WO2013187305A1 - Power supply system and method for operating power supply system - Google Patents

Power supply system and method for operating power supply system Download PDF

Info

Publication number
WO2013187305A1
WO2013187305A1 PCT/JP2013/065690 JP2013065690W WO2013187305A1 WO 2013187305 A1 WO2013187305 A1 WO 2013187305A1 JP 2013065690 W JP2013065690 W JP 2013065690W WO 2013187305 A1 WO2013187305 A1 WO 2013187305A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
fuel cell
cell device
electric circuits
wire
Prior art date
Application number
PCT/JP2013/065690
Other languages
French (fr)
Japanese (ja)
Inventor
岳史 河野
隆文 石井
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2013187305A1 publication Critical patent/WO2013187305A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings

Definitions

  • the present invention relates to a power supply system and a method for operating the power supply system.
  • Patent Document 1 there is a power supply system that supplies power to a load connected to a single-phase three-wire system by grid interconnection operation and autonomous operation.
  • an inverter device that converts DC power into single-phase two-wire AC power by an inverter and outputs it is connected to a single-phase three-wire power system via a transformer.
  • the power system when performing independent operation, the power system is disconnected, and the output of the inverter device is converted into single-phase three-wire AC power through a transformer and supplied to the load.
  • a power supply system equipped with a fuel cell is known.
  • This fuel cell is normally configured to be connected to a single-phase three-wire AC system. For this reason, when providing a fuel cell in the above-mentioned power supply system, it is usually connected to a single-phase three-wire electric circuit.
  • the inverter device supplies power required for operating the important load to the important load via the transformer during the self-sustaining operation. For this reason, the power supply system needs to include a transformer corresponding to the electric power. Since the electric power required to operate this important load is about several kW, a large transformer is required. Even when the power consumption of the load is 0, the power is consumed due to the iron loss of the transformer as long as the voltage is generated in the transformer. It is known that this iron loss increases as the transformer becomes larger.
  • the present invention has been made to solve such problems, and it is an object of the present invention to provide a power supply system capable of reducing the size of a transformer and suppressing power loss and a method for operating the power supply system. .
  • a power supply system is a power supply system that supplies power through interconnection operation and independent operation with a power system, and single-phase three-wire AC power is supplied from the power system.
  • Distribution board having three electric circuits to be supplied, fuel cell device connected to single-phase three-wire AC power, storage battery device that independently outputs single-phase two-wire AC power, and single-phase three-wire A transformer that converts AC power and single-phase two-wire AC power into each other.
  • the three electric circuits include two electric circuits to which an important load that requires power supply is connected even when a power failure occurs in the power system.
  • the transformer is provided between the fuel cell device and the self-supporting output terminal of the storage battery device, or between the fuel cell device and the two electric circuits described above.
  • the storage battery device autonomously outputs single-phase two-wire AC power to the above-described two electric circuits at the time of a power failure of the power system, and also independently outputs single-phase three-wire AC power to the fuel cell device via a transformer.
  • the fuel cell device supplies single-phase two-wire AC power to two electric circuits via a transformer when a power failure occurs in the power system.
  • the storage battery device supplies single-phase two-wire AC power to two electric circuits to which an important load is connected in the event of a power system power outage, and also to the fuel cell device via a transformer.
  • Supply phase 3-wire AC power That is, the storage battery device supplies power to an important load without going through a transformer and supplies power to the fuel cell device through the transformer when a power failure occurs in the power system.
  • the size of the transformer is determined by the magnitude of the output power of the fuel cell device, and is independent of the magnitude of the power supplied to the important load. Therefore, the transformer can be reduced in size as compared with the configuration in which power is supplied to the important load through the transformer.
  • the iron loss of the transformer can be reduced, so that it is possible to suppress power loss. Furthermore, since the exciting current is reduced by downsizing the transformer, the possibility of an abnormal stop can be reduced when the storage battery device starts a self-sustaining operation.
  • a load other than the important load may be connected to two electric circuits in a combination different from the two electric circuits to which the important load is connected among the three electric circuits.
  • the limited power of the storage battery device and the fuel cell device is used, so that it is necessary not to supply power to normal loads other than important loads.
  • single-phase two-wire AC power is supplied to the two electric circuits to which the important load is connected, and the electric circuit in which the important load is not connected among the three electric circuits. Is not supplied with power.
  • a switch for disconnecting the normal load from the three electric circuits is provided. Without providing, it is possible to prevent power from being supplied to the normal load at the time of power failure of the power system. As a result, the power supply system can be reduced in size.
  • the power supply system includes a first switch provided between the power system and the three electric circuits, a second switch provided between the fuel cell device and the three electric circuits, and a self-supporting output terminal of the storage battery device.
  • a third switch provided between the two electric paths, a fourth switch provided between the fuel cell device and the transformer, and a control unit that performs control for switching between the grid operation and the independent operation; , May be further provided.
  • the control unit controls to disconnect the first switch and the second switch and to turn on the third switch and the fourth switch in response to the detection of the power failure of the power system.
  • the power supply system is disconnected from the power system, the fuel cell device is disconnected from the three electric paths, and the storage battery device is connected to the two important loads.
  • the storage battery device and the fuel cell device can be connected to each other via a transformer.
  • the storage battery device can supply electric power to the important load without going through the transformer during the self-sustained operation, and can supply electric power to the fuel cell device through the transformer.
  • the transformer can be downsized and power loss can be suppressed as compared with a configuration in which power is supplied to the important load via the transformer.
  • the power supply system includes a first switch provided between the power system and the three electric circuits, a third switch provided between the self-sustained output terminal of the storage battery device and the two electric circuits, a fuel cell device, A switch that switches between a state in which the three electric circuits are connected, a state in which the fuel cell device and the transformer are connected, and a control unit that performs control for switching between the interconnected operation and the independent operation. You may prepare. In this case, the control unit performs control so that the first switch is disconnected and the third switch is turned on in response to detection of a power failure of the power system, and the fuel cell device and the transformer are connected. Control the switch. According to this configuration, the fuel cell device and any one of the three electric circuits or the transformer can be selectively connected by the switch, and the power supply system can be downsized.
  • the fuel cell device is connected to the three electric circuits between a position where the two electric circuits and the self-supporting output of the storage battery device are connected, and a position where the two electric circuits and the important load are connected. May be. Also in this configuration, the transformer can be downsized and power loss can be suppressed as compared with a configuration in which power is supplied to an important load via the transformer. Further, in this configuration, as long as the power obtained by subtracting the power consumed by the important load from the generated power of the fuel cell device is positive, even if the fuel cell device includes the reverse power flow prevention device, the fuel cell The device can continue power generation stably.
  • a method for operating a power supply system includes two electric circuits to which an important load that requires power supply is connected even when a power failure occurs in the power system.
  • Three electric circuits to which AC power is supplied a fuel cell device that supplies single-phase three-wire AC power to the three electric circuits, and a storage battery that independently outputs single-phase two-wire AC power to the two electric circuits
  • a transformer provided between the fuel cell device and the storage battery device or between the fuel cell device and two electric circuits.
  • the method of operating the power supply system includes a step of detecting a power outage of the power system, a first switch provided between the power system and the three electric circuits after detecting the power outage of the power system, and a fuel cell device A step of disconnecting the second switch provided between the storage battery device and the three electric circuits; and a step of disconnecting the first switch and the second switch, and then a step provided between the storage battery device and the two electric circuits.
  • the power supply system in response to detecting a power failure in the power system, the power supply system is disconnected from the power system, the fuel cell device is disconnected from the three electric circuits, and the storage battery device is loaded with an important load.
  • the storage battery device and the fuel cell device are connected to each other via two transformers connected to each other. Thereafter, the storage battery device starts a self-sustaining operation. For this reason, the storage battery device can supply electric power to an important load without going through a transformer, and can supply electric power to the fuel cell device through the transformer.
  • the transformer can be downsized and power loss can be suppressed as compared with a configuration in which power is supplied to the important load via the transformer.
  • the transformer can be miniaturized and power loss can be suppressed.
  • FIG. 1 is a schematic configuration diagram of a power supply system according to a first embodiment. It is a flowchart which shows the operating method of the power supply system of FIG. It is a schematic block diagram of the power supply system of a comparative example. It is a schematic block diagram of the power supply system which concerns on 2nd Embodiment. It is a schematic block diagram of the power supply system which concerns on 3rd Embodiment. It is a schematic block diagram of the power supply system which concerns on 4th Embodiment. It is a schematic block diagram of the power supply system which concerns on 5th Embodiment.
  • FIG. 1 is a schematic configuration diagram of a power supply system according to the first embodiment.
  • the power supply system 1 is a system that supplies power to devices (normal load 21 and important load 22) that are power supply targets in the home through interconnection with a power system 10 having a commercial power supply.
  • the power supply system 1 includes a distribution board 2, a fuel cell device 3, a storage battery device 4, a transformer 5, and a control unit 6 (control means).
  • the distribution board 2 has a circuit L1.
  • the circuit L1 is a single-phase three-wire electric circuit composed of three electric circuits of a voltage line u, a voltage line v, and a neutral line o.
  • a normal load 21 and an important load 22 are connected to the circuit L1. Electric power is supplied to the normal load 21 and the important load 22 via the circuit L1.
  • the normal load 21 is a device that does not need to be operated at the time of a power failure of the power system 10, and is, for example, a dryer.
  • the normal load 21 includes a normal load 21a that operates at 100V and a normal load 21b that operates at 200V.
  • the normal load 21a is connected to the voltage line v and the neutral line o of the circuit L1
  • the normal load 21b is connected to the voltage line u and the voltage line v of the circuit L1.
  • the important load 22 is a device that needs to be operated even in the event of a power failure of the power system 10, and is, for example, a refrigerator, a television, lighting, or the like.
  • the important load 22 operates at 100 V and is connected to the voltage line u and the neutral line o of the circuit L1.
  • the fuel cell device 3 converts the generated DC power into single-phase three-wire AC power and outputs single-phase three-wire AC power (200 V).
  • the output of the fuel cell device 3 is typically 1 kW or less, for example, about 700 W.
  • the fuel cell device 3 is electrically connected to the circuit L1 by a single-phase three-wire circuit L2.
  • the fuel cell device 3 includes a fuel cell and a power conditioner.
  • Fuel cell outputs DC power by power generation reaction.
  • the power conditioner converts the DC power output from the fuel battery cell into single-phase three-wire AC power, and outputs the single-phase three-wire AC power to the circuit L2.
  • the power conditioner detects an abnormality such as the voltage of the circuit L2 becoming a predetermined value or less
  • the power conditioner sets the fuel cell device 3 to the idling mode for a predetermined time.
  • the power conditioner starts up the fuel cell device 3 after a predetermined time has elapsed. At this time, when an abnormality is found again in the circuit L2, the power conditioner sets the fuel cell device 3 to the idling mode again.
  • the storage battery device 4 is charged with power from the fuel cell device 3, the solar battery, or the power system 10, and outputs the charged power as a single-phase two-wire AC power (100V) from a self-supporting output terminal to the circuit L3. .
  • the storage battery device 4 operates the fuel cell device 3 during the self-sustaining operation and supplies power to the important load 22. For this reason, the output of the storage battery device 4 needs to be larger than the output of the fuel cell device 3, for example, about 2 kW.
  • the self-supporting output terminal of the storage battery device 4 is electrically connected to the voltage line u and the neutral line o of the circuit L1 by a single-phase two-wire circuit L3, and the interconnection output terminal of the storage battery device 4 is
  • the circuit L1 is electrically connected by a single-phase three-wire circuit L4.
  • the storage battery device 4 has a storage battery and a power conditioner.
  • the storage battery stores power from the fuel cell device 3, the solar battery, or the power system 10.
  • the power conditioner converts single-phase three-wire AC power input from the circuit L4 into DC power and outputs it to the storage battery during grid connection operation. Further, the power conditioner converts the DC power output from the storage battery into a single-phase two-wire AC power and outputs the single-phase two-wire AC power to the circuit L3 during the independent operation.
  • the storage battery device 4 is connected to the two electric circuits to which the important load 22 is connected in the circuit L1 by the circuit L3, and supplies power to the important load 22 during the self-sustaining operation.
  • the transformer 5 is provided between the fuel cell device 3 and the storage battery device 4, and has a single-phase three-wire power supplied to the circuit L2 and a single-phase two-wire power supplied to the circuit L3. Convert each other.
  • the transformer 5 is electrically connected to the fuel cell device 3 via the circuit L2, and is electrically connected to the storage battery device 4 via the circuit L3.
  • the control unit 6 includes a grid interconnection breaker 11 (first switch), a breaker 12 (second switch), a breaker 13 (third switch), and a breaker 14 (fourth switch) according to the power supply state of the power system 10. Controls the opening and closing of.
  • the grid interconnection breaker 11 is provided on the circuit L1.
  • the breaker 12 is provided on the circuit L2.
  • the breaker 13 is provided on the circuit L3.
  • the breaker 14 is provided between the transformer 5 and the circuit L2.
  • the controller 6 electrically disconnects or connects the power system 10 and the power supply system 1 by opening and closing the grid interconnection breaker 11.
  • the control unit 6 electrically disconnects or connects the fuel cell device 3 and the circuit L1 by controlling the breaker 12 to open and close. Further, the control unit 6 electrically disconnects or connects the storage battery device 4 and the circuit L1 by controlling the breaker 13 to open and close. In addition, the control unit 6 electrically disconnects or connects the transformer 5 and the circuit L2 by controlling the breaker 14 to open and close.
  • the control unit 6 performs control so that the grid interconnection breaker 11 and the breaker 12 are turned on and the breaker 13 and the breaker 14 are disconnected at the time of interconnection operation. Further, when the control unit 6 detects that the power supply of the power system 10 is stopped, the control unit 6 controls to disconnect the grid interconnection breaker 11 and the breaker 12 and to turn on the breaker 13 and the breaker 14.
  • the position where the circuit L3 is connected is farther from the position where the normal load 21 and the important load 22 are connected than the position where the circuit L2 is connected.
  • the position where the circuit L2 is connected is farther from the position where the normal load 21 and the important load 22 are connected than the position where the circuit L4 is connected. That is, in the circuit L1, the circuit L4, the circuit L2, and the circuit L3 are connected in this order from the load side, and the fuel cell device 3 is connected to the position where the storage battery device 4 is connected in the circuit L1 and the important load 22. Is connected to the circuit L1.
  • the interconnection operation with the power system 10 of the power supply system 1 will be described.
  • the grid interconnection breaker 11 and the breaker 12 are turned on, and the breaker 13 and the breaker 14 are disconnected.
  • single-phase three-wire AC power is supplied from the power system 10 to the circuit L1.
  • the fuel cell device 3 is supplied with power from the power system 10 through the circuit L2, and supplies single-phase three-wire AC power to the circuit L1 through the circuit L2.
  • electric power is supplied to the normal load 21a, the normal load 21b, and the important load 22 connected to the circuit L1 by the power system 10 and the fuel cell device 3, respectively.
  • the storage battery device 4 is charged with power from the power system 10 via the circuit L4.
  • FIG. 2 is a flowchart illustrating an operation method of the power supply system 1 at the time of a power failure of the power system 10.
  • the control unit 6 detects that the power supply of the power system 10 has been stopped (step S01).
  • the control unit 6 performs control so that the grid interconnection breaker 11 is disconnected (step S02).
  • the power supply system 1 is disconnected from the power system 10.
  • the control unit 6 controls the breaker 12 to be disconnected (Step S03). Since the order of disconnection of grid interconnection breaker 11 and breaker 12 is arbitrary, step S02 may be performed after step S03, or step S02 and step S03 may be performed simultaneously.
  • step S04 the control unit 6 performs control so that the breaker 13 and the breaker 14 are turned on.
  • step S01 to step S04 the fuel cell device 3 detects that the voltage of the circuit L2 has become a predetermined value or less, and is in the idling mode.
  • the storage battery device 4 starts a self-sustaining operation (step S05).
  • the storage battery device 4 outputs the single-phase two-wire AC power to the circuit L3 and supplies the single-phase two-wire AC power to the voltage line u and the neutral line o of the circuit L1 during the self-sustained operation.
  • the single-phase two-wire AC power output to the circuit L3 is converted into single-phase three-wire AC power by the transformer 5, and the converted single-phase three-wire AC power is supplied to the fuel cell device via the circuit L2. 3 is supplied.
  • the fuel cell device 3 detects that the voltage of the circuit L2 has become equal to or higher than a predetermined value, and starts operation. Then, the fuel cell device 3 outputs single-phase three-wire AC power to the circuit L2.
  • the single-phase three-wire AC power output to the circuit L2 is converted into single-phase two-wire AC power by the transformer 5, and the converted single-phase two-wire AC power is supplied to the voltage of the circuit L1 via the circuit L3. Supplied to line u and neutral line o.
  • FIG. 3 is a schematic configuration diagram of a power supply system 100 of a comparative example.
  • the power supply system 100 is configured to supply power from the fuel cell device 3 and the storage battery device 4 to the circuit L1 at the time of a power failure of the power system 10, and the normal load 21 and the important load 22 to the circuit L1.
  • the connection configuration is different from the power supply system 1 of the first embodiment described above. That is, the power supply system 100 includes a transformer 50 instead of the transformer 5, and includes a breaker 31 and a breaker 32 instead of the breaker 12, the breaker 13, and the breaker 14.
  • the normal load 21 includes a normal load 21a and a normal load 21c that operate at 100V, and a normal load 21b that operates at 200V.
  • the normal load 21a is connected to the voltage line v and the neutral line o of the circuit L1
  • the normal load 21b is connected to the voltage line u and the voltage line v of the circuit L1
  • the normal load 21c is connected to the voltage of the circuit L1. It is connected to line u and neutral line o.
  • the important load 22 includes an important load 22a operating at 100V and an important load 22b.
  • the important load 22a is connected to the voltage line u and the neutral line o of the circuit L1
  • the important load 22b is connected to the voltage line v and the neutral line o of the circuit L1.
  • the transformer 50 is provided between the storage battery device 4 and the circuit L1, is electrically connected to the storage battery device 4 via the circuit L3, and is electrically connected to the circuit L1 via the single-phase three-wire circuit L5. It is connected to the.
  • the transformer 50 converts single-phase two-wire power supplied to the circuit L3 into single-phase three-wire AC power, and outputs the converted single-phase three-wire AC power to the circuit L5.
  • the control unit 6 controls the opening and closing of the grid interconnection breaker 11, the breaker 31, and the breaker 32 (breaker 32a, breaker 32b, breaker 32c) according to the power supply state of the power system 10.
  • the breaker 31 is provided on the circuit L5.
  • the breaker 32a is provided between the normal load 21a and the circuit L1.
  • the breaker 32b is provided between the normal load 21b and the circuit L1.
  • the breaker 32c is provided between the normal load 21c and the circuit L1.
  • the control unit 6 controls the circuit breaker 11 and the breaker 32 to be turned on and the breaker 31 to be disconnected at the time of the interconnection operation. Further, when the control unit 6 detects that the power supply of the power system 10 is stopped, the control unit 6 performs control so that the system interconnection breaker 11 and the breaker 32 are disconnected and the breaker 31 is turned on.
  • the storage battery device 4 supplies single-phase three-wire AC power to the circuit L ⁇ b> 1 to which the important load 22 is connected via the transformer 50 during a power failure of the power system 10.
  • a single-phase three-wire AC power is supplied to the fuel cell device 3 through 50. Therefore, the size of the transformer 50 depends on the output power of the fuel cell device 3 and the amount of power that needs to be supplied to the important load 22. Therefore, it is necessary to use a large transformer that can withstand a large electric power of about 2 kW.
  • the storage battery device 4 supplies the single-phase two-wire AC power to the voltage line u and the neutral line o to which the important load 22 is connected in the event of a power failure of the power system 10, and the transformer A single-phase three-wire AC power is supplied to the fuel cell device 3 via 5. That is, the storage battery device 4 supplies power to the important load 22 without passing through the transformer 5, and supplies power to the fuel cell device 3 through the transformer 5. For this reason, the size of the transformer 5 is determined by the size of the output power of the fuel cell device 3 and is independent of the size of the power supplied to the important load 22. Therefore, compared to the transformer 50 of the power supply system 100, the transformer 5 can be downsized.
  • the transformer 5 even when no power is supplied to the secondary side, as long as voltage is applied to the transformer, power is consumed due to iron loss, but the transformer 5 is smaller than the transformer 50. By doing so, the iron loss of the transformer 5 can be reduced more than the iron loss of the transformer 50. As a result, compared to the power supply system 100, it is possible to suppress power loss in the power supply system 1.
  • the important load 22 is connected to the voltage line u and the neutral line o, or the voltage line v and the neutral line o
  • the normal load 21 is connected to the voltage line u, the neutral line o, and the voltage line v.
  • electric power is supplied to all the electric circuits of the circuit L1.
  • the breaker 32 for disconnecting the normal load 21 from the circuit L1 at the time of a power failure of the electric power system 10 is required. Furthermore, since it is necessary to interrupt the corresponding normal load 21 as the breaker 32, it is necessary to use a large one.
  • the power supply system 1 two electric circuits (voltage line v and neutral line o or voltage line having a combination different from the voltage line u and the neutral line o to which the important load 22 is connected in the circuit L 1.
  • a normal load 21 is connected to u and the voltage line v).
  • single-phase two-wire AC power is supplied only to the voltage line u and the neutral line o. For this reason, without providing a breaker for disconnecting the normal load 21 from the circuit L1, it is possible to prevent power from being supplied to the normal load 21 at the time of a power failure of the power system 10. As a result, the power supply system 1 can be downsized.
  • the important load 22 is connected to the voltage line u and the neutral line o, or the voltage line v and the neutral line o, the important load 22a and the important load 22b are balanced in each phase. If it is not arranged well, an imbalance occurs and a large current may flow through the neutral line of the transformer 50. On the other hand, in the power supply system 1, since the important load 22 is connected only to the voltage line u and the neutral line o, there is no great unbalance, and there is no concern that a large current flows through the neutral line of the transformer 5. .
  • FIG. 4 is a schematic configuration diagram of a power supply system according to the second embodiment.
  • the power supply system 1A of the second embodiment is different from the power supply system 1 of the first embodiment described above in the connection position of the fuel cell device 3 and the storage battery device 4 in the circuit L1. That is, in the power supply system 1A of the second embodiment, in the circuit L1, the position where the circuit L2 is connected is from the position where the normal load 21 and the important load 22 are connected rather than the position where the circuit L3 is connected. is seperated. In the circuit L1, the position where the circuit L3 is connected is farther from the position where the normal load 21 and the important load 22 are connected than the position where the circuit L4 is connected.
  • the circuit L1 the circuit L4, the circuit L3, and the circuit L2 are connected in this order from the load side, and the storage battery device 4 is connected to the position where the fuel cell device 3 is connected in the circuit L1 and the important load 22. Is connected to the circuit L1.
  • FIG. 5 is a schematic configuration diagram of a power supply system according to the third embodiment.
  • the power supply system 1 ⁇ / b> B of the third embodiment is configured such that the disconnection between the fuel cell device 3 and the circuit L ⁇ b> 1 and the connection between the fuel cell device 3 and the transformer 5 are interlocked. Is different from the power supply system 1 of the first embodiment described above. That is, the power supply system 1 ⁇ / b> B of the third embodiment includes a switch 15 instead of the breaker 12 and the breaker 14.
  • the switch 15 is a two-contact type switch provided on the circuit L2. That is, the control unit 6 performs switching control of the switch 15 to selectively connect the fuel cell device 3 to either the transformer 5 or the circuit L1 and disconnect the fuel cell device 3 from the other. If it demonstrates concretely, the control part 6 will control so that the grid connection breaker 11 may be thrown in, and the circuit breaker 13 may be disconnected, and the switch 15 may be connected to the circuit L1 side at the time of a grid connection operation. Further, when the control unit 6 detects that the power supply of the power system 10 is stopped, the control unit 6 controls to disconnect the grid interconnection breaker 11, turn on the breaker 13, and connect the switch 15 to the transformer 5 side. To do.
  • the same effect as that of the power supply system 1 of the first embodiment described above can be obtained by the power supply system 1B of the third embodiment described above. Furthermore, in the power supply system 1B of the third embodiment, by using the switch 15 instead of the breaker 12 and the breaker 14, the number of breakers can be further reduced, and the power supply system 1B can be downsized. In the first and second embodiments, it is necessary to take measures so that the circuit breaker 12 and the circuit breaker 14 are simultaneously turned ON due to a malfunction, and an accident does not occur in the circuit L1. Absent.
  • FIG. 6 is a schematic configuration diagram of a power supply system according to the fourth embodiment.
  • the power supply system 1 ⁇ / b> C of the fourth embodiment is different from the power supply system 1 of the first embodiment described above at the connection position of the transformer 5. That is, in the power supply system 1C of the fourth embodiment, the transformer 5 is provided between the fuel cell device 3 and the distribution board 2, and is electrically connected to the fuel cell device 3 via the circuit L2, The voltage line u and the neutral line o of the circuit L1 are electrically connected.
  • the transformer 5 mutually converts the single-phase three-wire power supplied to the circuit L2 and the single-phase two-wire power supplied to the voltage line u and the neutral line o of the circuit L1.
  • FIG. 7 is a schematic configuration diagram of a power supply system according to the fifth embodiment.
  • the power supply system 1 ⁇ / b> D of the fifth embodiment is different from the power supply system 1 ⁇ / b> B of the third embodiment described above at the connection position of the transformer 5. That is, in the power supply system 1D of the fifth embodiment, the transformer 5 is provided between the fuel cell device 3 and the distribution board 2, and is electrically connected to the fuel cell device 3 through the circuit L2, The voltage line u and the neutral line o of the circuit L1 are electrically connected. The transformer 5 mutually converts the single-phase three-wire power supplied to the circuit L2 and the single-phase two-wire power supplied to the voltage line u and the neutral line o of the circuit L1.
  • the important load 22 may be connected to the voltage line v and the neutral line o of the circuit L1.
  • the normal load 21a is connected to the voltage line u and the neutral line o of the circuit L1
  • the storage battery device 4 is electrically connected to the voltage line v and the neutral line o of the circuit L1 by the circuit L3.
  • the important load 22 only needs to be connected to the two electric circuits of the circuit L1 to which the storage battery device 4 is connected by the circuit L3, and the normal load 21 does not have to be connected to the two electric circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Fuel Cell (AREA)

Abstract

A power supply system (1) is provided with: a distribution board (2) that has a circuit (L1) to which single-phase three-wire system alternating current power is supplied from a power system (10); a fuel cell device (3) that outputs single-phase three-wire system alternating current power; a storage cell device (4) that outputs single-phase two-wire system alternating current power; and a transformer (5) that is provided between the fuel cell device (3) and the storage cell device (4), and converts the single-phase three-wire system alternating current power and the single-phase two-wire system alternating current power to each other. The circuit (L1) includes a voltage wire (u) and a neutral wire (o) to which an essential load (22) is connected, the storage cell device (4) supplies the single-phase two-wire system alternating current power to the voltage wire (u) and the neutral wire (o) and supplies the single-phase three-wire system alternating current power to the fuel cell device (3) via the transformer (5) during a power failure of the power system (10), and the fuel cell device (3) supplies the single-phase two-wire system alternating current power to the voltage wire (u) and the neutral wire (o) via the transformer (5) during the power failure of the power system (10).

Description

電源システムおよび電源システムの運転方法Power supply system and operation method of power supply system
 本発明は、電源システムおよび電源システムの運転方法に関する。 The present invention relates to a power supply system and a method for operating the power supply system.
 従来、単相3線式のシステムに接続された負荷に系統連系運転および自立運転によって電力を供給する電源システムがある(特許文献1参照)。この電源システムでは、直流電力をインバータによって単相2線式の交流電力に変換して出力するインバータ装置と、単相3線式の電力システムと、がトランスを介して接続されている。このような電源システムでは、自立運転を行う場合、電力系統を切り離し、インバータ装置の出力をトランスを介して単相3線式の交流電力に変換して負荷に供給する。 Conventionally, there is a power supply system that supplies power to a load connected to a single-phase three-wire system by grid interconnection operation and autonomous operation (see Patent Document 1). In this power supply system, an inverter device that converts DC power into single-phase two-wire AC power by an inverter and outputs it is connected to a single-phase three-wire power system via a transformer. In such a power supply system, when performing independent operation, the power system is disconnected, and the output of the inverter device is converted into single-phase three-wire AC power through a transformer and supplied to the load.
 また、燃料電池を備える電源システムが知られている。この燃料電池は、通常は単相3線式の交流システムに接続されるように構成されている。このため、上述の電源システムに燃料電池を設ける場合、通常は単相3線式の電路に接続される。 Also, a power supply system equipped with a fuel cell is known. This fuel cell is normally configured to be connected to a single-phase three-wire AC system. For this reason, when providing a fuel cell in the above-mentioned power supply system, it is usually connected to a single-phase three-wire electric circuit.
特開平9-98581号公報Japanese Patent Laid-Open No. 9-98581
 しかしながら、上述の電源システムでは、自立運転時において、インバータ装置は、重要負荷を動作させるのに要する電力をトランスを介して重要負荷に供給する。このため、電源システムは、その電力に相当するトランスを備える必要がある。この重要負荷を動作させるのに要する電力は数kW程度であるので、大型のトランスが必要になる。また、負荷の消費電力が0であるときであっても、トランスに電圧が発生している限りトランスの鉄損により電力が消費されてしまう。この鉄損は、トランスが大きいほど増加することが知られている。 However, in the above-described power supply system, the inverter device supplies power required for operating the important load to the important load via the transformer during the self-sustaining operation. For this reason, the power supply system needs to include a transformer corresponding to the electric power. Since the electric power required to operate this important load is about several kW, a large transformer is required. Even when the power consumption of the load is 0, the power is consumed due to the iron loss of the transformer as long as the voltage is generated in the transformer. It is known that this iron loss increases as the transformer becomes larger.
 そこで本発明は、このような問題点を解決するためになされたものであって、トランスを小型化し、電力の損失を抑制可能な電源システムおよび電源システムの運転方法を提供することを目的とする。 Therefore, the present invention has been made to solve such problems, and it is an object of the present invention to provide a power supply system capable of reducing the size of a transformer and suppressing power loss and a method for operating the power supply system. .
 上記課題を解決するため、本発明の一側面に係る電源システムは、電力系統との連系運転および自立運転によって電力を供給する電源システムであって、電力系統から単相3線式交流電力が供給される3本の電路を有する分電盤と、単相3線式交流電力に接続される燃料電池装置と、単相2線式交流電力を自立出力する蓄電池装置と、単相3線式交流電力と単相2線式交流電力とを互いに変換するトランスと、を備える。3本の電路は、電力系統の停電時においても電力の供給を必要とする重要負荷が接続されている2本の電路を含む。トランスは、燃料電池装置と蓄電池装置の自立出力端子との間、または、燃料電池装置と上述の2本の電路との間に設けられている。蓄電池装置は、電力系統の停電時において、上述の2本の電路に単相2線式交流電力を自立出力するとともに、トランスを介して燃料電池装置に単相3線式交流電力を自立出力する。燃料電池装置は、電力系統の停電時において、トランスを介して2本の電路に単相2線式交流電力を供給する。 In order to solve the above-described problem, a power supply system according to one aspect of the present invention is a power supply system that supplies power through interconnection operation and independent operation with a power system, and single-phase three-wire AC power is supplied from the power system. Distribution board having three electric circuits to be supplied, fuel cell device connected to single-phase three-wire AC power, storage battery device that independently outputs single-phase two-wire AC power, and single-phase three-wire A transformer that converts AC power and single-phase two-wire AC power into each other. The three electric circuits include two electric circuits to which an important load that requires power supply is connected even when a power failure occurs in the power system. The transformer is provided between the fuel cell device and the self-supporting output terminal of the storage battery device, or between the fuel cell device and the two electric circuits described above. The storage battery device autonomously outputs single-phase two-wire AC power to the above-described two electric circuits at the time of a power failure of the power system, and also independently outputs single-phase three-wire AC power to the fuel cell device via a transformer. . The fuel cell device supplies single-phase two-wire AC power to two electric circuits via a transformer when a power failure occurs in the power system.
 この電源システムにおいては、蓄電池装置は、電力系統の停電時において、重要負荷が接続されている2本の電路に単相2線式交流電力を供給するとともに、トランスを介して燃料電池装置に単相3線式交流電力を供給する。すなわち、蓄電池装置は、電力系統の停電時において、トランスを介することなく重要負荷に電力を供給し、トランスを介して燃料電池装置に電力を供給する。このため、トランスの大きさは、燃料電池装置の出力電力の大きさにより定められ、重要負荷に供給される電力の大きさとは無関係となる。したがって、トランスを介して重要負荷に電力を供給する構成と比較して、トランスを小型化できる。また、トランスを小型化することにより、トランスの鉄損を低減できるので、電力の損失の抑制が可能となる。さらに、トランスを小型化することにより、励磁電流が小さくなるので、蓄電池装置が自立運転を開始する時に、異常停止の可能性を低減することができる。 In this power supply system, the storage battery device supplies single-phase two-wire AC power to two electric circuits to which an important load is connected in the event of a power system power outage, and also to the fuel cell device via a transformer. Supply phase 3-wire AC power. That is, the storage battery device supplies power to an important load without going through a transformer and supplies power to the fuel cell device through the transformer when a power failure occurs in the power system. For this reason, the size of the transformer is determined by the magnitude of the output power of the fuel cell device, and is independent of the magnitude of the power supplied to the important load. Therefore, the transformer can be reduced in size as compared with the configuration in which power is supplied to the important load through the transformer. Further, by reducing the size of the transformer, the iron loss of the transformer can be reduced, so that it is possible to suppress power loss. Furthermore, since the exciting current is reduced by downsizing the transformer, the possibility of an abnormal stop can be reduced when the storage battery device starts a self-sustaining operation.
 3本の電路のうち重要負荷が接続されている2本の電路とは異なる組合せの2本の電路に、重要負荷以外の負荷が接続されてもよい。電力系統の停電時には、蓄電池装置および燃料電池装置の限られた電力を利用することから、重要負荷以外の通常負荷には電力を供給しないようにする必要がある。上述の電源システムにおいては、電力系統の停電時には、重要負荷が接続されている2本の電路に単相2線式交流電力が供給され、3本の電路のうち重要負荷が接続されていない電路には電力が供給されない。そこで、重要負荷が接続されている2本の電路とは異なる組合せの2本の電路に通常負荷が接続された構成とすることにより、通常負荷を3本の電路から解列するためのスイッチを設けることなく、電力系統の停電時において通常負荷に電力を供給しないようにすることができる。その結果、電源システムの小型化が可能となる。 A load other than the important load may be connected to two electric circuits in a combination different from the two electric circuits to which the important load is connected among the three electric circuits. At the time of a power failure in the power system, the limited power of the storage battery device and the fuel cell device is used, so that it is necessary not to supply power to normal loads other than important loads. In the power supply system described above, when a power failure occurs in the power system, single-phase two-wire AC power is supplied to the two electric circuits to which the important load is connected, and the electric circuit in which the important load is not connected among the three electric circuits. Is not supplied with power. Therefore, by adopting a configuration in which the normal load is connected to two electric circuits in a combination different from the two electric circuits to which the important load is connected, a switch for disconnecting the normal load from the three electric circuits is provided. Without providing, it is possible to prevent power from being supplied to the normal load at the time of power failure of the power system. As a result, the power supply system can be reduced in size.
 電源システムは、電力系統と3本の電路との間に設けられた第1スイッチと、燃料電池装置と3本の電路との間に設けられた第2スイッチと、蓄電池装置の自立出力端子と2本の電路との間に設けられた第3スイッチと、燃料電池装置とトランスとの間に設けられた第4スイッチと、連系運転と自立運転とを切り替えるための制御を行う制御部と、をさらに備えてもよい。この場合、制御部は、電力系統の停電を検出したことに応じて、第1スイッチおよび第2スイッチを解列するとともに、第3スイッチおよび第4スイッチを投入するよう制御する。この構成によれば、電力系統が停電した場合に、電源システムを電力系統から解列し、燃料電池装置を3本の電路から解列し、蓄電池装置を重要負荷が接続されている2本の電路に接続し、蓄電池装置と燃料電池装置とをトランスを介して接続することができる。このため、蓄電池装置は、自立運転時において、トランスを介することなく重要負荷に電力を供給し、トランスを介して燃料電池装置に電力を供給することができる。その結果、トランスを介して重要負荷に電力を供給する構成と比較して、トランスを小型化でき、電力の損失の抑制が可能となる。 The power supply system includes a first switch provided between the power system and the three electric circuits, a second switch provided between the fuel cell device and the three electric circuits, and a self-supporting output terminal of the storage battery device. A third switch provided between the two electric paths, a fourth switch provided between the fuel cell device and the transformer, and a control unit that performs control for switching between the grid operation and the independent operation; , May be further provided. In this case, the control unit controls to disconnect the first switch and the second switch and to turn on the third switch and the fourth switch in response to the detection of the power failure of the power system. According to this configuration, when a power failure occurs in the power system, the power supply system is disconnected from the power system, the fuel cell device is disconnected from the three electric paths, and the storage battery device is connected to the two important loads. The storage battery device and the fuel cell device can be connected to each other via a transformer. For this reason, the storage battery device can supply electric power to the important load without going through the transformer during the self-sustained operation, and can supply electric power to the fuel cell device through the transformer. As a result, the transformer can be downsized and power loss can be suppressed as compared with a configuration in which power is supplied to the important load via the transformer.
 電源システムは、電力系統と3本の電路との間に設けられた第1スイッチと、蓄電池装置の自立出力端子と2本の電路との間に設けられた第3スイッチと、燃料電池装置と3本の電路とが接続された状態、および、燃料電池装置とトランスとが接続された状態を切り替える切替器と、連系運転と自立運転とを切り替えるための制御を行う制御部と、をさらに備えてもよい。この場合、制御部は、電力系統の停電を検出したことに応じて、第1スイッチを解列し、第3スイッチを投入するように制御するとともに、燃料電池装置とトランスとを接続するように切替器を制御する。この構成によれば、切替器によって燃料電池装置と3本の電路またはトランスのいずれかとを選択的に接続することができ、電源システムの小型化が可能となる。 The power supply system includes a first switch provided between the power system and the three electric circuits, a third switch provided between the self-sustained output terminal of the storage battery device and the two electric circuits, a fuel cell device, A switch that switches between a state in which the three electric circuits are connected, a state in which the fuel cell device and the transformer are connected, and a control unit that performs control for switching between the interconnected operation and the independent operation. You may prepare. In this case, the control unit performs control so that the first switch is disconnected and the third switch is turned on in response to detection of a power failure of the power system, and the fuel cell device and the transformer are connected. Control the switch. According to this configuration, the fuel cell device and any one of the three electric circuits or the transformer can be selectively connected by the switch, and the power supply system can be downsized.
 燃料電池装置は、2本の電路と蓄電池装置の自立出力とが接続されている位置と、2本の電路と重要負荷とが接続されている位置との間において、3本の電路に接続されてもよい。この構成においても、トランスを介して重要負荷に電力を供給する構成と比較して、トランスを小型化でき、電力の損失の抑制が可能となる。また、この構成においては、燃料電池装置の発電電力から重要負荷による消費電力を差し引いた電力が正である限り、燃料電池装置が逆潮流防止装置を具備している場合であっても、燃料電池装置が安定して発電を継続することができる。 The fuel cell device is connected to the three electric circuits between a position where the two electric circuits and the self-supporting output of the storage battery device are connected, and a position where the two electric circuits and the important load are connected. May be. Also in this configuration, the transformer can be downsized and power loss can be suppressed as compared with a configuration in which power is supplied to an important load via the transformer. Further, in this configuration, as long as the power obtained by subtracting the power consumed by the important load from the generated power of the fuel cell device is positive, even if the fuel cell device includes the reverse power flow prevention device, the fuel cell The device can continue power generation stably.
 本発明の別の側面に係る電源システムの運転方法は、電力系統の停電時においても電力の供給を必要とする重要負荷が接続されている2本の電路を含み、電力系統から単相3線式交流電力が供給される3本の電路と、3本の電路に単相3線式交流電力を供給する燃料電池装置と、2本の電路に単相2線式交流電力を自立出力する蓄電池装置と、燃料電池装置および蓄電池装置の間または燃料電池装置および2本の電路の間に設けられたトランスと、を備える電源システムにおける運転方法である。この電源システムの運転方法は、電力系統の停電を検出するステップと、電力系統の停電を検出した後、電力系統と3本の電路との間に設けられた第1スイッチ、および、燃料電池装置と3本の電路との間に設けられた第2スイッチを解列するステップと、第1スイッチおよび第2スイッチを解列した後、蓄電池装置と2本の電路との間に設けられた第3スイッチおよび燃料電池装置とトランスとの間に設けられた第4スイッチを投入するステップと、第3スイッチおよび第4スイッチを投入した後、蓄電池装置の自立運転を開始するステップと、を備える。 A method for operating a power supply system according to another aspect of the present invention includes two electric circuits to which an important load that requires power supply is connected even when a power failure occurs in the power system. Three electric circuits to which AC power is supplied, a fuel cell device that supplies single-phase three-wire AC power to the three electric circuits, and a storage battery that independently outputs single-phase two-wire AC power to the two electric circuits And a transformer provided between the fuel cell device and the storage battery device or between the fuel cell device and two electric circuits. The method of operating the power supply system includes a step of detecting a power outage of the power system, a first switch provided between the power system and the three electric circuits after detecting the power outage of the power system, and a fuel cell device A step of disconnecting the second switch provided between the storage battery device and the three electric circuits; and a step of disconnecting the first switch and the second switch, and then a step provided between the storage battery device and the two electric circuits. A step of turning on a third switch and a fourth switch provided between the fuel cell device and the transformer, and a step of starting a self-sustaining operation of the storage battery device after turning on the third switch and the fourth switch.
 この電源システムの運転方法においては、電力系統の停電を検出することに応じて、電源システムを電力系統から解列し、燃料電池装置を3本の電路から解列し、蓄電池装置を重要負荷が接続されている2本の電路に接続し、蓄電池装置と燃料電池装置とをトランスを介して接続する。その後、蓄電池装置は自立運転を開始する。このため、蓄電池装置は、トランスを介することなく重要負荷に電力を供給し、トランスを介して燃料電池装置に電力を供給することができる。その結果、トランスを介して重要負荷に電力を供給する構成と比較して、トランスを小型化でき、電力の損失の抑制が可能となる。 In this operation method of the power supply system, in response to detecting a power failure in the power system, the power supply system is disconnected from the power system, the fuel cell device is disconnected from the three electric circuits, and the storage battery device is loaded with an important load. The storage battery device and the fuel cell device are connected to each other via two transformers connected to each other. Thereafter, the storage battery device starts a self-sustaining operation. For this reason, the storage battery device can supply electric power to an important load without going through a transformer, and can supply electric power to the fuel cell device through the transformer. As a result, the transformer can be downsized and power loss can be suppressed as compared with a configuration in which power is supplied to the important load via the transformer.
 本発明によれば、トランスを小型化でき、電力の損失を抑制できる。 According to the present invention, the transformer can be miniaturized and power loss can be suppressed.
第1実施形態に係る電源システムの概略構成図である。1 is a schematic configuration diagram of a power supply system according to a first embodiment. 図1の電源システムの運転方法を示すフローチャートである。It is a flowchart which shows the operating method of the power supply system of FIG. 比較例の電源システムの概略構成図である。It is a schematic block diagram of the power supply system of a comparative example. 第2実施形態に係る電源システムの概略構成図である。It is a schematic block diagram of the power supply system which concerns on 2nd Embodiment. 第3実施形態に係る電源システムの概略構成図である。It is a schematic block diagram of the power supply system which concerns on 3rd Embodiment. 第4実施形態に係る電源システムの概略構成図である。It is a schematic block diagram of the power supply system which concerns on 4th Embodiment. 第5実施形態に係る電源システムの概略構成図である。It is a schematic block diagram of the power supply system which concerns on 5th Embodiment.
 以下、添付図面を参照して本発明の実施形態を詳細に説明する。なお、図面の説明において同一又は相当要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.
 [第1実施形態]
 図1は、第1実施形態に係る電源システムの概略構成図である。図1に示されるように、電源システム1は、商用電源を有する電力系統10との連系により宅内の電力供給対象である機器(通常負荷21および重要負荷22)に電力を供給するシステムである。この電源システム1は、分電盤2と、燃料電池装置3と、蓄電池装置4と、トランス5と、制御部6(制御手段)と、を備えている。
[First Embodiment]
FIG. 1 is a schematic configuration diagram of a power supply system according to the first embodiment. As shown in FIG. 1, the power supply system 1 is a system that supplies power to devices (normal load 21 and important load 22) that are power supply targets in the home through interconnection with a power system 10 having a commercial power supply. . The power supply system 1 includes a distribution board 2, a fuel cell device 3, a storage battery device 4, a transformer 5, and a control unit 6 (control means).
 分電盤2は、回路L1を有している。回路L1は、電圧線u、電圧線vおよび中性線oの3本の電路からなる単相3線式の電路である。この回路L1には、通常負荷21および重要負荷22が接続されている。通常負荷21および重要負荷22には、回路L1を介して電力が供給される。 The distribution board 2 has a circuit L1. The circuit L1 is a single-phase three-wire electric circuit composed of three electric circuits of a voltage line u, a voltage line v, and a neutral line o. A normal load 21 and an important load 22 are connected to the circuit L1. Electric power is supplied to the normal load 21 and the important load 22 via the circuit L1.
 通常負荷21は、電力系統10の停電時に動作させる必要がない機器であって、例えば、ドライヤーなどである。通常負荷21には、100Vで動作する通常負荷21aと、200Vで動作する通常負荷21bとが含まれている。通常負荷21aは、回路L1の電圧線vと中性線oとに接続され、通常負荷21bは、回路L1の電圧線uと電圧線vとに接続されている。重要負荷22は、電力系統10の停電時においても動作させる必要がある機器であって、例えば、冷蔵庫、テレビ、照明などである。重要負荷22は、100Vで動作し、回路L1の電圧線uと中性線oとに接続されている。 The normal load 21 is a device that does not need to be operated at the time of a power failure of the power system 10, and is, for example, a dryer. The normal load 21 includes a normal load 21a that operates at 100V and a normal load 21b that operates at 200V. The normal load 21a is connected to the voltage line v and the neutral line o of the circuit L1, and the normal load 21b is connected to the voltage line u and the voltage line v of the circuit L1. The important load 22 is a device that needs to be operated even in the event of a power failure of the power system 10, and is, for example, a refrigerator, a television, lighting, or the like. The important load 22 operates at 100 V and is connected to the voltage line u and the neutral line o of the circuit L1.
 燃料電池装置3は、発電した直流電力を単相3線式の交流電力に変換して、単相3線式の交流電力(200V)を出力する。燃料電池装置3の出力は、代表的には1kW以下であって、例えば700W程度である。また、燃料電池装置3は、単相3線式の回路L2によって、回路L1に電気的に接続されている。また、燃料電池装置3は、燃料電池セルおよびパワーコンディショナを有している。 The fuel cell device 3 converts the generated DC power into single-phase three-wire AC power and outputs single-phase three-wire AC power (200 V). The output of the fuel cell device 3 is typically 1 kW or less, for example, about 700 W. The fuel cell device 3 is electrically connected to the circuit L1 by a single-phase three-wire circuit L2. The fuel cell device 3 includes a fuel cell and a power conditioner.
 燃料電池セルは、発電反応により直流電力を出力する。パワーコンディショナは、燃料電池セルから出力された直流電力を単相3線式の交流電力に変換して、単相3線式の交流電力を回路L2に出力する。また、パワーコンディショナは、回路L2の電圧が所定値以下になった等の異常を検知すると、燃料電池装置3を所定の時間アイドリングモードとする。そして、パワーコンディショナは、所定の時間経過後、燃料電池装置3をスタートアップする。このとき、パワーコンディショナーは、回路L2に再び異常が見出された場合は、燃料電池装置3を再度アイドリングモードとする。 Fuel cell outputs DC power by power generation reaction. The power conditioner converts the DC power output from the fuel battery cell into single-phase three-wire AC power, and outputs the single-phase three-wire AC power to the circuit L2. In addition, when the power conditioner detects an abnormality such as the voltage of the circuit L2 becoming a predetermined value or less, the power conditioner sets the fuel cell device 3 to the idling mode for a predetermined time. Then, the power conditioner starts up the fuel cell device 3 after a predetermined time has elapsed. At this time, when an abnormality is found again in the circuit L2, the power conditioner sets the fuel cell device 3 to the idling mode again.
 蓄電池装置4は、燃料電池装置3、太陽電池または電力系統10からの電力を充電しておき、充電した電力を単相2線式の交流電力(100V)として自立出力端子から回路L3に出力する。蓄電池装置4は、自立運転時において燃料電池装置3を動作させるとともに、重要負荷22に電力を供給する。このため、蓄電池装置4の出力は、例えば2kW程度と、燃料電池装置3の出力よりも大きい必要がある。また、蓄電池装置4の自立出力端子は、単相2線式の回路L3によって、回路L1の電圧線uおよび中性線oに電気的に接続されるとともに、蓄電池装置4の連系出力端子は、単相3線式の回路L4によって、回路L1に電気的に接続されている。 The storage battery device 4 is charged with power from the fuel cell device 3, the solar battery, or the power system 10, and outputs the charged power as a single-phase two-wire AC power (100V) from a self-supporting output terminal to the circuit L3. . The storage battery device 4 operates the fuel cell device 3 during the self-sustaining operation and supplies power to the important load 22. For this reason, the output of the storage battery device 4 needs to be larger than the output of the fuel cell device 3, for example, about 2 kW. The self-supporting output terminal of the storage battery device 4 is electrically connected to the voltage line u and the neutral line o of the circuit L1 by a single-phase two-wire circuit L3, and the interconnection output terminal of the storage battery device 4 is The circuit L1 is electrically connected by a single-phase three-wire circuit L4.
 また、蓄電池装置4は、蓄電池およびパワーコンディショナを有している。蓄電池は、燃料電池装置3、太陽電池または電力系統10からの電力を蓄える。パワーコンディショナは、系統連系運転時において、回路L4から入力した単相3線式の交流電力を直流電力に変換して、蓄電池に出力する。また、パワーコンディショナは、自立運転時において、蓄電池から出力された直流電力を単相2線式の交流電力に変換して、単相2線式の交流電力を回路L3に出力する。このように、蓄電池装置4は、回路L3によって、回路L1のうち重要負荷22が接続されている2本の電路に接続されており、自立運転時に重要負荷22に電力を供給する。 Moreover, the storage battery device 4 has a storage battery and a power conditioner. The storage battery stores power from the fuel cell device 3, the solar battery, or the power system 10. The power conditioner converts single-phase three-wire AC power input from the circuit L4 into DC power and outputs it to the storage battery during grid connection operation. Further, the power conditioner converts the DC power output from the storage battery into a single-phase two-wire AC power and outputs the single-phase two-wire AC power to the circuit L3 during the independent operation. Thus, the storage battery device 4 is connected to the two electric circuits to which the important load 22 is connected in the circuit L1 by the circuit L3, and supplies power to the important load 22 during the self-sustaining operation.
 トランス5は、燃料電池装置3と蓄電池装置4との間に設けられ、回路L2に供給される単相3線式の電力と、回路L3に供給される単相2線式の電力と、を互いに変換する。トランス5は、回路L2を介して燃料電池装置3に電気的に接続されており、回路L3を介して蓄電池装置4に電気的に接続されている。 The transformer 5 is provided between the fuel cell device 3 and the storage battery device 4, and has a single-phase three-wire power supplied to the circuit L2 and a single-phase two-wire power supplied to the circuit L3. Convert each other. The transformer 5 is electrically connected to the fuel cell device 3 via the circuit L2, and is electrically connected to the storage battery device 4 via the circuit L3.
 制御部6は、電力系統10の電力供給状態に応じて、系統連系ブレーカ11(第1スイッチ)、ブレーカ12(第2スイッチ)、ブレーカ13(第3スイッチ)およびブレーカ14(第4スイッチ)の開閉を制御する。系統連系ブレーカ11は、回路L1上に設けられている。ブレーカ12は、回路L2上に設けられている。ブレーカ13は、回路L3上に設けられている。ブレーカ14は、トランス5と回路L2との間に設けられている。 The control unit 6 includes a grid interconnection breaker 11 (first switch), a breaker 12 (second switch), a breaker 13 (third switch), and a breaker 14 (fourth switch) according to the power supply state of the power system 10. Controls the opening and closing of. The grid interconnection breaker 11 is provided on the circuit L1. The breaker 12 is provided on the circuit L2. The breaker 13 is provided on the circuit L3. The breaker 14 is provided between the transformer 5 and the circuit L2.
 制御部6は、系統連系ブレーカ11を開閉制御することによって、電力系統10と電源システム1とを電気的に解列または接続する。また、制御部6は、ブレーカ12を開閉制御することによって、燃料電池装置3と回路L1とを電気的に解列または接続する。また、制御部6は、ブレーカ13を開閉制御することによって、蓄電池装置4と回路L1とを電気的に解列または接続する。また、制御部6は、ブレーカ14を開閉制御することによって、トランス5と回路L2とを電気的に解列または接続する。 The controller 6 electrically disconnects or connects the power system 10 and the power supply system 1 by opening and closing the grid interconnection breaker 11. The control unit 6 electrically disconnects or connects the fuel cell device 3 and the circuit L1 by controlling the breaker 12 to open and close. Further, the control unit 6 electrically disconnects or connects the storage battery device 4 and the circuit L1 by controlling the breaker 13 to open and close. In addition, the control unit 6 electrically disconnects or connects the transformer 5 and the circuit L2 by controlling the breaker 14 to open and close.
 制御部6は、連系運転時において、系統連系ブレーカ11およびブレーカ12を投入し、ブレーカ13およびブレーカ14を解列するように制御する。また、制御部6は、電力系統10の電力供給が停止したことを検出すると、系統連系ブレーカ11およびブレーカ12を解列し、ブレーカ13およびブレーカ14を投入するように制御する。 The control unit 6 performs control so that the grid interconnection breaker 11 and the breaker 12 are turned on and the breaker 13 and the breaker 14 are disconnected at the time of interconnection operation. Further, when the control unit 6 detects that the power supply of the power system 10 is stopped, the control unit 6 controls to disconnect the grid interconnection breaker 11 and the breaker 12 and to turn on the breaker 13 and the breaker 14.
 なお、回路L1において、回路L3が接続されている位置は、回路L2が接続されている位置よりも通常負荷21および重要負荷22が接続されている位置から離れている。また、回路L1において、回路L2が接続されている位置は、回路L4が接続されている位置よりも通常負荷21および重要負荷22が接続されている位置から離れている。すなわち、回路L1において、負荷側から回路L4、回路L2、回路L3の順で接続されており、燃料電池装置3は、回路L1において蓄電池装置4が接続されている位置と重要負荷22が接続されている位置との間において、回路L1に接続されている。 In the circuit L1, the position where the circuit L3 is connected is farther from the position where the normal load 21 and the important load 22 are connected than the position where the circuit L2 is connected. In the circuit L1, the position where the circuit L2 is connected is farther from the position where the normal load 21 and the important load 22 are connected than the position where the circuit L4 is connected. That is, in the circuit L1, the circuit L4, the circuit L2, and the circuit L3 are connected in this order from the load side, and the fuel cell device 3 is connected to the position where the storage battery device 4 is connected in the circuit L1 and the important load 22. Is connected to the circuit L1.
 次に、電源システム1の電力系統10との連系運転について説明する。電力系統10との連系運転時においては、系統連系ブレーカ11およびブレーカ12は投入されており、ブレーカ13およびブレーカ14は解列されている。このとき、電力系統10から回路L1に単相3線式交流電力が供給される。そして、燃料電池装置3は、回路L2を介して電力系統10から電力を供給され、回路L2を介して回路L1に単相3線式交流電力を供給する。このため、電力系統10および燃料電池装置3によって、回路L1に接続されている通常負荷21a、通常負荷21bおよび重要負荷22に、それぞれ電力が供給される。また、蓄電池装置4は、回路L4を介して電力系統10からの電力を充電している。 Next, the interconnection operation with the power system 10 of the power supply system 1 will be described. During the interconnection operation with the electric power system 10, the grid interconnection breaker 11 and the breaker 12 are turned on, and the breaker 13 and the breaker 14 are disconnected. At this time, single-phase three-wire AC power is supplied from the power system 10 to the circuit L1. The fuel cell device 3 is supplied with power from the power system 10 through the circuit L2, and supplies single-phase three-wire AC power to the circuit L1 through the circuit L2. For this reason, electric power is supplied to the normal load 21a, the normal load 21b, and the important load 22 connected to the circuit L1 by the power system 10 and the fuel cell device 3, respectively. In addition, the storage battery device 4 is charged with power from the power system 10 via the circuit L4.
 続いて、電源システム1の自立運転について説明する。図2は、電力系統10の停電時における電源システム1の運転方法を示すフローチャートである。まず、制御部6は、電力系統10の電力供給が停止したことを検出する(ステップS01)。次に、制御部6は、系統連系ブレーカ11を解列するように制御する(ステップS02)。これにより、電源システム1は、電力系統10から切り離される。そして、制御部6は、ブレーカ12を解列するように制御する(ステップS03)。なお、系統連系ブレーカ11およびブレーカ12の解列順は任意であるので、ステップS03の後にステップS02を行ってもよく、ステップS02およびステップS03を同時に行ってもよい。 Subsequently, the independent operation of the power supply system 1 will be described. FIG. 2 is a flowchart illustrating an operation method of the power supply system 1 at the time of a power failure of the power system 10. First, the control unit 6 detects that the power supply of the power system 10 has been stopped (step S01). Next, the control unit 6 performs control so that the grid interconnection breaker 11 is disconnected (step S02). As a result, the power supply system 1 is disconnected from the power system 10. Then, the control unit 6 controls the breaker 12 to be disconnected (Step S03). Since the order of disconnection of grid interconnection breaker 11 and breaker 12 is arbitrary, step S02 may be performed after step S03, or step S02 and step S03 may be performed simultaneously.
 続いて、制御部6は、ブレーカ13およびブレーカ14を投入するように制御する(ステップS04)。このステップS01~ステップS04において、燃料電池装置3は、回路L2の電圧が所定値以下になったことを検知し、アイドリングモードとなっている。 Subsequently, the control unit 6 performs control so that the breaker 13 and the breaker 14 are turned on (step S04). In step S01 to step S04, the fuel cell device 3 detects that the voltage of the circuit L2 has become a predetermined value or less, and is in the idling mode.
 そして、蓄電池装置4は自立運転を開始する(ステップS05)。蓄電池装置4は、自立運転時において、回路L3に単相2線式交流電力を出力し、回路L1の電圧線uと中性線oとに単相2線式交流電力を供給する。また、回路L3に出力された単相2線式交流電力は、トランス5によって単相3線式交流電力に変換され、変換された単相3線式交流電力は回路L2を介して燃料電池装置3に供給される。 And the storage battery device 4 starts a self-sustaining operation (step S05). The storage battery device 4 outputs the single-phase two-wire AC power to the circuit L3 and supplies the single-phase two-wire AC power to the voltage line u and the neutral line o of the circuit L1 during the self-sustained operation. The single-phase two-wire AC power output to the circuit L3 is converted into single-phase three-wire AC power by the transformer 5, and the converted single-phase three-wire AC power is supplied to the fuel cell device via the circuit L2. 3 is supplied.
 これにより、燃料電池装置3は、回路L2の電圧が所定値以上になったことを検知し、動作を開始する。そして、燃料電池装置3は、単相3線式交流電力を回路L2に出力する。この回路L2に出力された単相3線式交流電力は、トランス5によって単相2線式交流電力に変換され、変換された単相2線式交流電力は回路L3を介して回路L1の電圧線uと中性線oとに供給される。 Thereby, the fuel cell device 3 detects that the voltage of the circuit L2 has become equal to or higher than a predetermined value, and starts operation. Then, the fuel cell device 3 outputs single-phase three-wire AC power to the circuit L2. The single-phase three-wire AC power output to the circuit L2 is converted into single-phase two-wire AC power by the transformer 5, and the converted single-phase two-wire AC power is supplied to the voltage of the circuit L1 via the circuit L3. Supplied to line u and neutral line o.
 このように、自立運転時には、蓄電池装置4および燃料電池装置3から回路L1の電圧線uと中性線oとに電力が供給される。重要負荷22は、回路L1の電圧線uと中性線oとに接続されているので、重要負荷22に電力が供給される。一方、通常負荷21aは、回路L1の電圧線vと中性線oとに接続され、通常負荷21bは、回路L1の電圧線uと電圧線vとに接続されているので、通常負荷21aおよび通常負荷21bには電力が供給されない。 Thus, during the self-sustaining operation, power is supplied from the storage battery device 4 and the fuel cell device 3 to the voltage line u and the neutral line o of the circuit L1. Since the important load 22 is connected to the voltage line u and the neutral line o of the circuit L1, power is supplied to the important load 22. On the other hand, the normal load 21a is connected to the voltage line v and the neutral line o of the circuit L1, and the normal load 21b is connected to the voltage line u and the voltage line v of the circuit L1. Electric power is not supplied to the normal load 21b.
 次に、図1および図3を用いて、電源システム1の作用効果を説明する。図3は、比較例の電源システム100の概略構成図である。図3に示されるように、電源システム100は、電力系統10の停電時に燃料電池装置3および蓄電池装置4から回路L1に電力を供給する構成、並びに、通常負荷21および重要負荷22を回路L1に接続する構成において、上述した第1実施形態の電源システム1と相違している。すなわち、電源システム100は、トランス5に代えてトランス50を備え、ブレーカ12、ブレーカ13およびブレーカ14に代えてブレーカ31およびブレーカ32を備えている。 Next, the effects of the power supply system 1 will be described with reference to FIGS. 1 and 3. FIG. 3 is a schematic configuration diagram of a power supply system 100 of a comparative example. As shown in FIG. 3, the power supply system 100 is configured to supply power from the fuel cell device 3 and the storage battery device 4 to the circuit L1 at the time of a power failure of the power system 10, and the normal load 21 and the important load 22 to the circuit L1. The connection configuration is different from the power supply system 1 of the first embodiment described above. That is, the power supply system 100 includes a transformer 50 instead of the transformer 5, and includes a breaker 31 and a breaker 32 instead of the breaker 12, the breaker 13, and the breaker 14.
 また、電源システム100において、通常負荷21には、100Vで動作する通常負荷21aおよび通常負荷21cと、200Vで動作する通常負荷21bとが含まれている。通常負荷21aは、回路L1の電圧線vと中性線oとに接続され、通常負荷21bは、回路L1の電圧線uと電圧線vとに接続され、通常負荷21cは、回路L1の電圧線uと中性線oとに接続されている。重要負荷22には、100Vで動作する重要負荷22aおよび重要負荷22bが含まれている。重要負荷22aは、回路L1の電圧線uと中性線oとに接続され、重要負荷22bは、回路L1の電圧線vと中性線oとに接続されている。 In the power supply system 100, the normal load 21 includes a normal load 21a and a normal load 21c that operate at 100V, and a normal load 21b that operates at 200V. The normal load 21a is connected to the voltage line v and the neutral line o of the circuit L1, the normal load 21b is connected to the voltage line u and the voltage line v of the circuit L1, and the normal load 21c is connected to the voltage of the circuit L1. It is connected to line u and neutral line o. The important load 22 includes an important load 22a operating at 100V and an important load 22b. The important load 22a is connected to the voltage line u and the neutral line o of the circuit L1, and the important load 22b is connected to the voltage line v and the neutral line o of the circuit L1.
 トランス50は、蓄電池装置4と回路L1との間に設けられ、回路L3を介して蓄電池装置4に電気的に接続されており、単相3線式の回路L5を介して回路L1に電気的に接続されている。このトランス50は、回路L3に供給される単相2線式の電力を単相3線式交流電力に変換して、変換した単相3線式交流電力を回路L5に出力する。 The transformer 50 is provided between the storage battery device 4 and the circuit L1, is electrically connected to the storage battery device 4 via the circuit L3, and is electrically connected to the circuit L1 via the single-phase three-wire circuit L5. It is connected to the. The transformer 50 converts single-phase two-wire power supplied to the circuit L3 into single-phase three-wire AC power, and outputs the converted single-phase three-wire AC power to the circuit L5.
 制御部6は、電力系統10の電力供給状態に応じて、系統連系ブレーカ11、ブレーカ31およびブレーカ32(ブレーカ32a、ブレーカ32b、ブレーカ32c)の開閉を制御する。ブレーカ31は、回路L5上に設けられている。ブレーカ32aは、通常負荷21aと回路L1との間に設けられている。ブレーカ32bは、通常負荷21bと回路L1との間に設けられている。ブレーカ32cは、通常負荷21cと回路L1との間に設けられている。 The control unit 6 controls the opening and closing of the grid interconnection breaker 11, the breaker 31, and the breaker 32 (breaker 32a, breaker 32b, breaker 32c) according to the power supply state of the power system 10. The breaker 31 is provided on the circuit L5. The breaker 32a is provided between the normal load 21a and the circuit L1. The breaker 32b is provided between the normal load 21b and the circuit L1. The breaker 32c is provided between the normal load 21c and the circuit L1.
 制御部6は、連系運転時において、系統連系ブレーカ11およびブレーカ32を投入し、ブレーカ31を解列するように制御する。また、制御部6は、電力系統10の電力供給が停止したことを検出すると、系統連系ブレーカ11およびブレーカ32を解列し、ブレーカ31を投入するように制御する。 The control unit 6 controls the circuit breaker 11 and the breaker 32 to be turned on and the breaker 31 to be disconnected at the time of the interconnection operation. Further, when the control unit 6 detects that the power supply of the power system 10 is stopped, the control unit 6 performs control so that the system interconnection breaker 11 and the breaker 32 are disconnected and the breaker 31 is turned on.
 このような電源システム100では、蓄電池装置4は、電力系統10の停電時において、トランス50を介して重要負荷22が接続されている回路L1に単相3線式交流電力を供給するとともに、トランス50を介して燃料電池装置3に単相3線式交流電力を供給する。このため、トランス50の大きさは、燃料電池装置3の出力電力および重要負荷22に供給する必要がある電力の大きさに依存する。したがって、トランス50は、2kW程度の大きな電力に耐えうる大型のトランスを用いる必要がある。 In such a power supply system 100, the storage battery device 4 supplies single-phase three-wire AC power to the circuit L <b> 1 to which the important load 22 is connected via the transformer 50 during a power failure of the power system 10. A single-phase three-wire AC power is supplied to the fuel cell device 3 through 50. Therefore, the size of the transformer 50 depends on the output power of the fuel cell device 3 and the amount of power that needs to be supplied to the important load 22. Therefore, it is necessary to use a large transformer that can withstand a large electric power of about 2 kW.
 一方、電源システム1では、蓄電池装置4は、電力系統10の停電時において、重要負荷22が接続されている電圧線uおよび中性線oに単相2線式交流電力を供給するとともに、トランス5を介して燃料電池装置3に単相3線式交流電力を供給する。すなわち、蓄電池装置4は、トランス5を介することなく重要負荷22に電力を供給し、トランス5を介して燃料電池装置3に電力を供給する。このため、トランス5の大きさは、燃料電池装置3の出力電力の大きさにより定められ、重要負荷22に供給される電力の大きさとは無関係となる。したがって、電源システム100のトランス50と比較して、トランス5を小型化できる。また、トランスでは、二次側に電力を供給していない時であっても、トランスに電圧が印加されている限り、鉄損により電力が消費されるが、トランス50よりもトランス5を小型化することにより、トランス50の鉄損よりもトランス5の鉄損を低減できる。その結果、電源システム100と比較して、電源システム1における電力の損失の抑制が可能となる。 On the other hand, in the power supply system 1, the storage battery device 4 supplies the single-phase two-wire AC power to the voltage line u and the neutral line o to which the important load 22 is connected in the event of a power failure of the power system 10, and the transformer A single-phase three-wire AC power is supplied to the fuel cell device 3 via 5. That is, the storage battery device 4 supplies power to the important load 22 without passing through the transformer 5, and supplies power to the fuel cell device 3 through the transformer 5. For this reason, the size of the transformer 5 is determined by the size of the output power of the fuel cell device 3 and is independent of the size of the power supplied to the important load 22. Therefore, compared to the transformer 50 of the power supply system 100, the transformer 5 can be downsized. Also, in the transformer, even when no power is supplied to the secondary side, as long as voltage is applied to the transformer, power is consumed due to iron loss, but the transformer 5 is smaller than the transformer 50. By doing so, the iron loss of the transformer 5 can be reduced more than the iron loss of the transformer 50. As a result, compared to the power supply system 100, it is possible to suppress power loss in the power supply system 1.
 また、電力系統10の停電時には、蓄電池装置4および燃料電池装置3の限られた電力を利用することから、重要負荷22以外の通常負荷21には電力を供給しないようにする必要がある。電源システム100では、重要負荷22は、電圧線uおよび中性線o、または、電圧線vおよび中性線oに接続され、通常負荷21は、電圧線uおよび中性線o、電圧線vおよび中性線o、または、電圧線uおよび電圧線vに接続されている。そして、電源システム100では、電力系統10の停電時において重要負荷22に電力を供給するために、回路L1のすべての電路に電力を供給している。このため、電源システム100においては、電力系統10の停電時において、通常負荷21を回路L1から解列するためのブレーカ32が必要になる。さらに、ブレーカ32としては、いずれも対応する通常負荷21を遮断する必要があるため、大型のものを使用する必要がある。 Moreover, since the limited power of the storage battery device 4 and the fuel cell device 3 is used at the time of a power failure of the power system 10, it is necessary not to supply power to the normal load 21 other than the important load 22. In the power supply system 100, the important load 22 is connected to the voltage line u and the neutral line o, or the voltage line v and the neutral line o, and the normal load 21 is connected to the voltage line u, the neutral line o, and the voltage line v. And the neutral line o or the voltage line u and the voltage line v. And in the power supply system 100, in order to supply electric power to the important load 22 at the time of the power failure of the electric power grid | system 10, electric power is supplied to all the electric circuits of the circuit L1. For this reason, in the power supply system 100, the breaker 32 for disconnecting the normal load 21 from the circuit L1 at the time of a power failure of the electric power system 10 is required. Furthermore, since it is necessary to interrupt the corresponding normal load 21 as the breaker 32, it is necessary to use a large one.
 一方、電源システム1では、回路L1のうち重要負荷22が接続されている電圧線uおよび中性線oとは異なる組合せの2本の電路(電圧線vおよび中性線o、または、電圧線uおよび電圧線v)に、通常負荷21が接続されている。また、電源システム1では、電力系統10の停電時には、電圧線uおよび中性線oにのみ単相2線式交流電力が供給される。このため、通常負荷21を回路L1から解列するためのブレーカを設けることなく、電力系統10の停電時において通常負荷21に電力が供給されないようにすることができる。その結果、電源システム1の小型化が可能となる。 On the other hand, in the power supply system 1, two electric circuits (voltage line v and neutral line o or voltage line having a combination different from the voltage line u and the neutral line o to which the important load 22 is connected in the circuit L 1. A normal load 21 is connected to u and the voltage line v). Further, in the power supply system 1, at the time of a power failure of the power system 10, single-phase two-wire AC power is supplied only to the voltage line u and the neutral line o. For this reason, without providing a breaker for disconnecting the normal load 21 from the circuit L1, it is possible to prevent power from being supplied to the normal load 21 at the time of a power failure of the power system 10. As a result, the power supply system 1 can be downsized.
 また、電源システム100では、重要負荷22が電圧線uおよび中性線o、または、電圧線vおよび中性線oに接続されているので、重要負荷22aと重要負荷22bとが各相にバランスよく配置されていない場合には不平衡が生じ、トランス50の中性線に大きな電流が流れるおそれがある。一方、電源システム1では、重要負荷22は電圧線uおよび中性線oにのみ接続されているので、大きな不平衡が生じることはなく、トランス5の中性線に大きな電流が流れる懸念がない。 In the power supply system 100, since the important load 22 is connected to the voltage line u and the neutral line o, or the voltage line v and the neutral line o, the important load 22a and the important load 22b are balanced in each phase. If it is not arranged well, an imbalance occurs and a large current may flow through the neutral line of the transformer 50. On the other hand, in the power supply system 1, since the important load 22 is connected only to the voltage line u and the neutral line o, there is no great unbalance, and there is no concern that a large current flows through the neutral line of the transformer 5. .
 [第2実施形態]
 図4は、第2実施形態に係る電源システムの概略構成図である。図4に示されるように、第2実施形態の電源システム1Aは、回路L1における燃料電池装置3および蓄電池装置4の接続位置において、上述した第1実施形態の電源システム1と相違している。すなわち、第2実施形態の電源システム1Aでは、回路L1において、回路L2が接続されている位置は、回路L3が接続されている位置よりも通常負荷21および重要負荷22が接続されている位置から離れている。また、回路L1において、回路L3が接続されている位置は、回路L4が接続されている位置よりも通常負荷21および重要負荷22が接続されている位置から離れている。すなわち、回路L1において、負荷側から回路L4、回路L3、回路L2の順で接続されており、蓄電池装置4は、回路L1において燃料電池装置3が接続されている位置と重要負荷22が接続されている位置との間において、回路L1に接続されている。
[Second Embodiment]
FIG. 4 is a schematic configuration diagram of a power supply system according to the second embodiment. As shown in FIG. 4, the power supply system 1A of the second embodiment is different from the power supply system 1 of the first embodiment described above in the connection position of the fuel cell device 3 and the storage battery device 4 in the circuit L1. That is, in the power supply system 1A of the second embodiment, in the circuit L1, the position where the circuit L2 is connected is from the position where the normal load 21 and the important load 22 are connected rather than the position where the circuit L3 is connected. is seperated. In the circuit L1, the position where the circuit L3 is connected is farther from the position where the normal load 21 and the important load 22 are connected than the position where the circuit L4 is connected. That is, in the circuit L1, the circuit L4, the circuit L3, and the circuit L2 are connected in this order from the load side, and the storage battery device 4 is connected to the position where the fuel cell device 3 is connected in the circuit L1 and the important load 22. Is connected to the circuit L1.
 以上の第2実施形態の電源システム1Aによっても、上述した第1実施形態の電源システム1と同様の効果が奏される。 The same effect as that of the power supply system 1 of the first embodiment described above can be obtained by the power supply system 1A of the second embodiment described above.
 [第3実施形態]
 図5は、第3実施形態に係る電源システムの概略構成図である。図5に示されるように、第3実施形態の電源システム1Bは、燃料電池装置3と回路L1との解列と、燃料電池装置3とトランス5との接続とが連動するように構成されている点において、上述した第1実施形態の電源システム1と相違している。すなわち、第3実施形態の電源システム1Bは、ブレーカ12およびブレーカ14に代えて、切替器15を備えている。
[Third Embodiment]
FIG. 5 is a schematic configuration diagram of a power supply system according to the third embodiment. As shown in FIG. 5, the power supply system 1 </ b> B of the third embodiment is configured such that the disconnection between the fuel cell device 3 and the circuit L <b> 1 and the connection between the fuel cell device 3 and the transformer 5 are interlocked. Is different from the power supply system 1 of the first embodiment described above. That is, the power supply system 1 </ b> B of the third embodiment includes a switch 15 instead of the breaker 12 and the breaker 14.
 切替器15は、回路L2上に設けられた2接点型の切替器である。すなわち、制御部6は、切替器15を切替制御することによって、燃料電池装置3をトランス5または回路L1のいずれか一方に選択的に接続するとともに、燃料電池装置3を他方から解列する。具体的に説明すると、制御部6は、連系運転時において、系統連系ブレーカ11を投入し、ブレーカ13を解列し、切替器15を回路L1側に接続するように制御する。また、制御部6は、電力系統10の電力供給が停止したことを検出すると、系統連系ブレーカ11を解列し、ブレーカ13を投入し、切替器15をトランス5側に接続するように制御する。 The switch 15 is a two-contact type switch provided on the circuit L2. That is, the control unit 6 performs switching control of the switch 15 to selectively connect the fuel cell device 3 to either the transformer 5 or the circuit L1 and disconnect the fuel cell device 3 from the other. If it demonstrates concretely, the control part 6 will control so that the grid connection breaker 11 may be thrown in, and the circuit breaker 13 may be disconnected, and the switch 15 may be connected to the circuit L1 side at the time of a grid connection operation. Further, when the control unit 6 detects that the power supply of the power system 10 is stopped, the control unit 6 controls to disconnect the grid interconnection breaker 11, turn on the breaker 13, and connect the switch 15 to the transformer 5 side. To do.
 以上の第3実施形態の電源システム1Bによっても、上述した第1実施形態の電源システム1と同様の効果が奏される。さらに、第3実施形態の電源システム1Bでは、ブレーカ12およびブレーカ14に代えて切替器15を用いることにより、ブレーカの数をさらに減らすことができ、電源システム1Bの小型化が可能となる。第1および第2実施形態においては、誤動作によって、ブレーカ12とブレーカ14とが同時にONとなり、回路L1において事故が発生しないよう、対策が必要であるが、第3実施形態においては、その懸念がない。 The same effect as that of the power supply system 1 of the first embodiment described above can be obtained by the power supply system 1B of the third embodiment described above. Furthermore, in the power supply system 1B of the third embodiment, by using the switch 15 instead of the breaker 12 and the breaker 14, the number of breakers can be further reduced, and the power supply system 1B can be downsized. In the first and second embodiments, it is necessary to take measures so that the circuit breaker 12 and the circuit breaker 14 are simultaneously turned ON due to a malfunction, and an accident does not occur in the circuit L1. Absent.
 [第4実施形態]
 図6は、第4実施形態に係る電源システムの概略構成図である。図6に示されるように、第4実施形態の電源システム1Cは、トランス5の接続位置において、上述した第1実施形態の電源システム1と相違している。すなわち、第4実施形態の電源システム1Cでは、トランス5は、燃料電池装置3と分電盤2との間に設けられ、回路L2を介して燃料電池装置3に電気的に接続されるとともに、回路L1の電圧線uおよび中性線oに電気的に接続されている。トランス5は、回路L2に供給される単相3線式の電力と、回路L1の電圧線uおよび中性線oに供給される単相2線式の電力と、を互いに変換する。
[Fourth Embodiment]
FIG. 6 is a schematic configuration diagram of a power supply system according to the fourth embodiment. As shown in FIG. 6, the power supply system 1 </ b> C of the fourth embodiment is different from the power supply system 1 of the first embodiment described above at the connection position of the transformer 5. That is, in the power supply system 1C of the fourth embodiment, the transformer 5 is provided between the fuel cell device 3 and the distribution board 2, and is electrically connected to the fuel cell device 3 via the circuit L2, The voltage line u and the neutral line o of the circuit L1 are electrically connected. The transformer 5 mutually converts the single-phase three-wire power supplied to the circuit L2 and the single-phase two-wire power supplied to the voltage line u and the neutral line o of the circuit L1.
 以上の第4実施形態の電源システム1Cによっても、上述した第1実施形態の電源システム1と同様の効果が奏される。 The same effect as that of the power supply system 1 of the first embodiment described above can be obtained by the power supply system 1C of the fourth embodiment described above.
 [第5実施形態]
 図7は、第5実施形態に係る電源システムの概略構成図である。図7に示されるように、第5実施形態の電源システム1Dは、トランス5の接続位置において、上述した第3実施形態の電源システム1Bと相違している。すなわち、第5実施形態の電源システム1Dでは、トランス5は、燃料電池装置3と分電盤2との間に設けられ、回路L2を介して燃料電池装置3に電気的に接続されるとともに、回路L1の電圧線uおよび中性線oに電気的に接続されている。トランス5は、回路L2に供給される単相3線式の電力と、回路L1の電圧線uおよび中性線oに供給される単相2線式の電力と、を互いに変換する。
[Fifth Embodiment]
FIG. 7 is a schematic configuration diagram of a power supply system according to the fifth embodiment. As shown in FIG. 7, the power supply system 1 </ b> D of the fifth embodiment is different from the power supply system 1 </ b> B of the third embodiment described above at the connection position of the transformer 5. That is, in the power supply system 1D of the fifth embodiment, the transformer 5 is provided between the fuel cell device 3 and the distribution board 2, and is electrically connected to the fuel cell device 3 through the circuit L2, The voltage line u and the neutral line o of the circuit L1 are electrically connected. The transformer 5 mutually converts the single-phase three-wire power supplied to the circuit L2 and the single-phase two-wire power supplied to the voltage line u and the neutral line o of the circuit L1.
 以上の第5実施形態の電源システム1Dによっても、上述した第3実施形態の電源システム1Bと同様の効果が奏される。 Also by the power supply system 1D of the fifth embodiment described above, the same effects as those of the power supply system 1B of the third embodiment described above are exhibited.
 なお、本発明に係る電源システムおよび電源システムの運転方法は上記第1~第5実施形態に記載したものに限定されない。例えば、重要負荷22は、回路L1の電圧線vと中性線oとに接続されていてもよい。この場合、通常負荷21aは、回路L1の電圧線uと中性線oとに接続され、蓄電池装置4は、回路L3によって、回路L1の電圧線vおよび中性線oに電気的に接続される。すなわち、蓄電池装置4が回路L3によって接続される回路L1の2本の電路に、重要負荷22が接続されていればよく、通常負荷21がその2本の電路に接続されていなければよい。 Note that the power supply system and the operation method of the power supply system according to the present invention are not limited to those described in the first to fifth embodiments. For example, the important load 22 may be connected to the voltage line v and the neutral line o of the circuit L1. In this case, the normal load 21a is connected to the voltage line u and the neutral line o of the circuit L1, and the storage battery device 4 is electrically connected to the voltage line v and the neutral line o of the circuit L1 by the circuit L3. The That is, the important load 22 only needs to be connected to the two electric circuits of the circuit L1 to which the storage battery device 4 is connected by the circuit L3, and the normal load 21 does not have to be connected to the two electric circuits.
 1,1A,1B,1C,1D…電源システム、2…分電盤、3…燃料電池装置、4…蓄電池装置、5…トランス、6…制御部(制御手段)、10…電力系統、11…系統連系ブレーカ(第1スイッチ)、12…ブレーカ(第2スイッチ)、13…ブレーカ(第3スイッチ)、14…ブレーカ(第4スイッチ)、15…切替器、21,21a,21b…通常負荷、22…重要負荷、o…中性線、u…電圧線、v…電圧線。 DESCRIPTION OF SYMBOLS 1,1A, 1B, 1C, 1D ... Power supply system, 2 ... Distribution board, 3 ... Fuel cell device, 4 ... Storage battery device, 5 ... Transformer, 6 ... Control part (control means), 10 ... Electric power system, 11 ... Grid connection breaker (first switch), 12 ... Breaker (second switch), 13 ... Breaker (third switch), 14 ... Breaker (fourth switch), 15 ... Switch, 21, 21a, 21b ... Normal load 22 ... important load, o ... neutral wire, u ... voltage wire, v ... voltage wire.

Claims (6)

  1.  電力系統との連系運転および自立運転によって電力を供給する電源システムであって、
     前記電力系統から単相3線式交流電力が供給される3本の電路を有する分電盤と、
     単相3線式交流電力に接続される燃料電池装置と、
     単相2線式交流電力を自立出力する蓄電池装置と、
     単相3線式交流電力と単相2線式交流電力とを互いに変換するトランスと、
    を備え、
     前記3本の電路は、前記電力系統の停電時においても電力の供給を必要とする重要負荷が接続されている2本の電路を含み、
     前記トランスは、前記燃料電池装置と前記蓄電池装置の自立出力端子との間、または、前記燃料電池装置と前記2本の電路との間に設けられ、
     前記蓄電池装置は、電力系統の停電時において、前記2本の電路に単相2線式交流電力を自立出力するとともに、前記トランスを介して前記燃料電池装置に単相3線式交流電力を自立出力し、
     前記燃料電池装置は、電力系統の停電時において、前記トランスを介して前記2本の電路に単相2線式交流電力を供給することを特徴とする電源システム。
    A power supply system that supplies electric power through interconnected operation with a power system and independent operation,
    A distribution board having three electric circuits to which single-phase three-wire AC power is supplied from the power system;
    A fuel cell device connected to single-phase three-wire AC power;
    A storage battery device that independently outputs single-phase two-wire AC power;
    A transformer that converts single-phase three-wire AC power and single-phase two-wire AC power;
    With
    The three electric circuits include two electric circuits to which an important load that requires power supply is connected even in the event of a power failure of the power system,
    The transformer is provided between the fuel cell device and a self-supporting output terminal of the storage battery device, or between the fuel cell device and the two electric circuits,
    The storage battery device autonomously outputs single-phase two-wire AC power to the two electric circuits during a power outage of the power system, and single-phase three-wire AC power to the fuel cell device via the transformer. Output,
    The fuel cell device supplies single-phase two-wire AC power to the two electric circuits via the transformer during a power failure in an electric power system.
  2.  前記3本の電路のうち前記2本の電路とは異なる組合せの2本の電路に、前記重要負荷以外の負荷が接続されていることを特徴とする請求項1に記載の電源システム。 The power supply system according to claim 1, wherein a load other than the important load is connected to two electric circuits of a combination different from the two electric circuits among the three electric circuits.
  3.  前記電力系統と前記3本の電路との間に設けられた第1スイッチと、
     前記燃料電池装置と前記3本の電路との間に設けられた第2スイッチと、
     前記蓄電池装置の前記自立出力端子と前記2本の電路との間に設けられた第3スイッチと、
     前記燃料電池装置と前記トランスとの間に設けられた第4スイッチと、
     連系運転と自立運転とを切り替えるための制御を行う制御部と、
    をさらに備え、
     前記制御部は、前記電力系統の停電を検出したことに応じて、前記第1スイッチおよび前記第2スイッチを解列するとともに、前記第3スイッチおよび前記第4スイッチを投入するように制御することを特徴とする請求項1または請求項2に記載の電源システム。
    A first switch provided between the power system and the three electric circuits;
    A second switch provided between the fuel cell device and the three electric circuits;
    A third switch provided between the self-supporting output terminal of the storage battery device and the two electric circuits;
    A fourth switch provided between the fuel cell device and the transformer;
    A control unit that performs control for switching between interconnection operation and independent operation;
    Further comprising
    The control unit controls to disconnect the first switch and the second switch and to turn on the third switch and the fourth switch in response to detecting a power failure of the power system. The power supply system according to claim 1, wherein:
  4.  前記電力系統と前記3本の電路との間に設けられた第1スイッチと、
     前記蓄電池装置の前記自立出力端子と前記2本の電路との間に設けられた第3スイッチと、
     前記燃料電池装置と前記3本の電路とが接続された状態、および、前記燃料電池装置と前記トランスとが接続された状態を切り替える切替器と、
     連系運転と自立運転とを切り替えるための制御を行う制御部と、
    をさらに備え、
     前記制御部は、前記電力系統の停電を検出したことに応じて、前記第1スイッチを解列し、前記第3スイッチを投入するように制御するとともに、前記燃料電池装置と前記トランスとを接続するように前記切替器を制御することを特徴とする請求項1または請求項2に記載の電源システム。
    A first switch provided between the power system and the three electric circuits;
    A third switch provided between the self-supporting output terminal of the storage battery device and the two electric circuits;
    A switch that switches between a state in which the fuel cell device and the three electric circuits are connected, and a state in which the fuel cell device and the transformer are connected;
    A control unit that performs control for switching between interconnection operation and independent operation;
    Further comprising
    The control unit performs control so that the first switch is disconnected and the third switch is turned on in response to detection of a power failure of the power system, and connects the fuel cell device and the transformer. The power supply system according to claim 1, wherein the switch is controlled to do so.
  5.  前記燃料電池装置は、前記2本の電路と前記蓄電池装置の自立出力とが接続されている位置と、前記2本の電路と前記重要負荷とが接続されている位置との間において、前記3本の電路に接続されていることを特徴とする請求項1~請求項4のいずれか一項に記載の電源システム。 In the fuel cell device, between the position where the two electric circuits and the self-sustained output of the storage battery device are connected and the position where the two electric circuits and the important load are connected, the 3 The power supply system according to any one of claims 1 to 4, wherein the power supply system is connected to an electric circuit of a book.
  6.  電力系統の停電時においても電力の供給を必要とする重要負荷が接続されている2本の電路を含み、前記電力系統から単相3線式交流電力が供給される3本の電路と、前記3本の電路に単相3線式交流電力を供給する燃料電池装置と、前記2本の電路に単相2線式交流電力を自立出力する蓄電池装置と、前記燃料電池装置および前記蓄電池装置の間または前記燃料電池装置および前記2本の電路の間に設けられたトランスと、を備える電源システムにおける運転方法であって、
     前記電力系統の停電を検出するステップと、
     前記電力系統の停電を検出した後、前記電力系統と前記3本の電路との間に設けられた第1スイッチ、および、前記燃料電池装置と前記3本の電路との間に設けられた第2スイッチを解列するステップと、
     前記第1スイッチおよび前記第2スイッチを解列した後、前記蓄電池装置と前記2本の電路との間に設けられた第3スイッチおよび前記燃料電池装置と前記トランスとの間に設けられた第4スイッチを投入するステップと、
     前記第3スイッチおよび前記第4スイッチを投入した後、前記蓄電池装置の自立運転を開始するステップと、
    を備えることを特徴とする電源システムの運転方法。
    Including two electric circuits to which an important load that needs to be supplied even during a power failure of the electric power system is connected, and three electric circuits to which single-phase three-wire AC power is supplied from the electric power system, A fuel cell device that supplies single-phase three-wire AC power to three electric circuits, a storage battery device that independently outputs single-phase two-wire AC power to the two electric circuits, the fuel cell device, and the storage battery device Or a transformer provided between the fuel cell device and the two electric paths, and an operation method in a power supply system comprising:
    Detecting a power outage of the power system;
    After detecting a power failure in the power system, a first switch provided between the power system and the three electric circuits, and a first switch provided between the fuel cell device and the three electric circuits. Disconnecting the two switches;
    After disconnecting the first switch and the second switch, a third switch provided between the storage battery device and the two electric paths, and a third switch provided between the fuel cell device and the transformer. 4 switches on,
    Starting the self-sustaining operation of the storage battery device after turning on the third switch and the fourth switch;
    A method for operating a power supply system comprising:
PCT/JP2013/065690 2012-06-11 2013-06-06 Power supply system and method for operating power supply system WO2013187305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012131875A JP5983997B2 (en) 2012-06-11 2012-06-11 Power supply system and operation method of power supply system
JP2012-131875 2012-06-11

Publications (1)

Publication Number Publication Date
WO2013187305A1 true WO2013187305A1 (en) 2013-12-19

Family

ID=49758130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065690 WO2013187305A1 (en) 2012-06-11 2013-06-06 Power supply system and method for operating power supply system

Country Status (3)

Country Link
JP (1) JP5983997B2 (en)
TW (1) TW201406006A (en)
WO (1) WO2013187305A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309922A4 (en) * 2015-06-12 2018-05-30 Panasonic Intellectual Property Management Co., Ltd. Power storage system, power storage device, and operation method for power storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376997B2 (en) * 2015-03-13 2018-08-22 シャープ株式会社 Power system and control method of power system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215206A (en) * 1996-01-31 1997-08-15 Matsushita Electric Works Ltd Photovoltatic power generation system
JPH09271141A (en) * 1996-03-29 1997-10-14 Mitsubishi Electric Corp Distributed power supply system
JP2005184895A (en) * 2003-12-16 2005-07-07 Toshiba Corp Power supply system to single phase load having single phase private power generator
WO2007097314A1 (en) * 2006-02-23 2007-08-30 Nippon Oil Corporation Emergency power supply system using fuel cell
JP2008022650A (en) * 2006-07-13 2008-01-31 Univ Of Tsukuba Self-sustained operation assist device and power supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886136B2 (en) * 2012-05-29 2016-03-16 京セラ株式会社 Power control system, control device, and control method
WO2013179599A1 (en) * 2012-06-01 2013-12-05 パナソニック株式会社 Power-generation system, and method for controlling same, and storage-cell system, and method for operating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215206A (en) * 1996-01-31 1997-08-15 Matsushita Electric Works Ltd Photovoltatic power generation system
JPH09271141A (en) * 1996-03-29 1997-10-14 Mitsubishi Electric Corp Distributed power supply system
JP2005184895A (en) * 2003-12-16 2005-07-07 Toshiba Corp Power supply system to single phase load having single phase private power generator
WO2007097314A1 (en) * 2006-02-23 2007-08-30 Nippon Oil Corporation Emergency power supply system using fuel cell
JP2008022650A (en) * 2006-07-13 2008-01-31 Univ Of Tsukuba Self-sustained operation assist device and power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309922A4 (en) * 2015-06-12 2018-05-30 Panasonic Intellectual Property Management Co., Ltd. Power storage system, power storage device, and operation method for power storage device

Also Published As

Publication number Publication date
JP2013258804A (en) 2013-12-26
JP5983997B2 (en) 2016-09-06
TW201406006A (en) 2014-02-01

Similar Documents

Publication Publication Date Title
JP6686200B2 (en) Power control device, power control device control method, power control system, and power control system control method
JP5335117B1 (en) Power control device
WO2015198447A1 (en) Uninterruptible power supply
JP5410837B2 (en) Transformer load switching device
US20180034316A1 (en) Device for commanding/controlling a source changeover switch
JP2019205309A (en) Power supply system
JP2020127357A (en) Charge/discharge device and power supply switching system
JP5983997B2 (en) Power supply system and operation method of power supply system
JP6889013B2 (en) Power converters and distributed power systems
US12074473B2 (en) Changeover device, retrofit kit and method for supplying electrical power to a load
KR102374263B1 (en) System for supplying power
JP6372452B2 (en) Uninterruptible power supply and control method thereof
JP7066051B2 (en) Power supply device and power supply system
JP5707184B2 (en) Power distribution system
JP5885598B2 (en) Power control device
JP5955621B2 (en) Distribution board
JP2022500981A (en) Power supply device and power supply system
JP6188871B2 (en) Distributed power system
JP6272971B2 (en) Power switching device and house
JP6402602B2 (en) Inverter
JP2021536219A (en) Power supply system
JP6452022B2 (en) Control device and fuel cell system
JP2011041427A (en) Power unit for uninterruptible power work
JP2002118971A (en) Distributed power supply control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804861

Country of ref document: EP

Kind code of ref document: A1