WO2013187085A1 - 固体撮像装置の製造方法及び固体撮像装置 - Google Patents

固体撮像装置の製造方法及び固体撮像装置 Download PDF

Info

Publication number
WO2013187085A1
WO2013187085A1 PCT/JP2013/054391 JP2013054391W WO2013187085A1 WO 2013187085 A1 WO2013187085 A1 WO 2013187085A1 JP 2013054391 W JP2013054391 W JP 2013054391W WO 2013187085 A1 WO2013187085 A1 WO 2013187085A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
main surface
imaging device
electrode
solid
Prior art date
Application number
PCT/JP2013/054391
Other languages
English (en)
French (fr)
Inventor
康人 米田
涼都 瀧澤
真吾 石原
久則 鈴木
村松 雅治
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to EP13804695.8A priority Critical patent/EP2863436B1/en
Priority to KR1020147029929A priority patent/KR102135982B1/ko
Priority to CN201380031682.6A priority patent/CN104364906B/zh
Priority to US14/406,851 priority patent/US9754995B2/en
Publication of WO2013187085A1 publication Critical patent/WO2013187085A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers

Definitions

  • the present invention relates to a method for manufacturing a solid-state imaging device and a solid-state imaging device.
  • Patent Document 1 discloses a back-illuminated solid-state imaging device using a CMOS image sensor (hereinafter referred to as “sensor”).
  • This solid-state imaging device includes a support substrate having a pair of opposing main surfaces and a sensor provided on one main surface of the support substrate.
  • the support substrate has a through electrode extending in the thickness direction and penetrating the support substrate.
  • One end of the through electrode is electrically connected to the sensor electrode.
  • the other end of the through electrode is exposed on the other main surface of the support substrate.
  • the solid-state imaging device mounted on the IC chip for signal processing the other end of the through electrode is electrically connected to the electrode of the IC chip via the bump electrode.
  • the solid-state imaging device manufacturing method includes a step of bonding a sensor to a support substrate, a step of forming a resist pattern on the other main surface of the support substrate, and etching through the support substrate from the other main surface side. A step of forming a hole, and a step of filling the metal into the through hole to form a through electrode.
  • the back-illuminated solid-state imaging device In the back-illuminated solid-state imaging device, light and various energy beams (for example, ultraviolet rays, electron beams, radiation, charged particle beams, etc.) are incident on the sensor from the back surface. Need to be increased. However, the mechanical strength of the sensor decreases with the reduction in thickness, and the handling of the sensor becomes difficult.
  • energy beams for example, ultraviolet rays, electron beams, radiation, charged particle beams, etc.
  • the light receiving portion of the sensor is partially thinned and the outer edge portion surrounding the light receiving portion is thickened.
  • the area of the light receiving portion relative to the area of the sensor becomes relatively small due to the presence of the outer edge portion, the light receiving efficiency per unit area of the sensor is lowered.
  • the sensor is joined to the support substrate without using it alone.
  • the sensor and the IC chip are electrically connected using the through electrode. This eliminates the need for electrical connection between the sensor and the IC chip by wire bonding, thereby reducing the size.
  • An object of the present invention is to provide a method of manufacturing a solid-state imaging device and a solid-state imaging device that can be easily manufactured.
  • a method of manufacturing a solid-state imaging device includes a first main surface on which energy rays are incident, and a second main surface that is opposed to the first main surface and has at least one electrode disposed thereon. And a first step of preparing an imaging device including a photoelectric conversion unit that photoelectrically converts incident energy rays to generate a signal charge, and at least one through-hole extending in the thickness direction is provided and opposed to each other. The second step of preparing the support substrate having the third and fourth main surfaces to be opposed to the second main surface and the third main surface and exposing one electrode from one through hole. A third step of aligning the image pickup device and the support substrate and joining the image pickup device and the support substrate, and a fourth step of embedding the conductive member in the through hole after the third step. .
  • the conductive member is embedded in the through hole of the support substrate joined to the imaging element. Therefore, an electrical connection process is easy when manufacturing a solid-state imaging device. Therefore, the solid-state imaging device can be easily manufactured, and the yield can be improved.
  • the conductive member may be embedded in the through hole by disposing a conductive first conductor in the through hole and melting the first conductor.
  • the conductive member since the solid first conductor is melted in the state of being disposed in the through hole, the conductive member is placed outside the through hole as compared with the case where the molten conductive material is poured into the through hole. There is almost no risk of protruding.
  • the first conductor may be a solder ball. In this case, the first conductor can be easily disposed in the through hole.
  • the first conductor having conductivity is disposed in the through hole, and after melting the first conductor, the second conductor having conductivity is disposed in the through hole.
  • the conductive member may be embedded in the through hole by melting the second conductor.
  • the conductive member is formed in the through holes as compared with the case where the molten conductive material is poured into the through holes. There is almost no risk of protruding outside.
  • bubbles may remain in the conductive member.
  • the second conductor having conductivity is disposed in the through hole, and the second conductor When the conductor is melted, the conductive member is embedded in the through hole in two portions, so that the possibility that bubbles remain in the conductive member is extremely reduced.
  • Both the first and second conductors may be solder balls.
  • the first and second conductors can be easily disposed in the through hole.
  • a plating film may be formed on the electrode after the third step and before the fourth step. In this case, the conductive member is more reliably connected to the electrode via the plating film.
  • the through hole may be enlarged in diameter from the third main surface to the fourth main surface. In this case, it becomes easy to embed the conductive member in the through hole in the third step.
  • a metal film may be formed on the inner wall surface of the through hole.
  • a plating film can be formed also on the inner wall surface of the through hole.
  • the electrode and the second main surface are covered with a planarizing film, and at least the surface of the electrode is provided after the third step and before the fourth step.
  • a part of the planarization film may be removed so that a part is exposed. In this case, since the surface of the image sensor is flattened by the flattening film, the image sensor and the support substrate can be more reliably joined.
  • a solid-state imaging device includes a first main surface on which energy rays are incident, a second main surface opposite to the first main surface and having at least one electrode disposed thereon, An imaging device including a photoelectric conversion unit that photoelectrically converts incident energy rays to generate signal charges, and a third and fourth main surfaces that are provided with through holes extending in the thickness direction and that face each other.
  • a solid-state imaging device is manufactured by embedding a conductive member in a through-hole of a support substrate bonded to an imaging element and electrically connecting the conductive member and the electrode. Therefore, an electrical connection process is easy when manufacturing a solid-state imaging device. Therefore, the solid-state imaging device can be easily manufactured, and the yield can be improved.
  • a plating film may be formed on the electrode.
  • the conductive member is more reliably connected to the electrode via the plating film.
  • the through hole may be enlarged in diameter from the third main surface to the fourth main surface. In this case, it becomes easy to embed the conductive member in the through hole when the solid-state imaging device is manufactured.
  • a metal film may be formed on the inner wall surface of the through hole.
  • a plating film can be formed also on the inner wall surface of the through hole.
  • a planarization film covering the second main surface may be further provided, and at least a part of the surface of the electrode may be exposed from the planarization film.
  • the image sensor and the support substrate can be more reliably joined.
  • FIG. 1A is a top view of the electronic component according to the present embodiment
  • FIG. 1B is a cross-sectional view taken along line BB in FIG. 1A
  • FIG. 2 is a cross-sectional view of the electronic component according to the present embodiment, and is an enlarged view of FIG. 3 is a cross-sectional view taken along line III-III in FIG. 4A
  • FIG. 4A is a diagram illustrating a state where the solid-state imaging device according to the present embodiment is viewed from the support substrate side
  • FIG. 4B is a diagram illustrating a state in which the conductive member is removed in FIG. is there.
  • FIG. 5 is a diagram illustrating one process for manufacturing the solid-state imaging device according to the present embodiment.
  • FIG. 6 is a diagram illustrating a process for manufacturing the solid-state imaging device according to the present embodiment.
  • 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a diagram illustrating a process for manufacturing the solid-state imaging device according to the present embodiment.
  • FIG. 9 is a diagram illustrating one process for manufacturing the solid-state imaging device according to the present embodiment.
  • FIG. 10 is a diagram illustrating one process for manufacturing the solid-state imaging device according to the present embodiment.
  • FIG. 11 is a diagram illustrating one process for manufacturing the solid-state imaging device according to the present embodiment.
  • FIG. 12 is a diagram illustrating one process for manufacturing the solid-state imaging device according to the present embodiment.
  • FIG. 13 is a diagram illustrating one process for manufacturing the solid-state imaging device according to the present embodiment.
  • the solid-state imaging device 1 includes a CCD-type back-illuminated imaging element 10, a support substrate 20 that supports the imaging element 10, and a plurality of conductive members 30.
  • the imaging element 10 includes an element body 11, an AR coat 12, a wiring 13, and a plurality of electrodes 14.
  • the element body 11 includes a p-type semiconductor layer 11a, an n-type semiconductor layer 11b, a p + type semiconductor layer 11c, an insulating layer 11d, an electrode film 11e, and an interlayer insulating layer 11f.
  • the p-type semiconductor layer 11a has a protruding portion that is thicker than other portions.
  • the n-type semiconductor layer 11b is formed with a predetermined thickness on the protrusion.
  • a PN junction is formed at the interface between the p-type semiconductor layer 11a and the n-type semiconductor layer 11b.
  • the vicinity of the interface functions as a photoelectric conversion unit, and various energy beams (for example, light, ultraviolet rays, electron beams, radiation, or charged particle beams) incident on the interface are photoelectrically converted to generate signal charges. .
  • the p + type semiconductor layer 11c does not cover the main surface of the n type semiconductor layer 11b, but is disposed so as to cover the side surface of the n type semiconductor layer 11b and the surface of the p type semiconductor layer 11a.
  • the insulating layer 11d is disposed so as to cover the main surface of the n-type semiconductor layer 11b and the surface of the p + -type semiconductor layer 11c.
  • the insulating layer 11d is made of, for example, SiO 2 .
  • the thickness of the portion of the insulating layer 11d that covers the main surface of the n-type semiconductor layer 11b is smaller than the thickness of the portion of the insulating layer 11d that covers the surface of the p + -type semiconductor layer 11c.
  • the electrode film 11e is a belt-like film extending so as to cover the thin portion of the insulating layer 11d and the vicinity thereof.
  • a plurality of electrode films 11 e are arranged in the width direction of the image sensor 10. Adjacent electrode films 11e are insulated from each other by an insulating film, and end portions overlap each other when viewed from the thickness direction of the image sensor 10.
  • the electrode film 11e is made of, for example, poly-Si.
  • the interlayer insulating layer 11f is disposed so as to cover the electrode film 11e and the insulating layer 11d.
  • the interlayer insulating layer 11f is constituted by, for example, a borophosphosilicate glass layer (BPSG).
  • the AR coat 12 has a function of preventing reflection of light within a predetermined wavelength band.
  • the AR coat 12 is made of, for example, SiO 2 or SiN.
  • the AR coat 12 is formed on the surface of the p-type semiconductor layer 11a.
  • the wiring 13 and the plurality of electrodes 14 are patterned on the surface of the interlayer insulating layer 11f (the main surface S2 of the photoelectric conversion unit 11).
  • the wiring 13 and the electrode 14 are made of, for example, Al.
  • the thickness of the wiring 13 and the electrode 14 is set to about 0.1 ⁇ m to 1 ⁇ m, for example.
  • a plurality of electrodes 14 (in this embodiment, five electrodes 14) are arranged in a line on both sides of the light detection region A1 when viewed from the opposing direction of the main surfaces S1 and S2. Yes.
  • a region where the p-type semiconductor layer 11a, the n-type semiconductor layer 11b, the insulating layer 11d, and the electrode film 11e are stacked functions as the light detection region A1.
  • This region functions as the wiring region A2.
  • the surface on the AR coat 12 side of the image sensor 10 functions as a main surface S1 on which energy rays are incident.
  • the surface on the interlayer insulating layer 11 f side in the image sensor 10 functions as a main surface S ⁇ b> 2 that faces the support substrate 20.
  • the planarizing film 16 is provided on the main surface S2 of the image sensor 10 as shown in FIG.
  • the planarizing film 16 is disposed so as to cover the interlayer insulating layer 11 f, the wiring 13, and a part of the electrode 14. Therefore, the surface of the interlayer insulating layer 11 f that is uneven due to the presence of the wiring 13 and the electrode 14 is planarized by the planarizing film 16.
  • the planarization film 16 is made of, for example, TEOS (tetraethoxysilane).
  • the support substrate 20 is bonded to the imaging element 10 via the planarization film 16.
  • the support substrate 20 includes a substrate 21 and an insulating film 22 that covers the entire surface of the substrate 21.
  • the substrate 21 is made of Si, for example.
  • the insulating film 22 is configured by an oxide film formed by, for example, thermal oxidation.
  • the support substrate 20 is provided with the same number of through holes 23 as the electrodes 14 extending in the thickness direction.
  • eight through holes 23 are formed.
  • four through holes 23 are arranged on both sides of the light detection region A1 when viewed from the opposing direction of the main surfaces S1 and S2.
  • a part of the electrode 14 is exposed from each through hole 23.
  • each through hole 23 is also covered with an insulating film 22. That is, the support substrate 20 is provided with a through hole 23 extending in the thickness direction and having an inner wall surface covered with an insulating film.
  • each through-hole 23 increases in diameter from one main surface S3 to the other main surface S4 of the support substrate. That is, the inner wall surface of each through hole 23 is tapered.
  • the openings on the main surface S3 side and the main surface S4 side in the through hole 23 both have a square shape.
  • a metal film 24 serving as a base of a plating film 25 described later is provided.
  • the metal film 24 is made of, for example, Al.
  • a plating film 25 is formed on a portion of the electrode 14 that is not covered with the planarization film 16 and on the surface of the metal film 24.
  • the plating film 15 is made of, for example, Au or Ni.
  • the conductive member 30 is a conductive metal and is made of, for example, solder. As shown in FIGS. 1, 2, and 4 (a), the conductive member 30 is embedded in each through hole 23. That is, each conductive member 30 is disposed in each through hole 23. Each conductive member 30 has a one-to-one correspondence with each electrode 14 and each plating film 15, and is electrically connected to each electrode 14 and each plating film 15.
  • the IC chip 2 includes a chip body 2a, a plurality of lead terminals 2b, an electrode 2c, a plating film 2d, and an insulating film 2e, as shown in FIGS.
  • the chip body 2a performs signal processing of electrical signals output from the image sensor 10, operation control of the image sensor 10, and the like.
  • the plurality of lead terminals 2b extend from the chip body 2a, and are electrically connected to electrodes of the circuit board when the IC chip 2 is mounted on a circuit board (not shown) or the like.
  • the electrode 2c is patterned on the chip body 2a.
  • the electrode 2c is made of, for example, Al.
  • the plating film 2d is disposed on a part of the main surface of the electrode 2c.
  • the plating film 2d is made of, for example, Au or Ni.
  • the insulating film 2e is formed so as to cover the chip body 2a and the electrode 2c while the main surface of the plating film 2d is exposed. Insulating film 2e, for example composed of such SiO 2.
  • a resin material 40 is filled between the solid-state imaging device 1 and the IC chip 2.
  • the resin material for example, an epoxy resin can be used.
  • the precursor 10 a of the image sensor 10 is manufactured.
  • a so-called epi-wafer is first prepared in which a p-type semiconductor layer 11a is epitaxially grown on the surface of a p + semiconductor substrate 11g.
  • the thickness of the substrate 11g is, for example, about 620 ⁇ m
  • the thickness of the p-type semiconductor layer 11a is, for example, 10 ⁇ m to 30 ⁇ m.
  • a p-type impurity is added onto the epi-wafer (p-type semiconductor layer 11a) by a so-called LOCOS method using a Si 3 N 4 film (not shown) as a mask by ion implantation.
  • an insulating layer 11d is formed by oxidation using the same Si 3 N 4 film as a mask.
  • an n-type semiconductor layer 11b is formed by adding an n-type impurity by an ion implantation method, and an electrode film 11e and an interlayer insulating layer 11f are stacked in this order. .
  • a plurality of strips of electrode films 11e are formed so that the ends of the adjacent electrode films 11e overlap each other when viewed from the thickness direction of the image sensor 10 (see FIG. 7).
  • the element body 11 is formed on the substrate 11g.
  • the wiring 13 and the electrode 14 are patterned on the interlayer insulating layer 11f (on the main surface S2). In this way, the precursor 10a of the image sensor 10 shown in FIGS. 5A and 6 is formed.
  • a planarizing film 16 is formed on the interlayer insulating layer 11 f (on the main surface S ⁇ b> 2) so as to cover the wiring 13 and the electrode 14.
  • the thickness of the planarizing film 16 can be set to, for example, about 1 ⁇ m to 5 ⁇ m.
  • the surface of the planarizing film 16 is planarized by chemical mechanical polishing (CMP). Thereby, the precursor 10b of the image sensor 10 shown in FIGS. 5B and 9 is formed. At this time, the wiring 13 and the electrode 14 are still covered with the planarizing film 16.
  • a support substrate 20 provided with a through hole 23 is prepared.
  • a high-quality oxide film having a uniform film thickness is formed on the inner wall surface of the through hole 23 by, for example, thermal oxidation.
  • the precursor of the imaging element 10 so that the main surface S ⁇ b> 2 and the main surface S ⁇ b> 3 face each other and one electrode 14 is exposed from one through hole 23.
  • 10b and the support substrate 20 are aligned, and the precursor 10b and the support substrate 20 are joined.
  • the precursor 10b and the support substrate 20 may be pressed and joined directly by room temperature joining, or an adhesive such as a resin may be bonded to the main surface S2 of the precursor 10b. You may join the precursor 10b and the support substrate 20 in the state which apply
  • the substrate 11g in the precursor 1a is removed by etching or polishing to expose the p-type semiconductor layer 11a.
  • the thickness from the p-type semiconductor layer 11a to the planarization film 16 is set to about 10 ⁇ m to 30 ⁇ m, for example.
  • the precursor 1b of the solid-state imaging device 1 shown in FIG. 5 (f) and FIG. 11 is formed.
  • an AR coat 12 is formed on the surface of the p-type semiconductor layer 11 a in the precursor 1 b of the solid-state imaging device 1.
  • a region of the electrode 14 where the plating film 15 is to be formed is exposed by etching using a resist or the like.
  • the precursor 1c of the solid-state imaging device 1 shown in FIG. 5G and FIG. 12 is formed.
  • a plating film 25 is formed so as to cover the exposed electrode 14 and the metal film 24 on the inner wall surface of the support substrate 20.
  • the precursor 1Ad of the solid-state imaging device 1A shown in FIG. 13 is formed.
  • one spherical solder ball (not shown) is disposed in each through hole 23, and the solder ball is melted by reflow to embed solder in each through hole 23.
  • the solder ball has a size that contacts the portion of the plating film 15 that covers the electrode 14 when the solder ball is disposed in the through hole 23.
  • each through hole 23 is filled with solder, and the conductive member 30 is formed.
  • the solid-state imaging device 1 is completed.
  • the solid-state imaging device 1 is mounted on the IC chip 2. Specifically, the conductive member 30 and the electrode 2c of the IC chip 2 are aligned, and the conductive member 30 and the electrode 2c are joined by flip chip bonding. Thereby, the solid-state imaging device 1 and the IC chip 2 are electrically connected via the conductive member 30. Next, the resin material 40 is filled between the solid-state imaging device 1 and the IC chip 2. Thus, the electronic component 3 shown in FIG. 2 is completed.
  • the conductive member 30 is embedded in the through hole 23 of the support substrate 20 joined to the imaging element 10, and the conductive member 30 and the electrode 14 are electrically connected. Therefore, when the solid-state imaging device 1 is manufactured, an electrical connection process is easy. Therefore, the solid-state imaging device 1 can be easily manufactured, and the yield can be improved.
  • a conventional method for manufacturing a solid-state imaging device includes a step of bonding a sensor to a support substrate, a step of forming a resist pattern on the other main surface of the support substrate, and etching the support substrate from the other main surface side. Forming a through hole and filling the metal into the through hole to form a through electrode.
  • CVD Chemical Vapor It is necessary to form a high-quality oxide film having a uniform film thickness on the inner wall surface of the through hole by a method such as Deposition).
  • a method such as Deposition
  • a high quality oxide film having a uniform film thickness can be formed in advance on the inner wall surface of the through hole 23 of the support substrate 20 by thermal oxidation or the like. Therefore, sufficient insulation can be ensured between the support substrate 20 (the inner wall surface of the through hole 23) and the electrode, and a highly reliable solid-state imaging device 1A can be obtained.
  • the first solder ball is disposed in the through hole 23, and after the solder ball is melted, the second solder ball is disposed in the through hole 23 and the solder ball is melted.
  • the conductive member 30 may be embedded in the through hole 23.
  • the conductive member 30 since the solid solder balls are melted in the state where they are disposed in the through holes 23, the conductive member 30 is located outside the through holes 23 as compared to the case where the molten conductive material is poured into the through holes 23. There is almost no risk of sticking out. Further, if a conductive member is tried to be embedded in the through hole at a time using a large solder ball, bubbles may remain in the conductive member. However, in this case, since the conductive member 30 is embedded in the through hole 23 in two steps, the possibility that bubbles remain in the conductive member 30 is extremely reduced.
  • solder ball is used to embed the conductive member 30 in the through hole 23. Therefore, the solder ball can be easily disposed in the through hole 23.
  • the plating film 25 is formed on the electrode 14 and the metal film 24. Therefore, the conductive member 30 can be more reliably connected to the electrode 14 via the plating film 25.
  • the through hole 23 increases in diameter from the main surface S3 toward the main surface S4. Therefore, when forming the conductive member 30, it becomes easy to dispose the conductive member 30 in the through hole 23. Further, when the solder ball is used for embedding the conductive member 30 in the through hole 23, the solder ball is stabilized in the through hole 23.
  • the support substrate 20 is provided with a plurality of through holes 23, and one electrode 14 (plating film 15) corresponds to one through hole 23. Therefore, when the conductive member 30 is formed, the conductive member 30 and the electrode 14 can be easily associated with each other simply by placing solder ball members one by one in the through hole 23 and performing reflow.
  • the solid-state imaging device 1 further includes a planarizing film 16 that covers the surface of the interlayer insulating layer 11f and the wiring 13. Therefore, since the surface of the image sensor 10 is flattened by the planarization film 16, the bonding between the image sensor 10 and the support substrate 20 becomes more reliable.
  • the planarization film 16 is planarized by CMP.
  • the imaging element 10 and the support substrate 20 are attached with an adhesive or the like, the bonding surface is flat compared to the case of room temperature bonding. Therefore, the planarization film 16 may not be planarized by CMP.
  • planarizing film 16 is provided on the main surface S2 of the photoelectric conversion unit 11, but the planarizing film 16 may not be provided.
  • the diameter of the through hole 23 is increased from the main surface S3 toward the main surface S4.
  • the size of the opening of the through hole 23 may be constant in the extending direction.
  • the through hole 23 may be reduced in diameter from the main surface S3 toward the main surface S4.
  • the resin material 40 is filled between the solid-state imaging device 1 and the IC chip 2, but the resin material 40 may not be filled.
  • a spherical solder ball is used to embed the conductive member 30 in the through hole 23.
  • a conductor having a spherical shape for example, a rectangular parallelepiped shape, a cylindrical shape, a cylindrical shape, a prismatic shape, a polyhedron
  • a conductor having a shape other than a spherical shape, such as a shape, can be used.
  • a CCD solid-state image pickup device has been described as an example of the solid-state image pickup device.
  • the present invention is not limited to the CCD solid-state image pickup device, and various backside illumination types including a CMOS solid-state image pickup device. Needless to say, the present invention can be applied to a light receiving element array.
  • SYMBOLS 1A, 1B Solid-state imaging device, 2 ... IC chip, 3 ... Electronic component, 10 ... Imaging element, 11 ... Photoelectric conversion part, 14 ... Electrode, 16 ... Planarization film, 20 ... Support substrate, 23 ... Through-hole, 24 ... Metal film, 25 ... Plating film, 30 ... Conductive member, 40 ... Resin material, S1, S2, S3, S4 ... Main surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 容易に製造を行える固体撮像装置の製造方法を提供する。 固体撮像装置1の製造方法は、エネルギー線が入射される主面S1と、主面S1に対向すると共に電極14が配置された主面S2と、入射されたエネルギー線を光電変換して信号電荷を発生する光電変換部11とを含む撮像素子10を用意する第1の工程と、厚さ方向に延びる貫通孔23が少なくとも一つ設けられると共に互いに対向する主面S3,S4を有する支持基板20を用意する第2の工程と、主面S2,S3が対向し且つ一つの貫通孔23から一つの電極14が露出するように撮像素子10と支持基板20とを位置合わせして、撮像素子10と支持基板20とを接合する第3の工程と、第3の工程の後に、貫通孔23内に導電部材30を埋め込む第4の工程とを有する。

Description

固体撮像装置の製造方法及び固体撮像装置
 本発明は、固体撮像装置の製造方法及び固体撮像装置に関する。
 特許文献1は、CMOSイメージセンサ(以下、「センサ」という。)を用いた裏面照射型の固体撮像装置を開示している。この固体撮像装置は、一対の対向する主面を有する支持基板と、支持基板の一方の主面上に設けられたセンサとを備える。支持基板は、その厚さ方向に延びると共に支持基板を貫通する貫通電極を有する。貫通電極の一端部は、センサの電極と電気的に接続される。貫通電極の他端部は、支持基板の他方の主面に露出している。信号処理のためのICチップに固体撮像装置が搭載された状態で、貫通電極の他端部は、バンプ電極を介してICチップの電極と電気的に接続される。
 上記の固体撮像装置の製造方法は、センサを支持基板に接合する工程と、支持基板の他方の主面にレジストパターンを形成する工程と、当該他方の主面側から支持基板をエッチングして貫通孔を形成する工程と、当該貫通孔内に金属を充填して貫通電極を形成する工程とを含む。
特開2007-13089号公報
 裏面照射型の上記固体撮像装置では、光や各種のエネルギー線(例えば、紫外線、電子線、放射線、荷電粒子線など)が裏面からセンサに入射されるので、センサをできる限り薄型化して受光感度を高める必要がある。しかしながら、薄型化に伴ってセンサの機械的強度が低下してしまい、センサの取り扱いが困難になってしまう。
 センサの機械的強度を確保するために、センサの受光部分を部分的に薄型化し、受光部分を取り囲む外縁部分を肉厚とすることも考えられる。しかしながら、外縁部分の存在によりセンサの面積に対する受光部分の面積が相対的に小さくなるため、センサの単位面積あたりの受光効率が低下してしまう。センサの機械的強度を確保しつつ、センサの全面を薄型化して受光効率を高めるために、上記固体撮像装置では、センサを単体で用いずに支持基板と接合している。
 上記固体撮像装置では、貫通電極を用いてセンサとICチップとが電気的に接続されている。そのため、ワイヤボンディングによるセンサとICチップとの電気的な接続が必要なくなり、小型化が図られる。
 しかしながら、センサと支持基板とを接合した後に支持基板に貫通孔を設けることは、技術的に難易度が高く、歩留まりが低下しうる。
 本発明の目的は、容易に製造を行える固体撮像装置の製造方法及び固体撮像装置を提供することにある。
 本発明の一側面に係る固体撮像装置の製造方法は、エネルギー線が入射される第1の主面と、第1の主面に対向すると共に少なくとも一つの電極が配置された第2の主面と、入射されたエネルギー線を光電変換して信号電荷を発生する光電変換部とを含む撮像素子を用意する第1の工程と、厚さ方向に延びる貫通孔が少なくとも一つ設けられると共に互いに対向する第3及び第4の主面を有する支持基板を用意する第2の工程と、第2の主面と第3の主面とが対向し且つ一つの貫通孔から一つの電極が露出するように撮像素子と支持基板とを位置合わせして、撮像素子と支持基板とを接合する第3の工程と、第3の工程の後に、貫通孔内に導電部材を埋め込む第4の工程とを有する。
 本発明の一側面に係る固体撮像装置の製造方法では、撮像素子に接合された支持基板の貫通孔内に導電部材が埋め込まれている。そのため、固体撮像装置を製造する際に、電気的な接続工程が容易である。従って、固体撮像装置を容易に製造でき、歩留まりの向上が図られる。
 第4の工程では、導電性を有する第1の導電体を前記貫通孔内に配置し、当該第1の導電体を溶融することで、貫通孔内に前記導電部材を埋め込んでもよい。この場合、固体の第1の導電体が貫通孔内に配置された状態で溶融されるので、溶融状態の導電物質を貫通孔内に流し込む場合と比較して、導電部材が貫通孔の外部にはみ出す虞が殆どない。
 第1の導電体ははんだボールでもよい。この場合、第1の導電体を容易に貫通孔内に配置できる。
 第4の工程では、導電性を有する第1の導電体を貫通孔内に配置し、当該第1の導電体を溶融した後に、導電性を有する第2の導電体を貫通孔内に配置し、当該第2の導電体を溶融することで、貫通孔内に導電部材を埋め込んでもよい。この場合、固体の第1及び第2の導電体が貫通孔内に配置された状態で溶融されるので、溶融状態の導電物質を貫通孔内に流し込む場合と比較して、導電部材が貫通孔の外部にはみ出す虞が殆どない。大きな導電体を用いて1回で貫通孔内に導電部材を埋め込もうとすると導電部材内に気泡が残存する場合がある。しかしながら、導電性を有する第1の導電体を貫通孔内に配置し、当該第1の導電体を溶融した後に、導電性を有する第2の導電体を貫通孔内に配置し、当該第2の導電体を溶融すると、導電部材が2回に分けて貫通孔内に埋め込まれるので、導電部材内に気泡が残存する虞が極めて少なくなる。
 第1及び第2の導電体は共にはんだボールでもよい。この場合、第1及び第2の導電体を容易に貫通孔内に配置できる。
 第3の工程の後で且つ第4の工程の前に電極にめっき膜を形成してもよい。この場合、導電部材がめっき膜を介してより確実に電極に接続される。
 貫通孔は第3の主面から第4の主面に向かうにつれて拡径していてもよい。この場合、第3の工程において、導電部材を貫通孔内に埋め込みやすくなる。
 貫通孔の内壁面に金属膜が形成されていてもよい。この場合、貫通孔の内壁面にもめっき膜を形成できるようになる。
 第1の工程で用意された撮像素子は、平坦化膜によって電極及び第2の主面が覆われており、第3の工程の後で且つ第4の工程の前に、電極の表面の少なくとも一部が露出するように平坦化膜の一部を除去してもよい。この場合、撮像素子の表面が平坦化膜により平坦化されるので、撮像素子と支持基板との接合がより確実となる。
 本発明の他の側面に係る固体撮像装置は、エネルギー線が入射される第1の主面と、第1の主面に対向すると共に少なくとも一つの電極が配置された第2の主面と、入射されたエネルギー線を光電変換して信号電荷を発生する光電変換部とを含む撮像素子と、厚さ方向に延びる貫通孔が設けられると共に互いに対向する第3及び第4の主面を有し、第3の主面が第2の主面と対向し且つ一つの貫通孔から一つの電極が露出するように撮像素子と接合された支持基板と、貫通孔内に埋め込まれると共に各電極に電気的に接続された導電部材とを備える。
 本発明の他の側面に係る固体撮像装置は、撮像素子に接合された支持基板の貫通孔内に導電部材を埋め込み、導電部材と電極とを電気的に接続することで製造される。そのため、固体撮像装置を製造する際に、電気的な接続工程が容易である。従って、固体撮像装置を容易に製造でき、歩留まりの向上が図られる。
 電極にめっき膜が形成されていてもよい。この場合、導電部材がめっき膜を介してより確実に電極に接続される。
 貫通孔は第3の主面から第4の主面に向かうにつれて拡径していてもよい。この場合、固体撮像装置の製造の際に、貫通孔内に導電部材を埋め込みやすくなる。
 貫通孔の内壁面に金属膜が形成されていてもよい。この場合、貫通孔の内壁面にもめっき膜を形成できるようになる。
 第2の主面を覆う平坦化膜をさらに備え、電極の表面の少なくとも一部は平坦化膜から露出していてもよい。この場合、撮像素子の表面が平坦化膜により平坦化されるので、撮像素子と支持基板との接合がより確実となる。
 本発明の種々の側面によれば、容易に製造を行える固体撮像装置の製造方法及び固体撮像装置を提供できる。
図1(a)は本実施形態に係る電子部品の上面図であり、図1(b)は図1(a)のB-B線断面図である。 図2は、図2は、本実施形態に係る電子部品の断面図であって、図1(b)を拡大してより詳しく示す図である。 図3は、図2のIII-III線断面図である。 図4(a)は本実施形態に係る固体撮像装置を支持基板側から見た様子を示す図であり、図4(b)は図4(a)において導電部材を除去した状態を示す図である。 図5は、本実施形態に係る固体撮像装置を製造するための一工程を示す図である。 図6は、本実施形態に係る固体撮像装置を製造するための一工程を示す図である。 図7は、図6のVII-VII線断面図である。 図8は、本実施形態に係る固体撮像装置を製造するための一工程を示す図である。 図9は、本実施形態に係る固体撮像装置を製造するための一工程を示す図である。 図10は、本実施形態に係る固体撮像装置を製造するための一工程を示す図である。 図11は、本実施形態に係る固体撮像装置を製造するための一工程を示す図である。 図12は、本実施形態に係る固体撮像装置を製造するための一工程を示す図である。 図13は、本実施形態に係る固体撮像装置を製造するための一工程を示す図である。
 本発明の実施形態について、図面を参照して説明する。なお、説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
 図1~図4を参照して、本実施形態に係る固体撮像装置1がICチップ2に搭載された電子部品3の構成について説明する。固体撮像装置1は、図1に示されるように、CCDタイプの裏面照射型撮像素子10と、撮像素子10を支持する支持基板20と、複数の導電部材30とを備える。
 撮像素子10は、図2に示されるように、素子本体11と、ARコート12と、配線13と、複数の電極14とを有する。素子本体11は、p型半導体層11aと、n型半導体層11bと、p+型半導体層11cと、絶縁層11dと、電極膜11eと、層間絶縁層11fとを含む。
 p型半導体層11aは、他の部分よりも厚みの厚い突出部を有する。n型半導体層11bは、当該突出部上において所定厚さで形成されている。p型半導体層11aとn型半導体層11bとの界面においてPN接合が形成される。当該界面の近傍が光電変換部として機能し、当該界面に入射された各種のエネルギー線(例えば、光、紫外線、電子線、放射線、又は荷電粒子線など)を光電変換して信号電荷を発生する。
 p+型半導体層11cは、n型半導体層11bの主面は覆わないが、n型半導体層11bの側面とp型半導体層11aの表面とを覆うように配置されている。絶縁層11dは、n型半導体層11bの主面とp+型半導体層11cの表面とを覆うように配置されている。絶縁層11dは、例えばSiOなどによって構成される。絶縁層11dのうちn型半導体層11bの主面を覆っている部分の厚さは、絶縁層11dのうちp+型半導体層11cの表面を覆っている部分の厚さよりも小さい。
 電極膜11eは、図2に示されるように、絶縁層11dの薄い部分とその近傍を覆うように延びる帯状膜である。電極膜11eは、図3に示されるように、撮像素子10の幅方向に複数並んでいる。隣り合う電極膜11eは、絶縁膜により互いに絶縁されており、撮像素子10の厚さ方向から見て端部同士が重なり合っている。電極膜11eは、例えばpoly-Siによって構成される。層間絶縁層11fは、電極膜11e及び絶縁層11dを覆うように配置されている。層間絶縁層11fは、例えばホウリンケイ酸塩ガラス層(BPSG:Boronphosphosilicate Glass)などによって構成される。
 ARコート12は、所定の波長帯域内にある光の反射を防止する機能を有する。ARコート12は、例えばSiO、又はSiNなどによって構成されている。ARコート12は、p型半導体層11aの表面に形成されている。配線13及び複数の電極14は、層間絶縁層11fの表面(光電変換部11の主面S2)にパターニングされている。配線13及び電極14は、例えばAlなどによって構成される。配線13及び電極14の厚さは、例えば0.1μm~1μm程度に設定される。図4(b)に示されるように、主面S1,S2の対向方向から見て、光検出領域A1の両側に複数の電極14(本実施形態では5つの電極14)がそれぞれ一列ずつ並んでいる。
 上記の構成を有する撮像素子10においては、p型半導体層11aと、n型半導体層11bと、絶縁層11dと、電極膜11eとが積層されている領域が光検出領域A1として機能し、他の領域が配線領域A2として機能する。撮像素子10におけるARコート12側の表面は、エネルギー線が入射される主面S1として機能する。撮像素子10における層間絶縁層11f側の表面は、支持基板20に向かう主面S2として機能する。
 平坦化膜16は、図2に示されるように、撮像素子10の主面S2上に設けられている。平坦化膜16は、層間絶縁層11fと、配線13と、電極14の一部とを覆うように配置されている。そのため、配線13及び電極14の存在により凹凸状となっている層間絶縁層11fの表面が、平坦化膜16により平坦化される。平坦化膜16は、例えばTEOS(テトラエトキシシラン)などによって構成される。
 支持基板20は、図1に示されるように、平坦化膜16を介して撮像素子10と接合されている。支持基板20は、図2に示されるように、基板21と、基板21の表面全体を覆う絶縁膜22とを有する。基板21は、例えばSiによって構成される。絶縁膜22は、例えば熱酸化等によって形成された酸化膜によって構成される。
 支持基板20には、その厚さ方向に延びる貫通孔23が電極14と同数設けられている。本実施形態では、貫通孔23は8つ形成されている。貫通孔23は、図1(a)及び図4に示されるように、主面S1,S2の対向方向から見て光検出領域A1の両側に4つずつ配置されている。各貫通孔23からは、図4(b)に示されるように、電極14の一部が露出している。基板21の表面と同様に、各貫通孔23も絶縁膜22によって覆われている。すなわち、支持基板20には、その厚さ方向に延び且つ内壁面が絶縁膜によって覆われた貫通孔23が設けられている。
 各貫通孔23は、図1(b)及び図2に示されるように、支持基板の一方の主面S3から他方の主面S4に向かうにつれて拡径している。つまり、各貫通孔23の内壁面はテーパ状を呈する。貫通孔23における主面S3側及び主面S4側の開口は、共に正方形状を呈する。
 各貫通孔23の内壁面及び各貫通孔23における主面S4側の開口近傍には、後述するめっき膜25の下地となる金属膜24が設けられている。金属膜24は、例えばAlなどによって構成される。
 電極14のうち平坦化膜16によって覆われていない部分と、金属膜24の表面とには、めっき膜25が形成されている。めっき膜15は、例えばAu、Niなどによって構成される。
 導電部材30は、導電性を有する金属であり、例えばはんだによって構成されている。導電部材30は、図1、図2及び図4(a)に示されるように、各貫通孔23内に埋め込まれている。すなわち、各導電部材30は、各貫通孔23内に配置されている。各導電部材30は、各電極14及び各めっき膜15と一対一に対応しており、各電極14及び各めっき膜15と電気的に接続されている。
 ICチップ2は、図1(b)及び図2に示されるように、チップ本体2aと、複数のリード端子2bと、電極2cと、めっき膜2dと、絶縁膜2eとを有する。チップ本体2aは、撮像素子10から出力された電気信号の信号処理や、撮像素子10の動作制御などを行う。複数のリード端子2bは、チップ本体2aから延びており、図示しない回路基板等にICチップ2が搭載されたときに当該回路基板の電極と電気的に接続される。
 電極2cは、チップ本体2a上にパターニングされている。電極2cは、例えばAlなどによって構成される。めっき膜2dは、本実施形態において、電極2cにおける主面の一部に配置されている。めっき膜2dは、例えばAu、又はNiなどによって構成される。絶縁膜2eは、めっき膜2dの主面は露出する一方、チップ本体2a及び電極2cを覆うように形成されている。絶縁膜2eは、例えばSiOなどによって構成される。
 固体撮像装置1とICチップとを確実に固定するため、固体撮像装置1とICチップ2との間には樹脂材料40が充填されている。樹脂材料としては、例えばエポキシ樹脂などを用いることができる。
 続いて、図2、図3及び図5~図13を参照して、本実施形態に係る固体撮像装置1を備えた電子部品3を製造する方法について説明する。まず、図5(a)及び図6に示されるように、撮像素子10の前駆体10aを製造する。具体的には、図6に示されるように、はじめにp+半導体基板11gの表面にp型半導体層11aがエピタキシャル成長された、所謂エピウエハを用意する。この基板11gの厚さは、例えば620μm程度であり、p型半導体層11aの厚さは、例えば10μm~30μmである。
 次に、エピウエハ(p型半導体層11a)の上に、所謂LOCOS法により、Si膜(図示せず)をマスクとしてイオン注入法によりp型の不純物を添加してp+型半導体層11cを形成する。次に、同じSi膜をマスクとして、酸化により絶縁層11dを形成する。次に、Si膜を除去した後、イオン注入法によりn型の不純物を添加することによりn型半導体層11bを形成して、さらに電極膜11e及び層間絶縁層11fをこの順に積層する。この際、隣り合う電極膜11eの端部同士が撮像素子10の厚さ方向から見て重なり合うように、帯状を呈する複数の電極膜11eが形成される(図7参照)。これにより、基板11g上に素子本体11が形成される。次に、層間絶縁層11f上(主面S2上)に配線13及び電極14をパターニングする。こうして、図5(a)及び図6に示される撮像素子10の前駆体10aが形成される。
 続いて、図8に示されるように、配線13及び電極14を覆うように層間絶縁層11f上(主面S2上)に平坦化膜16を形成する。平坦化膜16の厚さは、例えば1μm~5μm程度に設定できる。続いて、図9に示されるように、平坦化膜16の表面を化学機械研磨(CMP:Chemical Mechanical Polishing)により平坦化する。これにより、図5(b)及び図9に示される撮像素子10の前駆体10bが形成される。このとき、配線13及び電極14は平坦化膜16により覆われたままである。
 続いて、図5(c)に示されるように、貫通孔23が設けられた支持基板20を用意する。ここで、貫通孔23の内壁面には、例えば熱酸化等により、膜厚が均一な高品質の酸化膜が形成されている。続いて、図5(d)及び図10に示されるように、主面S2と主面S3とが対向し且つ一つの貫通孔23から一つの電極14が露出するように撮像素子10の前駆体10bと支持基板20とを位置合わせして、前駆体10bと支持基板20とを接合する。前駆体10bと支持基板20との接合にあたっては、例えば常温接合により前駆体10bと支持基板20とを押しつけあって直接接合してもよいし、前駆体10bの主面S2に樹脂などの接着剤(図示せず)を塗布した状態で前駆体10bと支持基板20とを接合してもよい。これにより、図5(e)に示されるように、固体撮像装置1の前駆体1aが形成される。
 続いて、前駆体1aにおける基板11gをエッチングや研磨などにより除去し、p型半導体層11aを露出させる。このときのp型半導体層11aから平坦化膜16までの厚さは、例えば10μm~30μm程度に設定される。これにより、図5(f)及び図11に示される固体撮像装置1の前駆体1bが形成される。続いて、固体撮像装置1の前駆体1bにおけるp型半導体層11aの表面にARコート12を形成する。次に、レジスト等を用いたエッチングにより、電極14のうちめっき膜15を形成すべき領域を露出させる。これにより、図5(g)及び図12に示される固体撮像装置1の前駆体1cが形成される。
 続いて、露出した電極14と、支持基板20の内壁面における金属膜24とを覆うようにめっき膜25を形成する。これにより、図13に示される固体撮像装置1Aの前駆体1Adが形成される。続いて、各貫通孔23内に、球状を呈するはんだボール(図示せず)をそれぞれ一つずつ配置し、リフローにより当該はんだボールを溶融して、各貫通孔23内にはんだを埋め込む。このとき、はんだボールが貫通孔23に対して大きすぎると、はんだボールと貫通孔23との間に生ずる空間が大きくなり、リフローによりはんだボールが溶融した際はんだ中に気泡が生ずる場合がある。そのため、はんだボールは、貫通孔23内に配置された際にめっき膜15のうち電極14を覆う部分と接する程度の大きさを有すると好ましい。
 次に、再びはんだボールを各貫通孔23内に一つずつ配置し、リフローにより当該はんだボールを溶融して、各貫通孔23内にはんだを埋め込む。これにより、各貫通孔23内にはんだが充填され、導電部材30が形成される。こうして固体撮像装置1が完成する。
 続いて、固体撮像装置1をICチップ2に搭載する。具体的には、導電部材30とICチップ2の電極2cとを位置合わせして、導電部材30と電極2cとをフリップチップボンディングにより接合する。これにより、固体撮像装置1とICチップ2とが導電部材30を介して電気的に接続される。次に、固体撮像装置1とICチップ2との間に、樹脂材料40を充填する。こうして、図2に示される電子部品3が完成する。
 以上のような本実施形態では、撮像素子10に接合された支持基板20の貫通孔23内に導電部材30を埋め込み、導電部材30と電極14とを電気的に接続している。そのため、固体撮像装置1を製造する際に、電気的な接続工程が容易である。従って、固体撮像装置1を容易に製造でき、歩留まりの向上が図られる。
 ところで、従来の固体撮像装置の製造方法は、センサを支持基板に接合する工程と、支持基板の他方の主面にレジストパターンを形成する工程と、当該他方の主面側から支持基板をエッチングして貫通孔を形成する工程と、当該貫通孔内に金属を充填して貫通電極を形成する工程とを含む。貫通孔に電極を形成する際に支持基板(貫通孔の内壁面)と電極との間で絶縁を確保するためには、例えばCVD(Chemical Vapor
Deposition)等の方法で、膜厚が均一な質の高い酸化膜を貫通孔の内壁面に形成する必要がある。しかしながら、この場合、十分な品質の絶縁膜を得るには難易度が高く、信頼性を確保することが困難であった。
 ところが、本実施形態によれば、支持基板20の貫通孔23の内壁面に、熱酸化等により、膜厚が均一な高品質の酸化膜を予め形成しておくことができる。そのため、支持基板20(貫通孔23の内壁面)と電極との間で十分な絶縁を確保でき、信頼性の高い固体撮像装置1Aを得ることができる。
 本実施形態では、一つ目のはんだボールを貫通孔23内に配置し、当該はんだボールを溶融した後に、二つ目のはんだボールを貫通孔23内に配置し、当該はんだボールを溶融することで、貫通孔23内に導電部材30を埋め込んでもよい。この場合、固体のはんだボールが貫通孔23内に配置された状態で溶融されるので、溶融状態の導電物質を貫通孔23内に流し込む場合と比較して、導電部材30が貫通孔23の外部にはみ出す虞が殆どない。また、大きなはんだボールを用いて1回で貫通孔内に導電部材を埋め込もうとすると導電部材内に気泡が残存する場合がある。しかしながら、この場合、導電部材30が2回に分けて貫通孔23内に埋め込まれるので、導電部材30内に気泡が残存する虞が極めて少なくなる。
 本実施形態では、導電部材30を貫通孔23に埋め込むにあたり、はんだボールを用いている。そのため、はんだボールを容易に貫通孔23内に配置できる。
 本実施形態では、電極14及び金属膜24にめっき膜25を形成している。そのため、めっき膜25を介してより確実に導電部材30を電極14に接続できる。
 本実施形態では、貫通孔23は主面S3から主面S4に向かうにつれて拡径している。そのため、導電部材30を形成するにあたり、導電部材30を貫通孔23内に配置しやすくなる。また、導電部材30を貫通孔23に埋め込むにあたり、はんだボールを用いる場合に、はんだボールが貫通孔23内において安定する。
 本実施形態では、支持基板20には複数の貫通孔23が設けられており、一つの貫通孔23に対して一つの電極14(めっき膜15)が対応している。そのため、導電部材30を形成するにあたり、この貫通孔23内にはんだボール部材を一つずつ配置してリフローをするだけで、導電部材30と電極14との対応付けを簡単に行うことができる。
 本実施形態では、固体撮像装置1が、層間絶縁層11fの表面と配線13とを覆う平坦化膜16をさらに備える。そのため、撮像素子10の表面が平坦化膜16により平坦化されるので、撮像素子10と支持基板20との接合がより確実となる。
 以上、本発明の実施形態について詳細に説明したが、本発明は上記した実施形態に限定されるものではない。例えば、上記の実施形態では平坦化膜16をCMPにより平坦化していたが、撮像素子10と支持基板20とを接着剤等によって貼り付ける場合には常温接合する場合と比較して接合面の平坦性がそれほど要求されないので、平坦化膜16をCMPにより平坦化しなくてもよい。
 上記の実施形態では、光電変換部11の主面S2上に平坦化膜16を設けていたが、平坦化膜16を設けなくてもよい。
 上記の実施形態では、主面S3から主面S4に向かうにつれて貫通孔23が拡径していたが、貫通孔23の開口の大きさは、その延在方向において一定でもよい。また、主面S3から主面S4に向かうにつれて貫通孔23が縮径していてもよい。
 上記の実施形態では、固体撮像装置1とICチップ2との間に樹脂材料40が充填されていたが、樹脂材料40を充填しなくてもよい。
 上記の実施形態では、導電部材30を貫通孔23に埋め込むにあたり、球状のはんだボールを用いたが、一部が球面を呈する導電体や、例えば直方体形状、筒形状、円柱形状、角柱形状、多面体形状など、球状以外の形状を呈する導電体を用いることができる。
 上記の実施形態では、固体撮像装置としてCCD型固体撮像装置を例にして説明したが、本発明は、CCD型固体撮像装置に限定されず、CMOS型固体撮像装置をはじめ種々の裏面照射型の受光素子アレイに適用可能であることは言うまでもない。
 1A,1B…固体撮像装置、2…ICチップ、3…電子部品、10…撮像素子、11…光電変換部、14…電極、16…平坦化膜、20…支持基板、23…貫通孔、24…金属膜、25…めっき膜、30…導電部材、40…樹脂材料、S1,S2,S3,S4…主面。

Claims (14)

  1.  エネルギー線が入射される第1の主面と、前記第1の主面に対向すると共に少なくとも一つの電極が配置された第2の主面と、入射されたエネルギー線を光電変換して信号電荷を発生する光電変換部とを含む撮像素子を用意する第1の工程と、
     厚さ方向に延びる貫通孔が少なくとも一つ設けられると共に互いに対向する第3及び第4の主面を有する支持基板を用意する第2の工程と、
     前記第2の主面と前記第3の主面とが対向し且つ一つの前記貫通孔から一つの前記電極が露出するように前記撮像素子と前記支持基板とを位置合わせして、前記撮像素子と前記支持基板とを接合する第3の工程と、
     前記第3の工程の後に、前記貫通孔内に導電部材を埋め込む第4の工程とを有する、固体撮像装置の製造方法。
  2.  前記第4の工程では、導電性を有する第1の導電体を前記貫通孔内に配置し、当該第1の導電体を溶融することで、前記貫通孔内に前記導電部材を埋め込む、請求項1に記載の方法。
  3.  前記第1の導電体ははんだボールである、請求項2に記載の方法。
  4.  前記第4の工程では、導電性を有する第1の導電体を前記貫通孔内に配置し、当該第1の導電体を溶融した後に、導電性を有する第2の導電体を前記貫通孔内に配置し、当該第2の導電体を溶融することで、前記貫通孔内に前記導電部材を埋め込む、請求項1に記載の方法。
  5.  前記第1及び第2の導電体は共にはんだボールである、請求項4に記載の方法。
  6.  前記第3の工程の後で且つ前記第4の工程の前に前記電極にめっき膜を形成する、請求項1~5のいずれか一項に記載の方法。
  7.  前記貫通孔は前記第3の主面から前記第4の主面に向かうにつれて拡径している、請求項1~6のいずれか一項に記載の方法。
  8.  前記貫通孔の内壁面に金属膜が形成されている、請求項1~7のいずれか一項に記載の方法。
  9.  前記第1の工程で用意された前記撮像素子の前記電極及び前記第2の主面は、平坦化膜によって覆われており、
     前記第3の工程の後で且つ前記第4の工程の前に、前記電極の表面の少なくとも一部が露出するように前記平坦化膜の一部を除去する、請求項1~8のいずれか一項に記載の方法。
  10.  エネルギー線が入射される第1の主面と、前記第1の主面に対向すると共に少なくとも一つの電極が配置された第2の主面と、入射されたエネルギー線を光電変換して信号電荷を発生する光電変換部とを含む撮像素子と、
     厚さ方向に延びる貫通孔が設けられると共に互いに対向する第3及び第4の主面を有し、前記第3の主面が前記第2の主面と対向し且つ一つの前記貫通孔から一つの前記電極が露出するように前記撮像素子と接合された支持基板と、
     前記貫通孔内に埋め込まれると共に前記各電極に電気的に接続された導電部材とを備える、固体撮像装置。
  11.  前記電極にめっき膜が形成されている、請求項10に記載の固体撮像装置。
  12.  前記貫通孔は前記第3の主面から前記第4の主面に向かうにつれて拡径している、請求項10又は11に記載の固体撮像装置。
  13.  前記貫通孔の内壁面に金属膜が形成されている、請求項10~12のいずれか一項に記載の固体撮像装置。
  14.  前記第2の主面を覆う平坦化膜をさらに備え、
     前記電極の表面の少なくとも一部は前記平坦化膜から露出している、請求項10~13のいずれか一項に記載の固体撮像装置。
PCT/JP2013/054391 2012-06-15 2013-02-21 固体撮像装置の製造方法及び固体撮像装置 WO2013187085A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13804695.8A EP2863436B1 (en) 2012-06-15 2013-02-21 Manufacturing method for solid-state imaging device and solid-state imaging device
KR1020147029929A KR102135982B1 (ko) 2012-06-15 2013-02-21 고체 촬상 장치의 제조 방법 및 고체 촬상 장치
CN201380031682.6A CN104364906B (zh) 2012-06-15 2013-02-21 固体摄像装置的制造方法及固体摄像装置
US14/406,851 US9754995B2 (en) 2012-06-15 2013-02-21 Manufacturing method for solid-state imaging device and solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-136201 2012-06-15
JP2012136201A JP6095904B2 (ja) 2012-06-15 2012-06-15 固体撮像装置の製造方法及び固体撮像装置

Publications (1)

Publication Number Publication Date
WO2013187085A1 true WO2013187085A1 (ja) 2013-12-19

Family

ID=49757927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054391 WO2013187085A1 (ja) 2012-06-15 2013-02-21 固体撮像装置の製造方法及び固体撮像装置

Country Status (7)

Country Link
US (1) US9754995B2 (ja)
EP (1) EP2863436B1 (ja)
JP (1) JP6095904B2 (ja)
KR (1) KR102135982B1 (ja)
CN (1) CN104364906B (ja)
TW (1) TWI569433B (ja)
WO (1) WO2013187085A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170842B (zh) * 2017-06-12 2019-07-02 京东方科技集团股份有限公司 光电探测结构及其制作方法、光电探测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057507A (ja) * 2002-07-29 2004-02-26 Toshiba Corp X線検出装置、貫通電極の製造方法及びx線断層撮影装置
JP2007013089A (ja) 2005-06-02 2007-01-18 Sony Corp 固体撮像素子及びその製造方法
JP2008300613A (ja) * 2007-05-31 2008-12-11 Fujifilm Corp 撮像素子及び撮像素子の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335491A (ja) * 1997-06-05 1998-12-18 Sony Corp 半導体装置及びその製造方法
JP2000349194A (ja) * 1999-06-08 2000-12-15 Matsushita Electric Ind Co Ltd 半導体装置の製造方法および半導体装置
JP4427949B2 (ja) 2002-12-13 2010-03-10 ソニー株式会社 固体撮像素子及びその製造方法
JP2005108991A (ja) * 2003-09-29 2005-04-21 Seiko Epson Corp 実装構造体、液晶表示装置および電子機器
US20090298277A1 (en) * 2008-05-28 2009-12-03 Mackay John Maskless Process for Solder Bumps Production
JP5422236B2 (ja) * 2009-03-23 2014-02-19 株式会社東芝 撮像装置
JP2011086828A (ja) * 2009-10-16 2011-04-28 Sumco Corp 半導体装置およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004057507A (ja) * 2002-07-29 2004-02-26 Toshiba Corp X線検出装置、貫通電極の製造方法及びx線断層撮影装置
JP2007013089A (ja) 2005-06-02 2007-01-18 Sony Corp 固体撮像素子及びその製造方法
JP2008300613A (ja) * 2007-05-31 2008-12-11 Fujifilm Corp 撮像素子及び撮像素子の製造方法

Also Published As

Publication number Publication date
CN104364906A (zh) 2015-02-18
JP2014003092A (ja) 2014-01-09
TWI569433B (zh) 2017-02-01
TW201351624A (zh) 2013-12-16
EP2863436A4 (en) 2016-02-24
EP2863436B1 (en) 2018-11-28
KR102135982B1 (ko) 2020-07-20
US9754995B2 (en) 2017-09-05
KR20150032657A (ko) 2015-03-27
US20150137301A1 (en) 2015-05-21
EP2863436A1 (en) 2015-04-22
JP6095904B2 (ja) 2017-03-15
CN104364906B (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
US9373653B2 (en) Stepped package for image sensor
JP2008130738A (ja) 固体撮像素子
TW201143044A (en) Wafer level compliant packages for rear-face illuminated solid state image sensors
US20120242876A1 (en) Solid-state image sensing device, camera module, and solid-state image sensing device manufacturing method
US20130222657A1 (en) Solid-state image sensor and method of manufacturing the same
CN102148262A (zh) 电子装置封装及其制造方法
WO2018146965A1 (ja) 半導体装置、および半導体装置の製造方法
US8633572B2 (en) Low ohmic through substrate interconnection for semiconductor carriers
US10825730B2 (en) Manufacturing method for solid-state imaging device and solid-state imaging device
US11955499B2 (en) Image sensor package including glass substrate and a plurality of redistribution layers disposed below the glass substrate and spaced apart from each other by a predetermined distance
JP5422236B2 (ja) 撮像装置
JP6095904B2 (ja) 固体撮像装置の製造方法及び固体撮像装置
US20200144322A1 (en) Imaging apparatus and method of manufacturing imaging apparatus
WO2000044027A1 (fr) Tube electronique
US20120306076A1 (en) Semiconductor Micro-Connector With Through-Hole Via and a Method for Making the Same
JP2017126783A (ja) 固体撮像装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147029929

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013804695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14406851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE