllysine and starch.
  • filler preferably chosen from silica, kaolin, bentone, fumed silica particles, which have preferably been hydrophobic-treated, lauroyllysine and starch.
  • composition according to the invention may comprise a filler chosen from:
  • organomodified clays which are preferably clays treated with compounds chosen especially from quaternary amines and tertiary amines.
  • Organomodified clays that may be mentioned include organomodified bentonites, such as the product sold under the name Bentone 34 by the company Rheox, and organomodified hectorites such as the products sold under the names Bentone 27 and Bentone 38 by the company Rheox,
  • Such silicas are sold, for example, under the references Aerosil R812® by the company Degussa and Cab-O-Sil TS-530® by the company Cabot, and under the references
  • the filler may be present in a content ranging from 0.1% to 5% by weight and better still from 0.4% to 3% by weight relative to the total weight of the composition.
  • such compound is present when the composition is free of nanosilica and more particularly free of Silica Dimethyl Silylate.
  • the hydrophobic silica aerogel particles may be present in a content ranging from 0.1 % to 15% by weight and better still from 0.1 % to 10% by weight, relative to the total weight of the composition.
  • the hydrophobic silica aerogel particles may be present in a content ranging from 0.1% to 6% by weight and better still from 0.2% to 4% by weight, relative to the total weight of the composition.
  • the composition may comprise at least an additional filler, such as those described before for example.
  • the composition according to the invention comprises at least Hydrophobic silica aerogel particles, when the composition is free of nanometric silica particules as described before, such as Silica Dimethyl Silylate.
  • Silica aerogels are porous materials obtained by replacing (by drying) the liquid component of a silica gel with air.
  • sol-gel processes are generally synthesized via a sol-gel process in liquid medium and then dried, usually by extraction of a supercritical fluid, the one most commonly used being supercritical C0 2 . This type of drying makes it possible to avoid shrinkage of the pores and of the material.
  • the sol-gel process and the various drying processes are described in detail in Brinker CJ., and Scherer G.W., Sol-Gel Science: New York: Academic Press, 1990.
  • the hydrophobic silica aerogel particles that may be used in the present invention have a specific surface area per unit of mass (SM) ranging from 500 to 1500 m /g, preferably from 600 to 1200 m /g and better still from 600 to 800 m /g, and a size expressed as the mean volume diameter (D[0.5]), ranging from 1 to 1500 um, better still from 1 to 1000 um, preferably from 1 to 100 ⁇ , in particular from 1 to 30 ⁇ , more preferably from 5 to 25 ⁇ , better still from 5 to 20 ⁇ and even better still from 5 to 15 um.
  • SM surface area per unit of mass
  • the hydrophobic silica aerogel particles that may be used in the present invention have a size expressed as the mean volume diameter (D[0.5]) ranging from 1 to 30 ⁇ , preferably from 5 to 25 ⁇ , better still from 5 to 20 ⁇ and even better still from 5 to 1 ⁇ .
  • the specific surface area per unit of mass may be determined via the BET (Brunauer-Emmett-Teller) nitrogen absorption method described in the Journal of the American Chemical Society, vol. 60, page 309, February 1938 and corresponding to the international standard ISO 5794/1 (appendix D).
  • the BET specific surface area corresponds to the total specific surface area of the particles under consideration.
  • the hydrophobic silica aerogel particles used in the present invention have a specific surface area per unit of mass (SM) ranging from 600 to 800 m 2 /g and a size expressed as the mean volume diameter (D[0.5]) ranging from 5 to 20 ⁇ and better still from 5 to 15 ⁇ .
  • SM surface area per unit of mass
  • D[0.5] mean volume diameter
  • the hydrophobic silica aerogel particles used in the present invention may advantageously have a tamped density p ranging from 0.04 g/cm 3 to 0.10 g/cm 3 and preferably from 0.05 g/cm 3 to 0.08 g/cm 3 .
  • this density known as the tamped density, may be assessed according to the following protocol:
  • the hydrophobic silica aerogel particles that may be used in the present invention have a specific surface area per unit of volume Sv ranging from 5 to 60 m /cm , preferably from 10 to 50 m 2 /cm 3 and better still from 15 to 40 m 2 /cm 3 .
  • the specific surface area per unit of volume is given by the relationship:
  • Sv SM-P; where p is the tamped density expressed in g/cm and SM is the specific surface area per unit of mass expressed in m 2 /g, as defined above.
  • the hydrophobic silica aerogel particles according to the invention have an oil-absorbing capacity, measured at the wet point, ranging from 5 to 18 ml/g, preferably from 6 to 15 ml/g and better still from 8 to 12 ml/g.
  • the oil-absorbing capacity measured at the wet point, noted Wp corresponds to the amount of water that needs to be added to 100 g of particle in order to obtain a homogeneous paste.
  • hydrophobic silica aerogels particles surface-modified with trimethylsilyl groups Use will be made in particular of hydrophobic silica aerogels particles surface-modified with trimethylsilyl groups.
  • aerogel sold under the name VM-2270 (INCI name: Silica silylate), by the company Dow Corning, the particles of which have a mean size ranging from 5-15 microns and a specific surface area per unit of mass ranging from 600 to 800 m 2 /g (oil uptake equal to 1080 ml/100 g).
  • VM-2270 INCI name: Silica silylate
  • Dow Corning the particles of which have a mean size ranging from 5-15 microns and a specific surface area per unit of mass ranging from 600 to 800 m 2 /g (oil uptake equal to 1080 ml/100 g).
  • composition according to the invention comprises at least an ester of dextrin, preferably an ester of dextrin and a fatty acid, preferably a C 12 to C 24 .fatty acid.
  • a composition according to the invention preferably comprises a content of dextrin ester ranging from 0, 1% to 15% by weight and preferably from 1% to 10% by weight, relative to the total weight of the composition.
  • a composition according to the invention may comprise a content of dextrin ester ranging from 3,2% to 10% by weight relative to the total weight of the composition.
  • the composition according to the invention is free from dextrin ester.
  • the dyestuffs may be present in the composition in a content ranging from 0.01% to 30% by weight, relative to the weight of the composition, preferably from 0.1 % to 20% by weight.
  • pigments should be understood as meaning white or coloured, mineral or organic particles that are insoluble in an aqueous solution, which are intended to colour and/or opacify the resulting film.
  • the pigments may be present in a proportion of from 0.01% to 30% by weight, especially from 0.1% to 25% by weight and in particular from 0.2% to 15% by weight relative to the total weight of the cosmetic composition.
  • the dyestuff may also comprise a pigment with a structure that may be, for example, of silica microsphere type containing iron oxide.
  • a pigment having this structure is the product sold by the company Miyoshi under the reference PC Ball PC-LL-100 P, this pigment consisting of silica microspheres containing yellow iron oxide.
  • DPP diketopyrrolopyrroles
  • nacres available on the market, mention may be made of the nacres Timica, Flamenco and Duochrome (based on mica) sold by the company Engelhard, the Timiron nacres sold by the company Merck, the Prestige mica-based nacres, sold by the company Eckart, and the Sunshine synthetic mica- based nacres, sold by the company Sun Chemical.
  • the nacres may more particularly have a yellow, pink, red, bronze, orange, brown, gold and/or coppery colour or tint.
  • nacres that may be used in the context of the present invention, mention may be made especially of the gold-coloured nacres sold especially by the company Engelhard under the name Brilliant gold 212G (Timica), Gold 222C (Cloisonne), Sparkle gold (Timica), Gold 4504 (Chromalite) and Monarch gold 233X (Cloisonne); the bronze nacres sold especially by the company Merck under the name Bronze fine (17384) (Colorona) and Bronze (17353) (Colorona) and by the company Engelhard under the name Super bronze (Cloisonne); the orange nacres sold especially by the company Engelhard under the name Orange 363C (Cloisonne) and Orange MCR 101 (Cosmica) and by the company Merck under the name Passion orange (Colorona) and Matte orange ( 17449)
  • dyes should be understood as meaning compounds that are generally organic, which are soluble in fatty substances such as oils or in an aqueous-alcoholic phase.
  • the cosmetic composition according to the invention may also contain at least one material with a specific optical effect as dyestuff.
  • This effect is different from a simple conventional hue effect, i.e. a unified and stabilized effect as produced by standard dyestuffs, for instance monochromatic pigments.
  • the term "stabilized" means lacking an effect of variability of the colour as a function of the angle of observation or alternatively in response to a temperature change.
  • this material may be chosen from particles with a metallic tint, goniochromatic coloring agents, c ffracting pigments, thermochromic agents, optical brighteners, and also fibres, especially interference fibres. Needless to say, these various materials may be combined so as to afford the simultaneous manifestation of two effects, or even of a novel effect in accordance with the invention.
  • a composition according to the invention may also comprise an aqueous phase, which may represent 0,01% to 50% by weight, especially 0,1% to 30% by weight or even 1% to 20% by weight relative to the total weight of the composition.
  • This aqueous phase may be formed essentially from water, or may comprise a mixture of water and of water-miscible solvent (miscibility in water of greater than 50% by weight at 25°C) chosen especially from monoalcohols containing 1 to 5 carbon atoms such as ethanol, isopropanol, glycols containing 2 to 8 carbon atoms such as propylene glycol, ethylene glycol, 1,3- butylene glycol, dipropylene glycol, C 3 -C ketones and C 2 -C 4 aldehydes, and mixtures thereof.
  • compositions according to the invention are anhydrous.
  • anhydrous especially means that water is preferably not deliberately added to the compositions, but may be present in trace amounts in the various compounds used in the compositions.
  • a makeup and/or care composition according to the invention may also comprise at least one agent usually used in cosmetics, chosen, for example, from reducing agents, thickeners, film-forming agents that are especially hydrophobic, silicone elastomers, softeners, antifoams, moisturizers, UV-screening agents, ceramides; cosmetic active agents; peptizers, fragrances, proteins, vitamins, propellants, hydrophilic or lipophilic, film-forming or non-film-forrning polymers; lipophilic or hydrophilic gelling agents.
  • the above additives are generally present in an amount for each of them of between 0.01% and 10% by weight relative to the total weight of the composition. Needless to say, a person skilled in the art will take care to select the constituents of the composition such that the advantageous properties associated with the invention are not, or are not substantially, adversely affected.
  • a composition used according to the invention may also comprise any usual cosmetic ingredient, which may be chosen especially from antioxidants, film-forming polymers, fragrances, preserving agents, emollients, moisturizers, neutralizers, sunscreens, sweeteners, vitamins, free-radical scavengers and sequestrants, and mixtures thereof.
  • the amounts of each of these various ingredients are those conventionally used in the fields under consideration, and range, for example, from 0.01 % to 10% by weight relative to the total weight of the composition. Needless to say, a person skilled in the art will take care to select the optional additional ingredients and/or the amount thereof such that the advantageous properties of the composition according to the invention are not, or are not substantially, adversely affected by the envisaged addition.
  • composition in accordance with the invention may be in liquid form or in solid form.
  • the composition is in solid form.
  • it may be a cosmetic product chosen from a lip balm and/or a lipstick.
  • This product may preferably be in the form of a stick or cast in a dish.
  • it is a lipstick or a lip balm in stick form.
  • a composition according to the invention may constitute a liquid lipstick for the lips, a body makeup product, a facial or body care product or an antisun product.
  • a composition of the invention is in liquid form.
  • composition according to the invention is homogeneous and stable and gives access to a deposit on the skin or the lips that has good cosmetic properties, in particular in terms of gloss, comfort (thickness deposit) and absence of transfer of the deposit.
  • compositions according to the invention enable the forming a deposit exhibits no color transfer, in particular on a cup while drinking for a lip product, and when the composition contains one or more colouring agent(s).
  • composition was obtained according to the following protocol:
  • the fillers, pigments and/or active agents of the fatty phase were ground in a three-roll mill in part of the oily phase (in diisostearyl malate).
  • the rest of the liposoluble ingredients were then mixed in the heating pan at a temperature of about 100°C with Rayneri blending until a homogeneous mixture was obtained.
  • the ground pigmentary material was then incorporated into the mixture, along with the nacres, if present, and stirring was continued until the mixture was homogeneous.
  • composition 1 The viscosity of composition 1 at 25°C was evaluated according to the protocol described previously. The composition obtained was placed for 72 hours at 24°C and at 47°C in order to evaluate the stability of the composition. More particularly, it is observed if the composition is stable, ie remain homogenous (no phase separation and/or no sedimentation of the pigments)
  • composition was then applied to the lips in order to evaluate the application properties and the characteristics of the deposit obtained (Shine, Color Transfer resistance, and tack).
  • the tacky nature of a deposit made on the lips with the formula to be evaluated was evaluated 5 minutes after application by rubbing the upper and the lower lips together and the tack was assessed by the person on removal of her upper and lower lips.
  • the color transfer resistance is evaluated by applying the lips on a white cup as while drinking 5 minutes after applying the composition on the lips.
  • Formula 1 according to the invention that has 40 % non volatile phenyl dimethicone oil has good application properties (smooth and glide) and has a good color transfer resistance (almost no colour the cup).
  • the deposit made with Formula 1 is sparingly tacky and has a good level of shine.
  • Comparative example 2 is a liquid lip gloss outside the invention and contains only 10% of non volatile phenyl dimethicone oil and above 30% of non volatile apolar oil.
  • Comparative composition 2 is homogeneous and stable, and its deposit on the lips has a good level of shine.
  • composition 2 is less easy to apply than composition 1 according to the invention (does not glide easily) and the deposit on the lips is more sticky and has a bad color transfer resistance.
  • liquid makeup compositions 3 to 7 having the following compositions have been prepared (the percentages indicated are weight percentages).
  • Compositions 3 and 4 illustrate the invention.
  • Compositions 5, 6 and 7 are comparatives compositions outside the invention. (KF-54 from Shin
  • compositions 3 to 7 were prepared and evaluated in the same manner as described before.
  • compositions 3 and 4 according to the invention enable obtaining a deposit on the lips that has a good color transfer resistance, in particular on a cup. Beside, the deposits obtained with the compositions 3 and 4 have a good level of shine and are not tacky or sparingly tacky. Compositions 3 and 4 according to the invention are easy to apply: good glide and the deposit obtained is thick and comfortable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention porte sur des compositions pour le maquillage et/ou le soin de la peau et/ou des lèvres, comprenant au moins une phase grasse comprenant : de 20 % à 60 % en termes de poids total d'une ou plusieurs huiles de silicone phénylées non volatiles ayant au moins une partie diméthicone , ou d'un mélange de celles-ci, par rapport au poids total de la composition ; de 15 % à 30 % en termes de poids total d'une ou plusieurs huiles d'hydrocarbure apolaires non volatiles, ou d'un mélange de celles-ci, par rapport au poids total de la composition ; de 3 % à 20 % en termes de poids total d'une huile d'hydrocarbure polaire non volatile, ou d'un mélange de plusieurs de ces huiles, par rapport au poids total de la composition ; le rapport pondéral de l'huile d'hydrocarbure apolaire non volatile totale à ladite ou lesdites huiles de silicone phénylées non volatiles totales, de préférence encore à ladite ou lesdites huiles de silicone non volatiles ayant au moins une partie diméthicone, étant inférieur à 0,9 ; et au moins un ester de dextrine.
PCT/JP2012/066469 2012-06-21 2012-06-21 Composition cosmétique comprenant une huile de phényl-diméthicone non volatile, une huile d'hydrocarbure apolaire non volatile, une huile d'hydrocarbure polaire non volatile et un ester de dextrine WO2013190707A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/066469 WO2013190707A1 (fr) 2012-06-21 2012-06-21 Composition cosmétique comprenant une huile de phényl-diméthicone non volatile, une huile d'hydrocarbure apolaire non volatile, une huile d'hydrocarbure polaire non volatile et un ester de dextrine
PCT/JP2013/067743 WO2013191301A1 (fr) 2012-06-21 2013-06-21 Composition cosmétique contenant une huile phényldiméthicone, une huile apolaire hydrocarbonée non volatile, une huile polaire hydrocarbonée non volatile et un ester de dextrine
JP2014560186A JP2015520116A (ja) 2012-06-21 2013-06-21 不揮発性フェニルジメチコン油、及び不揮発性炭化水素化無極性油、不揮発性炭化水素化極性油、及びデキストリンエステルを含む化粧用組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/066469 WO2013190707A1 (fr) 2012-06-21 2012-06-21 Composition cosmétique comprenant une huile de phényl-diméthicone non volatile, une huile d'hydrocarbure apolaire non volatile, une huile d'hydrocarbure polaire non volatile et un ester de dextrine

Publications (1)

Publication Number Publication Date
WO2013190707A1 true WO2013190707A1 (fr) 2013-12-27

Family

ID=48795866

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/066469 WO2013190707A1 (fr) 2012-06-21 2012-06-21 Composition cosmétique comprenant une huile de phényl-diméthicone non volatile, une huile d'hydrocarbure apolaire non volatile, une huile d'hydrocarbure polaire non volatile et un ester de dextrine
PCT/JP2013/067743 WO2013191301A1 (fr) 2012-06-21 2013-06-21 Composition cosmétique contenant une huile phényldiméthicone, une huile apolaire hydrocarbonée non volatile, une huile polaire hydrocarbonée non volatile et un ester de dextrine

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067743 WO2013191301A1 (fr) 2012-06-21 2013-06-21 Composition cosmétique contenant une huile phényldiméthicone, une huile apolaire hydrocarbonée non volatile, une huile polaire hydrocarbonée non volatile et un ester de dextrine

Country Status (1)

Country Link
WO (2) WO2013190707A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008263A1 (fr) * 2013-07-18 2015-01-22 L'oreal Émulsions huile/huile contenant des particules avec rupture de courbure, compositions les comprenant et utilisation des particules pour stabiliser des émulsions huile/huile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736545A2 (fr) * 1995-04-05 1996-10-09 Chiba Flour Milling Co., Ltd. Ester de dextrine et d'acides gras et son utilisation
EP1602353A1 (fr) * 2004-05-28 2005-12-07 L'oreal Composition cosmétique de maquillage et/ou de soins des lèvres
JP2007238578A (ja) * 2006-03-13 2007-09-20 Kose Corp 口唇化粧料
FR2945941A1 (fr) * 2009-06-02 2010-12-03 Oreal Composition cosmetique comprenant un polymere sequence et une huile ester non volatile
EP2298273A1 (fr) * 2008-06-12 2011-03-23 Shiseido Company, Ltd. Préparation cosmétique d huile dans l huile

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR853634A (fr) 1938-04-29 1940-03-23 Ericsson Telefon Ab L M Appareils de mesure
DK0542669T3 (da) 1991-11-04 1997-10-20 Chimie Ind Sa Soc Nouv Fremgangsmåde til fremstilling af pigmenter, især fluorescerende pigmenter.
GB9418499D0 (en) 1994-09-14 1994-11-02 Ciba Geigy Ag Process for producing n-methylated organic pigments
EP0787730B1 (fr) 1996-01-30 2001-08-01 Ciba SC Holding AG Diketopyrrolopyrroles polyméisables et polymères préparés avec les-mêmes
EP0787731B1 (fr) 1996-01-30 2002-08-07 Ciba SC Holding AG Dicétopyrrolopyrroles et leurs polymères
DE19648798C2 (de) 1996-11-26 1998-11-19 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
FR2756176B1 (fr) 1996-11-26 1998-12-18 Oreal Composition cosmetique comprenant un compose fluore et presentant un confort ameliore
FR2776509B1 (fr) 1998-03-31 2001-08-10 Oreal Composition topique contenant un ester d'acide ou d'alcool gras ramifie en c24 a c28
JP5334720B2 (ja) 2009-07-14 2013-11-06 日本精化株式会社 油性基剤及びこれを含有する化粧料及び皮膚外用剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0736545A2 (fr) * 1995-04-05 1996-10-09 Chiba Flour Milling Co., Ltd. Ester de dextrine et d'acides gras et son utilisation
EP1602353A1 (fr) * 2004-05-28 2005-12-07 L'oreal Composition cosmétique de maquillage et/ou de soins des lèvres
JP2007238578A (ja) * 2006-03-13 2007-09-20 Kose Corp 口唇化粧料
EP2298273A1 (fr) * 2008-06-12 2011-03-23 Shiseido Company, Ltd. Préparation cosmétique d huile dans l huile
FR2945941A1 (fr) * 2009-06-02 2010-12-03 Oreal Composition cosmetique comprenant un polymere sequence et une huile ester non volatile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008263A1 (fr) * 2013-07-18 2015-01-22 L'oreal Émulsions huile/huile contenant des particules avec rupture de courbure, compositions les comprenant et utilisation des particules pour stabiliser des émulsions huile/huile
FR3008617A1 (fr) * 2013-07-18 2015-01-23 Oreal Emulsions pickering huile/huile renfermant des particules a rupture de courbe, compositions les comprenant et utilisation des particules pour stabiliser des emulsions h/h de pickering
CN105392530A (zh) * 2013-07-18 2016-03-09 欧莱雅 包含具有曲率断裂的颗粒的油/油乳液、包含它们的组合物及该颗粒用于稳定o/o乳液的用途
CN105392530B (zh) * 2013-07-18 2018-06-01 欧莱雅 包含具有曲率断裂的颗粒的油/油乳液、包含它们的组合物及该颗粒用于稳定o/o乳液的用途

Also Published As

Publication number Publication date
WO2013191301A1 (fr) 2013-12-27

Similar Documents

Publication Publication Date Title
EP2863998B1 (fr) Composition cosmétique solide comprenant une huile hydrocarbonée non volatile, des cires et une teneur élevée en huile de silicone phénylée non volatile
EP2863871B1 (fr) Composition cosmetique comprenant une resine hydrocarbonee, un copolymere bloc hydrocarbone, une huile dimethicone non phenylee non volatile et une huile hydrocarbonee non volatile
EP2863872B1 (fr) Composition cosmetique comprenant une resine hydrocarbonee, un copolymere bloc hydrocarbone, une huile dimethicone phenylee non volatile et une huile hydrocarbonee non volatile
WO2013191302A1 (fr) Composition cosmétique liquide comprenant une huile hydrocarbonée non volatile, une huile de diméthicone non volatile et un ester de dextrine
JP2015520118A (ja) シルセスキオキサン樹脂、炭化水素系樹脂、不揮発性炭化水素化油及び不揮発性シリコーン油をベースとする化粧用組成物
JP6271449B2 (ja) 不揮発性ジメチコン油、不揮発性フェニル化シリコーン油及び不揮発性炭化水素化油を含む化粧用組成物
JP2015520116A (ja) 不揮発性フェニルジメチコン油、及び不揮発性炭化水素化無極性油、不揮発性炭化水素化極性油、及びデキストリンエステルを含む化粧用組成物
WO2013191305A1 (fr) Composition cosmétique à base d'une résine silsesquioxane, d'une résine hydrocarbonée, d'une huile hydrocarbonée non volatile et d'une huile de silicone non volatile
JP6254538B2 (ja) 不揮発性炭化水素化油、ワックス、及び高含量の不揮発性フェニル化シリコーン油を含む化粧用固体組成物
JP6271448B2 (ja) 不揮発性炭化水素化油、不揮発性ジメチコン油及びデキストリンエステルを含む液体化粧用組成物
WO2013190707A1 (fr) Composition cosmétique comprenant une huile de phényl-diméthicone non volatile, une huile d'hydrocarbure apolaire non volatile, une huile d'hydrocarbure polaire non volatile et un ester de dextrine
WO2013191306A1 (fr) Composition cosmétique comprenant une huile diméthicone non volatile, une huile silicone phénylée non volatile et une huile hydrocarbonée non volatile
JP6348423B2 (ja) 炭化水素系樹脂、炭化水素系ブロックコポリマー、不揮発性フェニルジメチコン油及び不揮発性炭化水素化油を含む化粧用組成物
WO2013190705A1 (fr) Composition cosmétique comprenant un polymère supramoléculaire, une huile de silicone non volatile et une huile d'hydrocarbure non volatile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12743544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12743544

Country of ref document: EP

Kind code of ref document: A1