JPS6247436A - Manufacture of high purity metal chromium - Google Patents

Manufacture of high purity metal chromium

Info

Publication number
JPS6247436A
JPS6247436A JP60185873A JP18587385A JPS6247436A JP S6247436 A JPS6247436 A JP S6247436A JP 60185873 A JP60185873 A JP 60185873A JP 18587385 A JP18587385 A JP 18587385A JP S6247436 A JPS6247436 A JP S6247436A
Authority
JP
Japan
Prior art keywords
chromium
iron
solution
dissolved
ammonium sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60185873A
Other languages
Japanese (ja)
Inventor
Satoru Tenma
天満 覚
Akira Honda
昭 本田
Yoshio Tanaka
義雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP60185873A priority Critical patent/JPS6247436A/en
Publication of JPS6247436A publication Critical patent/JPS6247436A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture high purity metallic chromium, by reducing ore contg. chromium to high carbon ferrochromium, applying a specified treatment to remove silica, iron content, etc., in order. CONSTITUTION:Ore contg. chromium is reduced in electric furnace to high carbon ferrochromium under existence of carbon material reducing material. The ferrochromium is dissolved with sulfuric acid, ammonium sulfate is added to filter and remove undissolved material such as silica. Next filtrate is cooled to precipitate and separate ferrous ammonium sulfate, mother liquor is aged for a long time to transform chromium from hardly crystallizable green form to violet form and to precipitate and separate it as ammonium chromium alum. The crystal is further dissolved into water to oxidize iron ion contained in soln. to trivalent iron ion, and iron content is extracted by using extracting agent (di-2-ethylhexylphosphoric acid, etc.). Next chromium in remaining liquid is adjusted to a prescribed concn. and while using this as electrolyte, the titled chromium is obtd. by electrolysis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はクロム含有鉱石からの高純度金属クロムの製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing high-purity metallic chromium from chromium-containing ore.

金属クロムは合金成分として用いた場合、合金の耐摩耗
性、耐食性、耐熱性1強靭性の付与に著しい効果をもた
らすので、ニッケル、コバルト。
When metal chromium is used as an alloy component, it has a remarkable effect on imparting wear resistance, corrosion resistance, heat resistance, and toughness to the alloy, so nickel and cobalt.

鉄等への添加成分として多用され【いる。It is often used as an additive to iron, etc.

また最近は、半導体および乾式メッキ用素材としても広
く用いられているが、特に半導体用としては、マスクの
エツチング特性を改良し、IC回路の断線を防止するた
め金属クロムの高純度化、特に鉄含有量の著しく低い金
属クロムが必要となっている。
Recently, it has also been widely used as a material for semiconductors and dry plating, but for semiconductors in particular, high purity metal chromium is used to improve the etching characteristics of masks and prevent disconnection of IC circuits. A significantly lower content of metallic chromium is needed.

〔従来の技術〕[Conventional technology]

一方、金属クロムの製造法は三価のクロム塩水溶液を電
解還元する電解法および三・二酸化クロムなどの酸化ク
ロムをアルミニウムを用いて還元するテルミット法があ
るが、両者とも半導体用としては十分滴定させるものに
至っていない。
On the other hand, there are two methods for producing metallic chromium: the electrolytic method in which an aqueous solution of trivalent chromium salt is electrolytically reduced, and the thermite method in which chromium oxide such as chromium trioxide is reduced using aluminum, but both methods are suitable for titration for use in semiconductors. I haven't reached the point where I can do it.

一般に高純度金属クロムを得るには、(リフロム酸電解
法、(2)金属クロムをよう素等でハロゲン化し、つい
で昇華により分離精製する方法、(3)電子ビーム溶解
法、(4)無水塩化クロムの溶融塩電解法などの方法が
ある。しかし、(1)の方法は六価イオンの状態を金属
にまで還元するため、1!流効率が著しく悪く、また有
害な六価クロムを使用するなどの欠点を有し、その他の
方法はいずれも金属クロムを出発原料としているが工業
的規模の運転が困難なばかりでなく、十分な純度を得る
には至っていない。
In general, high-purity metallic chromium can be obtained by (refuronic acid electrolysis method, (2) method of halogenating metallic chromium with iodine etc. and then separating and purifying it by sublimation, (3) electron beam melting method, (4) anhydrous chlorination method. There are methods such as chromium molten salt electrolysis method.However, method (1) reduces the state of hexavalent ions to metal, which has extremely poor flow efficiency and uses hexavalent chromium, which is harmful. All other methods use metallic chromium as a starting material, but they are not only difficult to operate on an industrial scale, but also have not yet achieved sufficient purity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は、硫酸クロム浴の電解法において特に鉄の
低い金唄クロムを得ることを目的として鋭意研究した結
果、発明を完成するに至った。
The inventors of the present invention completed their invention as a result of intensive research aimed at obtaining gold-rich chromium with a particularly low iron content using an electrolytic method using a chromium sulfate bath.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明はクロム鉱石を炭素の存在下、電気炉
で還元して得られる高炭素フェロクロムを硫酸で溶解し
、硫酸アンモニウムを加えてシリカなどの不溶性物を除
去した後、硫酸第一鉄とじて溶解している鉄分を冷却し
て硫酸第一鉄アンモニウムを晶析させ、ろ別して粗硫酸
クロム溶液を得る。
That is, in the present invention, high carbon ferrochrome obtained by reducing chromium ore in an electric furnace in the presence of carbon is dissolved in sulfuric acid, ammonium sulfate is added to remove insoluble substances such as silica, and then ferrous sulfate is dissolved. The dissolved iron is cooled to crystallize ferrous ammonium sulfate, which is then filtered to obtain a crude chromium sulfate solution.

さらに、水液を長時間熟成してクロムを結晶しがたいグ
リーンフオームからバイオレットフオームに変態させア
ンモニウムクロムミョウバントシて晶析分離し、さらに
鉄分等の低いクロム塩を得、これを水に溶解した後、共
存する二価鉄イオンを酸化剤を加えて三価鉄イオンに酸
化し、ついで抽出剤を用いてその溶液中の鉄分を抽出し
、鉄を抽出した残液中のクロムを所定濃度にしてこれを
電解液として電解する。
Furthermore, by aging the aqueous solution for a long time, the chromium was transformed from a green form that is difficult to crystallize to a violet form, and then crystallized and separated using ammonium chromium alum. Furthermore, a chromium salt with low iron content was obtained, and this was dissolved in water. After that, the coexisting divalent iron ions are oxidized to trivalent iron ions by adding an oxidizing agent, and then the iron content in the solution is extracted using an extractant, and the chromium in the residual liquid after iron extraction is adjusted to a predetermined concentration. This is then electrolyzed as an electrolyte.

高炭素フェロクロムおよびアンモニウムクロムミョウバ
ンは既に公知の方法で得られるが後者は一般にCLO1
%程度の鉄分を含有しており、この溶解液を電解して得
られる金属クロム9忙は01〜12%の鉄を含み、高純
度化を阻害している。
High carbon ferrochrome and ammonium chromium alum can be obtained by already known methods, the latter being generally CLO1
% of iron, and the metal chromium 9 obtained by electrolyzing this solution contains 0.1 to 12% of iron, which hinders high purity.

そこでアンモニウムクロムミョウバンの溶解液Or 8
0〜150 !A、F@α05〜α2%、pHn、 o
 5〜α2を水酸化クロムの沈殿が生じない範囲、好ま
しくはpH2,5までアンモニアまたは苛性ソーダ。
Therefore, ammonium chromium alum solution Or 8
0~150! A, F@α05~α2%, pHn, o
Ammonia or caustic soda within a range from 5 to α2 that does not cause precipitation of chromium hydroxide, preferably pH 2.5.

炭酸ソーダなどのアルカリで中和し次いで無水クロム酸
、クロム酸塩、過マンガン酸塩、過酸化水素、過酸化ソ
ーダなどの酸化剤を二価鉄を三価鉄に要する化学当量ま
たは若干の過剰量を添加し、完全に鉄を酸化する。
Neutralize with an alkali such as soda carbonate, then add an oxidizing agent such as chromic anhydride, chromate, permanganate, hydrogen peroxide, or sodium peroxide to the chemical equivalent or slight excess required for divalent iron to trivalent iron. Add enough amount to completely oxidize the iron.

鉄とクロムとの分離に用いられる抽出剤にはジー2−エ
チルへキシルリン酸、トリオクチルフォスフェート、ト
リブチルフォスフェート、酸化トリブチルフォスフイン
、酸化トリオクチルフォスフインおよびトリプルキルメ
チルアミン、N−ドデセニルトリアルキルメチルアミン
、N−ドデシルトリアルキルメチルアミン、トリイソオ
クチルアミン、トリノルマルオクチルアミン、トリカプ
リルアミン、トリカプリルメチルアンモニウム塩。
Extractants used to separate iron and chromium include di-2-ethylhexyl phosphate, trioctyl phosphate, tributyl phosphate, tributylphosphine oxide, trioctylphosphine oxide and triplekylmethylamine, and N-dode. Cenyltrialkylmethylamine, N-dodecyltrialkylmethylamine, triisooctylamine, trinormaloctylamine, tricaprylamine, tricaprylmethylammonium salt.

メチルベンジルアンモニウム塩などのような第1級、第
2級、第3級および第4級アミンが挙げられる。
Included are primary, secondary, tertiary and quaternary amines such as methylbenzylammonium salts and the like.

なお、本抽出はこれら抽出剤と三価鉄を直接抽出するば
かりでなく、例えばチオシアン酸などの錯塩形成剤を加
え、メチルイソブチルケトンで抽出分離することも可能
である。
Note that in this extraction, not only these extractants and trivalent iron are directly extracted, but also a complex salt forming agent such as thiocyanic acid is added, and extraction and separation with methyl isobutyl ketone is also possible.

また、これら溶剤の希釈剤としては、ケロシン。Kerosene is also used as a diluent for these solvents.

ノルマルヘキサン、トリクロルエチレン、クロロホルム
、四塩化炭素などのような炭化水素またはキシレン、ト
ルエン、ベンゼンナトの、15fx芳香族炭化水素が用
いられる。
Hydrocarbons such as n-hexane, trichloroethylene, chloroform, carbon tetrachloride, etc. or 15fx aromatic hydrocarbons such as xylene, toluene, benzenato are used.

希釈剤で前記抽出剤を希釈する場合、これら抽出剤濃度
は5〜50チ、好ましくは10〜20チである。
When diluting the extractants with diluents, the concentration of these extractants is between 5 and 50 inches, preferably between 10 and 20 inches.

アンモニウムクロムミョウバン溶解液中の鉄分を抽出す
るには、この溶液と前記抽出剤とを10〜80°C1好
ましくは20〜40°Cで接触させるが、このさい向流
抽出装置を用いることが好ましい。
In order to extract the iron content in the ammonium chromium alum solution, this solution and the extractant are brought into contact at 10 to 80°C, preferably 20 to 40°C, and it is preferable to use a countercurrent extraction device. .

鉄分を抽出した抽出剤は、鉄分を抽出したさい実施した
方法に準じて酸性溶液、好ましくは硫酸溶液11〜10
0チ、好ましくは3a〜SOZと接触させ、この抽出剤
に含まれている鉄分を硫酸第二鉄として水相に移行させ
、鉄分を除去した有機溶媒は水相と分離した後これを前
記アンモニウムクロムミョウバン溶解液中の鉄分の抽出
に循環使用する。
The extractant used to extract iron is an acidic solution, preferably a sulfuric acid solution of 11 to 10
The iron contained in this extractant is transferred to the aqueous phase as ferric sulfate, and the organic solvent from which the iron has been removed is separated from the aqueous phase and then transferred to the ammonium Recycled for extraction of iron from chromium alum solution.

硫酸クロムの電解を良好に行うには陰極液のpHの調整
が必要で陽極に副生ずる硫酸やクロム酸を陰極液に混ら
ないように隔膜で両極を仕切りだ電解槽を使用する。
In order to electrolyze chromium sulfate well, it is necessary to adjust the pH of the catholyte, and an electrolytic cell is used in which the two electrodes are separated by a diaphragm to prevent sulfuric acid and chromic acid, which are produced as by-products at the anode, from mixing with the catholyte.

電解条件は特に限定されるものではないが、クロムイオ
ン濃度30〜80!4.陰極電流密度6〜8A//υ、
電解温度45〜60℃、電解液pH(2,1〜2.4.
陰極ステンレス鋼陽極鉛−銀(1チ)である。
Electrolysis conditions are not particularly limited, but the chromium ion concentration is 30 to 80!4. Cathode current density 6-8A//υ,
Electrolysis temperature: 45-60°C, electrolyte pH (2.1-2.4.
The cathode is stainless steel and the anode is lead-silver (1T).

本発明の方法で得られた金属クロムは不純物の鉄含有量
が極めて低い特徴がある。
The metallic chromium obtained by the method of the present invention is characterized by an extremely low iron content as an impurity.

〔発明の効果〕〔Effect of the invention〕

本発明で得られる金属クロムは、鉄1ルミ、シリコン、
鉛、銅等の金属不純iしく低いもので、半導体用として
も十分に使用に耐えるものである。
The metallic chromium obtained in the present invention includes iron 1lumi, silicon,
It is low in impurity of metals such as lead and copper, and can be used for semiconductors.

次に実施例で本発明を説明する。Next, the present invention will be explained with examples.

実施例−1 を クロム含有鉱石から高炭素フェロクロr蟲て精製された
アンモニウムクロムミョウバンを水に溶解して0r12
2.5%、 NHs 7 [lL9%、 Fal100
54%の溶液150tを得、さらに無水クロム酸102
を添加し、アンモニア水(NH,18チ)1[Lltを
加えてpHを2.48に調整後、ミキサーセトラー型抽
出器3段を用いて該クロム上液を100m/min オ
ヨ’Cj 2−エチルへキシルリン酸−ケロジン溶液(
20チ)を200 ml/ minで向流抽出し、鉄を
抽出した抽出剤はさらにミキサーセトラー1段を用い、
硫酸(50% ) 80sd/minで鉄を水相に逆抽
出し、除鉄された溶出剤は水洗後前記鉄抽出工程に循環
使用した。なお抽出逆抽出温度は25〜40℃で行った
Example-1 Ammonium chromium alum purified by high carbon ferrochloride from chromium-containing ore is dissolved in water to produce 0r12
2.5%, NHs 7 [lL9%, Fal100
Obtained 150 tons of 54% solution, and further added 102 tons of chromic anhydride.
After adding 1 liter of ammonia water (NH, 18%) to adjust the pH to 2.48, the chromium supernatant liquid was heated at 100 m/min using a 3-stage mixer-settler type extractor. Ethylhexyl phosphate-kerosine solution (
20 iron) was countercurrently extracted at 200 ml/min.
Iron was back-extracted into the aqueous phase using sulfuric acid (50%) at 80 sd/min, and the iron-removed eluent was washed with water and recycled to the iron extraction step. Note that the back extraction temperature was 25 to 40°C.

鉄を除去精製したクロム溶液はさらに活性炭320ワを
加えて混入した抽出剤を吸看除去し水を加えてOr 1
02 %、 NH370%、Fe(LQOO1%以下の
補給液を得た。
The chromium solution purified by removing iron was further mixed with 320 watts of activated carbon, the mixed extractant was removed by inhalation, and water was added.
A replenishment solution containing 0.02%, NH3 70%, Fe (LQOO 1% or less) was obtained.

このようにして得た精製クロム溶液を硫酸(98チ)を
加えてpH0,45に調整し、補給液量13〜15 m
e / min 、電流密度7.4 A/dy/ 、 
pH2、温度so”c、電解時間48時間で電解し、得
られた金属クロムの組成を表−1に示す。表−1中、従
来電解法の値は本発明の方法にある精製を行わなかった
クロム溶液を本発明法に準じて電解した金属クロムの組
成を示すものである。
The purified chromium solution thus obtained was adjusted to pH 0.45 by adding sulfuric acid (98%), and the amount of replenishment liquid was 13 to 15 m
e/min, current density 7.4 A/dy/,
Table 1 shows the composition of the metallic chromium obtained by electrolysis at pH 2, temperature SO"C, and electrolysis time for 48 hours. In Table 1, the values for the conventional electrolytic method are those obtained without the purification as in the method of the present invention. This figure shows the composition of metallic chromium obtained by electrolyzing a chromium solution according to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、クロム含有鉱石を炭素質還元材の存在下、電気炉で
還元して得られる高炭素フェロクロムを硫酸で溶解し、
これに硫酸アンモニウムを加えてシリカなどの不溶性物
を除去した後、ろ液を冷却して硫酸第一鉄アンモニウム
を晶析分離し、母液を熟成してアンモニウムクロムミョ
ウバンを沈殿させ、さらに水に溶解後溶解液中に含まれ
る鉄イオンを酸化して三価の鉄イオンとし、ついで抽出
剤で前記溶解液中の鉄分を抽出除去し、この残液を電解
して金属クロムを得ることを特徴とする極低鉄含有金属
クロムの製造法。
1. High carbon ferrochrome obtained by reducing chromium-containing ore in an electric furnace in the presence of a carbonaceous reducing agent is dissolved in sulfuric acid,
After adding ammonium sulfate to remove insoluble substances such as silica, the filtrate is cooled and ferrous ammonium sulfate is crystallized and separated, the mother liquor is aged to precipitate ammonium chromium alum, and then dissolved in water. The method is characterized in that iron ions contained in the solution are oxidized to trivalent iron ions, then the iron content in the solution is extracted and removed using an extractant, and the remaining solution is electrolyzed to obtain metallic chromium. A method for producing ultra-low iron-containing chromium metal.
JP60185873A 1985-08-26 1985-08-26 Manufacture of high purity metal chromium Pending JPS6247436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60185873A JPS6247436A (en) 1985-08-26 1985-08-26 Manufacture of high purity metal chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60185873A JPS6247436A (en) 1985-08-26 1985-08-26 Manufacture of high purity metal chromium

Publications (1)

Publication Number Publication Date
JPS6247436A true JPS6247436A (en) 1987-03-02

Family

ID=16178370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60185873A Pending JPS6247436A (en) 1985-08-26 1985-08-26 Manufacture of high purity metal chromium

Country Status (1)

Country Link
JP (1) JPS6247436A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156795U (en) * 1988-04-15 1989-10-27
EP0433750A1 (en) * 1989-12-16 1991-06-26 Bayer Ag Process for the preparation of chromic acid
EP0433748B1 (en) * 1989-12-16 1993-12-01 Bayer Ag Process for the preparation of chromic acid
US7004992B2 (en) 2000-03-07 2006-02-28 Jfe Steel Corporation Chromium-containing metal and method for producing the same
CN103276205A (en) * 2013-05-29 2013-09-04 东北大学 Method for separating and extracting vanadium and chromium from vanadium chromium leaching liquor
CN103924096A (en) * 2014-04-28 2014-07-16 攀枝花学院 Method for recycling vanadium-chromium resources
JPWO2013187348A1 (en) * 2012-06-15 2016-02-04 Jfeマテリアル株式会社 Method for producing metallic chromium
CN106636651A (en) * 2016-12-16 2017-05-10 江苏理工学院 Method for separating chromium from iron and aluminum in sulfuric acid system solution containing chromium, iron and aluminum

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238102A (en) * 1984-05-11 1985-11-27 Kawasaki Steel Corp Method for suppressing deterioration of organic solvent for extracting metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238102A (en) * 1984-05-11 1985-11-27 Kawasaki Steel Corp Method for suppressing deterioration of organic solvent for extracting metal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156795U (en) * 1988-04-15 1989-10-27
EP0433750A1 (en) * 1989-12-16 1991-06-26 Bayer Ag Process for the preparation of chromic acid
US5096548A (en) * 1989-12-16 1992-03-17 Bayer Aktiengesellschaft Process for the preparation of chromic acid
EP0433748B1 (en) * 1989-12-16 1993-12-01 Bayer Ag Process for the preparation of chromic acid
US7004992B2 (en) 2000-03-07 2006-02-28 Jfe Steel Corporation Chromium-containing metal and method for producing the same
JPWO2013187348A1 (en) * 2012-06-15 2016-02-04 Jfeマテリアル株式会社 Method for producing metallic chromium
CN103276205A (en) * 2013-05-29 2013-09-04 东北大学 Method for separating and extracting vanadium and chromium from vanadium chromium leaching liquor
CN103924096A (en) * 2014-04-28 2014-07-16 攀枝花学院 Method for recycling vanadium-chromium resources
CN103924096B (en) * 2014-04-28 2016-05-04 攀枝花学院 Reclaim the method for vanadium chromium resource
CN106636651A (en) * 2016-12-16 2017-05-10 江苏理工学院 Method for separating chromium from iron and aluminum in sulfuric acid system solution containing chromium, iron and aluminum

Similar Documents

Publication Publication Date Title
AU2018252056B2 (en) Method for comprehensively recycling copper-nickel sulfide ore and system thereof
US4193968A (en) Process for recovering gallium
US4016054A (en) Hydrometallurgical treatment process for extracting constituent metal values from ferro-nickel
US3853981A (en) Liquid ion exchange process for the recovery of metals
US4233063A (en) Process for producing cobalt powder
US4278463A (en) Process for recovering cobalt
US4241027A (en) Reductive stripping process for the recovery of either or both uranium and vanadium
JPS6247436A (en) Manufacture of high purity metal chromium
Mukherjee et al. Recovery of pure vanadium oxide from bayer sludge
JPH0459395B2 (en)
FI96305C (en) Method for producing titanium oxide
US4214895A (en) Method for producing cobalt metal powder
US4242127A (en) Process for treating hydroxide sludge residues containing nonferrous metals
US4434002A (en) Process for production of high-purity metallic iron
JP3369855B2 (en) Method for producing high purity nickel aqueous solution
US3446720A (en) Preparation of high-purity nickel and cobalt
US3630669A (en) Process for removing impurities in the liquid of zinc refining by wet method
JP3823307B2 (en) Method for producing high purity cobalt solution
CN111020233B (en) Method for preparing vanadium pentoxide by ammonium-free vanadium precipitation
CN108754142B (en) Method for separating bismuth and iron and producing pure bismuth hydroxide by extraction-ammonia decomposition in bismuth and iron mixed solution
JPH11229056A (en) Production of high purity nickel aqueous solution
US3573182A (en) Process for separating zinc and copper
EP0262963A2 (en) Process for recovering vanadium-free molybdenum from solution
KR102362942B1 (en) Recovery method of vanadium from aqueous solution containing vanadium
CN111172410B (en) Short-process vanadium extraction method