WO2013187348A1 - Metal chrome fabrication method - Google Patents

Metal chrome fabrication method Download PDF

Info

Publication number
WO2013187348A1
WO2013187348A1 PCT/JP2013/065927 JP2013065927W WO2013187348A1 WO 2013187348 A1 WO2013187348 A1 WO 2013187348A1 JP 2013065927 W JP2013065927 W JP 2013065927W WO 2013187348 A1 WO2013187348 A1 WO 2013187348A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
chromium
aluminum
primary
electric furnace
Prior art date
Application number
PCT/JP2013/065927
Other languages
French (fr)
Japanese (ja)
Inventor
博一 杉森
博樹 浅田
晋弘 藤田
Original Assignee
Jfeマテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeマテリアル株式会社 filed Critical Jfeマテリアル株式会社
Priority to JP2014521314A priority Critical patent/JP6230531B2/en
Publication of WO2013187348A1 publication Critical patent/WO2013187348A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium

Definitions

  • the present invention relates to a method for producing metallic chromium used for corrosion-resistant / heat-resistant materials (superalloy), electronic materials, etc. (for example, magnetic materials, semiconductor materials).
  • Patent Document 1 As a typical method for producing metal chromium, the applicant has proposed a method for producing metal chromium in which chromium oxide is reduced by silicon (see Patent Document 1).
  • silicon reduction method first, chromium oxide, metallic silicon, and lime are charged into an electric furnace as raw materials. Metallic silicon is used as a reducing agent. Next, the electric furnace is energized to melt these raw materials. The dissolved metal silicon and chromium oxide react, and chromium oxide is reduced by silicon. Silicon oxide (SiO 2 ) generated by the reduction reaction reacts with lime (CaO) to form slag.
  • the iron content attributable to the metal silicon can be reduced.
  • the silicon reduction method it is necessary to increase the basicity (CaO / SiO 2 ) in order to advance the reduction reaction, and for that purpose, a large amount of lime is used. Since this large amount of lime also contains iron, there is a problem that there is a limit in reducing the iron content of metallic chromium.
  • acicular aluminum (Al) as a reducing agent is mixed with chromium oxide (Cr 2 O 3 ), and the mixture is charged into a reaction furnace.
  • magnesium powder is placed on the mixture and ignited. Heat is propagated through the mixture to initiate the reaction between chromium oxide and aluminum.
  • Aluminum generates high temperatures while reducing chromium oxide. This high heat causes metal chromium metal to settle to the bottom of the reactor. Slag with a lighter specific gravity than metal is separated from the metal.
  • the reduction reaction of the aluminum thermite method continues for 10 to 15 minutes. After the molten metal and slag are solidified, the molten metal and slag are taken out from the reaction furnace, and the metal is pulverized to obtain metal chromium.
  • this invention aims at providing the manufacturing method of the metal chromium which can also raise the yield of chromium collection
  • one embodiment of the present invention includes a step of charging chromium oxide, aluminum, and lime as raw materials into an electric furnace, and the electric furnace is energized to dissolve the raw materials, Reducing with aluminum to produce a primary metal containing chromium and primary slag; extracting the primary slag from the electric furnace; adding basic flux to the primary metal of the electric furnace; A method of producing metallic chromium, comprising: energizing the electric furnace to dissolve the basic flux and oxidizing and removing aluminum remaining in the primary metal to generate a secondary metal.
  • the heat for melting the raw material is guaranteed by the electric furnace, so that the reduction reaction of chromium oxide can be maintained for a long time, and the reduction reaction can proceed with a high yield.
  • the iron and P contents contained in the reducing agent can be reduced.
  • aluminum when aluminum is used as the reducing agent, aluminum remains in the primary metal, but the primary metal aluminum can be removed by oxidizing and refining the primary metal. Therefore, the iron content and aluminum content of the metal chromium recovered as a product can be reduced.
  • FIG. 1 shows a flowchart of a method for producing metallic chromium of the present embodiment.
  • chromium oxide Cr 2 O 3
  • Al aluminum
  • CaO lime
  • an arc melting furnace is used in which arc discharge is caused by using a graphite electrode and the raw material is melted by using a large amount of heat generated at that time.
  • the power source for generating the arc may be direct current or alternating current.
  • An arc melting furnace that can be tilted to discharge the generated molten metal and discharge the slag is used.
  • Chromium oxide is a product obtained by chemically treating chromium ore and / or chromium ore. Lime is used as a flux that promotes the melting of chromium ore. If there is no flux on the metal, a stable arc cannot be generated in the arc melting furnace. The amount of lime is less than the amount of lime used in the silicon reduction process. This is because, in the silicon reduction method, the reduction efficiency of chromium oxide increases as the basicity (CaO / SiO 2 ) increases, so that the amount of lime used increases. This is because the chromium metal production method of the present embodiment reduces chromium oxide with aluminum, and the reduction efficiency of chromium oxide is independent of basicity.
  • Aluminum is used as a reducing agent. Only aluminum is used as the reducing agent, and silicon is not used. As the aluminum, bulk metallic aluminum such as 40 g, 10 g, 1 g, or the like is used. Since the heat for melting the aluminum is guaranteed by the electric furnace, there is no need to use acicular aluminum as used in the aluminum thermite method. Since aluminum has a low specific gravity, it floats when dissolved, and the reduction reaction may not proceed. For this reason, when charging a raw material in an arc melting furnace, chromium oxide, aluminum, and lime are mixed.
  • the arc melting furnace is energized to perform a reduction process (S1).
  • S1 a reduction process
  • the raw material is melted, the molten aluminum and chromium oxide react as shown in the following reaction formula, and reduction with aluminum proceeds while producing Al 2 O 3 .
  • the primary metal containing chromium is generated arc melting furnace, the primary slag and the Al 2 O 3 was produced by the reduction reaction of CaO reacts is formed.
  • the chromium content of the primary metal is 95% or more.
  • the aluminum content, silicon content, and iron content are not reduced to the target levels (for example, the aluminum content is 0.02% by mass or less and the silicon content is 0.05% by mass or less). For this reason, a refining process is required. The refining process will be described later.
  • the chromium content of the primary slag is 1% or less.
  • the aluminum content in the primary metal is set to about 0.2 to 3 mass%.
  • the main component of primary slag is calcium aluminate containing CaO and Al 2 O 3 as main components. This calcium aluminate is used as a desulfurizing agent for steel making.
  • FIG. 2 shows the relationship between the aluminum content in the primary metal and the Cr content in the primary slag.
  • the aluminum content in the primary metal is 0.2% by mass or more
  • the Cr content in the primary slag is reduced to 1.0% by mass. For this reason, the yield of chromium can be set to a high value of 90% or more.
  • the basic flux is lime (CaO) or magnesia (MgO). In this embodiment, lime (CaO) is used.
  • Secondary metal is obtained by this oxidative refining (S4).
  • the aluminum content in the secondary metal is 0.02 mass% or less, the silicon content is 0.05 mass% or less, the sulfur content is 0.001 mass% or less, the iron content is 0.20 mass% or less, phosphorus Content is 0.003 mass% or less.
  • the aluminum content in the primary metal is reduced from about 0.2 to 3% by mass to 0.02% by mass or less.
  • silicon since silicon is not used as the reducing agent, the silicon content in the primary metal is about 0.3% by mass.
  • the silicon content in the primary metal is reduced to 0.05 mass% or less.
  • the sulfur content becomes extremely low at 0.001% by mass or less by high temperature refining and high basicity operation. Chrome yield is over 94%.
  • the cooled secondary metal ingot is taken out of the mold and crushed into briquettes (S5, S6).
  • the metallic chromium thus obtained is of high purity but has a slightly high oxygen content and nitrogen content. Therefore, these gas components are removed by vacuum heat treatment in a vacuum processing facility (S7).
  • metallic chromium having a chromium content of 99.0% or more is produced (S8).
  • the content of impurity elements (aluminum, iron, silicon, sulfur, phosphorus, oxygen, nitrogen) in metallic chromium is extremely low.
  • Iron and phosphorus contained in metallic chromium are derived from the introduction of raw materials.
  • aluminum the reducing agent, the amount of iron derived from the reducing agent can be reduced as compared with the case of using metal silicon as the reducing agent.
  • restoration process of chromium oxide can also be decreased, content of iron and phosphorus derived from lime can be reduced.
  • the raw material was charged into a 500 kVA arc melting furnace with 45 kg of chromium oxide, 9 kg of quicklime, and 17.4 kg of aluminum. Then, the graphite electrode was energized to dissolve the raw material, and the reduction reaction of chromium oxide was advanced to obtain 29.5 kg of primary metal and 26.0 kg of primary slag.
  • composition of the primary metal was as shown in Table 1 below.
  • the composition of the primary slag is as shown in Table 2 below.
  • primary slag was used as a desulfurization agent for steelmaking.
  • 9 kg of quicklime was added to 29.5 kg of the primary metal, and the arc melting furnace was re-energized.
  • Quick lime was dissolved to form secondary slag, and the metal smelt was oxidized and refined by the secondary slag.
  • the composition of the secondary metal is as shown in Table 3 below.
  • the arc melting furnace was tilted to discharge the secondary metal and secondary slag into the mold. After cooling, the secondary slag adhering to the surface of the secondary metal was removed by shot blasting.
  • the ingot of metal chromium was crushed to 40 mm or less by a crusher and charged into a vacuum heating furnace. Then, it cooled to normal temperature in the vacuum heating furnace, and the ingot of metal chromium was taken out from the vacuum heating furnace. Carbon, oxygen, and nitrogen were removed by vacuum heat treatment. The metal chromium finally obtained was high-purity metal chromium with few impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Provided is a metal chrome fabrication method in which the chrome recovery yield can be increased and the iron content and P content of the metal chrome that is fabricated as a product can be reduced. This metal chrome fabrication method is provided with the following: a step (S1) in which chromium oxide, aluminum, and lime are put into an electric furnace as raw materials; a step (S1) in which electricity is supplied to the electric furnace, the raw materials are melted, and the chromium oxide is reduced by the aluminum to produce a first metal containing chrome and a first slag, a step (S2) in which the first slag is tapped from the electric furnace, a step (S3) in which a base flux is added to the first metal in an electric furnace, and a step (S4) in which electricity is supplied to the electric furnace, the base flux is melted, and the aluminum remaining in the first metal is oxidized and removed to produce a second metal.

Description

金属クロムの製造方法Method for producing metallic chromium
 本発明は、耐食・耐熱材料(スーパーアロイ)や電子材料等(例えば磁性材料、半導体材料)に用いられる金属クロムの製造方法に関する。 The present invention relates to a method for producing metallic chromium used for corrosion-resistant / heat-resistant materials (superalloy), electronic materials, etc. (for example, magnetic materials, semiconductor materials).
 金属クロムの典型的な製造方法として、出願人は、珪素によって酸化クロムを還元する金属クロムの製造方法を提案している(特許文献1参照)。この珪素還元法においては、まず、原料として酸化クロム、金属珪素、及び石灰を電気炉に装入する。金属珪素は還元剤として用いられる。次に、電気炉に通電してこれらの原料を溶解する。溶解した金属珪素とクロム酸化物が反応し、珪素によって酸化クロムが還元される。還元反応によって生成した酸化珪素(SiO)は、石灰(CaO)と反応してスラグを形成する。 As a typical method for producing metal chromium, the applicant has proposed a method for producing metal chromium in which chromium oxide is reduced by silicon (see Patent Document 1). In this silicon reduction method, first, chromium oxide, metallic silicon, and lime are charged into an electric furnace as raw materials. Metallic silicon is used as a reducing agent. Next, the electric furnace is energized to melt these raw materials. The dissolved metal silicon and chromium oxide react, and chromium oxide is reduced by silicon. Silicon oxide (SiO 2 ) generated by the reduction reaction reacts with lime (CaO) to form slag.
特許第3338701号公報Japanese Patent No. 3338701
 近年、不純物として含まれる鉄、P含有量が低い金属クロムが要請されている。上記の珪素還元法においては、還元剤として使用される金属珪素に鉄が含まれているので、金属クロムの鉄の含有量を低くすることが困難であるという課題がある。 In recent years, iron contained as impurities and metallic chromium with low P content have been demanded. In said silicon reduction method, since iron is contained in the metallic silicon used as a reducing agent, there exists a subject that it is difficult to make low iron content of metallic chromium.
 なるほど金属珪素に鉄の含有量の低い高純度のものを使用すれば、金属珪素に起因する鉄の含有量を減らすことができる。しかし、珪素還元法においては、還元反応を進行させるために塩基度(CaO/SiO)を高くする必要があり、そのためには大量の石灰を使用する。この大量の石灰にも鉄が含まれるので、金属クロムの鉄の含有量を低減するのに限界があるという課題がある。 Indeed, if a high purity metal having a low iron content is used for the metal silicon, the iron content attributable to the metal silicon can be reduced. However, in the silicon reduction method, it is necessary to increase the basicity (CaO / SiO 2 ) in order to advance the reduction reaction, and for that purpose, a large amount of lime is used. Since this large amount of lime also contains iron, there is a problem that there is a limit in reducing the iron content of metallic chromium.
 ところで、還元剤として、金属珪素の替わりにアルミニウムを使用すれば、還元剤に含まれる鉄の含有量を低くすることができる。このため、アルミニウムによって酸化クロムを還元するアルミテルミット法を採用することも考えられる。 By the way, if aluminum is used instead of metallic silicon as the reducing agent, the content of iron contained in the reducing agent can be lowered. For this reason, it is conceivable to adopt an aluminum thermite method in which chromium oxide is reduced by aluminum.
 アルミテルミット法においては、まず、還元剤としての針状アルミニウム(Al)を酸化クロム(Cr)に混合し、混合物を反応炉に装入する。次に、混合物の上にマグネシウムの粉を載せ、これに着火する。混合物に熱を伝播させて酸化クロムとアルミニウムとの反応を開始させる。アルミニウムは酸化クロムを還元しながら高温を発生する。この高熱により金属クロムのメタルが反応炉の下部に沈降する。メタルよりも比重が軽いスラグはメタルから分離する。アルミテルミット法の還元反応は10~15分継続する。溶融したメタル及びスラグを固化させた後、反応炉から取り出し、メタルを粉砕して金属クロムを得る。 In the aluminum thermite method, first, acicular aluminum (Al) as a reducing agent is mixed with chromium oxide (Cr 2 O 3 ), and the mixture is charged into a reaction furnace. Next, magnesium powder is placed on the mixture and ignited. Heat is propagated through the mixture to initiate the reaction between chromium oxide and aluminum. Aluminum generates high temperatures while reducing chromium oxide. This high heat causes metal chromium metal to settle to the bottom of the reactor. Slag with a lighter specific gravity than metal is separated from the metal. The reduction reaction of the aluminum thermite method continues for 10 to 15 minutes. After the molten metal and slag are solidified, the molten metal and slag are taken out from the reaction furnace, and the metal is pulverized to obtain metal chromium.
 しかし、上記のアルミテルミット法においては、還元剤に高価な針状アルミニウムが必要になったり、アルミニウムの反応熱が少なくなると反応が停止するので、クロムの歩留まりが低下したりするという課題がある。しかも、還元剤として使用するアルミニウムが金属クロムに移行するので、金属クロムのアルミニウムの含有量を低くすることができないという課題がある。 However, in the above aluminum thermite method, there is a problem that expensive acicular aluminum is required as a reducing agent, or the reaction stops when the reaction heat of aluminum decreases, so that the yield of chromium is lowered. And since the aluminum used as a reducing agent transfers to metal chromium, there exists a subject that the content of aluminum of metal chromium cannot be made low.
 そこで、本発明は、クロム回収の歩留まりも高くすることができ、製品として製造される金属クロムの鉄含有量及びP含有量を低くすることもできる金属クロムの製造方法を提供することを目的とする。 Then, this invention aims at providing the manufacturing method of the metal chromium which can also raise the yield of chromium collection | recovery and can also reduce the iron content and P content of the metal chromium manufactured as a product. To do.
 上記課題を解決するために、本発明の一態様は、電気炉に原料として、酸化クロム、アルミニウム、及び石灰を装入する工程と、前記電気炉に通電して原料を溶解し、酸化クロムをアルミニウムで還元して、クロムを含有する一次メタルと一次スラグを生成させる工程と、前記電気炉から前記一次スラグを出湯する工程と、前記電気炉の前記一次メタルに塩基性フラックスを添加する工程と、前記電気炉に通電して前記塩基性フラックスを溶解し、前記一次メタル中に残存するアルミニウムを酸化及び除去して二次メタルを生成させる工程と、を備える金属クロムの製造方法である。 In order to solve the above problems, one embodiment of the present invention includes a step of charging chromium oxide, aluminum, and lime as raw materials into an electric furnace, and the electric furnace is energized to dissolve the raw materials, Reducing with aluminum to produce a primary metal containing chromium and primary slag; extracting the primary slag from the electric furnace; adding basic flux to the primary metal of the electric furnace; A method of producing metallic chromium, comprising: energizing the electric furnace to dissolve the basic flux and oxidizing and removing aluminum remaining in the primary metal to generate a secondary metal.
 本発明によれば、原料を溶解させる熱が電気炉によって保証されるので、酸化クロムの還元反応を長時間保持でき、高い歩留まりで還元反応を進めることができる。また、還元剤としてアルミニウムを使用するので、還元剤に含まれる鉄、P含有量を低くすることができる。さらに、還元剤としてアルミニウムを使用すると、一次メタルにアルミニウムが残ることになるが、一次メタルを酸化精錬することで、一次メタルのアルミニウムを除去できる。したがって、製品として回収される金属クロムの鉄含有量及びアルミニウム含有量を低くすることができる。 According to the present invention, the heat for melting the raw material is guaranteed by the electric furnace, so that the reduction reaction of chromium oxide can be maintained for a long time, and the reduction reaction can proceed with a high yield. Moreover, since aluminum is used as the reducing agent, the iron and P contents contained in the reducing agent can be reduced. Furthermore, when aluminum is used as the reducing agent, aluminum remains in the primary metal, but the primary metal aluminum can be removed by oxidizing and refining the primary metal. Therefore, the iron content and aluminum content of the metal chromium recovered as a product can be reduced.
本発明の一実施形態の金属クロムの製造方法のフローチャートThe flowchart of the manufacturing method of the metal chromium of one Embodiment of this invention 一次メタル中のアルミニウムの含有量と一次スラグ中のCr含有量との関係を示すグラフGraph showing the relationship between the aluminum content in the primary metal and the Cr content in the primary slag
 以下、添付図面に基づいて本発明の一実施形態の金属クロムの製造方法を説明する。図1は、本実施形態の金属クロムの製造方法のフローチャートを示す。 Hereinafter, a method for producing metallic chromium according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a flowchart of a method for producing metallic chromium of the present embodiment.
 本実施形態の金属クロムの製造方法においては、まず原料として酸化クロム(Cr)、還元剤としてのアルミニウム(Al)、及び石灰(CaO)を電気炉に装入する(S1)。本実施形態の金属クロムの製造方法の特徴の一つは、アルミニウムによって酸化クロムを還元するアルミニウム還元法でありながら、電気炉を使用することにある。 In the method for producing metallic chromium of the present embodiment, first, chromium oxide (Cr 2 O 3 ) as a raw material, aluminum (Al) as a reducing agent, and lime (CaO) are charged into an electric furnace (S1). One of the features of the method for producing metallic chromium according to the present embodiment is that an electric furnace is used in spite of the aluminum reduction method in which chromium oxide is reduced by aluminum.
 電気炉には、黒鉛電極を用いてアーク放電を起こし、その際に発生する多量の熱を用いて原料を溶解させるアーク溶解炉を用いる。アーク発生用の電源は直流でも交流でもよい。アーク溶解炉には、生成させた金属溶湯の出湯及びスラグの排出のために傾動可能なものを用いる。 As the electric furnace, an arc melting furnace is used in which arc discharge is caused by using a graphite electrode and the raw material is melted by using a large amount of heat generated at that time. The power source for generating the arc may be direct current or alternating current. An arc melting furnace that can be tilted to discharge the generated molten metal and discharge the slag is used.
 酸化クロムは、クロム鉱石を化学処理したもの、及び/又はクロム鉱石である。石灰はクロム鉱石の溶融を促進するフラックスとして用いる。メタルの上にフラックスが存在しないと、アーク溶解炉で安定したアークを発生できなくなる。石灰の量は、珪素還元法において使用される石灰の量よりも少ない。なぜならば、珪素還元法においては、クロム酸化物の還元効率は塩基度(CaO/SiO)が高ければ高いほど上昇するから、使用する石灰の量も多くなる。本実施形態の金属クロムの製造方法は、クロム酸化物をアルミニウムで還元するものであり、クロム酸化物の還元効率は塩基度とは無関係だからである。 Chromium oxide is a product obtained by chemically treating chromium ore and / or chromium ore. Lime is used as a flux that promotes the melting of chromium ore. If there is no flux on the metal, a stable arc cannot be generated in the arc melting furnace. The amount of lime is less than the amount of lime used in the silicon reduction process. This is because, in the silicon reduction method, the reduction efficiency of chromium oxide increases as the basicity (CaO / SiO 2 ) increases, so that the amount of lime used increases. This is because the chromium metal production method of the present embodiment reduces chromium oxide with aluminum, and the reduction efficiency of chromium oxide is independent of basicity.
 アルミニウムは還元剤として使用される。還元剤として使用されるのはアルミニウムのみであり、珪素は使用されない。アルミニウムには、40g塊、10g塊、1g塊等の塊状の金属アルミニウムを用いる。アルミニウムを溶解させる熱が電気炉によって保証されるので、アルミテルミット法で使用されるような針状のアルミニウムを用いる必要はない。アルミニウムは比重が軽いので、溶解したときに浮いてしまい、還元反応が進まなくなるおそれがある。このため、原料をアーク溶解炉内に装入する際、酸化クロム、アルミニウム及び石灰を混合する。 Aluminum is used as a reducing agent. Only aluminum is used as the reducing agent, and silicon is not used. As the aluminum, bulk metallic aluminum such as 40 g, 10 g, 1 g, or the like is used. Since the heat for melting the aluminum is guaranteed by the electric furnace, there is no need to use acicular aluminum as used in the aluminum thermite method. Since aluminum has a low specific gravity, it floats when dissolved, and the reduction reaction may not proceed. For this reason, when charging a raw material in an arc melting furnace, chromium oxide, aluminum, and lime are mixed.
 原料装入後、アーク溶解炉に通電し、還元工程を行う(S1)。原料を溶融させると、下記の反応式のように、溶融したアルミニウムと酸化クロムが反応し、Alを生成しつつアルミニウムによる還元が進行する。そして、クロムを含有する一次メタルがアーク溶解炉内に生成され、還元反応により生成したAlとCaOとが反応して一次スラグが形成される。 After charging the raw materials, the arc melting furnace is energized to perform a reduction process (S1). When the raw material is melted, the molten aluminum and chromium oxide react as shown in the following reaction formula, and reduction with aluminum proceeds while producing Al 2 O 3 . The primary metal containing chromium is generated arc melting furnace, the primary slag and the Al 2 O 3 was produced by the reduction reaction of CaO reacts is formed.
 (化1)
 Cr+2Al→2Cr+Al…(1)
 CaO+Al→CaO・Al…(2)
(Chemical formula 1)
Cr 2 O 3 + 2Al → 2Cr + Al 2 O 3 (1)
CaO + Al 2 O 3 → CaO · Al 2 O 3 (2)
 還元工程において、一次メタルのクロム含有量は95%以上になる。ただし、アルミニウム含有量、シリコン含有量、鉄含有量が目標レベル(例えばアルニウム含有量0.02質量%以下、シリコン含有量0.05質量%以下)まで低減することはない。このため、精錬工程が必要になる。精錬工程については後述する。 In the reduction process, the chromium content of the primary metal is 95% or more. However, the aluminum content, silicon content, and iron content are not reduced to the target levels (for example, the aluminum content is 0.02% by mass or less and the silicon content is 0.05% by mass or less). For this reason, a refining process is required. The refining process will be described later.
 一次スラグのクロムの含有量は1%以下である。一次スラグ中のクロム含有量を1質量%以下にするために、一次メタル中のアルミニウム含有量は0.2~3質量%程度に設定される。また、一次スラグの主成分は、CaOとAlを主成分とするカルシウムアルミネートである。このカルシウムアルミネートは製鋼用脱硫剤として利用される。 The chromium content of the primary slag is 1% or less. In order to make the chromium content in the primary slag 1 mass% or less, the aluminum content in the primary metal is set to about 0.2 to 3 mass%. The main component of primary slag is calcium aluminate containing CaO and Al 2 O 3 as main components. This calcium aluminate is used as a desulfurizing agent for steel making.
 図2は、一次メタル中のアルミニウムの含有量と一次スラグ中のCr含有量との関係を示す。一次メタル中のアルミニウムの含有量を0.2質量%以上にすると、一次スラグ中のCr含有量が1.0質量%に低減する。このため、クロムの歩留まりを90%以上の高い値にすることができる。 FIG. 2 shows the relationship between the aluminum content in the primary metal and the Cr content in the primary slag. When the aluminum content in the primary metal is 0.2% by mass or more, the Cr content in the primary slag is reduced to 1.0% by mass. For this reason, the yield of chromium can be set to a high value of 90% or more.
 次に、アーク溶解炉を傾けて一次スラグを排出する(図1のS2)。次に、アーク溶解炉に塩基性フラックスを装入し、アーク溶解炉に再度通電し、塩基性フラックスを溶融させる(S3)。塩基性フラックスは、石灰(CaO)又はマグネシア(MgO)である。本実施形態では、石灰(CaO)を使用する。 Next, the arc melting furnace is tilted to discharge the primary slag (S2 in FIG. 1). Next, the basic flux is charged into the arc melting furnace, and the arc melting furnace is energized again to melt the basic flux (S3). The basic flux is lime (CaO) or magnesia (MgO). In this embodiment, lime (CaO) is used.
 塩基性フラックスを溶融させると、一次メタルの脱アルミニウム、脱珪素、脱硫黄が進行し、二次スラグが形成される。すなわち、一次メタルのアルミニウム、珪素、硫黄が酸化され、一次メタルから除去される。アルミニウム、珪素、硫黄は酸化性が強いので、二次スラグを通して空気中の酸素と反応して、酸化する。二次スラグの厚みは薄いので、アルミニウム、珪素、硫黄が酸化し易いようになっている。高温下で硫黄分の揮化脱硫も行われる。 When the basic flux is melted, dealumination, desiliconization, and desulfurization of the primary metal proceed and secondary slag is formed. That is, the primary metals aluminum, silicon, and sulfur are oxidized and removed from the primary metal. Since aluminum, silicon, and sulfur are highly oxidizable, they react with oxygen in the air through the secondary slag and oxidize. Since the secondary slag is thin, aluminum, silicon, and sulfur are easily oxidized. Volatile desulfurization of sulfur is also performed at high temperatures.
 この酸化精錬により、二次メタルが得られる(S4)。二次メタル中のアルミニウム含有量は0.02質量%以下、珪素含有量は0.05質量%以下、硫黄含有量は0.001質量%以下、鉄含有量は0.20質量%以下、燐含有量は0.003質量%以下である。一次メタル中のアルミニウム含有量は0.2~3質量%程度から0.02質量%以下に低減する。また、還元剤として珪素を使用していないので、一次メタル中の珪素含有量は0.3質量%程度である。酸化精錬によって、一次メタル中の珪素含有量が0.05質量%以下に低減される。また、高温精錬、高塩基度操業により、硫黄含有量が0.001質量%以下の極低になる。クロム歩留まりは94%以上である。 Secondary metal is obtained by this oxidative refining (S4). The aluminum content in the secondary metal is 0.02 mass% or less, the silicon content is 0.05 mass% or less, the sulfur content is 0.001 mass% or less, the iron content is 0.20 mass% or less, phosphorus Content is 0.003 mass% or less. The aluminum content in the primary metal is reduced from about 0.2 to 3% by mass to 0.02% by mass or less. Moreover, since silicon is not used as the reducing agent, the silicon content in the primary metal is about 0.3% by mass. By oxidative refining, the silicon content in the primary metal is reduced to 0.05 mass% or less. In addition, the sulfur content becomes extremely low at 0.001% by mass or less by high temperature refining and high basicity operation. Chrome yield is over 94%.
 一次メタルの脱アルミニウム、脱珪素、脱硫黄等が終了したら、通電を停止し、二次メタル及び二次スラグを取鍋に出湯する。二次メタル及び二次スラグは取鍋から鋳型に鋳造される。 When the primary metal has been dealuminated, desiliconized, desulfurized, etc., stop energizing and pour the secondary metal and secondary slag into the pan. Secondary metal and secondary slag are cast from the ladle into a mold.
 鋳造後、冷却した二次メタルの鋳塊を鋳型から取り出し、ブリケットに破砕する(S5,S6)。このようにして得た金属クロムは高純度のものであるが、酸素含有量及び窒素含有量が若干高い。そこで、これらのガス成分を真空処理設備の真空加熱処理により除去する(S7)。 After casting, the cooled secondary metal ingot is taken out of the mold and crushed into briquettes (S5, S6). The metallic chromium thus obtained is of high purity but has a slightly high oxygen content and nitrogen content. Therefore, these gas components are removed by vacuum heat treatment in a vacuum processing facility (S7).
 以上により、クロム含有量が99.0%以上の金属クロムが製造される(S8)。金属クロム中の不純物元素(アルミニウム、鉄、珪素、硫黄、燐、酸素、窒素)の含有量は極めて少なくなる。金属クロムに含有される鉄及び燐は、原料の持ち込みに由来する。還元剤としてアルミニウムを使用することで、還元剤として金属珪素を使用する場合に比べて、還元剤に由来する鉄の量を減らすことができる。また、酸化クロムの還元工程において使用する石灰の量も少なくすることができるので、石灰に由来する鉄及び燐の含有量を減らすことができる。すなわち、珪素還元法においては、酸化クロムの還元反応を進行させるにあたって、スラグの塩基度(CaO/SiO)を高める必要があり、必然的に石灰の量も多くする必要がある。これに対し、本実施形態の金属クロムの製造方法においては、酸化クロムの還元反応によってCaO・Alが生成されるが、珪素還元法ほどの石灰の量を必要としない。よって、使用する石灰の量を少なくすることができる。 Thus, metallic chromium having a chromium content of 99.0% or more is produced (S8). The content of impurity elements (aluminum, iron, silicon, sulfur, phosphorus, oxygen, nitrogen) in metallic chromium is extremely low. Iron and phosphorus contained in metallic chromium are derived from the introduction of raw materials. By using aluminum as the reducing agent, the amount of iron derived from the reducing agent can be reduced as compared with the case of using metal silicon as the reducing agent. Moreover, since the quantity of lime used in the reduction | restoration process of chromium oxide can also be decreased, content of iron and phosphorus derived from lime can be reduced. That is, in the silicon reduction method, it is necessary to increase the basicity (CaO / SiO 2 ) of slag and inevitably increase the amount of lime when the reduction reaction of chromium oxide proceeds. On the other hand, in the method for producing metallic chromium of the present embodiment, CaO · Al 2 O 3 is generated by the reduction reaction of chromium oxide, but the amount of lime is not as high as that of the silicon reduction method. Therefore, the amount of lime used can be reduced.
 500kVAのアーク溶解炉に原料して酸化クロム45kg、生石灰9kg、アルミニウム17.4kgを装入した。そして、黒鉛電極に通電して原料を溶解させ、酸化クロムの還元反応を進行させ、一次メタル29.5kgと一次スラグ26.0kgを得た。 The raw material was charged into a 500 kVA arc melting furnace with 45 kg of chromium oxide, 9 kg of quicklime, and 17.4 kg of aluminum. Then, the graphite electrode was energized to dissolve the raw material, and the reduction reaction of chromium oxide was advanced to obtain 29.5 kg of primary metal and 26.0 kg of primary slag.
 一次メタルの成分組成は以下の表1のとおりであった。
Figure JPOXMLDOC01-appb-T000001
The composition of the primary metal was as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
次に、アーク溶解炉を傾けて、カルシウムアルミネートからなる一次スラグを出湯した。一次スラグの成分組成は以下の表2のとおりである。冷却後、一次スラグを製鋼用脱硫剤として利用した。
   
Figure JPOXMLDOC01-appb-T000002

 一次スラグの排出後、一次メタル29.5kgに生石灰9kgを添加し、アーク溶解炉に再通電した。生石灰を溶解して二次スラグを形成し、二次スラグによって金属溶融を酸化精錬した。二次メタルの成分組成は以下の表3のとおりである。
   
Figure JPOXMLDOC01-appb-T000003
Next, the arc melting furnace was tilted to discharge the primary slag made of calcium aluminate. The composition of the primary slag is as shown in Table 2 below. After cooling, primary slag was used as a desulfurization agent for steelmaking.

Figure JPOXMLDOC01-appb-T000002

After discharging the primary slag, 9 kg of quicklime was added to 29.5 kg of the primary metal, and the arc melting furnace was re-energized. Quick lime was dissolved to form secondary slag, and the metal smelt was oxidized and refined by the secondary slag. The composition of the secondary metal is as shown in Table 3 below.

Figure JPOXMLDOC01-appb-T000003
 アーク溶解炉を傾けて二次メタル及び二次スラグを鋳型に出湯した。冷却後、ショットブラストによって二次メタルの表面に付着した二次スラグを除去した。 The arc melting furnace was tilted to discharge the secondary metal and secondary slag into the mold. After cooling, the secondary slag adhering to the surface of the secondary metal was removed by shot blasting.
 金属クロムの鋳塊を破砕機によって40mm以下に破砕し、真空加熱炉に装入した。その後、真空加熱炉内で常温まで冷却し、真空加熱炉から金属クロムの鋳塊を取り出した。真空加熱処理により炭素、酸素、及び窒素が除去された。最終的に得られた金属クロムは、不純物の少ない高純度の金属クロムであった。 The ingot of metal chromium was crushed to 40 mm or less by a crusher and charged into a vacuum heating furnace. Then, it cooled to normal temperature in the vacuum heating furnace, and the ingot of metal chromium was taken out from the vacuum heating furnace. Carbon, oxygen, and nitrogen were removed by vacuum heat treatment. The metal chromium finally obtained was high-purity metal chromium with few impurities.
 本明細書は、2012年6月15日出願の特願2012-135698に基づく。この内容はすべてここに含めておく。
 
 
This specification is based on Japanese Patent Application No. 2012-135698 filed on June 15, 2012. All this content is included here.

Claims (6)

  1.  電気炉に原料として、酸化クロム、アルミニウム、及び石灰を装入する工程と、
     前記電気炉に通電して原料を溶解し、酸化クロムをアルミニウムで還元して、クロムを含有する一次メタルと一次スラグを生成させる工程と、
     前記電気炉から前記一次スラグを出湯する工程と、
     前記電気炉の前記一次メタルに塩基性フラックスを添加する工程と、
     前記電気炉に通電して前記塩基性フラックスを溶解し、前記一次メタル中に残存するアルミニウムを酸化及び除去して二次メタルを生成させる工程と、
     を備える金属クロムの製造方法。
    A process of charging chromium oxide, aluminum, and lime as raw materials into an electric furnace;
    Energizing the electric furnace to dissolve the raw material, reducing the chromium oxide with aluminum, and generating a primary metal and primary slag containing chromium;
    Tapping the primary slag from the electric furnace;
    Adding a basic flux to the primary metal of the electric furnace;
    Electrifying the electric furnace to dissolve the basic flux, oxidizing and removing aluminum remaining in the primary metal, and generating a secondary metal;
    A method for producing metallic chrome.
  2.  前記一次メタルから分離される前記一次スラグのクロムの含有量は、1.0質量%未満であることを特徴とする請求項1に記載の金属クロムの製造方法。 The method for producing metallic chromium according to claim 1, wherein the content of chromium in the primary slag separated from the primary metal is less than 1.0 mass%.
  3.  前記一次スラグは、CaOとAlを主成分とするカルシウムアルミネートであることを特徴とする請求項1又は2に記載の金属クロムの製造方法。 The primary slag, method for producing metallic chromium according to claim 1 or 2, characterized in that the calcium aluminate mainly containing CaO and Al 2 O 3.
  4.  前記二次メタル中のアルミニウムの含有量が0.02質量%以下、鉄の含有量が0.20質量%以下であることを特徴とする請求項1ないし3のいずれかに記載の金属クロムの製造方法。 The metallic chromium according to any one of claims 1 to 3, wherein the secondary metal has an aluminum content of 0.02 mass% or less and an iron content of 0.20 mass% or less. Production method.
  5.  前記金属クロムの製造方法はさらに、
     前記電気炉の前記二次メタルを出湯及び鋳造する工程と、
     鋳造された前記二次メタルを破砕する工程と、
     破砕した前記二次メタルを脱ガスして金属クロムを得る工程と、を備えることを特徴とする請求項1ないし4のいずれかに記載の金属クロムの製造方法。
    The method for producing the metal chromium further includes:
    Tapping and casting the secondary metal of the electric furnace;
    Crushing the cast secondary metal;
    The method for producing metallic chromium according to any one of claims 1 to 4, further comprising a step of degassing the crushed secondary metal to obtain metallic chromium.
  6.  請求項1ないし5のいずれかに記載の金属クロムの製造方法によって製造された金属クロム。
     
     
    Metal chrome produced by the method for producing metal chrome according to any one of claims 1 to 5.

PCT/JP2013/065927 2012-06-15 2013-06-10 Metal chrome fabrication method WO2013187348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521314A JP6230531B2 (en) 2012-06-15 2013-06-10 Method for producing metallic chromium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012135698 2012-06-15
JP2012-135698 2012-06-15

Publications (1)

Publication Number Publication Date
WO2013187348A1 true WO2013187348A1 (en) 2013-12-19

Family

ID=49758170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065927 WO2013187348A1 (en) 2012-06-15 2013-06-10 Metal chrome fabrication method

Country Status (2)

Country Link
JP (1) JP6230531B2 (en)
WO (1) WO2013187348A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174046A (en) * 2014-03-17 2015-10-05 Jfeマテリアル株式会社 Manufacturing method of chromium for powder metallurgy
WO2017175605A1 (en) * 2016-04-04 2017-10-12 Jfeマテリアル株式会社 Tungsten-containing metal production method and tungsten-containing metal
JP2019023347A (en) * 2018-09-14 2019-02-14 Jfeマテリアル株式会社 Manufacturing method of chromium for powder metallurgy
WO2018068066A3 (en) * 2016-09-21 2019-05-31 Beylefeld Jacques Method of producing a low carbon ferrochrome by means of metallorthermic reduction and oxygen refining

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913629B (en) * 2020-07-09 2023-03-03 王景军 Purification slag for metal chromium smelting and smelting method of metal chromium
CN114921648B (en) * 2022-06-17 2023-06-23 山西太钢万邦炉料有限公司 Method for producing high-silicon furnace burden ferrochrome by submerged arc furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123313A (en) * 1976-04-09 1977-10-17 Japan Metals & Chem Co Ltd Production of low p low c high cr ferro alloy
JPS6280236A (en) * 1985-10-01 1987-04-13 Nisshin Steel Co Ltd Electric furnace melt reduction method for chromium ore
JP2001316712A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Method for recovering chromium from chromium containing slag
JP2001323329A (en) * 2000-03-07 2001-11-22 Nkk Corp Chromium containing metal and its production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247436A (en) * 1985-08-26 1987-03-02 Toyo Soda Mfg Co Ltd Manufacture of high purity metal chromium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123313A (en) * 1976-04-09 1977-10-17 Japan Metals & Chem Co Ltd Production of low p low c high cr ferro alloy
JPS6280236A (en) * 1985-10-01 1987-04-13 Nisshin Steel Co Ltd Electric furnace melt reduction method for chromium ore
JP2001323329A (en) * 2000-03-07 2001-11-22 Nkk Corp Chromium containing metal and its production method
JP2001316712A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Method for recovering chromium from chromium containing slag

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174046A (en) * 2014-03-17 2015-10-05 Jfeマテリアル株式会社 Manufacturing method of chromium for powder metallurgy
WO2017175605A1 (en) * 2016-04-04 2017-10-12 Jfeマテリアル株式会社 Tungsten-containing metal production method and tungsten-containing metal
WO2018068066A3 (en) * 2016-09-21 2019-05-31 Beylefeld Jacques Method of producing a low carbon ferrochrome by means of metallorthermic reduction and oxygen refining
JP2019023347A (en) * 2018-09-14 2019-02-14 Jfeマテリアル株式会社 Manufacturing method of chromium for powder metallurgy

Also Published As

Publication number Publication date
JPWO2013187348A1 (en) 2016-02-04
JP6230531B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6230531B2 (en) Method for producing metallic chromium
CN103045928A (en) Method for producing ferrovanadium by aluminothermic process
CN105420445B (en) A kind of method for smelting coarse-grained steel
JP3338701B2 (en) Method for producing chromium-containing metal
UA77584C2 (en) Highly titanium ferroalloy, which is obtained by two-stage reduction in the electrical furnace from ilmenite
JP6451462B2 (en) Method for recovering chromium from chromium-containing slag
CN102839292A (en) Aluminum iron alloy with ultra-low carbon, ultra-low titanium and high silicon contents for deoxidizing aluminum silicon killed steel and manufacturing method of aluminum iron alloy
AU2010290830A1 (en) Processing of metallurgical slag
JP5341849B2 (en) Manufacturing method of recycled slag
US11486026B2 (en) Calcium, aluminum and silicon alloy, as well as a process for the production of the same
Eissa et al. The aluminothermic production of extra low carbón ferrochromium from low grade chromite ore
KR100224635B1 (en) Slag deoxidation material for high purity steel making
JP6947024B2 (en) Hot metal desulfurization method
WO2018068066A2 (en) Method of producing a low carbon ferrochrome by means of metallorthermic reduction and oxygen refining
WO2022054555A1 (en) Method for manufacturing low-phosphorous molten iron
RU2697129C2 (en) Method of loading charge into arc electric furnace for steel melting
JP5332769B2 (en) How to use electric furnace slag
JP3717625B2 (en) Electric arc furnace slag reduction method
RU2364632C2 (en) Steel production method
JP2007119813A (en) Method for refining molten iron
JP6731763B2 (en) Method for producing molten iron containing chromium
JP6947374B2 (en) Cast iron refining method
WO2024100852A1 (en) Aluminum alloy production method
KR101618305B1 (en) Flux for removing copper and method for removing copper using the same
JP2022046417A (en) Method for producing chromium-containing molten iron

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521314

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804672

Country of ref document: EP

Kind code of ref document: A1