WO2013187652A1 - 열플라즈마를 이용한 그래핀 양자점 제조방법 - Google Patents

열플라즈마를 이용한 그래핀 양자점 제조방법 Download PDF

Info

Publication number
WO2013187652A1
WO2013187652A1 PCT/KR2013/005109 KR2013005109W WO2013187652A1 WO 2013187652 A1 WO2013187652 A1 WO 2013187652A1 KR 2013005109 W KR2013005109 W KR 2013005109W WO 2013187652 A1 WO2013187652 A1 WO 2013187652A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene quantum
quantum dots
thermal plasma
carbon
tube
Prior art date
Application number
PCT/KR2013/005109
Other languages
English (en)
French (fr)
Inventor
서정쌍
김주한
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130066141A external-priority patent/KR101475928B1/ko
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2013187652A1 publication Critical patent/WO2013187652A1/ko
Priority to US14/557,745 priority Critical patent/US9278863B2/en
Priority to US15/007,918 priority patent/US10435301B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0815Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving stationary electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0898Hot plasma

Definitions

  • the present application relates to a method for producing graphene quantum dots using thermal plasma.
  • Graphene is a material having a honeycomb two-dimensional planar structure in which carbon atoms form a hexagonal structure and are connected to each other, and exhibit high chemical stability.
  • much attention has been focused as a next-generation semiconductor material because it has electrical conductivity 100 times better than silicon, and is flexible and transparent.
  • the method for preparing quantum dots of graphene includes a top down method for making large graphene small, and small carbon ring materials such as hexa-peri-hexabenzocoronene (HBC).
  • HBC hexa-peri-hexabenzocoronene
  • a bottom up method of pyrolysis after self-assembly is known.
  • Korean Patent Publication No. 2013-0050167 discloses a method for producing graphene quantum dots and graphene quantum dots produced thereby.
  • these methods are limited in terms of mass production of graphene quantum dots.
  • the present invention relates to a graphene quantum dot manufacturing method using a thermal plasma, by injecting a carbon source (thermal plasma jet) into a thermal plasma jet (pyrolysis) to form a carbon atom beam flowing at a high speed, the anode (anode) Graphene quantum dots are made by flowing them into a tube connected to and causing carbon atoms to collide with each other while passing through the tube.
  • a carbon source thermal plasma jet
  • pyrolysis pyrolysis
  • a first aspect of the present application is to inject a carbon source into a thermal plasma jet to pyrolyze the carbon source to form a carbon atom beam;
  • a method of manufacturing graphene quantum dots using thermal plasma may be provided, including manufacturing the graphene quantum dots by flowing the carbon atom beam into a tube connected to an anode.
  • the present application it is possible to control the degree of collision between the carbon atoms occurring in the tube by adjusting the length of the tube or the amount of carbon source through which the carbon atom beam passes, it is possible to control the average size of the quantum dots produced, Graphene quantum dots of several nanometers to hundreds of nanometers can be produced.
  • the carbon source material can be continuously supplied, it is possible to continuously and mass produce graphene quantum dots.
  • the thermal plasma jet may be a high temperature of thousands of °C to tens of thousands of °C, it can be used to produce high quality graphene quantum dots having high crystallinity.
  • FIG. 1 is a schematic diagram of a device used in the method for producing a graphene quantum dot using a thermal plasma according to an embodiment of the present application.
  • 2A and 2B are scanning electron microscope (SEM) images of graphene quantum dots prepared according to one embodiment of the present application.
  • 3A and 3B are transmission electron microscope (TEM) images of graphene quantum dots prepared by adjusting the injection rate of a carbon source according to one embodiment of the present application.
  • TEM transmission electron microscope
  • 4A and 4B are transmission electron microscope images of graphene quantum dots prepared by adjusting a length of a tube according to an embodiment of the present disclosure.
  • FIG. 5 is a photograph of carbon soot including graphene quantum dots prepared according to one embodiment of the present application.
  • Figure 6 is a graph showing the measurement of photoluminescence (photoluminescence) of the graphene quantum dots prepared according to an embodiment of the present application.
  • 7A and 7B are transmission electron microscope images of graphene quantum dots prepared by adjusting the length of a tube according to an embodiment of the present disclosure.
  • 8A to 8C are transmission electron microscope images of graphene quantum dots prepared by adjusting the length of a tube according to an embodiment of the present disclosure.
  • 9A to 9C are transmission electron microscope images of graphene quantum dots prepared by adjusting the length of a tube according to an embodiment of the present disclosure.
  • FFT fast Fourier transform
  • FIG. 11 is a graph illustrating ultraviolet-visible absorbance of graphene quantum dots prepared according to an example of the present disclosure.
  • FIG. 12 is a graph showing photoluminescence measurement of graphene quantum dots prepared according to an example of the present application.
  • the term “combination of these” included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
  • a first aspect of the present application is to inject a carbon source into a thermal plasma jet to pyrolyze the carbon source to form a carbon atom beam, and to flow the carbon atom beam into a tube connected to an anode. It is possible to provide a method for producing graphene quantum dots using thermal plasma, including manufacturing pin quantum dots.
  • FIG. 1 is a schematic diagram of a device used in the method for producing a graphene quantum dot using a thermal plasma according to an embodiment of the present application.
  • the apparatus used for manufacturing the graphene quantum dot using the thermal plasma plasma gas is injected through a plasma gas injection hole 110, and thus, a high temperature plasma jet 130 is formed.
  • the carbon source injection hole 150 may be formed near the jet.
  • the device may include an anode 170, a cathode 190, and a power source 210 connected to the anode and the cathode, to which the tube 230 is connected.
  • the method for producing graphene quantum dots using the thermal plasma pyrolyzes and thermally decomposes hydrocarbon-based materials such as ethylene under a high temperature realized by the thermal plasma jet, and then piggybacks them on the thermal plasma jet.
  • Forming a carbon atom beam attaching a tube to an anode to flow the carbon atom beam into the tube, causing the carbon atoms to collide with each other while passing through the tube, thereby producing a large amount of small graphene. It may be, but may not be limited thereto.
  • forming the carbon atom beam may include pyrolysing by the high temperature thermal plasma jet to form atomized carbon atoms that are piggybacked on the thermal plasma jet to flow at high speed. This may not be limited.
  • the inventors of the present invention previously developed a method for producing graphene using thermal plasma (Korean Patent Application No. 10-2009-0028681), which continuously injects a small amount of carbon into the thermal plasma, thereby relatively low density of carbon atoms.
  • the carbon atom beam flows into the carbon tube and then impinges on the graphite plate, whereby the graphene is produced by epitaxial growth on the graphite surface, which is several tens of nanometers to several micrometers depending on experimental conditions.
  • Graphene of size was prepared.
  • the method of manufacturing a graphene quantum dot using a thermal plasma by injecting an excessive amount of carbon source relative to the thermal plasma jet continuously in the tube while a high density carbon atom beam flows through the tube The collision between the carbon atoms in the may occur to include the production of graphene quantum dots of a small size.
  • the conventional graphene manufacturing method is that the graphene is manufactured on the surface of the graphite, it is fundamentally different from the manufacturing method of the graphene quantum dot according to an embodiment of the present application.
  • graphene quantum dots may be prepared by causing carbon atoms to collide with each other in the tube while the carbon atom beam flows through the tube, but may not be limited thereto.
  • the inner diameter of the tube may be about 1 mm to about 50 mm, but may not be limited thereto.
  • the diameter of the tube is about 1 mm to about 50 mm, about 5 mm to about 50 mm, about 10 mm to about 50 mm, about 20 mm to about 50 mm, about 30 mm to about 50 mm, about 40 mm to about 50 mm, about 1 mm to about 40 mm, about 1 mm to about 30 mm, about 1 mm to about 20 mm, about 1 mm to about 10 mm, about 1 mm to about 5 mm, or about 4 mm to about 6 mm, but may not be limited thereto.
  • the length of the tube may be about 5 cm to about 100 cm, for example, about 5 cm to about 100 cm, about 10 cm to about 100 cm, about 30 cm to about 100 cm, about 50 cm to about 100 cm, about 70 cm to about 100 cm, about 5 cm to about 70 cm, about 5 cm to about 50 cm, about 5 cm to about 20 cm, or about 5 cm to about 10 cm. However, this may not be limited.
  • the rate of infusion of the carbon source can be from about 500 mL / min to about 10,000 mL / min, for example, from about 500 mL / min to about 10,000 mL / min, from about 1,000 mL / min to about 10,000 mL /.
  • the size of the graphene quantum dots produced by the method for producing graphene quantum dots using the thermal plasma of the present application may be about 1 nm to about 100 nm, for example, about 1 nm to about 100 nm, About 5 nm to about 100 nm, about 10 nm to about 100 nm, about 30 nm to about 100 nm, about 50 nm to about 100 nm, about 70 nm to about 100 nm, about 1 nm to about 70 nm, about 1 nm to about 50 nm, about 1 nm to about 30 nm, about 1 nm to about 10 nm, or about 1 nm to about 5 nm, but may not be limited thereto.
  • the carbon atom beam may have a relatively high density of carbon atoms, but may not be limited thereto.
  • the carbon source may be pyrolyzed at high temperature to be completely atomized, and the carbon atom beam including the same flows into the tube, and the carbon atoms collide with each other, thereby preparing graphene quantum dots having high crystallinity, but not limited thereto. It may not be.
  • the collision probability between the carbon atoms may be adjusted by adjusting the amount of the carbon source injected per unit time
  • the average size of the graphene quantum dots manufactured using the same may be adjusted, but may not be limited thereto.
  • the graphene quantum dots after dispersing the pyrolyzed carbon source and the prepared graphene quantum dots in a solvent, the graphene quantum dots may be further separated, but may not be limited thereto. .
  • the carbon pyrolyzed by the thermal plasma jet may include carbon soot, and the carbon soot may be graphene, other large carbon materials, and onion-type carbon materials. It may include, but may not be limited to this. Therefore, the graphene quantum dots dispersed in the solvent after dispersing the carbon soot may be obtained from materials other than graphene that are not easily dispersed in the solvent, but may not be limited thereto.
  • the carbon soot is dispersed in a solvent such as ethanol, followed by spontaneous precipitation, or by using a centrifuge to facilitate precipitation.
  • a solvent such as ethanol
  • a centrifuge to facilitate precipitation.
  • the solvent may include water and / or an organic solvent, but may not be limited thereto.
  • the solvent may include an organic solvent, but may not be limited thereto.
  • the organic solvent may be selected from the group consisting of ethanol, benzene, ether, acetone, toluene, dimethyl sulfoxide (DMSO), pyridine, and combinations thereof, but is not limited thereto. Can be.
  • the thermal plasma jet may be generated by supplying a plasma gas to the plasma torch, but may not be limited thereto.
  • the plasma torch may include a transfer plasma torch or a non-transport plasma torch, but may not be limited thereto.
  • the plasma torch may include an anode and a cathode, but may not be limited thereto.
  • the diameter of the anode may be about 1 mm to about 50 mm, but may not be limited thereto.
  • the diameter of the anode is about 1 mm to about 50 mm, about 5 mm to about 50 mm, about 10 mm to about 50 mm, about 20 mm to about 50 mm, about 30 mm to about 50 mm, about 40 mm to about 50 mm, about 1 mm to about 40 mm, about 1 mm to about 30 mm, about 1 mm to about 20 mm, about 1 mm to about 10 mm, about 1 mm to about 5 mm, or about 4 mm to about 6 mm, but may not be limited thereto.
  • the plasma torch may include a non-transferred type, but may not be limited thereto.
  • a carbon source injection hole may be formed near the plasma jet, but may not be limited thereto.
  • the carbon source inlet may be located at a distance of about 0 mm to about 20 mm from the cathode, for example, about 0 mm to about 20 mm, about 5 mm to about 20 mm, about 10 mm To about 20 mm ⁇ about 15 mm to about 20 mm, about 0 mm to about 15 mm, about 0 mm to about 10 mm, or about 0 mm to about 5 mm, but is not limited thereto. Can be.
  • the plasma gas may include an inert gas, for example, argon (Ar), nitrogen (N 2 ), hydrogen (H 2 ), helium (He), neon (Ne) ), Xenon (Xe), radon (Rn), krypton (Kr), and combinations thereof may be included, but may not be limited thereto.
  • an inert gas for example, argon (Ar), nitrogen (N 2 ), hydrogen (H 2 ), helium (He), neon (Ne) ), Xenon (Xe), radon (Rn), krypton (Kr), and combinations thereof may be included, but may not be limited thereto.
  • the temperature of the thermal plasma jet may be to include about 1,000 °C to about 20,000 °C, but may not be limited thereto.
  • the thermal plasma jet may have a temperature of about 1,000 ° C. to about 20,000 ° C., about 1,000 ° C. to about 15,000 ° C., about 1,000 ° C. to about 10,000 ° C., about 1,000 ° C. to about 5,000 ° C., about 1,000 ° C. to about 3,000 ° C. , About 3,000 ° C. to about 20,000 ° C., about 5,000 ° C. to about 20,000 ° C., about 7,000 ° C. to about 20,000 ° C., about 10,000 ° C. to about 20,000 ° C., about 15,000 ° C. to about 20,000 ° C., or about 5,000 ° C. to about 10,000 ° C. It may include, but may not be limited thereto.
  • the carbon source may be to include gaseous or liquid, but may not be limited thereto.
  • hydrocarbons having a relatively low molecular weight as the carbon source may be used without limitation, for example, carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, methanol, propanol, butanol, pentanol, acetylene , But may be selected from the group consisting of propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene, and combinations thereof, but may not be limited thereto.
  • alcohols may be used as the carbon source without limitation, but may not be limited thereto.
  • any material capable of withstanding the high temperature of the plasma jet can be used without particular limitation.
  • the tube may include ceramic, metal, or carbon, but may not be limited thereto.
  • the size of the prepared graphene quantum dot may be adjusted by adjusting the length of the tube, but may not be limited thereto.
  • the size of the graphene quantum dot prepared may be controlled by adjusting the amount of the carbon source to be injected, but may not be limited thereto.
  • a non-conventional thermal plasma torch and argon (99.999%, injection rate 16,000 mL / min) were used as plasma gas, and a voltage of up to about 3 kV was applied to form a plasma jet of about 10,000 ° C.
  • the temperature of the plasma jet was indirectly measured through the color of the flame. This produced a plasma jet at a speed close to the speed of sound, which flowed into a copper nozzle with an internal diameter of about 6 mm.
  • C 2 H 4 gas was injected into the plasma jet at a rate of 1,000 mL / min to 2500 mL / min, and the resulting carbon atom beam was allowed to flow into a carbon tube attached to the anode.
  • the carbon soot thus prepared was dispersed by stirring using a stirring rod in a ethanol solvent, and then, the precipitated material was removed, and then the graphene quantum dots were obtained by evaporating the ethanol solvent. This process yielded graphene quantum dots corresponding to about 10%, or about 10 wt%, of the mass of carbon soot.
  • FIG. 2A is an enlarged image of 90,000 times graphene quantum dots
  • FIG. 2B is an enlarged image of 50,000 times.
  • FIG. 2a and 2b it was confirmed that most of the graphene quantum dots obtained by the present embodiment is preferably present in an independent state without agglomeration.
  • Several aggregated graphene quantum dots on the image were presumed to have aggregated during the sampling process.
  • the graphene quantum dots were prepared by varying the injection rate of ethylene used as the carbon source at 1,000 mL / min to 2,500 mL / min, and then the size of the prepared graphene quantum dots was measured.
  • 3a shows the graphene obtained when the injection rate of ethylene was 1,000 mL / min
  • FIG. 3b was 2,500 mL / min using a transmission electron microscope (TEM).
  • graphene quantum dots having a size of about 10 nm were prepared when the injection rate of ethylene was 1,000 mL / min, and about 19 nm when the injection rate of ethylene was 2,500 mL / min. Fin quantum dots were prepared, it was confirmed that the size of the graphene quantum dots can be adjusted by controlling the injection rate of the carbon source.
  • the length of the carbon tube was 20 cm and 5 cm, respectively, and graphene quantum dots were prepared by injecting ethylene at a rate of 2,500 mL / min.
  • 4A is a transmission electron microscope image of graphene quantum dots obtained when using a 20 cm long carbon tube, and FIG. 4B when using a 5 cm long carbon tube.
  • graphene quantum dots of about 20 nm size were prepared using a 20 cm long carbon tube, and about 10 nm graphene quantum dots were prepared using a 5 cm long carbon tube. . Therefore, it was confirmed that the size of the graphene quantum dots produced by adjusting the tube length could be adjusted.
  • FIG. 5 is a photograph of carbon soot obtained by preparing graphene quantum dots for about 2 minutes using a 20 cm long tube in this example.
  • the production amount and time of the carbon soot obtained it was confirmed that about 30 g of carbon soot can be produced per hour in terms of the amount of carbon soot that can be produced per hour. Since about 10 wt% of graphene quantum dots are obtainable from the carbon soot, it was expected that about 3 g of graphene quantum dots could be produced per hour.
  • photoluminescence of graphene quantum dots was measured using a photoluminescence apparatus including a xenon-arc lamp, a monochromator, and a detector.
  • FIG. 6 is a photoluminescence graph using a 20 cm carbon tube (top graph) and a 5 cm carbon tube (bottom graph) in this example.
  • the quantum size effect the larger the size of the graphene quantum dots, the longer the wavelength (less energy) is emitted. Therefore, it is possible to predict the relative size of the graphene quantum dots by comparing the emission wavelength.
  • the smaller size graphene quantum dots produced using 5 cm carbon tubes are lighter at shorter wavelengths than the larger size graphene quantum dots produced using 20 cm carbon tubes. It was confirmed that luminescence occurred. That is, when graphene quantum dots were manufactured using a 20 cm carbon tube compared to the case of using a 5 cm carbon tube, graphene quantum dots having a larger size were prepared.
  • the graphene quantum dots were prepared by adjusting the length of the carbon tube to 5 cm, 10 cm, and 20 cm, respectively.
  • FIG. 7A and 7B are transmission electron microscope images of graphene quantum dots prepared using 5 cm carbon tubes.
  • FIG. 7A graphene quantum dots of about 8 nm to about 10 nm were observed, and in FIG. 7B, graphene quantum dots of about 15 nm or less were observed.
  • FIG. 8A to 8C are transmission electron microscope images of graphene quantum dots prepared using a 10 cm carbon tube.
  • graphene quantum dots of about 14 nm or less were observed
  • FIG. 8B graphene quantum dots having sizes of about 14 nm, about 17 nm, and about 25 nm, respectively, were observed
  • FIG. 8C about 14 nm.
  • FIG. 9A to 9C are transmission electron microscope images of graphene quantum dots prepared using a 20 cm carbon tube. Graphene quantum dots of about 12 nm to about 20 nm were observed in FIG. 9A, graphene quantum dots of about 20 nm to about 25 nm were observed in FIG. 9B, and graphene quantum dots of about 24 nm were observed in FIG. 9C.
  • FIG. 10 is a 2D fast Fourier transform (FFT) analysis image of the manufactured graphene quantum dots, and according to a diffraction pattern, it was confirmed that the graphene quantum dots were formed as a single layer.
  • FFT fast Fourier transform
  • FIG. 11 is an absorption spectral graph showing ultraviolet-visible absorbance of graphene quantum dots prepared by the above example using an ultraviolet-visible spectrometer. As shown in FIG. 11, it was confirmed that the graphene quantum dots absorb light of about 320 nm and about 280 nm.
  • FIG. 12 is a graph showing photoluminescence measurements of the manufactured graphene quantum dots. As shown in FIG. 12, it was confirmed that the graphene quantum dot emits blue light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 출원은 열플라즈마 제트에 탄소원(carbon source)을 주입하여 상기 탄소원을 열분해시켜 탄소 원자 빔(beam)을 형성하고, 상기 탄소 원자 빔을 애노드(anode)에 연결된 튜브 내로 흐르게 하여 그래핀 양자점을 제조하는 것을 포함하는, 열플라즈마를 이용한 그래핀 양자점의 제조 방법을 제공한다.

Description

열플라즈마를 이용한 그래핀 양자점 제조방법
본원은, 열플라즈마를 이용한 그래핀 양자점의 제조 방법에 관한 것이다.
그래핀은 탄소 원자가 육각형의 구조를 이루며 서로 연결된 벌집 모양의 2차원 평면 구조를 가지는 물질로서 화학적으로 안정성이 높은 특성을 보인다. 또한, 실리콘보다 100 배 이상 우수한 전기적 전도성을 가지고, 유연하며(flexible) 투명하므로(transparent) 차세대 반도체 물질로서 많은 관심이 집중되고 있다.
그래핀의 양자점의 제조 방법으로는 크기가 큰 그래핀을 작게 만드는 탑다운(top down) 방법, 및 헥사-페리-헥사벤조코로닌(hexa-peri-hexabenzocoronene, HBC)과 같은 작은 탄소 고리 물질을 자기조립한 후 열분해(pyrolysis) 시키는 바텀업(bottom up) 방법 등이 알려져 있다. 또한, 대한민국 공개특허 제2013-0050167호는 그래핀 양자점의 제조방법 및 이에 의하여 제조된 그래핀 양자점에 대하여 개시하고 있다. 그러나, 이들 방법은 그래핀 양자점의 대량 생산의 측면에서는 제한이 있다. 아울러, 그래핀 양자점의 다양한 응용성이 알려져 있으므로, 이러한 그래핀 양자점의 물리적 성질 및 응용 방안의 연구를 위하여 고 결정성의 그래핀 양자점을 대량 생산하는 기술의 개발은 필수적이다.
본원은 열플라즈마를 이용한 그래핀 양자점 제조방법에 관한 것으로, 탄소원(carbon source)을 열플라즈마 제트(thermal plasma jet)에 주입하여 열분해시켜 빠른 속도로 흐르는 탄소 원자 빔을 형성하고, 이를 애노드(anode)에 연결된 튜브 내로 흐르게 하여 상기 튜브를 통과하는 동안 탄소 원자들이 서로 충돌하게 함으로써 그래핀 양자점을 제조하는 것이다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 열플라즈마 제트에 탄소원(carbon source)을 주입하여 상기 탄소원을 열분해시켜 탄소 원자 빔(beam)을 형성하고; 상기 탄소 원자 빔을 애노드(anode)에 연결된 튜브 내로 흐르게 하여 그래핀 양자점을 제조하는 것을 포함하는, 열플라즈마를 이용한 그래핀 양자점의 제조 방법을 제공할 수 있다.
본원에 따르면, 탄소 원자 빔이 통과하는 튜브의 길이를 조절하거나 탄소원의 양을 조절함으로써 상기 튜브 내에서 일어나는 탄소 원자 간의 충돌 정도를 조절할 수 있으므로, 제조되는 양자점의 평균 크기를 조절하는 것이 가능하며, 수 나노미터에서 수백 나노미터 크기의 그래핀 양자점을 제조할 수 있다. 또한, 탄소원 물질을 연속적으로 공급할 수 있으므로, 그래핀 양자점을 연속 및 대량 생산하는 것이 가능하다. 아울러, 열플라즈마 제트는 수천 ℃ 내지 수만 ℃의 고온일 수 있으므로, 이를 이용하여 고결정성을 갖는 고품질의 그래핀 양자점을 제조할 수 있다.
도 1은 본원의 일 실시예에 따른 열플라즈마를 이용한 그래핀 양자점의 제조 방법에 사용되는 장치의 개략도이다.
도 2a 및 도 2b는 본원의 일 실시예에 따라 제조된 그래핀 양자점의 주사전자현미경(SEM) 이미지이다.
도 3a 및 도 3b는 본원의 일 실시예에 따라 탄소원의 주입 속도를 조절하여 제조된 그래핀 양자점의 투과전자현미경(TEM) 이미지이다.
도 4a 및 도 4b는 본원의 일 실시예에 따라 튜브의 길이를 조절하여 제조된 그래핀 양자점의 투과전자현미경 이미지이다.
도 5는 본원의 일 실시예에 따라 제조된 그래핀 양자점을 포함하는 탄소 검댕(carbon soot)의 사진이다.
도 6은 본원의 일 실시예에 따라 제조된 그래핀 양자점의 광발광(photoluminescence)을 측정하여 나타낸 그래프이다.
도 7a 및 도 7b는 본원의 일 실시예에 따라 튜브의 길이를 조절하여 제조된 그래핀 양자점의 투과전자현미경 이미지이다.
도 8a 내지 도 8c는 본원의 일 실시예에 따라 튜브의 길이를 조절하여 제조된 그래핀 양자점의 투과전자현미경 이미지이다.
도 9a 내지 도 9c는 본원의 일 실시예에 따라 튜브의 길이를 조절하여 제조된 그래핀 양자점의 투과전자현미경 이미지이다.
도 10은 본원의 일 실시예에 따라 제조된 그래핀 양자점의 2D FFT(fast Fourier transform) 분석 이미지이다.
도 11은 본원의 일 실시예에 따라 제조된 그래핀 양자점의 자외-가시광 흡광도를 측정하여 나타낸 그래프이다.
도 12는 본원의 일 실시예에 따라 제조된 그래핀 양자점의 광발광을 측정하여 나타낸 그래프이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 “이들의 조합”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어지는 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어지는 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
이하, 첨부된 도면을 참조하여 본원의 구현예 및 실시예를 상세히 설명하나, 본원이 이에 제한되는 것은 아니다.
본원의 제 1 측면은, 열플라즈마 제트에 탄소원(carbon source)을 주입하여 상기 탄소원을 열분해시켜 탄소 원자 빔(beam)을 형성하고, 상기 탄소 원자 빔을 애노드(anode)에 연결된 튜브 내로 흐르게 하여 그래핀 양자점을 제조하는 것을 포함하는, 열플라즈마를 이용한 그래핀 양자점의 제조 방법을 제공할 수 있다.
도 1은 본원의 일 실시예에 따른 열플라즈마를 이용한 그래핀 양자점의 제조 방법에 사용되는 장치의 개략도이다.
도 1에 따르면, 상기 열플라즈마를 이용한 그래핀 양자점의 제조 방법에 사용되는 장치는 플라즈마 가스 주입구(110)를 통하여 플라즈마 가스가 주입되고, 이에 따라 고온의 플라즈마 제트(130)가 형성되며, 상기 플라즈마 제트 부근에는 탄소원 주입구(150)가 형성되어 있을 수 있다. 또한, 상기 장치는 애노드(170), 캐소드(190), 및 상기 애노드 및 캐소드에 연결된 전원(210)을 포함할 수 있으며, 상기 애노드에는 튜브(230)가 연결되어 있다.
예를 들어, 상기 열플라즈마를 이용한 그래핀 양자점의 제조 방법은, 열플라즈마 제트에 의하여 구현되는 높은 온도 하에서 상대적으로 과량의 에틸렌 등의 탄화수소계 물질을 열분해 시켜 원자화 한 후, 이를 열플라즈마 제트에 편승시켜 탄소 원자 빔을 생성하고, 애노드에 튜브를 부착하여 상기 탄소 원자 빔을 튜브 속으로 흐르게 하여, 상기 튜브를 통과하는 동안 상기 탄소 원자가 서로 충돌하게 하여 작은 크기의 그래핀이 대량으로 만들어지는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 탄소 원자 빔을 형성하는 것은 고온의 상기 열플라즈마 제트에 의하여 열분해되어 원자화된 탄소 원자들이 상기 열플라즈마 제트에 편승되어 빠른 속도로 흐르는 탄소 원자 빔을 형성하는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 발명자들이 기존에 개발한 "열플라즈마를 이용한 그래핀의 제조방법(대한민국 특허출원 제10-2009-0028681)"은 열플라즈마 내에 소량의 탄소원을 연속적으로 주입하여 탄소 원자의 밀도가 상대적으로 낮은 탄소 원자 빔을 탄소 튜브 내로 흐르게 한 후 이를 흑연판에 충돌시키고, 이 때 흑연 표면에서 그래핀을 에피택셜형 성장(epitaxial growth)에 의하여 생성하는 것이며, 실험 조건에 따라 수십 나노미터 내지 수 마이크로미터 크기의 그래핀이 제조되었다.
반면, 본원의 일 구현예에 따른 열플라즈마를 이용한 그래핀 양자점의 제조 방법은, 열플라즈마 제트에 상대적으로 과량의 탄소원을 연속적으로 주입하여 높은 밀도의 탄소 원자 빔이 튜브 내를 흐르는 동안 상기 튜브 내에서 탄소 원자들 간의 충돌이 일어남으로써 작은 크기의 그래핀 양자점이 제조되는 것을 포함하는 것일 수 있다. 즉, 기존의 그래핀의 제조방법은 흑연의 표면에서 그래핀이 제조되는 것이므로, 본원의 일 구현예에 따른 그래핀 양자점의 제조 방법과는 근본적으로 상이한 것이다.
본원의 일 구현예에 따르면, 상기 탄소 원자 빔이 상기 튜브 내를 흐르는 동안 탄소 원자들이 상기 튜브 내에서 서로 충돌하게 하여 그래핀 양자점이 제조되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 튜브의 내경은 약 1 mm 내지 약 50 mm인 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 튜브의 직경은 약 1 mm 내지 약 50 mm, 약 5 mm 내지 약 50 mm, 약 10 mm 내지 약 50 mm, 약 20 mm 내지 약 50 mm, 약 30 mm 내지 약 50 mm, 약 40 mm 내지 약 50 mm, 약 1 mm 내지 약 40 mm, 약 1 mm 내지 약 30 mm, 약 1 mm 내지 약 20 mm, 약 1 mm 내지 약 10 mm, 약 1 mm 내지 약 5 mm, 또는 약 4 mm 내지 약 6 mm인 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 튜브의 길이는 약 5 cm 내지 약 100 cm인 것일 수 있으며, 예를 들어, 약 5 cm 내지 약 100 cm, 약 10 cm 내지 약 100 cm, 약 30 cm 내지 약 100 cm, 약 50 cm 내지 약 100 cm, 약 70 cm 내지 약 100 cm, 약 5 cm 내지 약 70 cm, 약 5 cm 내지 약 50 cm, 약 5 cm 내지 약 20 cm, 또는 약 5 cm 내지 약 10 cm인 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 튜브의 길이를 조절함으로써 탄소 원자 간에 충돌이 일어나는 시간을 조절할 수 있고, 이에 따라 제조되는 그래핀 양자점의 평균 크기를 조절할 수 있으나, 이에 제한되지 않을 수 잇다.
예를 들어, 상기 탄소원의 주입 속도는 약 500 mL/분 내지 약 10,000 mL/분일 수 있으며, 예를 들어, 약 500 mL/분 내지 약 10,000 mL/분, 약 1,000 mL/분 내지 약 10,000 mL/분, 약 3,000 mL/분 내지 약 10,000 mL/분, 약 5,000 mL/분 내지 약 10,000 mL/분, 약 7,000 mL/분 내지 약 10,000 mL/분, 약 500 mL/분 내지 약 7,000 mL/분, 약 500 mL/분 내지 약 5,000 mL/분, 약 500 mL/분 내지 약 3,000 mL/분, 또는 약 500 mL/분 내지 약 1,000 mL/분일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 본원의 열플라즈마를 이용한 그래핀 양자점의 제조 방법에 의하여 제조되는 그래핀 양자점의 크기는 약 1 nm 내지 약 100 nm인 것일 수 있으며, 예를 들어, 약 1 nm 내지 약 100 nm, 약 5 nm 내지 약 100 nm, 약 10 nm 내지 약 100 nm, 약 30 nm 내지 약 100 nm, 약 50 nm 내지 약 100 nm, 약 70 nm 내지 약 100 nm, 약 1 nm 내지 약 70 nm, 약 1 nm 내지 약 50 nm, 약 1 nm 내지 약 30 nm, 약 1 nm 내지 약 10 nm, 또는 약 1 nm 내지 약 5 nm인 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 탄소 원자 빔은 상대적으로 탄소 원자의 밀도가 높은 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 탄소원이 고온에서 열분해되어 완전히 원자화되고, 이를 포함하는 상기 탄소 원자 빔이 상기 튜브 내로 흐르면서 상기 탄소 원자들이 서로 충돌하여 고결정성을 가지는 그래핀 양자점이 제조되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 단위 시간당 주입하는 상기 탄소원의 양을 조절함으로써 상기 탄소 원자 간 충돌 확률을 조절할 수 있으므로, 이를 이용하여 제조되는 그래핀 양자점의 평균 크기를 조절할 수 있으나, 이에 제한되지 않을 수 있다.
본원에 따르면, 상대적으로 많은 양의 탄소원을 연속적으로 공급하는 것이 가능하므로, 그래핀 양자점의 연속 및 대량 생산이 가능하다.
본원의 일 구현예에 따르면, 상기 열분해된 탄소원 및 상기 제조된 그래핀 양자점을 용매에 분산시킨 후, 상기 그래핀 양자점을 분리하여 수득하는 것을 추가로 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 열플라즈마 제트에 의하여 열분해된 탄소는 탄소 검댕(carbon soot)을 포함할 수 있으며, 상기 탄소 검댕은 그래핀, 크기가 큰 다른 탄소 물질, 및 양파 모양(onion type)의 탄소 물질 등을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 따라서, 상기 탄소 검댕을 상기 용매에 분산시킨 후 상기 용매에 분산되는 상기 그래핀 양자점을 상기 용매에 쉽게 분산되지 않는 그래핀 이외의 물질들로부터 분리하여 수득할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 용매 내에 분산된 상기 탄소 검댕으로부터 상기 그래핀 양자점을 수득하기 위하여, 에탄올과 같은 용매에 상기 탄소 검댕을 분산시킨 후, 자연 침전시키거나, 원심분리기를 이용하여 침전을 촉진시키거나, 및/또는 필터를 이용하여 침전물을 제거하는 방법을 사용할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 용매는 물 및/또는 유기 용매를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 용매는 유기 용매를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 유기 용매는 에탄올, 벤젠, 에테르, 아세톤, 톨루엔, DMSO(dimethyl sulfoxide), 피리딘(pyridine), 및 이들의 조합들로 이루어지는 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 열플라즈마 제트는 플라즈마 토치에 플라즈마 가스를 공급하여 발생되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 플라즈마 토치는 이송식 플라즈마 토치 또는 비이송식 플라즈마 토치를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 플라즈마 토치는 애노드(anode) 및 캐소드(cathode)를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 애노드의 직경은 약 1 mm 내지 약 50 mm인 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 애노드의 직경은 약 1 mm 내지 약 50 mm, 약 5 mm 내지 약 50 mm, 약 10 mm 내지 약 50 mm, 약 20 mm 내지 약 50 mm, 약 30 mm 내지 약 50 mm, 약 40 mm 내지 약 50 mm, 약 1 mm 내지 약 40 mm, 약 1 mm 내지 약 30 mm, 약 1 mm 내지 약 20 mm, 약 1 mm 내지 약 10 mm, 약 1 mm 내지 약 5 mm, 또는 약 4 mm 내지 약 6 mm인 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 플라즈마 토치는 비이송식(non-transferred type)인 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 탄소원을 상기 열플라즈마 제트에 주입하기 위하여, 상기 플라즈마 제트 부근에 탄소원 주입구가 형성되어 있을 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 탄소원 주입구는 상기 캐소드로부터 약 0 mm 내지 약 20 mm의 거리에 위치하는 것일 수 있으며, 예를 들어, 약 0 mm 내지 약 20 mm, 약 5 mm 내지 약 20 mm, 약 10 mm 내지 약 20 mm¸약 15 mm 내지 약 20 mm, 약 0 mm 내지 약 15 mm, 약 0 mm 내지 약 10 mm, 또는 약 0 mm 내지 약 5 mm의 거리에 위치하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 플라즈마 가스는 비활성 기체를 포함하는 것일 수 있으며, 예를 들어, 아르곤(Ar), 질소(N2), 수소(H2), 헬륨(He), 네온(Ne), 제논(Xe), 라돈(Rn), 크립톤(Kr), 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 열플라즈마 제트의 온도는 약 1,000℃ 내지 약 20,000℃인 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 열플라즈마 제트의 온도는 약 1,000℃ 내지 약 20,000℃, 약 1,000℃ 내지 약 15,000℃, 약 1,000℃ 내지 약 10,000℃, 약 1,000℃ 내지 약 5,000℃, 약 1,000℃ 내지 약 3,000℃, 약 3,000℃ 내지 약 20,000℃, 약 5,000℃ 내지 약 20,000℃, 약 7,000℃ 내지 약 20,000℃, 약 10,000℃ 내지 약 20,000℃, 약 15,000℃ 내지 약 20,000℃, 또는 약 5,000℃ 내지 약 10,000℃인 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 탄소원은 기상 또는 액상인 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 탄소원으로서 분자량이 상대적으로 작은 탄화수소들이 제한 없이 사용될 수 있으며, 예를 들어, 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 메탄올, 프로판올, 부탄올, 펜탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 탄소원으로서 알코올류가 제한 없이 사용될 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 튜브의 재료로서, 플라즈마 제트의 고온을 견딜 수 있는 재료라면 특별한 제한 없이 사용될 수 있다.
본원의 일 구현예에 따르면, 상기 튜브는 세라믹, 금속, 또는 탄소를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 튜브의 길이를 조절하여 상기 제조되는 그래핀 양자점의 크기가 조절되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 주입되는 탄소원의 양을 조절하여 상기 제조되는 그래핀 양자점의 크기가 조절되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
이하, 본원에 대하여 실시예를 이용하여 보다 더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.
[실시예]
열플라즈마를 이용한 그래핀 양자점의 제조
비이송식 열플라즈마 토치, 및 플라즈마 가스로서 아르곤(99.999%, 주입 속도 16,000 mL/분)을 이용하고, 최대 약 3 kV 의 전압을 인가하여, 약 10,000℃의 플라즈마 제트를 형성하였다. 상기 플라즈마 제트의 온도는 불꽃의 색을 통하여 간접적으로 측정되었다. 이로 인하여 음속에 가까운 속도의 플라즈마 제트가 형성되었고, 이는 약 6 mm의 내경을 가지는 구리 노즐 내로 흘렀다. 이후, C2H4 가스를 1,000 mL/분 내지 2,500 mL/분의 속도로 상기 플라즈마 제트 내로 주입하였고, 이에 따라 생성된 탄소 원자 빔은 애노드에 부착된 탄소 튜브 내로 흐르게 하였다.
이에 따라 제조된 탄소 검댕(carbon soot)은 에탄올 용매 내에 교반봉(stirring rod)을 이용하여 교반하여 분산시킨 후, 침전된 물질을 제거하고, 이후 상기 에탄올 용매를 증발시킴으로써 그래핀 양자점을 수득하였다. 이러한 과정에 의하여 상기 탄소 검댕의 질량의 약 10%, 즉 약 10 wt%에 해당하는 그래핀 양자점을 수득하였다.
제조된 그래핀 양자점을 주사전자현미경(SEM)을 이용하여 관찰한 결과를 도 2a 및 도 2b에 나타내었다. 도 2a는 그래핀 양자점을 9만 배 확대한 이미지이고, 도 2b는 5만 배 확대한 이미지이다. 도 2a 및 도 2b에 나타난 바에 의하면, 본 실시예에 의하여 수득된 대부분의 그래핀 양자점들이 뭉쳐지지 않고 독립된 상태로 바람직하게 존재하는 것을 확인할 수 있었다. 이미지 상의 몇 개의 뭉쳐진 그래핀 양자점들은 샘플링(sampling) 과정에서 뭉쳐진 것으로 추측되었다.
탄소원의 주입 속도 조절에 따른 그래핀 양자점 크기의 조절
본 실시예에서는, 탄소원으로서 사용된 에틸렌의 주입 속도를 1,000 mL/분 내지 2,500 mL/분으로 달리하여 그래핀 양자점을 제조한 후, 제조된 그래핀 양자점의 크기를 측정하였다. 도 3a는 에틸렌의 주입 속도가 1,000 mL/분, 및 도 3b는 2,500 mL/분인 경우 수득된 그래핀을 투과전자현미경(TEM)을 이용하여 관찰한 것이다
도 3a 및 도 3b에 나타난 바에 따르면, 에틸렌의 주입 속도가 1,000 mL/분인 경우에는 약 10 nm 크기의 그래핀 양자점이 제조되었으며, 에틸렌의 주입 속도가 2,500 mL/분인 경우에는 약 19 nm 크기의 그래핀 양자점이 제조되어, 탄소원의 주입 속도를 조절함으로써 제조되는 그래핀 양자점의 크기를 조절할 수 있음을 확인하였다.
튜브의 길이 조절에 따른 그래핀 양자점 크기의 조절(1)
본 실시예에서는, 탄소 튜브의 길이(내경 2.0 cm)가 각각 20 cm 및 5 cm이었으며, 에틸렌을 2,500 mL/분의 속도로 주입하여 그래핀 양자점을 제조하였다. 도 4a는 20 cm 길이의 탄소 튜브를 사용한 경우, 및 도 4b는 5 cm 길이의 탄소 튜브를 사용한 경우 수득된 그래핀 양자점의 투과전자현미경 이미지이다.
도 4a 및 도 4b에 나타난 바에 따르면, 20 cm 길이의 탄소 튜브를 사용한 경우 약 20 nm 크기의 그래핀 양자점이 제조되었으며, 5 cm 길이의 탄소 튜브를 사용한 경우 약 10 nm의 그래핀 양자점이 제조되었다. 따라서, 튜브 길이를 조절함으로써 제조되는 그래핀 양자점의 크기를 조절할 수 있음을 확인하였다.
도 5는 본 실시예에서 20 cm 길이의 튜브를 사용하여 약 2 분 동안 그래핀 양자점을 제조하여 수득된 탄소 검댕(soot)의 사진이다. 상기 수득된 탄소 검댕의 생산량 및 시간을 감안하여 시간당 생산 가능한 상기 탄소 검댕의 양을 환산하여 보면, 시간당 약 30 g의 탄소 검댕이 생산 가능한 것으로 확인되었다. 상기 탄소 검댕으로부터 약 10 wt%의 그래핀 양자점이 수득 가능하므로, 시간당 약 3 g의 그래핀 양자점이 생산 가능한 것으로 예상되었다.
다음으로, 제논-아크 램프, 분광기(monochromater), 및 검출기(detector)를 포함하는 광발광분석(photoluminescence)장치를 이용하여 그래핀 양자점의 광발광을 측정하였다.
도 6은 본 실시예에서 20 cm의 탄소 튜브를 사용한 경우(상단 그래프) 및 5 cm의 탄소 튜브를 이용한 경우(하단 그래프)의 광발광(photoluminescence) 그래프이다. 양자 크기 효과(quantum size effect)에 의하면, 그래핀 양자점의 크기가 커질수록 더욱 긴 파장(적은 에너지)의 빛을 발하게 된다. 따라서, 발광 파장을 비교함으로써 그래핀 양자점의 상대적인 크기의 예측이 가능하다.
도 6에 나타난 바에 따르면, 5 cm의 탄소 튜브를 이용하여 생산되는 더 작은 크기의 그래핀 양자점은, 20 cm의 탄소 튜브를 이용하여 생산되는 더 큰 크기의 그래핀 양자점에 비하여 더 짧은 파장에서 광발광이 일어난다는 것이 확인되었다. 즉, 5 cm의 탄소 튜브를 이용한 경우에 비하여 20 cm의 탄소 튜브를 이용하여 그래핀 양자점을 제조한 경우 더욱 큰 크기의 그래핀 양자점이 제조되었다.
튜브의 길이 조절에 따른 그래핀 양자점 크기의 조절(2)
본 실시예에서는, 탄소 튜브의 길이를 5 cm, 10 cm, 및 20 cm로 각각 조절하여 그래핀 양자점을 제조하였다.
도 7a 및 도 7b는 5 cm 탄소 튜브를 이용하여 제조된 그래핀 양자점의 투과전자현미경 이미지이다. 도 7a에서는 약 8 nm 내지 약 10 nm의 그래핀 양자점들이 관찰되었으며, 도 7b에서는 약 15 nm 이하의 그래핀 양자점들이 관찰되었다.
도 8a 내지 도 8c는 10 cm 탄소 튜브를 이용하여 제조된 그래핀 양자점의 투과전자현미경 이미지이다. 도 8a에서는 약 14 nm 이하의 그래핀 양자점들이 관찰되었고, 도 8b에서는 각각 약 14 nm, 약 17 nm, 및 약 25 nm의 크기를 가지는 그래핀 양자점들이 관찰되었으며, 도 8c에는 약 14 nm의 크기를 가지는 그래핀 양자점이 관찰되었다.
도 9a 내지 도 9c는 20 cm 탄소 튜브를 이용하여 제조된 그래핀 양자점의 투과전자현미경 이미지이다. 도 9a에서는 약 12 nm 내지 약 20 nm의 그래핀 양자점들이 관찰되었고, 도 9b에서는 약 20 nm 내지 약 25 nm의 그래핀 양자점들이 관찰되었으며, 도 9c에서는 약 24 nm의 그래핀 양자점들이 관찰되었다.
상기 결과에 비추어 볼 때, 튜브의 길이를 조절함으로써 제조되는 그래핀 양자점들의 크기가 높은 정확도로 조절된다는 것을 확인하였다.
제조된 그래핀 양자점의 특성 분석
상기 실시예에 의하여 제조된 그래핀 양자점을 투과전자현미경(TEM)을 이용하여 이미지를 수득하는 동시에 2D FFT를 측정하였다. 측정된 회절패턴으로부터 그래핀 양자점이 단층(single layer)인지 다층(multilayer)인지 확인이 가능하다. 도 10은 제조된 그래핀 양자점의 2D FFT(fast Fourier transform) 분석 이미지이며, 회절 패턴에 따르면 상기 그래핀 양자점이 단층(single layer)으로 형성되었음을 확인하였다.
도 11은 자외-가시광 분광기를 이용하여 상기 실시예에 의하여 제조된 그래핀 양자점의 자외-가시광 흡광도를 측정하여 나타낸 흡수 스펙트럼 그래프이다. 도 11에 나타난 바에 따르면, 그래핀 양자점이 약 320 nm 및 약 280 nm의 빛을 흡수한다는 것을 확인하였다.
도 12는 제조된 그래핀 양자점의 광발광을 측정하여 나타낸 그래프이다. 도 12에 나타난 바에 따르면, 상기 그래핀 양자점이 청색(blue) 계열의 빛을 발광한다는 것을 확인하였다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
110 : 가스 주입구
130 : 플라즈마 제트
150 : 탄소원 주입구
170 : 애노드
190 : 캐소드
210 : 전원
230 : 튜브

Claims (13)

  1. 열플라즈마 제트에 탄소원(carbon source)을 주입하여 상기 탄소원을 열분해시켜 탄소 원자 빔(beam)을 형성하고;
    상기 탄소 원자 빔을 애노드(anode)에 연결된 튜브 내로 흐르게 하여 그래핀 양자점을 제조하는 것
    을 포함하는,
    열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  2. 제 1 항에 있어서,
    상기 탄소 원자 빔이 상기 튜브 내를 흐르는 동안 탄소 원자들이 상기 튜브 내에서 서로 충돌하게 하여 그래핀 양자점이 제조되는 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  3. 제 1 항에 있어서,
    상기 열분해된 탄소원 및 상기 제조된 그래핀 양자점을 용매에 분산시킨 후, 상기 그래핀 양자점을 분리하여 수득하는 것을 추가로 포함하는, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  4. 제 3 항에 있어서,
    상기 용매는 유기 용매를 포함하는 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  5. 제 1 항에 있어서,
    상기 열플라즈마 제트는 플라즈마 토치에 플라즈마 가스를 공급하여 발생되는 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  6. 제 5 항에 있어서,
    상기 플라즈마 토치는 비이송식(non-transferred type)인 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  7. 제 5 항에 있어서,
    상기 플라즈마 가스는 아르곤, 질소, 수소, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  8. 제 1 항에 있어서,
    상기 열플라즈마 제트의 온도는 1,000℃ 내지 20,000℃인 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  9. 제 1 항에 있어서,
    상기 탄소원은 기상 또는 액상인 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  10. 제 1 항에 있어서,
    상기 탄소원은 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 메탄올, 프로판올, 부탄올, 펜탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔, 및 이들의 조합들로 이루어지는 군으로부터 선택되는 것을 포함하는 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  11. 제 1 항에 있어서,
    상기 튜브는 세라믹, 금속, 또는 탄소를 포함하는 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  12. 제 1 항에 있어서,
    상기 튜브의 길이를 조절하여 상기 제조되는 그래핀 양자점의 크기가 조절되는 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
  13. 제 1 항에 있어서,
    상기 주입되는 탄소원의 양을 조절하여 상기 제조되는 그래핀 양자점의 크기가 조절되는 것인, 열플라즈마를 이용한 그래핀 양자점의 제조 방법.
PCT/KR2013/005109 2012-06-11 2013-06-11 열플라즈마를 이용한 그래핀 양자점 제조방법 WO2013187652A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/557,745 US9278863B2 (en) 2012-06-11 2014-12-02 Method for manufacturing graphene quantum dot using thermal plasma
US15/007,918 US10435301B2 (en) 2012-06-11 2016-01-27 Graphene quantum dots with different types and method for obtaining each of different types of graphene quantum dots

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0062115 2012-06-11
KR20120062115 2012-06-11
KR1020130066141A KR101475928B1 (ko) 2012-06-11 2013-06-10 열플라즈마를 이용한 그래핀 양자점 제조방법
KR10-2013-0066141 2013-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/557,745 Continuation US9278863B2 (en) 2012-06-11 2014-12-02 Method for manufacturing graphene quantum dot using thermal plasma

Publications (1)

Publication Number Publication Date
WO2013187652A1 true WO2013187652A1 (ko) 2013-12-19

Family

ID=49758425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005109 WO2013187652A1 (ko) 2012-06-11 2013-06-11 열플라즈마를 이용한 그래핀 양자점 제조방법

Country Status (1)

Country Link
WO (1) WO2013187652A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663437A (zh) * 2014-01-10 2014-03-26 青岛华高能源科技有限公司 利用磁控溅射技术制备石墨烯量子点

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060100019A (ko) * 2005-03-16 2006-09-20 재단법인서울대학교산학협력재단 열플라즈마 화학기상증착법을 이용한 고결정 탄소나노튜브제조방법
KR20100110216A (ko) * 2009-04-02 2010-10-12 서울대학교산학협력단 열플라즈마 화학기상증착법을 이용한 제어 가능한 그래핀 시트 제조방법
KR20110064164A (ko) * 2009-12-07 2011-06-15 서울대학교산학협력단 화학 기상 증착법을 이용한 그래핀 제조방법
WO2011085185A1 (en) * 2010-01-08 2011-07-14 Liang-Shi Li Soluble graphene nanostructures and assemblies therefrom
KR20120029332A (ko) * 2010-09-16 2012-03-26 삼성엘이디 주식회사 그래핀 양자점 발광 소자 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060100019A (ko) * 2005-03-16 2006-09-20 재단법인서울대학교산학협력재단 열플라즈마 화학기상증착법을 이용한 고결정 탄소나노튜브제조방법
KR20100110216A (ko) * 2009-04-02 2010-10-12 서울대학교산학협력단 열플라즈마 화학기상증착법을 이용한 제어 가능한 그래핀 시트 제조방법
KR20110064164A (ko) * 2009-12-07 2011-06-15 서울대학교산학협력단 화학 기상 증착법을 이용한 그래핀 제조방법
WO2011085185A1 (en) * 2010-01-08 2011-07-14 Liang-Shi Li Soluble graphene nanostructures and assemblies therefrom
KR20120029332A (ko) * 2010-09-16 2012-03-26 삼성엘이디 주식회사 그래핀 양자점 발광 소자 및 그 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663437A (zh) * 2014-01-10 2014-03-26 青岛华高能源科技有限公司 利用磁控溅射技术制备石墨烯量子点

Similar Documents

Publication Publication Date Title
KR101475928B1 (ko) 열플라즈마를 이용한 그래핀 양자점 제조방법
Qian et al. Non-catalytic CVD preparation of carbon spheres with a specific size
US8317984B2 (en) Graphene oxide deoxygenation
De Falco et al. Electronic band gap of flame-formed carbon nanoparticles by scanning tunneling spectroscopy
US10435301B2 (en) Graphene quantum dots with different types and method for obtaining each of different types of graphene quantum dots
JP2005502025A (ja) カーボンナノ材料の製造用バーナーと燃焼装置
KR20150058322A (ko) 그래핀 나노리본을 제조하는 방법
US20150228371A1 (en) Method for producing electrically conductive thin film, and electrically conductive thin film produced by said method
CN107207261A (zh) 方法
KR101252333B1 (ko) 열플라즈마 화학기상증착법을 이용한 제어 가능한 그래핀 시트 제조방법
WO2013187652A1 (ko) 열플라즈마를 이용한 그래핀 양자점 제조방법
Guo et al. Epitaxial growth and electrical performance of graphene/3C–SiC films by laser CVD
Kabbara et al. A microplasma process for hexagonal boron nitride thin film synthesis
Li et al. Temperature and carbon source effects on methane–air flame synthesis of CNTs
JP2014024710A (ja) カーボンナノチューブ集合体
Aissou et al. Controlling carbon nanostructure synthesis in thermal plasma jet: Correlation of process parameters, plasma characteristics, and product morphology
WO2012036537A2 (ko) 플래쉬 램프 또는 레이저 빔을 이용한 그래핀 제조장치, 제조방법 및 이를 이용하여 제조된 그래핀
US20140111784A1 (en) Graphene oxide deoxygenation
Rusakov et al. Chemical vapor deposition of graphene on copper foils
Kia et al. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design
Gao et al. Synthesis of nitrogen-doped graphene from ployacrylonitrile
WO2018160041A1 (ko) 연속식 공정을 이용한 다중벽 탄소나노튜브의 제조방법
US8518711B2 (en) Quantitative characterization of metallic and semiconductor single-walled carbon nanotube ratios
WO2023068916A1 (ko) 탄소나노튜브의 합성방법
WO2013118965A1 (ko) 단결정 금-은 합금 나노 와이어의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804592

Country of ref document: EP

Kind code of ref document: A1