JPH11229056A - Production of high purity nickel aqueous solution - Google Patents

Production of high purity nickel aqueous solution

Info

Publication number
JPH11229056A
JPH11229056A JP10037860A JP3786098A JPH11229056A JP H11229056 A JPH11229056 A JP H11229056A JP 10037860 A JP10037860 A JP 10037860A JP 3786098 A JP3786098 A JP 3786098A JP H11229056 A JPH11229056 A JP H11229056A
Authority
JP
Japan
Prior art keywords
nickel
solution
zinc
aqueous solution
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10037860A
Other languages
Japanese (ja)
Other versions
JP3722254B2 (en
Inventor
Masaki Imamura
正樹 今村
Toshiteru Maeda
俊輝 前田
Keichi Ozaki
佳智 尾崎
Kazuyuki Takaishi
和幸 高石
Naoyuki Tsuchida
直行 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP03786098A priority Critical patent/JP3722254B2/en
Publication of JPH11229056A publication Critical patent/JPH11229056A/en
Application granted granted Critical
Publication of JP3722254B2 publication Critical patent/JP3722254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a high purity nickel aq. solution by removing zinc and iron from a zinc-and iron-containing nickel aq. solution. SOLUTION: The high purity nickel aq. solution is recovered by adding a oxidizing agent and a neutralizer into an acidic nickel aq. solution containing zinc and iron as impurities, such as a nickel raw material solution, to increase the pH to remove zinc with iron as a deposit. On the other hand, nickel in the deposit is dissolved and recovered in an acid cleaning liquid by cleaning the deposit with an acidic solution and after the resultant acid cleaning liquid is brought into contact with an alkyl phosphonic ester to extract zinc in the acid cleaning liquid, the acid cleaning liquid is returned to the nickel raw material solution. In such a case, the alkyl phosphonic ester used as the extractant is preferably 2-ethylhexyl phosphonic mono-2-ethylhexyl ester and it is effective when the resultant high purity nickel aq. solution is a nickel sulfate aq. solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、亜鉛および鉄を不
純物として含有するニッケル水溶液からこれら不純物元
素を除去し、高純度のニッケル水溶液を製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity nickel aqueous solution by removing these impurity elements from a nickel aqueous solution containing zinc and iron as impurities.

【0002】[0002]

【従来の技術】ニッケル塩類は、めっき原料、アルミニ
ウムの発色剤、各種の触媒、電池材料などの原料として
使用されており、近年の技術革新とともに、より高純度
なニッケル塩類が望まれるようになってきた。このよう
な用途に使用されるニッケル塩類は、純度の高いものほ
どよく、特に鉄、銅、亜鉛などが含まれていない高純度
なものが望まれており、そのための製造プロセスが必要
とされている。
2. Description of the Related Art Nickel salts are used as a raw material for plating materials, aluminum color formers, various catalysts, and battery materials. With the recent technological innovation, nickel salts having higher purity have been desired. Have been. The higher the purity of nickel salts used for such applications, the better the purity, especially those containing no iron, copper, zinc, etc., and a manufacturing process for that is required. I have.

【0003】たとえば、ニッケル塩類の一つである硫酸
ニッケルは、以下の方法で製造されている。ニッケルを
含む硫化物やメタル屑などの原料を硫酸に溶解したの
ち、鉄、銅、コバルトなどの不純物を除去する。この液
を加熱蒸発させることにより濃縮し、続いて冷却させ、
硫酸ニッケルの結晶を析出させる。高純度の硫酸ニッケ
ルを製造するためには、原料の溶解方法や結晶を析出さ
せる晶析工程の条件設定も重要であるが、晶析前の硫酸
ニッケル水溶液中の不純物を低下させることがもっとも
重要である。
[0003] For example, nickel sulfate, which is one of nickel salts, is produced by the following method. After dissolving raw materials such as nickel-containing sulfides and metal scraps in sulfuric acid, impurities such as iron, copper, and cobalt are removed. The liquid is concentrated by heating and evaporating, followed by cooling,
Crystals of nickel sulfate precipitate. In order to produce high-purity nickel sulfate, it is important to dissolve the raw materials and set the conditions of the crystallization step to precipitate crystals, but it is most important to reduce impurities in the aqueous solution of nickel sulfate before crystallization. It is.

【0004】通常、硫酸ニッケル原料となる硫化物やメ
タル屑などには、ニッケルの他に鉄、銅、亜鉛などの不
純物が含まれている。これら不純物は、原料を溶解する
ときにニッケルとともに液に浸出される。高純度な硫酸
ニッケルを製造するためにはこれら元素を液から何らか
の方法で除去する必要がある。
[0004] Usually, sulfides and metal scraps used as a raw material of nickel sulfate contain impurities such as iron, copper and zinc in addition to nickel. These impurities are leached into the liquid together with nickel when the raw material is dissolved. In order to produce high-purity nickel sulfate, it is necessary to remove these elements from the liquid by some method.

【0005】また、塩化ニッケルも同様にニッケル含有
原料を溶解し晶析させるが、この場合も純度の高い塩化
ニッケルを製造するためには、晶析前に溶液から不純物
を除去する必要がある。
Similarly, nickel chloride dissolves and crystallizes a nickel-containing raw material. In this case, too, in order to produce nickel chloride with high purity, it is necessary to remove impurities from the solution before crystallization.

【0006】また、合金やメッキ用に使用される金属ニ
ッケルも、近年では、高純度のものが望まれており、電
解操作前に不純物を完全に除去した電解液が必要であ
る。
[0006] In recent years, high purity nickel alloys and metal nickel used for plating have been desired, and an electrolytic solution from which impurities have been completely removed before the electrolytic operation is required.

【0007】鉄は、酸化状態の溶液中ではpHを上昇さ
せることにより水酸化物として除去できることが知られ
ている。したがって原料の溶解液から鉄を除去すること
は比較的容易に達成できる。この際、溶液のpHが充分
高ければ、鉄のみならず比較的加水分解しやすい亜鉛や
銅も沈殿し溶液から除去される。しかしながら、このよ
うな条件では、回収目的であるニッケルも多量に沈殿
し、ニッケル含有率の高い殿物が生成してしまう。この
殿物を何ら処理せずそのまま系外に抜き出してしまう
と、殿物に含まれているニッケルは回収できないことに
なり、ロスとなる。
[0007] It is known that iron can be removed as a hydroxide by increasing the pH in an oxidized solution. Therefore, removing iron from the solution of the raw material can be achieved relatively easily. At this time, if the pH of the solution is sufficiently high, not only iron but also zinc and copper, which are relatively easily hydrolyzed, precipitate and are removed from the solution. However, under such conditions, a large amount of nickel, which is the object of recovery, also precipitates, and a deposit having a high nickel content is generated. If this artifact is extracted out of the system without any treatment, nickel contained in the artifact cannot be recovered, resulting in loss.

【0008】そこで通常は、得られた中和殿物を酸で洗
浄することが行われている。ニッケルを中和殿物から充
分回収するためには、洗浄液のpHを低下させることが
必要であるが、低pHでの洗浄では、殿物に含有される
亜鉛などの不純物をも再度溶解する。したがって、ニッ
ケルのみだけではなく、亜鉛などの不純物を含有した溶
液となる。このニッケルおよび亜鉛などを含む溶液は、
ニッケルを回収するため、原料の溶解液に混ぜることが
望ましい。しかしながら、洗浄液は亜鉛などの不純物を
含むため、直接ニッケル溶解液に混ぜ、繰り返すとこれ
ら不純物を系外へ抜き出すことができない。そのためこ
れまではこの酸洗浄液の処理ができないでいた。
Therefore, the obtained neutralized residue is usually washed with an acid. In order to sufficiently recover nickel from the neutralized deposit, it is necessary to lower the pH of the cleaning solution. However, when washing at a low pH, impurities such as zinc contained in the deposit are dissolved again. Therefore, the solution contains not only nickel but also impurities such as zinc. The solution containing nickel and zinc etc.
To recover nickel, it is desirable to mix it with the solution of the raw material. However, since the cleaning solution contains impurities such as zinc, the impurities cannot be extracted out of the system by directly mixing the cleaning solution with the nickel solution and repeating the process. For this reason, it has not been possible to treat this acid cleaning solution until now.

【0009】銅などの不純物は、ニッケルに比べ貴な金
属であることから金属の酸化還元電位差を利用したセメ
ンテーションによりニッケル原料溶解液から直接除去す
ることも考えられる。一般には鉄メタルを使用すること
が多いが、反応が進行するに従い鉄が溶液に溶解する。
そのため、鉄除去の浄液負荷が上昇する。
Since impurities such as copper are noble metals compared to nickel, it is conceivable to directly remove them from the nickel raw material solution by cementation utilizing the oxidation-reduction potential difference of the metals. Generally, iron metal is often used, but iron dissolves in the solution as the reaction proceeds.
Therefore, the purification liquid load for iron removal increases.

【0010】また、ニッケルを還元剤として使用するこ
ともできる。この反応は金属との接触面積が律速であ
り、表面積の確保が重要である。板や塊状の金属ニッケ
ルでは十分に反応せず、反応性を増加させるためには、
粉状のニッケルを用いることが必要となり不利である。
また、亜鉛はニッケルに比べ卑な金属であるため、セメ
ンテーションでは除去できない。
[0010] Nickel can also be used as a reducing agent. In this reaction, the contact area with the metal is rate-determining, and it is important to secure a surface area. Plates and massive metallic nickel do not react well, and to increase reactivity,
It is disadvantageous because it is necessary to use powdered nickel.
In addition, zinc is a metal that is lower than nickel, and therefore cannot be removed by cementation.

【0011】また、硫化物として除去することも考えら
れる。この場合には銅のみならず亜鉛も除去されるので
好都合である。しかしながら、溶液中の銅および亜鉛を
充分な濃度まで低下させるためには、硫化水素ガス等の
硫化剤を多量加える必要があり、その結果として多量の
ニッケルの共沈が避けられない。また、硫化水素等の硫
化剤は、反応終了後も微量残留し、後工程で徐々に硫化
物沈殿が生成し反応槽などにスケーリングしたり、ある
いは硫化水素の臭気を除くための脱気操作が必要であっ
たりと煩雑である。
It is also conceivable to remove as sulfide. In this case, not only copper but also zinc is removed, which is convenient. However, in order to reduce the concentration of copper and zinc in the solution to a sufficient concentration, it is necessary to add a large amount of a sulfurizing agent such as hydrogen sulfide gas, and as a result, coprecipitation of a large amount of nickel is inevitable. In addition, a small amount of a sulfurizing agent such as hydrogen sulfide remains even after the completion of the reaction, and sulfide precipitates are gradually formed in a later step, and the reaction is scaled in a reaction tank or the like, or a deaeration operation for removing the odor of hydrogen sulfide is performed. Necessary or complicated.

【0012】上述した不純物を除去する方法として溶媒
抽出が開発されている。近年選択性の高い溶媒が開発さ
れており、溶媒抽出は有効な手段である。溶媒抽出剤に
は大別して、酸性抽出剤、中性抽出剤、塩基性抽出剤な
どがあるが、銅や亜鉛の抽出には、2−エチルヘキシル
ホスホン酸モノ2−エチルヘキシルエステルなどのリン
酸系の酸性抽出剤が適している。溶媒抽出では、選択抽
出性が重要であるが、水溶液へ溶解あるいは懸濁する有
機溶媒の量をいかに低減できるかがプロセスとして成立
するためにきわめて重要である。これまでの提案されて
いる処理法では、ニッケル原料の溶解液すべてに対して
溶媒抽出操作が必要である。このように多量の溶液を対
象すると、水溶液への溶媒ロスがきわめて多くなり、結
果として溶媒抽出を採用することができない。
Solvent extraction has been developed as a method for removing the above-mentioned impurities. In recent years, highly selective solvents have been developed, and solvent extraction is an effective means. Solvent extractants are roughly classified into acidic extractants, neutral extractants, and basic extractants. For the extraction of copper and zinc, phosphoric acid-based compounds such as 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester are used. Acidic extractants are suitable. In solvent extraction, selective extraction is important, but it is extremely important how the amount of organic solvent dissolved or suspended in an aqueous solution can be reduced in order to be established as a process. In the treatment methods proposed so far, a solvent extraction operation is required for all the solutions of the nickel raw material. When targeting such a large amount of solution, the solvent loss to the aqueous solution becomes extremely large, and as a result, solvent extraction cannot be adopted.

【0013】このように、これまでの方法では、鉄、亜
鉛、銅を含有する硫酸ニッケル水溶液からこれら元素を
除去し、高純度なニッケル水溶液を製造することができ
なかった。
As described above, according to the conventional methods, it has not been possible to remove these elements from the aqueous nickel sulfate solution containing iron, zinc and copper to produce a high-purity nickel aqueous solution.

【0014】[0014]

【発明が解決しようとする課題】本発明は、上記問題点
を解決し、亜鉛および鉄を含有するニッケル水溶液から
これら元素を除去し、高純度のニッケル水溶液を製造す
る方法を提供することを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a method for producing a high-purity nickel aqueous solution by removing these elements from a nickel aqueous solution containing zinc and iron. And

【0015】[0015]

【課題を解決するための手段】本発明は、不純物として
亜鉛および鉄を含有する酸性のニッケル水溶液、たとえ
ば、ニッケル原料溶解液に酸化剤および中和剤を添加し
てpHを上昇させ、鉄とともに亜鉛を殿物として除去し
て、高純度のニッケル水溶液を回収する。
The present invention provides an acidic nickel aqueous solution containing zinc and iron as impurities, for example, an oxidizing agent and a neutralizing agent added to a nickel raw material solution to raise the pH, The zinc is removed as a deposit, and a high-purity nickel aqueous solution is recovered.

【0016】一方、生成した前記殿物を酸性溶液で洗浄
することにより、殿物中のニッケルを酸洗浄液中に溶解
回収し、さらに得られた酸洗浄液とアルキルホスホン酸
エステルとを接触させ、酸洗浄液中の亜鉛を抽出した
後、酸洗浄液をニッケル原料溶解液に繰り返すことを特
徴とする高純度ニッケル水溶液を製造する方法である。
On the other hand, by washing the formed residue with an acidic solution, nickel in the residue is dissolved and recovered in an acid washing solution, and the resulting acid washing solution is brought into contact with an alkylphosphonate to form an acid. This is a method for producing a high-purity nickel aqueous solution, characterized in that after extracting zinc in a washing solution, an acid washing solution is repeatedly used as a nickel raw material solution.

【0017】このとき抽出剤として使用する、アルキル
ホスホン酸エステルは、2−エチルヘキシルホスホン酸
モノ2−エチルヘキシルエステルであることが好まし
く、また、得られる前記高純度ニッケル水溶液が、硫酸
ニッケル水溶液であるとき効果的である。
The alkyl phosphonate used as the extractant at this time is preferably 2-ethylhexyl phosphonate mono-2-ethylhexyl ester. When the obtained high-purity nickel aqueous solution is a nickel sulfate aqueous solution, It is effective.

【0018】[0018]

【発明の実施の形態】本発明は、中和沈殿生成時に亜鉛
が鉄とともに沈澱し、また亜鉛がニッケルに比べアルキ
ルホスホン酸エステルに抽出されやすい性質を利用す
る。すでに述べたように、溶液中に存在する鉄イオン
は、3価に酸化することで、水酸化物として溶液から除
去できる。よって、ニッケル原料溶解液に酸化剤ととも
に中和剤を加えれば、鉄は容易に水酸化物として沈殿す
る。鉄イオンの酸化は、過酸化水素、塩素、酸素、空気
などの一般的な酸化剤を用いて行えば良い。溶液のpH
の上昇にしたがって、溶液中の鉄濃度は低下するが、一
般にはpH4以上でこの反応は、進み、0.001g/
リットル以下の鉄濃度とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention utilizes the property that zinc precipitates together with iron during the formation of a neutralized precipitate, and that zinc is more easily extracted into an alkylphosphonate than nickel. As described above, iron ions present in the solution can be removed from the solution as hydroxides by oxidizing to trivalent. Therefore, if a neutralizing agent is added to the nickel raw material solution together with the oxidizing agent, iron is easily precipitated as a hydroxide. Oxidation of iron ions may be performed using a general oxidizing agent such as hydrogen peroxide, chlorine, oxygen, and air. Solution pH
As the concentration of iron decreases, the reaction proceeds generally at pH 4 or higher, and the reaction proceeds to 0.001 g /
The iron concentration can be less than one liter.

【0019】このとき、溶液中の亜鉛は、鉄とともに沈
殿する傾向があり、この性質を利用すれば溶液から除去
できる。亜鉛の除去は、pHが高いほど効率的であり、
pH5.0以上、好ましくは5.5以上とする。pHを
上げることによって鉄、亜鉛の除去は向上する。しかし
ながら、このとき、同時にニッケルも一部沈殿し殿物に
含有されることとなる。よって、鉄および亜鉛を酸化中
和することにより除去し、高純度なニッケル水溶液を回
収することと、沈殿へのニッケルの移行率を低減させる
ことを両立させることは、相反する現象であり、中和時
のpHのきめ細かな管理を行っても困難である。
At this time, zinc in the solution tends to precipitate together with iron, and can be removed from the solution by utilizing this property. The removal of zinc is more efficient at higher pH,
The pH is adjusted to 5.0 or higher, preferably 5.5 or higher. Increasing the pH improves the removal of iron and zinc. However, at this time, nickel also precipitates at the same time and is contained in the deposit. Therefore, removing iron and zinc by oxidizing and neutralizing them, and recovering a high-purity nickel aqueous solution and reducing the transfer rate of nickel to precipitation are both conflicting phenomena. It is difficult even if the pH at the time of sum is finely controlled.

【0020】したがって、ニッケルを含有した殿物を、
塩酸や硫酸によってpHを調整した低pHの溶液で洗浄
し、ニッケルを酸洗浄液中に回収する。このpHが低け
れば低いほど、ニッケル回収率は向上するが、鉄が再溶
解し始める。よって、通常は、pH3以上、望ましく
は、すでに述べたように鉄イオンがpH4以上で効率的
に水酸化物として沈殿することを考えると、4以上のp
Hの液で洗浄すればよい。
Therefore, the nickel-containing artifact is
Wash with a low pH solution whose pH has been adjusted with hydrochloric acid or sulfuric acid, and recover nickel in the acid washing solution. The lower the pH, the better the nickel recovery, but the iron begins to redissolve. Therefore, considering that iron ions normally precipitate efficiently as hydroxides at pH 3 or higher, desirably at pH 4 or higher as described above, a p of 4 or higher is considered.
What is necessary is just to wash with H liquid.

【0021】pH4で洗浄すると、殿物中のニッケルの
およそ90%が溶出し回収できるが、この際、鉄とともに
除去されていた亜鉛も洗浄液に溶出する。pH4で酸洗
浄したとき、殿物中の亜鉛の82%が溶出する。したがっ
て、この溶液をこのままニッケル溶解液に戻すことはで
きないので、さらにニッケルと亜鉛を分離することが必
要である。この分離に、溶媒抽出法を適用する。
When washed at pH 4, about 90% of the nickel in the deposits can be eluted and recovered. At this time, zinc which has been removed together with iron elutes in the washing solution. When acid washed at pH 4, 82% of the zinc in the deposit elutes. Therefore, since this solution cannot be returned to the nickel solution as it is, it is necessary to further separate nickel and zinc. A solvent extraction method is applied to this separation.

【0022】アルキルホスホン酸エステルやアルキルホ
スフィン酸は、鉄、亜鉛に対して高い抽出能力を示す。
特に2−エチルヘキシルホスホン酸モノ2−エチルヘキ
シルエステルは本発明の目的に合致した抽出剤である。
この抽出剤はニッケルも抽出する。しかし、本抽出剤の
ニッケルに対する抽出性は他の金属イオンに比べると低
く、水溶液のpHを高くすることによってはじめて達成
される。したがって、ニッケルを抽出しないように、水
溶液のpHを調整することにより、酸洗浄液中の亜鉛を
選択的に抽出できる。
Alkyl phosphonic acid esters and alkyl phosphinic acids have a high extraction ability for iron and zinc.
In particular, monoethyl 2-ethylhexyl 2-ethylhexylphosphonate is an extractant suitable for the purpose of the present invention.
This extractant also extracts nickel. However, the extractability of the present extractant with respect to nickel is lower than that of other metal ions, and can be achieved only by increasing the pH of the aqueous solution. Therefore, by adjusting the pH of the aqueous solution so as not to extract nickel, zinc in the acid washing solution can be selectively extracted.

【0023】本発明によれば、本発明の溶媒抽出工程
は、液量の少ない中和殿物の酸洗浄液を対象とするた
め、有機溶媒のロスは最小限に抑えることができる。
According to the present invention, since the solvent extraction step of the present invention is directed to an acid washing solution of a neutralized residue, which has a small volume, loss of the organic solvent can be minimized.

【0024】通常、2−エチルヘキシルホスホン酸モノ
2−エチルヘキシルエステルのような酸性抽出剤は、抽
出が進むにつれてpHが低下し、抽出をさらに進行させ
るためには中和剤が必要となる。2−エチルヘキシルホ
スホン酸モノ2−エチルヘキシルエステルでは、亜鉛は
pH1〜3程度で抽出される。
Usually, the pH of an acidic extractant such as 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester decreases as the extraction proceeds, and a neutralizing agent is required to further proceed the extraction. In 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester, zinc is extracted at a pH of about 1 to 3.

【0025】この溶媒抽出工程では中和殿物の酸洗浄し
た際に溶解した亜鉛のみを抽出除去すればよいのであっ
て、抽出すべき金属イオン量はわずかである。したがっ
て中和剤を添加しなくても有機溶媒とpH4の酸洗浄液
とを混合接触すれば、水相のpHは2〜3になり、亜鉛
の抽出に適したpHとなる。このように処理液が少ない
こと、また中和剤の添加が必要ないことから、始液であ
る、たとえばニッケル原料溶解液全量に対して溶媒抽出
操作を適用した場合に比べ、非常に簡素化した装置で亜
鉛を抽出することができる。
In this solvent extraction step, only the zinc dissolved during the acid washing of the neutralized residue should be extracted and removed, and the amount of metal ions to be extracted is small. Therefore, if the organic solvent and the acid washing solution having a pH of 4 are mixed and contacted without adding a neutralizing agent, the pH of the aqueous phase becomes 2 to 3, which is a pH suitable for zinc extraction. Since the amount of the processing solution is small and the addition of the neutralizing agent is not required, the process is greatly simplified as compared with the case where the solvent extraction operation is applied to the starting solution, for example, the entire amount of the nickel raw material solution. The device can extract zinc.

【0026】ここで使用するアルキルホスホン酸エステ
ルは粘度が高いため、通常、希釈して使用する。高濃度
の抽出剤が使用できれば、少ない有機溶媒量で多量の不
純物を抽出できるが、粘度が上昇し抽出操作に支障とな
る。希釈率は特に規定されるものではなく、不純物濃度
に応じて使用すれば良いが、抽出剤濃度が1〜50体積%
の範囲で使用することが望ましい。
The alkyl phosphonic acid ester used here has a high viscosity and is usually used after dilution. If a high-concentration extractant can be used, a large amount of impurities can be extracted with a small amount of the organic solvent, but the viscosity will increase and hinder the extraction operation. The dilution rate is not particularly limited, and may be used according to the impurity concentration.
It is desirable to use within the range.

【0027】また、抽出時の温度は特に規定されるもの
ではないが、高温ほど水溶液および抽出剤の粘度が下が
り、抽出反応後の水相と有機相の2相分離に要する時間
が短縮でき、抽出反応は高温で行うことが望ましい。た
だし、抽出剤や抽出剤の粘度を低下させるために加えら
れる希釈剤が温度とともに揮発したり、引火の可能性が
あるため20〜60℃での操作が望ましい。
Although the temperature at the time of extraction is not particularly limited, the viscosity of the aqueous solution and the extractant decreases as the temperature increases, and the time required for two-phase separation of the aqueous phase and the organic phase after the extraction reaction can be shortened. The extraction reaction is desirably performed at a high temperature. However, the operation at 20 to 60 ° C. is desirable because the extractant and the diluent added to reduce the viscosity of the extractant may volatilize with temperature or may catch fire.

【0028】本発明によれば高純度のニッケル水溶液が
製造でき、この溶液を加熱蒸発などにより濃縮すること
により高純度のニッケル塩類が回収できる。あるいは溶
液を電解すれば高純度の金属ニッケルを製造することが
できる。以下、本発明の実施例について説明する。
According to the present invention, a high-purity nickel aqueous solution can be produced, and high-purity nickel salts can be recovered by concentrating this solution by heating and evaporating. Alternatively, high-purity metallic nickel can be produced by electrolyzing the solution. Hereinafter, examples of the present invention will be described.

【0029】[0029]

【実施例】83.5g/リットルのニッケルを含む硫酸ニッ
ケルの溶液に、空気を吹き込みながら、水酸化カルシウ
ムを添加しpHを上げ、鉄を主成分とする殿物を生成さ
せた。60℃で1時間反応させた後、溶液を濾過し殿物と
水溶液に分離し、水溶液は、高純度硫酸ニッケル水溶液
として回収した。この操作により鉄のみならず亜鉛およ
び銅も沈殿し、溶液から除去された。溶液のpHが高い
ほど効率的にこれら不純物が除去でき、pH5.98では、
不純物の濃度が非常に低い高純度硫酸ニッケル水溶液が
得られた。この結果を表1に示す。
EXAMPLE Calcium hydroxide was added to a solution of nickel sulfate containing 83.5 g / l of nickel while blowing air into the solution to raise the pH, thereby producing iron-based deposits. After reacting at 60 ° C. for 1 hour, the solution was filtered to separate a residue and an aqueous solution, and the aqueous solution was recovered as a high-purity nickel sulfate aqueous solution. By this operation, not only iron but also zinc and copper precipitated and were removed from the solution. The higher the pH of the solution, the more efficiently these impurities can be removed.
A high purity nickel sulfate aqueous solution having a very low impurity concentration was obtained. Table 1 shows the results.

【0030】 続いて、生成した中和殿物を硫酸でpHを調整しながら
洗浄した。洗浄は中和殿物 200gを1リットルの酸溶液
を用いて、50℃の条件で1時間行った。表2に示すよう
に、洗浄時のpHが低下するほどニッケルの回収率は高
かった。pH4の酸洗浄では中和澱物中のニッケルの87
%および亜鉛の82%が溶出したが、鉄の溶出は認められ
なかった。
[0030] Subsequently, the generated neutralized residue was washed while adjusting the pH with sulfuric acid. Washing was carried out for 1 hour at 50 ° C. using 1 liter of an acid solution of 200 g of the neutralized residue. As shown in Table 2, the lower the pH during washing, the higher the nickel recovery. In acid washing at pH 4, 87 of the nickel in the neutralized precipitate
% And 82% of zinc eluted, but no elution of iron.

【0031】 次に、2−エチルヘキシルホスホン酸モノ2−エチルヘ
キシルエステルを芳香族系希釈剤で20体積%に希釈した
有機溶媒と、上記操作で得られた酸洗浄液とを接触混合
した。接触混合は室温で行い、有機溶媒と水溶液との容
積比は、1:1あるいは1:3で行った。なお、水酸化
ナトリウムなどの中和剤は一切添加しなかった。これら
の結果を表3に示すが、酸洗浄液中の亜鉛を抽出除去す
ることができ、高純度のニッケル水溶液が得られた。得
られた高純度のニッケル水溶液は、高純度ニッケル水溶
液として、使用することも可能であるが、原料溶解工程
のニッケル溶解液に繰り返して使用した。
[0031] Next, the organic solvent obtained by diluting 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester to 20% by volume with an aromatic diluent was contact-mixed with the acid washing solution obtained by the above operation. The contact mixing was performed at room temperature, and the volume ratio between the organic solvent and the aqueous solution was 1: 1 or 1: 3. No neutralizing agent such as sodium hydroxide was added at all. The results are shown in Table 3. The zinc in the acid washing solution was extracted and removed, and a high-purity nickel aqueous solution was obtained. Although the obtained high-purity nickel aqueous solution can be used as a high-purity nickel aqueous solution, it was repeatedly used as a nickel solution in the raw material dissolving step.

【0032】 [0032]

【0033】[0033]

【発明の効果】本発明による方法によれば、不純物とし
て、亜鉛および鉄を含有するニッケル水溶液から、効率
よく前記不純物を除去することが可能で、高純度のニッ
ケル水溶液を製造することできる。
According to the method of the present invention, the impurities can be efficiently removed from a nickel aqueous solution containing zinc and iron as impurities, and a high-purity nickel aqueous solution can be produced.

フロントページの続き (72)発明者 高石 和幸 愛媛県新居浜市西原町3ー5ー3住友金属 鉱山株式会社別子事業所内 (72)発明者 土田 直行 愛媛県新居浜市西原町3ー5ー3住友金属 鉱山株式会社別子事業所内Continued on the front page (72) Inventor Kazuyuki Takaishi 3-5-3 Nishihara-cho, Niihama-shi, Ehime Prefecture Sumitomo Metal Mining Co., Ltd. Besshi Works (72) Inventor Naoyuki Tsuchida 3-5-3, Nishihara-cho, Niihama-shi, Ehime Metal Mining Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛および鉄を不純物として含有する酸
性のニッケル水溶液に酸化剤および中和剤を添加し、鉄
とともに亜鉛を殿物として除去して高純度ニッケル水溶
液を回収し、生成した前記殿物を酸性溶液で洗浄するこ
とにより殿物中のニッケルを酸洗浄液中に溶解回収し、
さらに得られた酸洗浄液とアルキルホスホン酸エステル
とを接触させ亜鉛を抽出した後、酸洗浄液を始液である
ニッケル水溶液の一部として繰り返すことを特徴とする
高純度ニッケル水溶液の製造方法。
An oxidizing agent and a neutralizing agent are added to an acidic nickel aqueous solution containing zinc and iron as impurities, and zinc is removed together with iron as a deposit to recover a high-purity nickel aqueous solution. The nickel in the deposit is dissolved and recovered in an acid washing solution by washing the material with an acidic solution,
A method for producing a high-purity nickel aqueous solution, further comprising: contacting the obtained acid washing solution with an alkylphosphonic ester to extract zinc, and repeating the acid washing solution as a part of a nickel aqueous solution as a starting solution.
【請求項2】 アルキルホスホン酸エステルが2−エチ
ルヘキシルホスホン酸モノ2−エチルヘキシルエステル
であることを特徴とする請求項1記載の高純度ニッケル
水溶液の製造方法。
2. The method according to claim 1, wherein the alkyl phosphonic acid ester is 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester.
【請求項3】 高純度ニッケル水溶液が硫酸ニッケル水
溶液であることを特徴とする請求項1または2に記載の
高純度ニッケル水溶液の製造方法。
3. The method for producing a high-purity nickel aqueous solution according to claim 1, wherein the high-purity nickel aqueous solution is a nickel sulfate aqueous solution.
JP03786098A 1998-02-20 1998-02-20 Manufacturing method of high purity nickel aqueous solution Expired - Lifetime JP3722254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03786098A JP3722254B2 (en) 1998-02-20 1998-02-20 Manufacturing method of high purity nickel aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03786098A JP3722254B2 (en) 1998-02-20 1998-02-20 Manufacturing method of high purity nickel aqueous solution

Publications (2)

Publication Number Publication Date
JPH11229056A true JPH11229056A (en) 1999-08-24
JP3722254B2 JP3722254B2 (en) 2005-11-30

Family

ID=12509311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03786098A Expired - Lifetime JP3722254B2 (en) 1998-02-20 1998-02-20 Manufacturing method of high purity nickel aqueous solution

Country Status (1)

Country Link
JP (1) JP3722254B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036894A (en) * 2001-07-19 2003-02-07 Sumitomo Metal Mining Co Ltd Method of recovering valuable metal from used-up nickel hydrogen secondary battery
JP2010037626A (en) * 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2012036420A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method of leaching nickel and cobalt, and method of recovering valuable metal from lithium ion battery
CN103320622A (en) * 2013-07-18 2013-09-25 海南金亿新材料股份有限公司 Technological process for preparing electronic-grade nickel methylsulfonate by utilization of nickel waste material
CN103547155A (en) * 2011-05-20 2014-01-29 日本农药株式会社 Composition for eliminating decayed foliage from crops
JP2015157991A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Method of removing impurity in organic solvent and impurity removal installation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036894A (en) * 2001-07-19 2003-02-07 Sumitomo Metal Mining Co Ltd Method of recovering valuable metal from used-up nickel hydrogen secondary battery
JP2010037626A (en) * 2008-08-07 2010-02-18 Sumitomo Metal Mining Co Ltd Zinc sulfide separation method
JP2012036420A (en) * 2010-08-03 2012-02-23 Sumitomo Metal Mining Co Ltd Method of leaching nickel and cobalt, and method of recovering valuable metal from lithium ion battery
CN103547155A (en) * 2011-05-20 2014-01-29 日本农药株式会社 Composition for eliminating decayed foliage from crops
CN103320622A (en) * 2013-07-18 2013-09-25 海南金亿新材料股份有限公司 Technological process for preparing electronic-grade nickel methylsulfonate by utilization of nickel waste material
JP2015157991A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Method of removing impurity in organic solvent and impurity removal installation

Also Published As

Publication number Publication date
JP3722254B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
CN105899691B (en) Scandium recovery method
RU2149195C1 (en) Method of hydrometallurgical recovery of nickel from nickel matte of two types
EP2668303B1 (en) Improved method of ore processing
US20070295613A1 (en) Recovery Of Metals From Oxidised Metalliferous Materials
KR100866824B1 (en) Method for processing electro-precipitation copper
CA2618326C (en) Method for manufacturing scorodite
JP5539851B2 (en) Method for preparing purified nickel solution, method for producing nickel metal, and method for producing nickel carbonate
JP5721213B2 (en) Method for producing pure metal indium from zinc oxide and / or metal-containing solution
CN105274352B (en) A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate
JP6406234B2 (en) Scandium recovery method
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP2007270291A (en) Method of producing metallic nickel from crude nickel sulfate
JP3369855B2 (en) Method for producing high purity nickel aqueous solution
JP3722254B2 (en) Manufacturing method of high purity nickel aqueous solution
CN117568624A (en) Bismuth purification method
JP3386516B2 (en) Method for preventing the formation of alkali-based double salts with jarosite and ammonium
JP3823307B2 (en) Method for producing high purity cobalt solution
JP2010264331A (en) Separation method of arsenic
JP2003105456A (en) Method for manufacturing silver
CN108754142B (en) Method for separating bismuth and iron and producing pure bismuth hydroxide by extraction-ammonia decomposition in bismuth and iron mixed solution
JP3901076B2 (en) Method for separating and recovering copper and coexisting elements
CA2498855C (en) Process of solvent extraction of copper
JP4240982B2 (en) Method for producing cobalt solution with low manganese concentration
JP7156491B1 (en) Method for producing cobalt sulfate
JP5512640B2 (en) Silver recovery method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

EXPY Cancellation because of completion of term