WO2013189126A1 - 一种有关提高无源核子料位计信噪比的方法 - Google Patents

一种有关提高无源核子料位计信噪比的方法 Download PDF

Info

Publication number
WO2013189126A1
WO2013189126A1 PCT/CN2012/080199 CN2012080199W WO2013189126A1 WO 2013189126 A1 WO2013189126 A1 WO 2013189126A1 CN 2012080199 W CN2012080199 W CN 2012080199W WO 2013189126 A1 WO2013189126 A1 WO 2013189126A1
Authority
WO
WIPO (PCT)
Prior art keywords
gamma ray
change
noise ratio
level
signal
Prior art date
Application number
PCT/CN2012/080199
Other languages
English (en)
French (fr)
Inventor
郭云昌
朱敏娟
Original Assignee
Guo Yunchang
Zhu Minjuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guo Yunchang, Zhu Minjuan filed Critical Guo Yunchang
Publication of WO2013189126A1 publication Critical patent/WO2013189126A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/288X-rays; Gamma rays or other forms of ionising radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing
    • G01F23/802Particular electronic circuits for digital processing equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/80Arrangements for signal processing
    • G01F23/802Particular electronic circuits for digital processing equipment
    • G01F23/804Particular electronic circuits for digital processing equipment containing circuits handling parameters other than liquid level

Definitions

  • the present invention relates to the field of passive nuclear material level measurement technology, and in particular to a method for improving the signal-to-noise ratio of a passive nuclear material level meter.
  • the passive nuclear material level meter makes it easy to realize the non-contact measurement level without using the radioactive source but only by using the gamma radioactivity of the measured material itself and the gamma radioactivity in the environment of the tested container. Effective and feasible, the field that originally needs to use the nuclear level gauge is replaced by a passive nuclear level gauge, which greatly reduces the number of radioactive sources used, eliminates the high cost of radioactive source management, and reduces the radiation risk.
  • the alarm mode according to the level measurement can be divided into two types: switch mode and continuous mode.
  • the switch type level meter refers to a level meter that can only distinguish whether the material height reaches the set position and outputs a switch quantity signal, including the material full alarm and the material empty alarm; the continuous level meter means that the specific material can be distinguished.
  • a level gauge that outputs one or more continuous level signals.
  • a passive nuclear material level measuring device disclosed in the domestic patent CN200610118890 and the domestic patent is CN201010296383, which utilizes the radiation shielding body added outside the detector to shield the radiation in the environment, and reduces the environmental ray which is irrelevant to the material level change. Therefore, the signal-to-noise ratio is improved, but the influence of the change of the environmental ray on the measured material level cannot be fundamentally eliminated.
  • the object of the present invention is to improve the deficiencies of the prior art and to provide a comprehensive, simple, and easy method for improving the signal-to-noise ratio of a passive nuclear material level gauge.
  • a method for improving the signal-to-noise ratio of a passive nuclear material level gauge including a passive nuclear material level measuring device and a computing technology, characterized in that the method adopts a reference method and includes the following steps:
  • the passive nuclear material level measuring device is provided with two gamma ray detectors, and one gamma ray detector is used for monitoring the variation of the gamma ray radiation intensity variation in the interior of the container under test with the change of the material level.
  • a gamma ray detector is used as a reference gamma ray detector to monitor the amount of change in the ambient gamma ray radiation intensity itself that does not change with the material level outside the container under test;
  • the method uses a multi-point balance calculation method instead of the reference method, and does not need to increase the reference gamma ray detection. It is suitable for the case where there are multiple measurement points in similar measurement areas, including the following steps:
  • the method uses the feature ray method instead of the reference method, and does not need to increase the reference gamma ray detection, including the following steps:
  • a passive nuclear level gauge identifies the characteristic ray from the gamma ray detected by the gamma ray detector
  • the reference gamma ray detector mounting position and the measuring direction in the reference method for measuring the amount of change in the ambient gamma ray radiation intensity outside the container to be tested are selected to have no influence on the measurement when the level changes.
  • the influence of the environmental radiation itself on each measurement point is consistent according to the change of the environmental radiation itself, and when the measurement points are relatively large, the probability that the actual material level of each measurement point changes synchronously is very small, and the individual materials are calculated.
  • the amount of synchronous change of the gamma ray measured by the bit meter; the change of the ambient gamma ray radiation intensity is recognized according to the difference between the rate of change of the gamma ray radiation intensity and the rate of change of the ambient gamma ray radiation intensity caused by the change of the level.
  • the invention incorporates the variation of the environmental gamma ray into the influence factor to participate in the calculation of the material level, or utilizes the characteristic ray of the material to be tested to fundamentally eliminate the environmental impact, thereby improving the accuracy of the measurement and providing
  • the reference method, multi-point balance calculation method and characteristic ray method can replace each other according to the actual measurement situation, which eliminates the influence of the environmental gamma ray variation on the internal gamma ray detector of the measured container, which increases the user.
  • the selectivity of the measurement according to the actual measurement situation and can be used as a test method to increase the credibility of the data.
  • FIG. 1 is a schematic diagram showing the internal hardware structure of a passive nuclear material level meter according to the present invention
  • FIG. 2 is a schematic view showing the application of a passive nuclear material level meter according to the present invention
  • 3 is a schematic view showing the hardware structure of a switch type fly ash level gauge with a reference gamma ray detector according to the present invention
  • 1. material 2. a container to be tested 3.
  • a gamma ray detector 4. a detector holder
  • the present invention provides three sets of methods which can be mutually replaced according to actual conditions, and is based on the improvement of the measurement method of the existing passive nuclear material level gauge.
  • the passive nuclear level gauge used in the embodiment mainly includes as follows: (1) Gamma ray detector, Nal scintillation detector is used to measure the gamma ray of the environment of the tested material and the container under test. (2) a signal processing module for processing the collected gamma ray intensity signal, combined with software to issue an alarm signal according to a preset switching point, canceling the alarm signal, or according to the pre-acquired gamma ray intensity and level The relationship outputs the electronic circuit of the continuous material level signal; (3) the material level signal output module, the electronic circuit for outputting the alarm signal, the alarm release signal, and the material level signal output by the signal processing module, which may be light, sound, I /O port, relay, analog output circuit, communication interface, etc.; (4) Auxiliary module, including mounting bracket, ray shielding device with improved signal-to-noise ratio, cable connector, antenna, used to set switch point or gamma ray intensity Handheld device with parameter curve parameter, communication device for exchanging information between passive nuclear level
  • the method provided by the invention is applied to a switch passive nuclear fly ash level gauge, and the material level in the ash hopper of the electrostatic precipitator or the bag filter is measured, and the electric dust collector or the bag dust hopper is used as an inverted quadrangular pyramid.
  • the shape of the steel plate is shown in Figure 2.
  • the height is 5-8 meters, the inclination angle is 60 degrees, and the outer surface is provided with 20-40cm thick thermal insulation material and the color steel plate for protecting the thermal insulation material.
  • the internal measured material is the temperature formed after the pulverized coal is burned.
  • Fly ash of 135-450 ° in view of the temperature, viscosity and impact of fly ash, and fly ash has strong gamma radioactivity. It is highly desirable to employ the method of the present invention in the monitoring of ash ash position, the steps are as follows:
  • Enhance ambient ray that is related to material level changes A gamma ray shielding material is added to the outer wall of the ash hopper being measured.
  • (A) Install another reference gamma ray detector near the point to be measured.
  • This detector is also part of the level gauge and can be installed inside the fly ash level gauge or independently installed outside the fly ash level gauge.
  • the measured information of the change in the ambient gamma ray can be used either alone or in combination with other fly ash level gauges in the vicinity.
  • the specific position and installation direction should be such that the sensitive direction does not face the hopper and a shielding device is provided between it and the hopper.
  • the reference gamma ray detector monitors the change in ambient radiation n, which is measured simultaneously with the gamma ray detector inside the switched fly ash level gauge that measures the change in gray level.
  • the gamma ray radiation measured by the gamma ray detector that measures the gray level change inside the switch fly ash level meter deducts the environmental radiation change measured by the reference gamma ray detector, and calculates the level change to eliminate the environmental radiation. The impact of own changes.
  • the gamma radioactivity intensity data measured by the switch fly ash level meter of all measuring points is collected into a switch type fly ash level meter through the communication interface; the ambient radiation is calculated by comprehensively judging by the switch type fly ash level meter The change, and notify the switching fly ash level meter of all measuring points; the amount of change of the environmental radiation is deducted by each switch type fly ash level meter, and then the material level change is calculated, thereby eliminating the influence of environmental radiation changes.
  • the characteristic ray method can also be used to improve the signal-to-noise ratio.
  • Open The closed fly ash level gauge identifies a characteristic ray with an energy of 1.4 MeV from the gamma ray detected by the gamma ray detector, and calculates the level change based only on the intensity variation of the characteristic gamma ray of the energy. It is possible to take into account the effects of changes in the environmental radiation itself.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种提高无源核子料位计信噪比的方法,包括无源核子料位测量装置和计算技术,该方法采用参考法,其步骤为:(a)无源核子料位测量装置设有两个伽玛射线探测器(3),一个监测被测容器内部伽玛射线放射强度变化量,另一个监测被测容器外部环境伽玛射线放射强度的变化量;(b)被测容器内部伽玛射线放射性强度变化量扣除环境伽玛射线放射性强度变化量,消除环境伽玛射线影响,提高信噪比。该方法将环境伽玛射线的变化量列入影响因素并加以消除,提高了测量的精度。还提供了采用多点平衡计算法和特征射线法替代参考法的另两种有关提高无源核子料位计信噪比的方法,消除了环境伽玛射线对测量被测容器内部料位的伽玛射线探测器的影响。

Description

一种有关提高无源核子料位计信噪比的方法
[技术领域] 本发明涉及无源核子料位测量技术领域, 具体涉及一种提高无源核子料位 计信噪比的方法。
[背景技术]
在化工、 冶金、 煤炭、 电力等行业, 在输送物料的过程中, 经常需要测量 料斗、 料仓中的料位。 现有利用伽玛射线测量物位的方法主要有两种: 一种是传统的带放射源的 核子料位计, 如国内专利 CN202230393公开的一种自动料位控制装置, 其实质 是利用左右相互对称的伽马射线柱对料位仓中的料位进行测量; 另一种则是不 带放射源, 利用被测物料和环境的天然的伽玛射线测量物位的无放射源核子料 位计, 简称无源核子料位计, 无源核子料位计使得不用放射源而只是利用被测 物料自身的伽玛放射性和被测容器所在环境中的伽玛放射性实现非接触测量物 位变得简单有效和可行, 使得原本需要使用核子料位计的领域被无源核子料位 计取代, 大大减少了放射源的使用数量, 免去了高昂的放射源管理成本, 降低 了辐射风险。
根据物位测量的报警模式又可分为开关式和连续式两种形式。 开关式物位 计是指只能分辨物料高度是否达到设定位置、 并输出开关量信号的物位计, 包 括料满报警和料空报警; 连续式物位计是指能够分辨出具体的物料高度、 并输 出一种或多种连续物位信号的物位计。 随着测量精度要求变高、 报警可靠性要求变高、 信噪比比较低、 或者希望 用较低灵敏度的伽玛探测器实现测量时, 就需要提高无源核子料位计的信噪比。 国内专利 CN200610118890及国内专利为 CN201010296383公开的一种无源核子 料位测量装置, 均是利用加设在探测器外部的辐射屏蔽体屏蔽环境中放射线的 影响, 降低与料位变化不相干的环境射线, 从而提高信噪比, 但不能从根本上 消除环境射线的变化对测量料位的影响。
[发明内容] 本发明的目的在于完善现有技术的不足, 提供一种全面、 简单、 易行提高 无源核子料位计信噪比的方法。
为实现上述目的, 设计一种有关提高无源核子料位计信噪比的方法, 包括 无源核子料位测量装置和计算技术, 其特征在于该方法采用参考法, 包括以下 步骤:
( a ) 所述无源核子料位测量装置设有两个伽马射线探测器, 一个伽马射线 探测器用于监测被测容器内部随料位变化而变化的伽马射线放射强度变化量, 另一个伽马射线探测器作为参考伽马射线探测器, 监测被测容器外部不随料位 变化而变化的环境伽马射线放射强度自身的变化量;
( b ) 将监测被测容器内部伽玛射线探测器测量到的伽玛射线放射性强度变 化量扣除参考伽玛射线探测器测量到的环境伽玛射线放射性强度变化量, 计算 料位变化, 消除环境伽玛射线放射性强度自身的变化对监测被测容器内部的伽 马射线探测器的影响, 提高无源核子料位计信噪比。
该方法采用多点平衡计算法替代参考法, 不需要增加参考用的伽玛射线探 测, 适用于在相似测量区域有多个测量点的情况, 包括以下步骤:
( a ) 将所有测量点测量的伽玛放射性强度数据通过通信接口输入到一个无 源核子料位计或一个独立处理单元中;
( b ) 由该无源核子料位计或处理单元计算出环境伽玛射线放射性强度的平 均变化量, 并通过通信接口输出到所有测量点的无源核子料位计;
( c ) 由各个无源核子料位计扣除此环境伽玛射线放射性强度的平均变化 量, 计算料位变化, 消除环境辐射自身的变化影响, 提高无源核子料位计信噪 比。
该方法采用特征射线法替代参考法, 不需要增加参考用的伽玛射线探测, 包括以下步骤:
( a ) 测量确定被测物料自身伽玛辐射中与环境辐射不同的特征伽玛射线;
(b ) 无源核子料位计从伽玛射线探测器探测到的伽玛射线里识别出该特征 射线;
( c ) 仅以此特征伽玛射线的强度变化计算料位变化, 滤除环境辐射变化的 影响, 提高无源核子料位计信噪比。
所述参考法中测量被测容器外部环境伽马射线放射强度变化量的参考伽玛 射线探测器安装位置和测量方向选择在料位变化时对其测量不产生影响的位 置。
所述多点平衡计算法中, 依据环境辐射自身的变化对各个测量点的影响一 致, 和测量点比较多时, 各个测量点的实际料位同步变化的概率是非常小的特 点, 计算出各个料位计测量到的伽马射线的同步变化量; 根据料位变化引起的 伽马射线放射强度变化率和环境伽马射线放射强度的变化率的差异, 识别出环 境伽马射线放射强度变化。 本发明与现有技术相比, 将环境伽马射线的变化量列入影响因素参与料位 计算, 或者利用被测物料的特征射线从根本上消除了环境影响, 提高了测量的 精确度, 提供了参考法、 多点平衡计算法及特征射线法三种可依实际测量情况 相互替换的方法, 消除了环境伽马射线变化量对被测容器内部伽马射线探测器 的影响, 既增加了用户测量时依实际测量情况的选择性, 又可作为检验方法增 加数据的可信度。
[附图说明] 图 1为本发明涉及的无源核子料位计内部硬件结构示意图; 图 2为本发明涉及的无源核子料位计应用示意图; 图 3为本发明带参考伽玛射线探测器的开关式飞灰料位计的硬件结构示意图; 图中 1.物料 2.被测容器 3.伽马射线探测器 4.探测器支架 [具体实施方式] 结合附图对本发明作进一步说明, 其方法对本专业领域技术人员来说是可 以实现的。
本发明提供了 3套可依实际情况互相替换的方法, 是基于现有无源核子料 位计测量计算方式的改进。
实施例中使用的无源核子料位计如图 1所示主要包括: (1 ) 伽玛射线探测 器, 选用 Nal闪烁探测器, 用于测量被测物料和被测容器所在环境的伽玛射线 强度; (2 ) 信号处理模块, 用于处理所收集的伽玛射线强度信号, 结合软件根 据预先设定的开关点发出报警信号、 解除报警信号, 或根据预先取得的伽玛射 线强度与料位的关系输出连续料位信号的电子线路; (3 ) 料位信号输出模块, 用于把信号处理模块输出的报警信号、 报警解除信号、 料位信号输出的电子线 路, 可以是灯光、 声音、 I/O口、 继电器、 模拟量输出电路、 通信接口等; (4) 辅助模块, 包括安装支架、 改善信噪比的射线屏蔽装置、 电缆接头、 天线、 用 于设定开关点或伽玛射线强度与料位的关系曲线参数的手持设备、 用于无源核 子料位计之间交换信息的通信设备等; (6) 软件, 用于控制伽玛探测器, 处理 伽玛信号并输出报警信号、 解除报警信号、 或连续料位信号, 实现通信或人机 对话等等功能的所有相关代码的集合。
将本发明提供的方法应用于开关式无源核子飞灰料位计中, 测量电除尘器 或布袋除尘器灰斗中的料位, 所用的电除尘器或布袋除尘器灰斗为倒四棱锥形 钢板结构如图 2所示、 高度 5-8米、 倾角 60度、 外部设有 20-40cm厚的保温材 料和保护保温材料的彩钢板, 内部被测物料是煤粉燃烧后形成的温度在 135-450 °〇的飞灰, 鉴于飞灰的温度、 黏性和落灰的冲击力, 且飞灰有较强的伽玛放射 性。 在灰斗灰位监测上采用本发明所述的方法是非常理想的, 步骤如下:
假设料满伽玛射线强度 N2, 料空伽玛射线强度 N1 , 则信噪比 a=N2/Nl。 ( 1 ) 传统方法一
屏蔽与料位变化不相干的环境射线。 加厚开关式飞灰料位计中屏蔽层的厚 度, 减少除开灵敏方向以外的料位变化不相干的环境射线。假设减少了 n, 则新 的信噪比 al =(Ν2-η)/(Ν1-η)。 显然 al>a。
(2 ) 传统方法二
增强与料位变化相干的环境射线。在被测量的灰斗的外壁上增加伽玛射线屏 蔽材料。 则可以将料空伽玛射线强度 N1减少 n。 由于灰自身的屏蔽作用和自身 的放射性, 这样做对 N2影响不大。 则新的信噪比 a2=N2/(Nl-n)。 显然 a2>a。
(3 ) 消除环境辐射变化的影响
(A)在被测点附近安装另外一个参考伽玛射线探测器,该探测器也是料位 计的一部分, 可以安装在飞灰料位计内部, 也可以独立安装在飞灰料位计外部, 其测量的环境伽玛射线的变化信息, 既可以供其单独使用, 也可以给附近的其 他飞灰料位计共同使用。 具体位置和安装方向应使得其灵敏方向不朝向灰斗, 并在其和灰斗之间设置屏蔽装置。
参考伽玛射线探测器监测环境辐射的变化 n, 与开关式飞灰料位计内部的 测量灰位变化的伽玛射线探测器同时测量。
开关式飞灰料位计内部测量灰位变化的伽玛射线探测器测量到的伽玛辐射 变化扣除参考伽玛射线探测器测量到的环境辐射变化, 共同计算料位变化, 便 消除了环境辐射自身的变化的影响。
(B) 由于除尘器下面灰斗数量比较多, 也很集中, 很适合用多点平衡计算 法消除环境辐射自身的变化。
通过通信接口把所有测量点的开关式飞灰料位计测量的伽玛放射性强度数 据集中到一个开关式飞灰料位计里; 由该开关式飞灰料位计综合判断, 计算出 环境辐射的变化, 并通知所有测量点的开关式飞灰料位计; 由各个开关式飞灰 料位计扣除此环境辐射的变化量, 再计算料位变化, 便消除了环境辐射变化的 影响。
(C) 由于飞灰的伽玛辐射比较强, 还可以采用特征射线法提高信噪比。开 关式飞灰料位计从伽玛射线探测器探测到的伽玛射线里识别出能量为 1.4MeV 的特征射线, 只以此能量的特征伽玛射线的强度变化为依据来计算料位变化。 就可以虑除环境辐射自身的变化的影响。

Claims

1.一种有关提高无源核子料位计信噪比的方法, 包括无源核子料位测量装置和 计算技术, 其特征在于该方法采用参考法, 包括以下步骤:
( a )所述无源核子料位测量装置设有两个伽马射线探测器, 一个伽马射线探测 器用于监测被测容器内部随料位变化而变化的伽马射线放射强度变化量, 另一 个增加的伽马射线探测器作为参考伽马射线探测器, 监测被测容器外部不随料 位变化而变化的环境伽马射线放射强度自身的变化量;
(b )将监测被测容器内部伽玛射线探测器测量到的伽玛射线放射性强度变化量 扣除参考伽玛射线探测器测量到的环境伽玛射线放射性强度变化量, 计算料位 变化, 消除环境伽玛射线放射性强度自身的变化对监测被测容器内部的伽马射 线探测器的影响, 提高无源核子料位计信噪比。
2.如权利要求 1所述的一种有关提高无源核子料位计信噪比的方法, 其特征在 于该方法采用多点平衡计算法替代参考法, 不需要增加参考用的伽玛射线探测, 适用于在相似测量区域有多个测量点的情况, 包括以下步骤:
( a )将所有测量点测量的伽玛放射性强度数据通过通信接口输入到一个无源核 子料位计或一个独立处理单元中;
(b ) 由该无源核子料位计或处理单元计算出环境伽玛射线放射性强度的平均变 化量, 并通过通信接口输出到所有测量点的无源核子料位计;
(c ) 由各个无源核子料位计扣除此环境伽玛射线放射性强度的平均变化量, 计 算料位变化, 消除环境辐射自身的变化影响, 提高无源核子料位计信噪比。
3. 如权利要求 1所述的一种有关提高无源核子料位计信噪比的方法, 其特征在 于该方法采用特征射线法替代参考法, 不需要增加参考用的伽玛射线探测, 包 括以下步骤:
( a ) 测量确定被测物料自身伽玛辐射中与环境辐射不同的特征伽玛射线;
(b ) 无源核子料位计从伽玛射线探测器探测到的伽玛射线里识别出该特征射 线;
(c )仅以此特征伽玛射线的强度变化计算料位变化,滤除环境辐射变化的影响, 提高无源核子料位计信噪比。
4.如权利要求 1所述的一种有关提高无源核子料位计信噪比的方法, 其特征在 于所述参考法中测量被测容器外部环境伽马射线放射强度变化量的参考伽玛射 线探测器安装位置和测量方向选择在料位变化时对其测量不产生影响的位置。
5.如权利要求 2所述的一种有关提高无源核子料位计信噪比的方法, 其特征在 于所述多点平衡计算法中, 依据环境辐射自身的变化对各个测量点的影响一致, 和测量点比较多时, 各个测量点的实际料位同步变化的概率是非常小的特点, 计算出各个料位计测量到的伽马射线的同步变化量; 根据料位变化引起的伽马 射线放射强度变化率和环境伽马射线放射强度的变化率的差异, 识别出环境伽 马射线放射强度变化。
PCT/CN2012/080199 2012-06-19 2012-08-16 一种有关提高无源核子料位计信噪比的方法 WO2013189126A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012102020424A CN102706409A (zh) 2012-06-19 2012-06-19 一种有关提高无源核子料位计信噪比的方法
CN201210202042.4 2012-06-19

Publications (1)

Publication Number Publication Date
WO2013189126A1 true WO2013189126A1 (zh) 2013-12-27

Family

ID=46899359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080199 WO2013189126A1 (zh) 2012-06-19 2012-08-16 一种有关提高无源核子料位计信噪比的方法

Country Status (2)

Country Link
CN (1) CN102706409A (zh)
WO (1) WO2013189126A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179432A (zh) * 2019-10-18 2020-05-19 北京中智核安科技有限公司 一种伽玛放射性活度测量无源效率刻度方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478296A (zh) * 2016-06-08 2017-12-15 郑州立子加速器科技有限公司 一种x射线料位计

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071340A (en) * 1996-02-28 2000-06-06 General Signal Technology Corporation Apparatus for melt-level detection in Czochralski crystal growth systems
EP1039273A2 (de) * 1999-03-24 2000-09-27 Siemens Aktiengesellschaft Verfahren zur Füllstandsmessung
CN1279766A (zh) * 1997-11-20 2001-01-10 斯图德斯维克仪器股份公司 用来测量辐射的一种设备和一种方法
CN1438475A (zh) * 2003-03-14 2003-08-27 郭云昌 利用天然放射性测量物位的方法
CN1606690A (zh) * 2001-12-19 2005-04-13 恩德莱斯和豪瑟尔两合公司 用于对辐射测量系统中伽马射线照相引起的干扰信号进行误差消除及补偿的方法和设备
JP2006176805A (ja) * 2004-12-21 2006-07-06 Jfe Steel Kk 溶鉱炉内の溶融物レベル計測方法及び装置
CN101493354A (zh) * 2009-03-01 2009-07-29 太原理工大学 基于多传感器融合技术的滚筒式球磨机料位检测方法
CN101900595A (zh) * 2009-05-27 2010-12-01 沈阳工业大学 双进双出磨煤机的智能料位检测方法
CN101957226A (zh) * 2010-09-29 2011-01-26 上海辉博自动化仪表有限公司 一种无源核子料位测量装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540182A1 (de) * 1995-10-27 1997-04-30 Meselektronik Dresden Gmbh I G Vorrichtung und Meßverfahren zur Bestimmung des Absorptions- und/oder Streuungsgrades eines Mediums
GB2322189A (en) * 1997-02-13 1998-08-19 British Steel Plc Metal level detection
CN101709988B (zh) * 2009-12-10 2012-01-18 昝昕武 一种汽车油位传感方法及传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071340A (en) * 1996-02-28 2000-06-06 General Signal Technology Corporation Apparatus for melt-level detection in Czochralski crystal growth systems
CN1279766A (zh) * 1997-11-20 2001-01-10 斯图德斯维克仪器股份公司 用来测量辐射的一种设备和一种方法
EP1039273A2 (de) * 1999-03-24 2000-09-27 Siemens Aktiengesellschaft Verfahren zur Füllstandsmessung
CN1606690A (zh) * 2001-12-19 2005-04-13 恩德莱斯和豪瑟尔两合公司 用于对辐射测量系统中伽马射线照相引起的干扰信号进行误差消除及补偿的方法和设备
CN1438475A (zh) * 2003-03-14 2003-08-27 郭云昌 利用天然放射性测量物位的方法
JP2006176805A (ja) * 2004-12-21 2006-07-06 Jfe Steel Kk 溶鉱炉内の溶融物レベル計測方法及び装置
CN101493354A (zh) * 2009-03-01 2009-07-29 太原理工大学 基于多传感器融合技术的滚筒式球磨机料位检测方法
CN101900595A (zh) * 2009-05-27 2010-12-01 沈阳工业大学 双进双出磨煤机的智能料位检测方法
CN101957226A (zh) * 2010-09-29 2011-01-26 上海辉博自动化仪表有限公司 一种无源核子料位测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, SHI.: "The research of the method of stochastic interference cancellation for ground gamma spectrum measurement.", CHINESE MASTER'S THESES FULL-TEXT DATABASE, BASIC SCIENCES., no. 9, 15 September 2011 (2011-09-15), pages 1 - 3 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179432A (zh) * 2019-10-18 2020-05-19 北京中智核安科技有限公司 一种伽玛放射性活度测量无源效率刻度方法

Also Published As

Publication number Publication date
CN102706409A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN101349661B (zh) 一种在线检测皮带上煤炭灰分的方法
WO2013189124A1 (zh) 一种确定连续式无源核子料位计中料位曲线的方法
CN101937090B (zh) 一种高灵敏宽量程X-γ周围剂量当量率仪探头
WO2008140559A3 (en) Measuring momentum for charged particle tomography
CN102519993B (zh) 一种反射式x射线煤炭灰分与发热量检测装置及检测方法
CN104903709A (zh) 用于确定建筑材料含水量的测量装置及输送系统
WO2013189125A1 (zh) 一种有关确定开关式无源核子料位计开关点的方法
CN101907582B (zh) 全断面扫描的在线检测装置
CN107132166A (zh) 一种直插式粉尘浓度测量仪及测量方法
CN103245680A (zh) 基于飞行时间法的快中子成像方法及系统
WO2013189126A1 (zh) 一种有关提高无源核子料位计信噪比的方法
CN101957226B (zh) 一种无源核子料位测量装置
CN109186444A (zh) 一种衡器秤台限位距离的检测装置及检测方法
CN203772360U (zh) 一种可在恶劣环境下精确测量料位的料仓装置
CN204556840U (zh) 区分铀矿的在线测量装置
CN207036232U (zh) 一种数字化动态电子称重给煤机计量系统
CN204346951U (zh) 用于计算物料灰分的参数检测装置及物料灰分的测量设备
CN201780277U (zh) 全断面扫描的在线检测装置
CN210862839U (zh) 一种物料高度监控系统
CN204740213U (zh) 在线预测煤炭燃烧后灰渣中铀含量及煤炭分类控制的装置
CN208505422U (zh) 一种用于燃煤机组的煤灰检测装置和系统
CN204495750U (zh) 一种无源煤炭灰分测量装置
CN203094554U (zh) 烟箱缺条光子检测装置
CN101545800B (zh) 电渣炉钢水液面探测方法
CN221099824U (zh) 一种介质辐射的料位测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879273

Country of ref document: EP

Kind code of ref document: A1